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Analytical Green’s function for the acoustic
scattering by a flat plate with a serrated edge
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An analytical Green’s function is developed to study the acoustic scattering by a flat plate
with a serrated edge. The scattered pressure is solved using the Wiener–Hopf technique in
conjunction with the adjoint technique. It is shown that the kernel decomposition proposed
in recent literature appears only valid at high frequencies. We focus on this high-frequency
regime and obtain the scattered pressure in the form of a contour integral. We show
that such an integral, although complicated, can be evaluated exactly for any arbitrary
piecewise linear serrations, for which closed-form analytical Green’s functions are
obtained. The derivation is validated by performing numerical integration of the contour
integral showing excellent agreement. The Green’s function is shown to agree well with
the numerical results obtained using the finite element method at high frequencies. The
noise directivity patterns are studied as a function of the frequency, serration amplitude,
source position and Mach number. It is found that noise is often enhanced at low observer
angles and may be slightly reduced at high observer angles, which may be understood
from the perspective of an extended or removed rigid reflection surface. It is found that
increasing the mean-flow Mach number leads to increasingly evident noise amplification
at side angles, a seemingly strange Doppler behaviour exhibited in source-fixed coordinate
frames. The analytical Green’s function is applicable to both leading- and trailing-edge
scatterings, and is particularly suitable for developing a three-dimensional trailing-edge
noise model that is not only highly efficient but also capable of including non-frozen
turbulence effects.
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B. Lyu

1. Introduction

Turbulent boundary layer trailing-edge (TE) noise (Howe 1978) refers to the noise
generated when turbulence boundary layers convect past the trailing edge of an aerofoil.
It is a common aeroacoustic source in many applications involving rotating blades such
as wind turbines. It has gained increasingly more attention in recent years, particularly in
the wind industry. This is because the turbine blade size continues to increase, leading to
increasingly large blade tip velocity. It is well known that the power of the aeroacoustic
noise emission increases quickly as the blade velocity increases, and for modern wind
turbines, TE noise has become the dominant noise source (Oerlemans et al. 2009). As
noise regulations become increasingly stringent, TE noise is also expected to become a
regulatory issue for emerging commercial transport such as air taxis, small aerial vehicles
and drones (Jaworski & Peake 2020). Understanding TE noise and its reduction is of
particular importance in these areas.

There have been numerous studies into the techniques of reducing TE noise. Some
notable approaches include using porous aerofoils (Howe 1979; Fink & Bailey 1980;
Geyer, Sarradj & Fritzsche 2009a, 2010), trailing-edge brushes (Herr & Dobrzynski 2005),
surface finlets (Clark et al. 2016, 2017) and TE serrations, among which TE serrations
represent a particularly effective way of reducing TE noise without severely compromising
aerodynamic efficiency. The idea of using serrations was inspired by the silent flight of
owls (Jaworski & Peake 2020). Thorpe & Griffin (1962) represents one of the earliest
attempts to measure the aeroacoustic signature of free-flying owls. It was found that the
noise generated by owls could not be detected by their experimental rig in the ultrasonic
frequency range. The noise generated by owls was significantly weaker than that by other
birds of similar sizes, demonstrating the owl’s silent flight capability. Later experimental
studies by Kroeger, Grushka & Helvey (1972) and Neuhaus, Bretting & Schweizer
(1973) confirmed that owls did have a unique flying signature that is quieter than other
birds. Consistent fly-over noise measurements by Sarradj, Fritzsche & Geyer (2011), in
conjunction with fixed-wing laboratory measurement (Geyer, Sarradj & Fritzsche 2009b),
showed that the silent flying characteristics of owls may be related to the special features
of their wings. One of these features is the wavy or serrated features around the wing’s
leading and trailing edge. The leading-edge serrations appear to be able to reduce the
tip-vortex strength at high angles of attack, whereas TE serrations reduce the TE noise in
approach/gliding flight. This inspires the technique of installing serrations on the leading
and trailing edges of a wing or blade to reduce its aerodynamic noise.

Extensive research into TE noise suppression using serrations has been conducted in
the past two decades. Numerous experiments show that serrations represent an effective
technique to reduce TE noise. Dassen et al. (1996) conducted wind tunnel measurements
to study the noise reduction effects of serrations on aerofoils and flat plates. It was
shown that significant noise reductions can be achieved in both cases, for example, noise
reductions up to 8 and 10 dB were observed for aerofoils and flat plates, respectively.
Maximal noise reductions were shown to occur between 1 and 6 kHz. Parchen et al.
(1999) undertook a similar experimental campaign, but on wind turbine blades at both
full and laboratory scales. Similar noise reduction was observed, while a noise increase
was reported in the high-frequency regime when serrations were misaligned with the flow
direction. A decade later, Oerlemans et al. (2009) conducted field acoustic measurements
on full-scale wind turbine blades using standard, optimized and serrated blades. It was
shown that the optimized and serrated blades resulted in a noise reduction of 0.5 and
3.2 dB, respectively, for a microphone array placed on the ground. It was found that most
of the noise was produced during the downwash movement of the blades. Gruber et al.
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Acoustic scattering by a flat plate with a serrated edge

(Gruber, Azarpeyvand & Joseph 2010; Gruber 2012) performed an extensive array of
measurements to study the noise reduction effects of serrations of varying sizes. The sound
power level (SWL) was obtained by integrating the noise intensity along a microphone
arc placed in the mid-span plane. An average reduction of 3–5 dB was reported by using
sharp sawtooth serrations. The noise reduction was found to be related to the change of
convection velocity and turbulence coherence near the serrations. The serrations used by
Gruber (2012) were flat inserts. Chong, Joseph & Gruber (2013), however, studied non-flat
serrations by directly cutting aerofoils and found similar noise reductions. However,
significant boundary layer instability tones were also observed in some configurations.
Recently, Leon et al. (2016) studied the effects of serrations under deflected configurations.
It was found that when the serration was aligned with the flow, a consistent noise reduction
up to 7 dB was obtained, whereas when the serration was misaligned, a noise increase
started to appear beyond a critical Strouhal number that scaled with the boundary layer
thickness and free stream velocity. The noise reduction characteristics of serrations when
used specifically on flat plates were studied by Moreau & Doolan (2013) and Chong &
Vathylakis (2015). Effective noise reduction was reported in both studies. For example, a
noise reduction up to 13 dB was recorded by Moreau & Doolan (2013), but this was shown
to be due to the attenuation of vortex shedding. Chong & Vathylakis (2015) found that
little change in the power spectral density and spanwise correlation length of the surface
pressure fluctuations occurred. Instead, a pair of pressure-driven oblique vortical structures
was identified by using conditional-averaging techniques. In recent years, experiments
were conducted to explore the optimal serration shapes, including for example serrations
with double wavelength (Chaitanya et al. 2018), iron-shaped serrations (Avallone, van der
Velden & Ragni 2017), ogee serrations (Lyu, Ayton & Chaitanyan 2019) etc. More details
about these experiments can be found in recent studies (Lyu et al. 2019).

In addition to experiments, numerical simulations are also used to study serrated
TE noise. For example, Jones (Jones & Sandberg 2012) performed a direct numerical
simulation (DNS) of flows around a NACA0012 aerofoil with and without serrations. The
serrations appeared to introduce little change into the turbulent boundary properties and an
effective noise reduction was observed. Sanjosé et al. (2014) also performed a DNS on a
serrated isolated aerofoil and reported a noise reduction of a similar magnitude. Numerical
studies were also performed using the lattice Boltzmann method by Avallone et al. (2018),
where the link between the far-field noise and the near-field flow parameters was proposed.
In addition to the noise reduction obtained by using conventional sawtooth serrations, it
was shown that combed-sawtooth trailing edges can provide additional noise reduction
benefits.

Both experiments and numerical simulations show that TE serration is indeed an
effective method of reducing TE noise. To use serrations in practical applications, however,
reliable noise prediction models are essential because they are crucial in the design of
optimal serration geometries (see for example a recent study by Kholodov & Moreau
2021). Howe (1991a,b) is among the earliest researchers to model the aerodynamic
noise generated by serrated trailing edges analytically. A tailored Green’s function was
used to formulate a noise prediction model using the blocked surface pressure statistics
beneath the turbulent boundary layers. However, it has been well reported that Howe’s
model significantly overpredicts the noise reduction by using serrations. Later studies
(Lyu, Azarpeyvand & Sinayoko 2015, 2016) showed that this is due to the Green’s
function being inaccurate. To improve the accuracy of the TE noise prediction, Lyu
et al. (2016) developed a TE noise model using Amiet’s approach. Instead of using the
Green’s function, the Schwartszchild technique was used in conjunction with Fourier
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expansion in an iterative manner to enable analytical progression. The resulting prediction
model yielded more realistic predictions compared to Howe’s model and showed
that noise reduction is achieved mainly through a destructive interference mechanism.
The computation of the model involves the evaluation of nested sums, therefore needs
to be optimized so as to be more suitable when used for serration optimization purposes.
Recently, Ayton (2018) developed a model using the Wiener–Hopf technique. The far-field
sound was formulated as two infinite sums and one infinite integral, therefore consuming
significant time when evaluated. However, it was shown (Lyu & Ayton 2019) that the model
can be further developed by evaluating the infinite integral and one of the infinite sums
explicitly, and the resulting simplified model can be computed very efficiently (Lyu &
Ayton 2019). However, the model hinges on the semi-infinite flat plate assumption and the
result is therefore strictly two dimensional. As such, the far-field pressure varies as 1/

√
r

instead of 1/r as r → ∞, where r denotes the radial distance of the observer in the plane
perpendicular to the spanwise axis. When compared quantitatively with experimental data,
it is unclear how far the microphone should be placed from the serration so that both the
two-dimensionality and far-field assumption are valid simultaneously. More importantly,
since most practical applications involve rotating blades, where three-dimensionality is
crucial, a three-dimensional (3-D) accurate model would be necessary to obtain the correct
prediction of TE noise for rotating blades.

A classical way to incorporate the 3-D effects is to use the two-step approach used
in Amiet’s model (Amiet 1976b), where the surface pressure due to the gust scattering
by a serrated semi-infinite plate is calculated first, and the far-field sound is calculated
subsequently using a surface integral assuming a finite plate. To do that, it is crucial to
obtain the near-field scattered pressure on the plate surface. This poses a great difficulty
as the powerful method of the steepest descent cannot be used to evaluate the inverse
Fourier transform as used by Ayton (2018). Considering acoustic reciprocity, this is in
fact equivalent to calculating the Green’s function for the acoustic scattering by serrated
edges, where the acoustic source, instead of the observer, is placed in the near field.
Obtaining such a Green’s function would enable a TE noise model to be developed that
is both three-dimensionally accurate and computationally efficient. Moreover, the Green’s
function itself is fundamentally important in many important aspects concerning TE noise.
First, this would open the possibility of examining the consequences of many assumptions
that have been open to heated debate, such as the validity of frozen turbulence that has been
called into question in a number of recent studies (Ragni et al. 2018; Zhou et al. 2020).
Second, the Green’s function would provide a more intuitive understanding of the effects
of serrations by showing the scattering characteristics of simple sound sources, thereby
lending insights into the physical mechanism of noise reduction by using serrations, and
more importantly informing on new techniques of suppressing TE noise. Last but not the
least, the Green’s function would permit a direct comparison between analytical scattering
models and experiments. The point-source-induced sound can be readily measured in the
laboratory using laser-induced monopoles. Although TE noise modelling has improved
significantly, it is yet to see robust agreement between trailing-edge noise models and
experiments. This is difficult, especially when realistic aerofoil geometries are considered.
Often this is because the surface pressure statistics needed in the noise prediction model
are rather difficult to be obtained accurately. With a controlled simple acoustic source,
we can readily assess whether any deviations that exist between models and experiments
are introduced by the scattering model and its underlying assumptions or by the turbulent
pressure fluctuation statistics.

Although important, such an analytical Green’s function remains unknown. As
mentioned above, a tailored Green’s function was proposed by Howe in 1991 (Howe
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Acoustic scattering by a flat plate with a serrated edge

x1

x3

x2

M

x

y

Figure 1. Schematic illustration of the Green’s function problem. The source represented by the black dot in
the diagram is located near the edge at y and the observer is located in the far field at x.

1991a), but it has been shown to be problematic, especially when the serration is
sharp. In this paper, we aim to develop such a Green’s function analytically by using
the Wiener–Hopf method. Due to mathematical symmetry, with proper transformations,
it would also be applicable to the scattering by serrated leading edges (Amiet 1975,
1976b; Lyu & Azarpeyvand 2017). This paper is structured as follows. Section 2
introduces the simplified model and develops the Green’s function. Section 3 validates the
Green’s function by performing numerical integrations and finite element method (FEM)
computations using COMSOL. In § 4, we show the noise directivity for a point source
located near the serrated trailing edge of the flat plate due to the use of serrations and
examine the effects of varying the frequency, serration amplitude, source position and
Mach number. The final section concludes the paper and lists some future work.

2. Analytical derivation

To allow analytical progression, we start from a simplified model that is widely used in
the literature (Howe 1978; Lyu et al. 2016), i.e. the aerofoil is simplified as a flat plate
placed in a uniform flow aligned in the streamwise direction, as shown in figure 1. As
mentioned in § 1, the Green’s function would be applicable to both trailing-edge and
leading-edge scattering because of mathematical symmetry. In this paper, we use the
trailing-edge scattering as an example. The flat plate is assumed to be semi-infinite, i.e.
the leading edge extends to the upstream infinity and both side edges are also infinitely far
away, so only the serrated trailing edge needs to be considered. We restrict our analysis to
periodic serrations with a wavelength of λ̃. The problem is non-dimensionalized using the
serration wavelength λ̃, the speed of sound c̃ and the fluid density ρ̃. Note we have used
the symbols with a tilde to denote dimensional variables, whereas those without represent
non-dimensional variables. We will adhere to this convention throughout this paper unless
explicitly noted otherwise. In terms of the non-dimensional variables, the serration has a
wavelength 1 and half-root-to-tip amplitude h, and the uniform flow from left to right has
a dimensionless velocity M, which is just the Mach number.

A Cartesian coordinate system shown in figure 1 is used in the analysis, where x1, x2
and x3 denote the dimensionless streamwise, spanwise and normal-to-plate coordinates,
respectively. In such a coordinate system, the profile of the serration, or the trailing edge
of the plate, can be described by the periodic function x1 = hF(x2), where F(x2) obtains
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a maximum value of 1 and a minimum value of −1. Under the harmonic assumption of
exp(−iωt), where ω is the non-dimensionalized angular frequency, the Green’s function
G(x; y, ω) satisfies the following inhomogeneous convective equation (Amiet 1976a;
Lyu et al. 2016):(

β2 ∂
2

∂x2
1

+ ∂2

∂x2
2

+ ∂2

∂x2
3

+ 2ikM
∂

∂x1
+ k2

)
G(x; y, ω) = δ(x − y), (2.1)

and the boundary condition

∂G
∂x3

∣∣∣∣
x3=±0

= 0, x1 < hF(x2), (2.2a,b)

where β = √
1 − M2 and k = ω/c, and as shown in figure 1, y denotes the source position,

while x denotes the observer position.
Note the observer location x is often in the far field, therefore, a standard technique

is to use the reciprocal theorem to calculate the adjoint Green’s function Ga( y; x;ω) ≡
G(x; y, ω) so that the advantage of a plane wave incidence can be taken. However, as we
aim to include the mean-flow convection effect in this paper, i.e. M /= 0, (2.1) is no longer
self-adjoint. In other words, the adjoint Green’s function Ga( y; x, ω) does not satisfy (2.1).
Nevertheless, it can be shown that the equation where Ga( y; x, ω) does satisfy differs from
(2.1) only by the sign in front of the term 2ikM(∂/∂x1), i.e.(

β2 ∂
2

∂y2
1

+ ∂2

∂y2
2

+ ∂2

∂y2
3

− 2ikM
∂

∂y1
+ k2

)
Ga( y; x, ω) = δ( y − x). (2.3)

Physically, this is equivalent to solving the acoustic pressure at y while the point source is
at x, assuming a uniform flow of Mach number M travels from right to left. In other words,
the problem can be cast as ‘reciprocal’ by reversing the uniform mean flow.

Because x is in the far field, the incidence wave from the source x can be approximated
by a plane wave, whose amplitude depends on the distance between x and y. Because of
linearity, we can start with an incident wave of magnitude 1, i.e.

pin = exp(−ik1y1/β) exp
(

i
kM
β2 y1

)
exp(−i(k2y2 + k3y3)), (2.4)

where k1 and k2 are constants related to the radiation angle, the precise definition of which

will be given later, and k3 =
√
(k/β)2 − k2

1 − k2
2. It can be verified that (2.4) satisfies the

homogeneous version of (2.3). We decompose the total adjoint pressure field Ga = pin +
pr + Rs, where the hypothetically reflected wave pr off an infinite flat plate is defined as
pr = pin(y1, y2,−y3) and Rs is the reflection-removed scattered pressure field. We could
also have decomposed the pressure field as Ga = pin + Gs, and this approach is shown in
Appendix B. Note however no matter which decomposition is used, it should in no way
affect the final solution.

The reflection-removed scattered wave Rs satisfies

β2 ∂
2Rs

∂y2
1

+ ∂2Rs

∂y2
2

+ ∂2Rs

∂y2
3

− 2ikM
∂Rs

∂y1
+ k2Rs = 0 (2.5)
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Acoustic scattering by a flat plate with a serrated edge

and the following boundary conditions due to the periodicity of the serrations (Ayton
2018):

∂Rs

∂y3

∣∣∣∣
y3=0

= 0, y1 < hF( y2); (2.6a)

Rs|y3=0 = − exp(−ik1y1/β) exp
(

i
kM
β2 y1

)
exp(−ik2y2), y1 > hF( y2); (2.6b)

Rs|y2=0 = Rs|y2=1 eik2; (2.6c)

∂Rs

∂y2

∣∣∣∣
y2=0

= ∂Rs

∂y2

∣∣∣∣
y2=1

eik2 . (2.6d)

Eliminating the first-order term in (2.5) by the transformation Rs = R̄s exp(ikMy1/β
2),

we obtain

β2 ∂
2R̄s

∂y2
1

+ ∂2R̄s

∂y2
2

+ ∂2R̄s

∂y2
3

+
(

k
β

)2

R̄s = 0. (2.7)

Earlier work (Ayton 2018) often used the non-orthogonal coordinate transformation
ξ1 = ( y1 − hF( y2))/β, ξ2 = y2 and ξ3 = y3 to enable the use of separation of variables.
We show that this coordinate transformation is not necessary and the same Wiener–Hopf
equation can be obtained by using the Fourier transform directly. We follow this approach
here. Introducing the stretched coordinate ξ1 = y1/β, ξ2 = y2, ξ3 = y3, we see that the
governing equation reduces to

∂2R̄s

∂ξ2
1

+ ∂2R̄s

∂ξ2
2

+ ∂2R̄s

∂ξ2
3

+ k̄2R̄s = 0, (2.8)

where the stretched constants are defined as k̄ = k/β. Now the boundary conditions read

∂R̄s

∂ξ3

∣∣∣∣
ξ3=0

= 0, ξ1 < h̄F(ξ2); (2.9a)

R̄s|ξ3=0 = − exp(−i(k1ξ1 + k2ξ2)), ξ1 > h̄F(ξ2); (2.9b)

R̄s|ξ2=0 = R̄s|ξ2=1eik2; (2.9c)

∂R̄s

∂ξ2

∣∣∣∣
ξ2=0

= ∂R̄s

∂ξ2

∣∣∣∣
ξ2=1

eik2, (2.9d)

where h̄ is defined as h̄ = h/β. We can now perform the Fourier transform along the ξ1
direction, i.e.

R(s, ξ2, ξ3) =
∫ ∞

−∞
R̄s(ξ1, ξ2, ξ3) exp(isξ1) dξ1. (2.10)
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Function R(s, ξ2, ξ3) can be decomposed into two parts, i.e.

R(s, ξ2, ξ3) =
∫ h̄F(ξ2)

−∞
R̄s(ξ1, ξ2, ξ3) exp(isξ1) dξ1

+
∫ ∞

h̄F(ξ2)
R̄s(ξ1, ξ2, ξ3) exp(isξ1) dξ1

=
∫ 0

−∞
R̄s(ξ1 + h̄F(ξ2), ξ2, ξ3) exp(is(ξ1 + h̄F(ξ2))) dξ1

+
∫ ∞

0
R̄s(ξ1 + h̄F(ξ2), ξ2, ξ3) exp(is(ξ1 + h̄F(ξ2))) dξ1

= exp(ish̄F(ξ2))(R−(s, ξ2, ξ3)+ R+(s, ξ2, ξ3)) (2.11)

where functions R− and R+ are complex functions that are analytical in the lower and
upper half-s planes, respectively. A similar Fourier transform (and decomposition) is
applied to the function ∂R̄s/∂ξ3, the result of which will be denoted by R′ in the rest
of the paper.

Equation (2.8) then reduces to

∂2R
∂ξ2

2
+ ∂2R
∂ξ2

3
+ (k̄2 − s2)R = 0. (2.12)

Equation (2.12) is the standard Helmholtz equation and its solution can be found through
the usual method of separation of variables. After using the last two boundary conditions
shown in (2.9), we show that (2.12) can be solved for ξ3 > 0 (the corresponding result for
ξ3 < 0 is similar due to antisymmetry) to yield

R(s, ξ2, ξ3) =
∞∑

n=−∞
An(s) exp(−γnξ3) exp(iχnξ2), (2.13)

where χn = 2nπ − k2, γn = √
s2 − κ2

n and κn =
√

k̄2 − χ2
n . We see that κn denotes the

wavenumber in the ξ1 − ξ3 plane and when n = 0, it is equal to
√

k2
1 + k2

3. The complex
function An(s) will need to be determined by making use of the first two boundary
conditions shown in (2.9) by using the Wiener–Hopf method, i.e.

R′(s, ξ2, 0) = exp(ish̄F(ξ2))

∞∑
n=−∞

R′+
n (s) exp(−ish̄F(ξ2)) exp(iχnξ2); (2.14a)

R(s, ξ2, 0) = exp(ish̄F(ξ2))

( ∞∑
n=−∞

R−
n (s) exp(−ish̄F(ξ2)) exp(iχnξ2)

− i
s − k1

exp(−i(k1h̄F(ξ2)+ k2ξ2))

)
, (2.14b)

where R′+
n (s) and R−

n (s) are the expansion coefficients of functions R′+(s, ξ2, 0) and
R−(s, ξ2, 0) using the basis functions exp(−ish̄F(ξ2)) exp(iχnξ2), n = 0,±1,±2 · · · ,
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and they are unknown at this stage. The last exponential term in the parenthesis of (2.14b)
can also be expanded and the resulting coefficients are denoted by En(s). Here, En(s) can
be found to be

En(s) =
∫ 1

0
exp(i(s − k)h̄F(ξ2)) exp(−i2nπξ2) dξ2. (2.15)

Note that En(s) can be arbitrary because no restriction on F(ξ2) has been imposed apart
from it being periodic. For any arbitrary piecewise linear functions, En(s) can be integrated
analytically. For example, for the conventional sawtooth serration profile defined by (in one
period)

F(ξ2) =

⎧⎪⎪⎨
⎪⎪⎩

4ξ2, −1
4
< ξ2 <

1
4
,

−4ξ2 + 2,
1
4
< ξ2 <

3
4
,

(2.16)

En(s) can be found as

En(s) = 4(s − k1)h̄ sin((s − k1)h̄ − nπ/2)

4(s − k1)2h
2 − n2π2

. (2.17)

Upon comparing (2.13) and (2.14a) and making use of orthogonality of the basis
functions exp(−ish̄F(ξ2)) exp(iχnξ2), n = 0,±1,±2 · · · , we arrive at the following
matching conditions for mode n, i.e.

−γnAn(s) = R′+
n (s), (2.18a)

An(s) = R−
n (s)− i

s − k1
En(s). (2.18b)

We can proceed by eliminating A(s) and arrive at the Wiener–Hopf equation:

γn

(
R−

n (s)− i
s − k1

En(s)
)

+ R′+
n (s) = 0. (2.19)

The function En(s) causes much difficulty in the kernel decomposition. A recent approach
(Ayton 2018) assumes that both R−

n (s) and R′+
n (s) contain the factor En(s) so that a kernel

factorization can proceed. However, we find that this assumption appears not to be true,
in particular, this leads to results that do not strictly satisfy the boundary conditions.
Moreover, as mentioned above, the results obtained by decomposing the total pressure
field as either Ga = pin + Gs or Ga = pin + pr + Rs should yield no difference to the
final solution. However, it can be verified that if the assumption that En(s) is a factor
in R−

n (s) and R′+
n (s) is used, the two methods would yield different solutions (the two are

only equal to each other for mode n = 0, see Appendix D for details), which signals a
potential problem with the underlying assumption. In fact, from (2.9) and (2.14a), we see
that En(s) represents the variation of the incident pressure on the edge. As R−

n (s) denotes
the scattered pressure upstream of the trailing edge, if R−

n (s) had the same En(s) factor as
the incident wave, the scattering problem would need to be homogeneous in the spanwise
direction. This can only be guaranteed if the trailing edge is a straight (or swept) edge. For
serrated edges, the homogeneity condition is not satisfied and the En(s) variation in R−

n (s)
cannot be guaranteed.

However, as the frequency increases, the acoustic wavelength becomes increasingly
short, and the scattered pressure variation on the edge is expected to become increasingly
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B. Lyu

localized and dominated by the incident phase variation; the assumption of En(s)
dependence may be approximately valid in the high-frequency limit. Serrations are known
to be more effective as the frequency increases (see for example Howe 1991a; Gruber
2012; Lyu et al. 2016), and more importantly, it is the hydrodynamic wavelength that
characterizes the incoming (gust) length scale in TE noise modelling, the localized
scattering is more likely to be valid. Therefore, in the following part of this paper, we
focus on this high-frequency regime aiming to develop a closed-form analytical Green’s
function, which can be used to develop a 3-D TE noise model.

The kernel is the standard γn = √
s2 − κ2

n , and once En(s) is removed from both R−
n (s)

and R′+
n (s), it becomes a routine procedure to be factorized as

√
s − κn

√
s + κn. Then

An(s) can be approximated by

A(s) = − 1
γn

R′+
n (s) = − i√

s − κn

√
k1 − κn

s − k1
En(s). (2.20)

Substituting (2.20) into (2.13) and taking the inverse Fourier transform yields

R̄s(ξ1, ξ2, ξ3)) =
∞∑

n=−∞
−i(
√

k1 − κn) exp(iχnξ2)

× 1
2π

∫ ∞

−∞
En(s)
s − k1

1√
s − κn

exp(−isξ1 − γnξ3) ds. (2.21)

Let r =
√
( y1/β)2 + y2

3 and cos θ = y1/(βr), we have finally

Rs(r, θ, y2) = 1
2π

exp(ikMy1/β
2)

∞∑
n=−∞

−i(
√

k1 − κn) exp(iχny2)

×
[∫ ∞

−∞
En(s)
s − k1

1√
s − κn

exp((−is cos θ − γn sin θ)r) ds
]
, (2.22)

where En(s) is given by (2.15), and the integral is along the path P shown in figure 2. Note
that the integrand in (2.22) has a pole at s = k1 and two branch points at s = ±κn. The
integral path P has to pass above the pole at s = k1 due to the analyticity requirement. It is,
however, equivalent to integrating (2.22) along the path P0 shown in figure 2, provided that
the residue contribution from the pole is subtracted. We see from (2.17) that En(k1) = δn1 ,
therefore, it is convenient to calculate the residue, which is precisely the hypothetical
reflected wave off an infinite flat plate pr. Consequently, the total scattered field Gs can
be directly calculated by integrating (2.22) along the path P0 instead, i.e.

Gs(r, θ, y2) = 1
2π

exp(ikMy1/β
2)

∞∑
n=−∞

−i(
√

k1 − κn) exp(iχny2)

×
[∫ ∞

−∞
En(s)
s − k1

1√
s − κn

exp((−is cos θ − γn sin θ)r) ds
]
, (2.23)

where the integral path in (2.23) is given by P0 as shown in figure 2.
To obtain a closed-form analytical Green’s function, the integral in (2.23) has to be

evaluated analytically. Note that En(s) is arbitrary, but for all piecewise linear serration
profiles, En(s) can be evaluated analytically. If the far-field scattered pressure is of interest,
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Acoustic scattering by a flat plate with a serrated edge

P

si

sr
k1

P0

κn

–κn

Figure 2. Integral path P in (2.22), which passes around a simple pole at s = k1 and two branch points at
s = ±κn. Note the branch point κn can be an imaginary number depending on the value of n, which however
does not affect the analyticity of the integrand along the integral path. The integral along path P is equivalent
to that along P0 minus a residue contribution around s = k1.

i.e. r → ∞, (2.23) can be quickly evaluated asymptotically by the powerful method of the
steepest descent, as shown by Ayton (2018). However, as we seek the Green’s function, it
is the near-field scattered pressure that is of our interest. The steepest descent method
can no longer be used, and the contour integral in (2.23) must be integrated exactly.
We show that for all piecewise linear profiles, the above complex contour integral can
be integrated exactly to yield closed-form analytical solutions. We use the conventional
sawtooth serration as an example in the rest of the paper, whereas the Green’s functions
for other common piecewise linear functions are given in Appendix C.

We begin by noting that for conventional sawtooth serrations, En(s) is given by (2.17),
in which the sine functions can be expanded using exponential functions. To facilitate
a compact notation, we define two auxiliary local polar coordinate frames, i.e. (rt, θt)
and (rr, θr) in the stretched y1/β–y3 plane (i.e. ξ1–ξ3 plane), as shown in figure 3. Here
the stretch factor β is to account for the background uniform flow, and when M = 0,
the stretched plane is just the physical y1–y3 plane. We see that θt and θr represent the
geometric angles of the observer with respect to the tip and root of the serration in the
stretched y1/β–y3 plane, respectively, while rt and rr represent their corresponding radial
coordinates, respectively. With these definitions, we can obtain

rt =
√

r2 + h̄2 − 2rh̄ cos θ, (2.24a)

θt = arccos[(r cos θ − h̄)/rt]. (2.24b)

And similarly, we have

rr =
√

r2 + h̄2 + 2rh̄ cos θ,

θr = arccos[(r cos θ + h̄)/rr].

}
(2.25)

Expanding the sine functions in (2.17) into exponential functions, we can show that

Gs(r, θ, y) = 1
2π

exp(ikMy1/β
2)

∞∑
n=−∞

−i(
√

k1 − κn) exp(iχny2)

×
(

exp
(
−i
(

k1h̄ + nπ

2

))
Hn(rt, θt)− exp

(
i
(

k1h̄ + nπ

2

))
Hn(rr, θr)

)
,

(2.26)

where

Hn(ri, θi) =
∫ ∞

−∞
−2ih̄

(2(s − k1)h̄)2 − (nπ)2

1√
s − κn

exp((−is cos θi − γn sin θi)ri) ds

(2.27)
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rr
rt

y3

y2

y1/β

θtθr θ

Figure 3. Definition of the two geometrical angles θt and θr and their corresponding radial coordinates rt
and ri.

and (ri, θi) can take the value of either (rt, θt) or (rr, θr).
To integrate (2.27), when n /= 0, we may expand the first factor of the integrand as partial

fractions, i.e.

−2ih̄
(2(s − k1)h̄)2 − (nπ)2

= − ih̄
nπ

[
1

2(s − k1)h̄ − nπ
− 1

2(s − k1)h̄ + nπ

]
. (2.28)

Equation (2.27) can then be written as the difference between two integrals, i.e.

Hn(ri, θi) = − i
2nπ

[D+
n (rk, θi)− D−

n (rk, θi)], (2.29)

where

D±
n (rk, θi) =

∫ ∞

−∞
1

s − (k1 ± nπ/2h̄)
1√

s − κn
exp((−is cos θi − γn sin θi)ri) ds. (2.30)

We see from (2.30) that the presence of the serration introduces a modulated streamwise
wavenumber of k1 ± nπ/2h̄ in the solution. Physically, this can be understood as follows.
The presence of the periodic serration modulates the wavenumber of the incoming plane
wave. The incoming plane wave has a spanwise wavenumber of k2, consequently the nth
mode of the scattered pressure has a spanwise wavenumber of k2 − 2nπ, where n is an
integer. Because the serration extends in both y1 and y2 directions, the scattered pressure
along the edge varies in both y1 and y2 directions. Therefore, the streamwise wavenumber
must be modulated simultaneously in a similar way as the spanwise wavenumber. Because
the half-wavelength (one tooth) and root-to-tip amplitude of the serration are 1/2 and 2h,
respectively, the nth-order plane wave would have corresponding modulated streamwise
wavenumbers of k1 + nπ/2h and k1 − nπ/2h, due to the presence of the left and right
teeth, respectively. Therefore, each spanwise mode (nth for example) corresponds to two
equally weighted plane waves, one with a streamwise wavenumber of k1 + nπ/2h and the
other with k1 − nπ/2h. We can define two geometrical angles representing the effective
incident angles in the y1/β − y3 plane for the two plane waves, i.e.

Θ±
n = arccos

k1 ± nπ/2h̄
κn

, (2.31)

where n is an integer. Clearly, for n = 0, both Θ+
0 and Θ−

0 reduce to Θ0 ≡ arccos k1/κ0
representing the incident angle of pin.
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Acoustic scattering by a flat plate with a serrated edge

t ∞

t –∞

P1
P2

P3

si

sr
cos θi–κn

–κn

κnk1

Figure 4. Deformed path P1 + P2 + P3, where P2 is described by the s = −κn cos(θi + it) as t varies from
+∞ to −∞. When t = 0, the path P2 intersects with the real axis at −κn cos θi. When −κn cos θi > k1 as
shown above, the simple pole is crossed, and a residue contribution must be included. The case when κn is
imaginary is similar.

To evaluate (2.30), we deformed the integration path P0 shown in figure 2 to the curve
P1 + P2 + P3 shown in figure 4. The path P2 is described by s = −κn cos(θi + it), where
the real number t varies from +∞ to −∞. Figure 4 shows that s → ∞ in the second
quadrant as t → +∞, whereas as s → ∞ in the third quadrant, t → −∞. It can be
shown that integration along P1 and P3 approaches 0 as |s| → ∞. Therefore, the integral
in (2.30) can be evaluated along P2 instead provided P2 passes the simple pole from
below. Because the deformed path P2 intersects with the real axis at −κn cos θi, such a
condition is met when −κn cos θi < k1, i.e. when θi > π − arccos(k1/κn). When 0 < θi <
π − arccos(k1/κn), we can show that a residue contribution must be added. However, this
pole contribution is exactly cancelled by the jump in the resulting integral and the final
solution takes the same form as that for θi > π − arccos(k1/κn) (see Chapter 2 of Noble
(1958) for details). Therefore, in the rest of the paper, we choose not to distinguish the
two cases. By deforming the integral along P2 and making use of the definition of (2.31),
(2.30) reduces to

D±
n (ri, θi) = −

√
2
κn

∫ ∞

−∞

sin
1
2
(θi + it)

cos(θi + it)+ cosΘ±
n

exp(iκnri cosh t) dt. (2.32)

Equation (2.32) can be integrated analytically to yield (see Appendix A for more details)

D±
n (ri, θi) = −π

√
2
κn

I(κnri, θi;Θ±
n )

sin
1
2
Θ±

n

, (2.33)

where function I(kr, θ;Θ) is the classical Fresnel solution denoting the pressure field
scattered by a straight trailing edge (Noble 1958), i.e.

I(kr, θ;Θ) =
exp

(
−i

π

4

)
√

π

[
exp(−ikr cos(Θ + θ))F

(√
2kr cos

Θ + θ

2

)

− exp(−ikr cos(Θ − θ))F
(√

2kr cos
Θ − θ

2

)]
. (2.34)
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The Fresnel integral F(x) in (2.34) is defined as

F(x) =
∫ ∞

x
eiu2

du (2.35)

and can be conveniently computed using the standard error function.
Having obtained the analytical result of D±

n (ri, θi), it follows that

Hn(ri, θi) = i√
2κnn

⎛
⎜⎝ I(κnri, θi;Θ+

n )

sin
1
2
Θ+

n

− I(κnri, θi;Θ−
n )

sin
1
2
Θ−

n

⎞
⎟⎠ , (2.36)

where, as mentioned above, the subscript i takes the value of either t or r. Note that in
(2.36), Hn(ri, θi) decays at least as fast as n−3/2 as n → ∞, and because n appears in
the denominator, (2.36) works only for n /= 0. However, if treating n as a real variable,
we may obtain the result for n = 0 by taking the limit as n → 0. To facilitate practical
computations, we also derive an explicit formula for H0(ri, θi) from (2.27). This can be
found in Appendix B.

Substituting (2.36) into (2.26), the total scattered pressure Gs can be readily evaluated.
The important fact is that (2.26) is an exact evaluation of (2.23), and therefore is not only
valid in the far field, but also in the near field. When r → ∞, (2.26) would recover the
far-field approximation obtained using the steepest descent method by Ayton (2018). Note
again that (2.36) consists of the standard Fresnel solution describing the scattered field
by a straight edge. This suggests that the pressure field scattered by the sawtooth edge
is equivalent to the sum of the Floquet modes scattered by two imagined semi-infinite
flat plates with their straight trailing edges located at the tip and root of the serration,
respectively. This appears to be somewhat consistent with a number of previous findings
showing that noise generation by serrated edges is dominated by the root or tip regions
(Kim, Haeri & Joseph 2016; Turner & Kim 2017; Avallone et al. 2018). This view, however,
results from the use of the En(s) assumption and is therefore not exact. Because (2.17)
is used in the derivation, (2.26) is therefore only valid for sawtooth serrations; however,
as mentioned earlier, we can easily obtain analytical Green’s functions for any arbitrary
piecewise linear serration profiles. Appendix C contains the Green’s functions for other
serration profiles, such as the square shapes.

When a point source is located at x, i.e. (x1, x2, x3), the incident plane wave near the
serration has an amplitude of

A(x) = − 1
β

1
4πR

exp(ikR/β) exp
(

−i
kM
β2 x1

)
, (2.37)

where R =
√
(x1/β)2 + x2

2 + x2
3. Furthermore, the value of k1 and k2 in the definition of

pin can be found to be

k1 = k
β

x1/β

R
, k2 = k

β

x2

R
. (2.38a,b)

By linearity, the Green’s function can be readily obtained as

G(x; y, ω) = Ga( y; x, ω) = A(x) ( pin + Gs) , (2.39)

where pin is shown in (2.4) and Gs is given by (2.26). Equation (2.39) is the fundamental
equation of this paper. It can be seen that the Green’s function consists of two terms;
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Acoustic scattering by a flat plate with a serrated edge
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Figure 5. Comparison of the scattered pressure field |Gs| on (a) y2 = 0, y3 = 0 and (b) y1 = 0, y3 = 0. The
serration amplitude is h = 10, the wavenumber is k = 1, the Mach number M = 0 and the observer angle
Θ0 = 3

4 π.

the first term A(x)pin represents the sound propagating directly from the source y to the
observer x, while the second term A(x)Gs represents the scattered pressure off the serrated
plate then propagating to the observer x. The direct propagating sound is trivial and most
importantly does not depend on the serration profiles; therefore, it is the scattered part that
we are interested in.

3. Validation

We see from § 2 that to obtain the analytical Green’s function, considerable algebra is
involved. Therefore, it is necessary to validate the result before the Green’s function is used
to study the scattering characteristics. In this section, we choose to validate the Green’s
function using two approaches. The first is to numerically integrate (2.23) so as to ensure
that the complex analytical evaluation of the integral is correct. The second approach is to
make use of the FEM technique to compute the scattered pressure under the incident wave
shown in (2.4) using COMSOL so as to examine to what extent the assumption regarding
En(s) serves as a good approximation.

Figure 5 shows a comparison between the scattered pressure |Gs| obtained by the
numerical integration and from (2.26). As can be seen from figure 5(a), the scattered
pressures obtained using the two approaches completely collapse along the line of y2 = 0
in the plane of the flat plate. Similarly, the scattered pressure obtained by numerical
integration along the line of y1 = 0 in the flat plate plane is identical to that from
(2.26). Pressure values at other locations show exactly the same agreement. This excellent
agreement shows that the analytical evaluation of the contour integral in the complex s
domain is indeed correct and exact.

Although figure 5 shows that the analytical derivation from (2.23) to (2.36) is correct, it
cannot show to what extent (2.39) approximates the exact solution to (2.1). This is because
(2.23) is based on the assumption of En(s), and to examine its validity, we need to use
FEM to numerically calculate the scattered pressure so that a direct comparison between
the numerical and analytical Green’s functions can be made. We again choose to compare
the near-field |Gs| under the incident wave shown in (2.4).
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PML

Periodic

Rigid plate

–5 0 5
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m

2
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0.5

Figure 6. Scattered pressure field Gs (only real part is shown) from FEM simulations, where M = 0, h = 2,
k = 10 and Θ = π/4. A small imaginary part of k is used to improve the perfectly matched layers accuracy.

The commercial software COMSOL is used to conduct the numerical simulation, the
computational domain of which is shown in figure 6. We can see that a half-cylindrical
domain consisting of one serration wavelength is used. The semi-infinite plate is placed on
the left-hand side of the bottom surface, as shown in figure 6. Periodic boundary conditions
are used between the front and back surfaces. Perfectly matched layers (PMLs) are attached
to the outer side of the domain to absorb the scattered pressure due to a plane wave
incidence prescribed by (2.4). The PMLs work well for absorbing sound scattered off a
finite object, but start to become less accurate to simulate a flat plate that is semi-infinitely
long. To improve the accuracy of the PMLs, a small imaginary part of k (in this paper,
arg k ≈ −0.02) is used so that the scattered pressure decays gradually as it propagates.
When compared against analytical results, the same k is used in (2.26). This is permissible
and can be shown conveniently by analytical continuation. A free tetrahedral mesh is used
and the resulting case has up to 4 millions degrees of freedom at the highest dimensionless
frequency k. Grid independence is examined by using increasingly fine meshes that result
in little change in the calculated pressure field.

The scattered near-field pressure is evaluated along two semicircles shown in blue in
figure 7. The two semicircles have a dimensionless radius of 1 and are located in the
y2 = 0 and y2 = 0.75 planes, respectively. In the rest of this paper, they are referred to
as the SC1 (y2 = 0) and SC2 (y2 = 0.75), respectively. In the FEM computation, the
serration amplitude h, the frequency k and the incident angle Θ can all be varied. To
facilitate comparison, the scattered pressure by a straight trailing edge is also computed
and evaluated on the same semicircles.

Figure 8 shows the comparison of the scattered pressure calculated by the FEM
technique and the analytical Green’s function at M = 0 and Θ = π/4. The scattered
pressure values from both the straight (blue) and serrated (red) edges at various
non-dimensional frequencies are shown. Figure 8(a,b) shows the results when k = 2,
from which we can see that the computed pressure distribution for straight edges agrees
excellently with the analytical prediction. This ensures that the PMLs work satisfactorily
and the grid is sufficiently fine to resolve the pressure field. However, the computed
scattered pressure for serrated edges is significantly smaller than the analytical prediction.

961 A33-16

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

25
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.256


Acoustic scattering by a flat plate with a serrated edge

0.5
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–5 0 5

Figure 7. Two semicircles of radius 1 denote the probe locations on which two scattered pressure are compared
between the FEM and the analytical formula. The front semicircle is at y2 = 0 while the back one is at
y2 = 0.75.

This is expected, as the assumption about En(s) dependence is not expected to be valid
at this frequency. As mentioned in § 2, as the frequency increases, the scattering becomes
increasingly localized and the assumption is more likely to be valid. This is indeed the case,
as shown in figure 8(c,d). We can see that the baseline results continue to agree excellently
with analytical predictions, but the serrated results are now in better agreement with the
analytical prediction with slight deviation at large angles. In particular, figure 8(d) shows
a significant change in the near-field directivity shape on SC2 due to the use of serrations,
and the Green’s function can capture this change well apart from the small magnitude
deviation at large observer angles. As the frequency increases to k = 50, figure 8(e, f )
shows that the scattered pressures obtained using the two methods agree well with each
other both in terms of the shape and amplitude of the directivity patterns.

Figure 9 shows the comparison between the scattered pressure when the incident angle
Θ = 3/4π for both the baseline and serrated trailing edges. When the incident angle
Θ = 3/4π, the directivity patterns of the scattered pressure are significantly different
from those at Θ = π/4. Nevertheless, figure 9(a,b) still clearly shows the discrepancy
between the FEM and analytical results for serrated edges, while figure 9(c,d) shows that
the agreement is fairly good. Again at the highest frequency k = 50, the two lines virtually
collapse, as shown in figure 9(e, f ), indicating good agreement between the analytical and
calculated Green’s functions.

In summary, we see that the analytical Green’s function approximates the exact Green’s
function reasonably well at high frequencies. A rule of thumb for the valid regime may be
taken as kh > 10. It is, however, worth noting that the incident plane wave is by no means
limited to propagative waves. Because of analytical continuation, the Green’s function
must also work for evanescent waves, such as the plane-wave gusts used in TE noise
modelling using Amiet’s approach. In such cases, the convective Mach number of the gust
is typically low and therefore it is the hydrodynamic wavenumber k1h that determines how
localized is the scattering. Considering that this hydrodynamic wavenumber is often much
larger than the acoustic wavenumber, especially for low-Mach-number applications, the
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Figure 8. Comparison of the analytical and FEM-calculated Green’s function at M = 0 and Θ = π/4 for
both baseline and serrated (h = 1) trailing edges on the first (SC1) and second (SC2) semicircles at various
frequencies: (a) k = 2, SC1; (b) k = 2, SC2; (c) k = 10, SC1; (d) k = 10, SC2; (e) k = 50, SC1; ( f ) k = 50,
SC2.

En(s) assumption would be more likely to hold so that (2.26) may be used to develop a 3-D
TE noise prediction model. Note that although (2.26) appears complex, it can be simplified
considerably when used to model TE noise because both Θ and θi are equal to π/2 in the
scattered surface pressure calculation. Therefore, it can be expected the resulting model
can be cast into a relatively compact form that facilitates efficient evaluation.

4. Results and discussions

Having validated the analytical Green’s function, we are now in a position to examine
its far-field radiation characteristics and the effects of varying the frequency, serration
amplitude, sound source position and Mach number using (2.39). As shown in § 2, (2.39)
consists of a directly propagating incident part and a scattered part. In the rest of this
section, we only examine the scattered part of Green’s function, i.e. A(x)Gs shown in
(2.26), because it is the scattered part A(x)Gs that is related to the serration geometry,
whereas the incident part remains unchanged no matter how the serration changes. To
study the effects of the frequency, the non-dimensionalized wavenumbers k = 10 and k =
50 are chosen because § 3 shows that the Green’s function serves as a reasonably good
approximation to the exact solution at these frequencies. In the rest of this section, the
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Figure 9. Comparison of the analytical and FEM-calculated Green’s function at M = 0 and Θ = 3π/4 for
both baseline and serrated (h = 1) trailing edges on the first (SC1) and second (SC2) semicircles at various
frequencies. Legends are the same as those shown in figure 8. (a) k = 2, SC1; (b) k = 2, SC2; (c) k = 10, SC1;
(d) k = 10, SC2; (e) k = 50, SC1; ( f ) k = 50, SC2.

far-field directivity patterns at k = 10 and k = 50 are shown simultaneously when the
serration amplitude, source position and Mach number vary. To account for the pressure
decay due to sound propagation, the scattered pressure in (2.39) is scaled by 4π|x| so that

Gscaled = − 1
β

|x|
R

exp(ikR/β) exp
(

−i
kM
β2 x1

)
Gs (4.1)

is used to plot the directivity patterns. In the following directivity plots, the observer
position is chosen to be |x| = 100 away from the coordinate origin in the x2 = 0 plane.
From (4.1), we see that |Gscaled| = |Gs||x|/βR, therefore, choosing values other than 100
does not change the directivity shape and magnitude in the plane x2 = 0.

4.1. Effects of the serration amplitude
We first study the effects of varying the serration amplitude on the scattering
characteristics. As a starting point, we let M = 0 so that β = 1, i.e. the stretched
coordinates are just the physical coordinates in the definition of Gs. We choose three
serration lengths, i.e. h = 1, h = 2 and h = 5, and have their scattered far-field directivity
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Figure 10. Far-field directivity patterns of the scattered pressure due to the baseline and serrated edges of
different sizes. The source is located at r = 1 and θ = π/4 in the y2 = 0.25 plane (passing the serration tip).
(a) h = 1, k = 10; (b) h = 1, k = 50; (c) h = 2, k = 10; (d) h = 2, k = 50; (e) h = 5, k = 10; ( f ) h = 5,
k = 50.

|Gscaled| plotted in figure 10. The directivity plots for their corresponding straight-edge
scattering are also included for reference. In all these plots, we fix the source position
at (cos π/4, 0.25, sin π/4). From figure 3, it can be seen that y2 = 0.25 is the plane that
passes the serration tip. For the rest of the paper, we refer to it as the tip plane, whereas
y2 = 0.75 is similarly referred to as the root plane. Figure 10(a,b) shows the directivity
patterns for a serration amplitude of h = 1. This represents a relatively wide serration.
Note we do not consider serrations wider than this, i.e. serrations with very small h values,
because that would result in very small kh values that invalidate the En(s) assumption. This
however does not pose much restriction on its applications, because it is widely known that
serrations with very short amplitude have little effect on reducing TE noise. We see from
figure 10(a) that compared to the baseline results, the scattered pressure is slightly weaker
at large observer angles, i.e. Θ > 135◦, but slightly stronger at others. As the frequency
increases to k = 50, we see a more pronounced radiation enhancement when Θ < 135◦
and an increasingly less obvious noise suppression at large observer angles. In addition,
both the baseline and serrated directivity patterns exhibit lobes resulting from interference
between the geometrically reflected and scattered pressure fields.
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Acoustic scattering by a flat plate with a serrated edge

As the amplitude of the serration increases, this tendency becomes increasingly evident,
as shown in figure 10(c,d), where directivity patterns for serrations of h = 2 are shown.
Figure 10(e, f ) shows the directivity patterns when h = 5. This represents a rather long
serration, and we see that the general behaviour of the scattered pressure remains similar
to serrations of h = 2. The difference is that the low-angle enhancement is more evident,
in particular when Θ < 135◦. For the long serration shown in figure 10(e, f ), we see that
the directivity shapes are significantly different from those of straight edges. This may
be understood as follows. When the amplitude of the serration increases, the additional
area of the serration extended downstream can act as an effective reflection surface for
the nearby source when the observer is at low observer angles. From the directivity
plots, it manifests itself as large noise radiation or even an additional lobe, as shown in
figure 10(a–f ). For example, because the sound source is at θ = π/4 in the tip plane
in figure 10, the geometrically reflected acoustic wave would only exist in the range of
135◦ < Θ ≤ 180 for the baseline flat plate. The scattered pressure gradually decreases
to 0 as Θ reduces to 0. However, when a sufficiently large serration exists, the extended
surface would provide additional reflection for a nearby source and stronger noise radiation
would occur at low observer angles (e.g. Θ < 135◦) due to the additional reflection. This
implies that turbulence eddies directly above the surface in the tip plane are more efficient
in radiating noise to low observer angles and therefore are of more relevance for noise
suppression.

The effects of serration amplitude can also be studied when the source is located at
θ = 3π/4 in the tip plane. The results are shown in figure 11. Figure 11(a,b) shows
the directivity patterns for wide serrations of h = 1. Because the source is located at
θ = 3π/4, the scattered pressure by the baseline trailing edge has a large amplitude when
Θ > 45◦ because of surface reflection. When the serrated TE is used, similar reflection
exists and the resulting directivity is therefore similar to the baseline results. As the
frequency increases to k = 50, the behaviour remains largely similar apart from multiple
lobes resulting from the interference. However, below Θ = 60◦, we also see a noticeable
noise increase, which again may be explained by the extended surface downstream of the
source. As the serration amplitude further increases, we expect a more pronounced noise
increase. This in fact can be seen in figure 11(c), where a small radiation lobe starts to
appear. At k = 50, the noise enhancement at Θ < 60◦ is more evident. From figure 11(e),
we see a roughly similar behaviour for the longest serration of h = 5. However, we also
note a slightly weaker radiation for Θ > 60◦. This may be due to the fact that part of the
flat plate upstream of the source is removed, therefore weakening a perfect reflection by
a straight TE. Such weakening, however, can be expected to diminish as the frequency
increases leading to increasingly localized scattering, which is indeed the case, as shown
in figure 11( f ). When the serration amplitude is large and the source is located in the
close vicinity of the origin, it can be expected that the scattered directivity would remain
roughly similar between a source at θ = π/4 and the other at θ = 3π/4. By comparing
figures 10( f ) and 11( f ), we see this is indeed the case.

Both figures 10 and 11 show that when serrations are used, an evident noise increase
occurs at some observer angles, which is particularly pronounced at high frequencies. This
may seem somewhat surprising as serrations are in fact used to reduce rather than increase
TE noise. This apparent contradiction arises because the Green’s function developed in
this paper is for a simple acoustic point source, whereas in practical applications, the
sources are of a distribution type and characterized by hydrodynamic length scales that are
much shorter than the acoustic wavelengths. It is known that the destructive interference
introduced by serrations, which hinges on the fact that the hydrodynamic fluctuations are
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Figure 11. Far-field directivity patterns of the scattered pressure due to the baseline and serrated edges of
different sizes. The source is located at r = 1 and θ = 3π/4 in the y2 = 0.25 plane (the serration tip plane).
(a) h = 1, k = 10; (b) h = 1, k = 50; (c) h = 2, k = 10; (d) h = 2, k = 50; (e) h = 5, k = 10; ( f ) h = 5,
k = 50.

characterized by short length scales, plays a significant role in reducing TE noise (Howe
1991a; Lyu et al. 2016; Jaworski & Peake 2020). Once these hydrodynamic length scales
are taken into account, significant noise reduction can be expected. Therefore, the noise
directivity observed in this paper is not to be confused with that of the total TE noise.

4.2. Effects of the source position
Figures 10 and 11 show the scattered pressure directivity for sound sources located in the
serration tip plane. It would be interesting to understand how the scattering characteristics
change when the spanwise location of the sound source changes. Figure 12 shows the
directivity patterns for sound sources at θ = π/4 but at different spanwise locations
when M = 0. Figure 12(a,b) shows the noise directivity for sources located at y2 = 0.
We see that noise is only slightly increased at low observer angles, and similarly slightly
reduced at high angles. This is because the sound sources are located off the serration
tip plate, therefore, the additional (weakened) reflection due to the extended (removed)
surface is weaker. Significant noise increase occurs as the source moves to the tip plane, as
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Figure 12. Far-field directivity patterns of the scattered pressure due to the baseline and serrated edge of h = 2.
The source is located at r = 1 and θ = π/4 in the y2 = 0, y2 = 0.25 and y2 = 0.75 planes. (a) y2 = 0, k = 10;
(b) y2 = 0, k = 50; (c) y2 = 0.25, k = 10; (d) y2 = 0.25, = 50; (e) y2 = 0.75, k = 50; ( f ) y2 = 0.75, k = 50.

explained in figure 10. When the spanwise location moves to 0.5, we expect the resulting
directivity to be identical to that in the y2 = 0 plane due to symmetry. When the source
position moves to y2 = 0.75, i.e. in the serration root plane, the resulting directivity is
shown in figure 12(e, f ). It seems surprising to see an even broader lobe in the range
of 45◦ < Θ < 135◦ as the source is not directly above any rigid surface. However, we
note that compared to the baseline trailing edge, there do exist additional rigid surfaces
downstream, albeit slightly off the plane. Furthermore, constructive interference may be
expected as the two serration teeth are geometrically symmetric with respect to y2 = 0.75.
If this were true, we would expect a less pronounced noise increase at high frequencies,
because the scattering will become localized and the scattered pressure drops more rapidly
as the frequency increases. This is indeed the case, as shown in figure 12( f ).

Apart from varying the spanwise location of the source, we are also interested in the

effects of varying the radial distance in the ( y1, y3) plane, i.e.
√

y2
1 + y2

3. As we consider
the case of M = 0, this distance is the same as r. For baseline TE scattering, the only
characteristic length scale is the sound wavelength (apart from r). Therefore, the scattering
can only depend on the non-dimensional number kr. In other words, decreasing r would
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Figure 13. Far-field directivity patterns of the scattered pressure due to the baseline and serrated edge (h = 2).
The source is located at θ = π/4 in the y2 = 0.25 plane (tip plane) and r takes the value of 5, 1 and 0.2.
(a) r = 5, k = 10; (b) r = 5, k = 50; (c) r = 1, k = 10; (d) r = 1, k = 50; (e) r = 0.2, k = 10; ( f ) r = 0.2, k =
50.

be equivalent to increasing the frequency. The use of serrated trailing edges, however,
introduces two additional length scales, i.e. the wavelength and amplitude of the serration.
Therefore, we expect a change in the scattering characteristics as r varies. Figure 13 shows
the directivity patterns for a sound source located at θ = π/4 but various r in the tip
plane. In particular, figure 13(a,b) shows the scattered directivity when the source is
far from the edge at r = 5. We see that the difference between the straight and serrated
cases is not pronounced. This is expected because the source is relatively far away from
the edge, and therefore the enhanced and weakened reflection due to the extended or
removed surface would not be strong. Considerable change, however, occurs when the
source moves closer to the edge to r = 1, as can be seen from figure 13(c,d). At this
distance, the source effectively sees parts of the reflection surface extended while others
removed, and consequently the noise radiation is amplified or reduced at low or large
observer angles. It is interesting to see that the baseline directivity patterns in figures 13(a)
and 13(d) are identical. Indeed, without the additional length scales introduced by the
serrations, the scattering would only depend on kr, which attains equal values in both
cases. However, when serrations are used, we see that the directivity patterns are no
longer the same even though kr remains identical. In particular, a closer source leads to
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Figure 14. Far-field directivity patterns of the scattered pressure due to the baseline and serrated edges at
various Mach numbers. The serration has an amplitude of h = 2. The source is located at r = 1 and θ = 3π/4
in the y2 = 0.25 plane. (a) M = 0.2, k = 10; (b) M = 0.2, k = 50; (c) M = 0.5, k = 10; (d) M = 0.5, k = 50;
(e) M = 0.8, k = 10; ( f ) M = 0.8, k = 50.

more pronounced modifications to the directivity patterns. When the source continues to
move to the close vicinity of the edge, we would expect even more pronounced effects
induced by the serrations. Indeed, comparing figures 13(c,d) and 13(e, f ), we see that the
low-angle amplification is substantial. Considering, in the serrated case, the point source
is immediately above a rigid plate that does not exist in the baseline case, such strong
modifications to the low-angle directivity can be expected.

4.3. Effects of the Mach number
The effect of varying Mach numbers can be similarly studied. Figure 14 shows the far-field
directivity patterns for a sound source located at (cos(3π/4), 0.25, sin(3π/4)) but with
various Mach numbers. The serration has an amplitude of h = 2. Figure 14(a,b) shows the
directivity at M = 0.2. Compared with figure 11(c,d), we see that little change occurs at
such a Mach number in both the straight and serrated cases. When we increase the Mach
number to M = 0.5, we start to see that the mean flow tends to increase the radiation
magnitude at side angles (around Θ = 90◦), whereas no amplification or reduction seems
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Figure 15. Instantaneous pressure distribution due to a moving source travelling from left to right at a Mach
number of 0.5. The instantaneous position of the source is shown by the white circle.

to occur at Θ = 0◦ and Θ = 180◦ at all. The consequence is that the directivity pattern is
effectively squeezed into a thinner lobe. Such a tendency is consistent between the baseline
and serrated cases, and is much more evident at the Mach number of 0.8, which is shown in
figure 14(e, f ). For example, we see that the baseline directivity peaks at around Θ = 90◦
and obtains a value of 1.7, while the pressure magnitude at Θ = 180◦ remains to be 1.

The fact that convection amplification occurs at side angles instead of forward angles
appears very strange and even contradictory to the well-known Doppler effects. It is well
established that sound is amplified in the forward (Θ < π/2) arc and reduced in the
backward (Θ > π/2) arc by a factor of (1 − M cosΘ)−1 when a point source is in motion.
This would also imply that no sound amplification occurs at Θ = 90◦. To understand why
such a discrepancy occurs, we start with a simple where that a point source travels from
left to right with a uniform Mach number M. We can choose the coordinate frame to
be static relative to the medium or to the point source. The former is often used in the
classical Doppler analysis while the latter in the TE noise modelling. The instantaneous
pressure field generated by such a moving source can be calculated analytically and plotted
in figure 15, where the Mach number is chosen to be M = 0.5. Note that figure 15 is a
standard result and is only included here for the following illustration purposes.

In the coordinate frame that remains still to the source (e.g. with its origin fixed on
the point source), the acoustic pressure at a fixed distance to the source does not possess
the same phase (see figure 15). However, although not shown here in detail, it can be
verified that the magnitude of the pressure is amplified by β−1 at Θ = 90◦ and remains
unchanged atΘ = 0◦ and 180◦. This is precisely what we observe for our Green’s function,
where the TE noise source effectively remains still at the origin. In fact, the maximal
value obtained at Θ = 90◦ in figure 14(e) is around 1.7 at M = 0.8, and this is consistent
with the amplification ratio of β−1 = 1.67. However, in the coordinate frame that remains
still relative to the medium, we are often interested in measuring the sound at a fixed
distance to its emitting position. Clearly they must have the same phase, as shown for
example by the dark circles in figure 15. Figure 15 clearly shows that the emitted sound is
amplified in the forward arc and reduced in the backward arc. Although not shown here in
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Acoustic scattering by a flat plate with a serrated edge

detail, it can be readily verified that the amplification ratio shown in figure 15 is precisely
(1 − M cosΘ)−1.

In summary, the seemingly strange convective behaviour shown in figure 14 is consistent
with the classical Doppler effect, and the apparent contradiction is due to the use of
a different coordinate frame. This shows that proper corrections have to be applied
when wind tunnel results are used to predict the noise radiation directivity of practical
applications.

5. Conclusion

In this paper, we develop an analytical Green’s function for the acoustic scattering by
serrated edges, which is in a closed form and is applicable to both TE and LE scatterings.
The standard adjoint Green’s function technique is used to formulate the derivation into
a pressure scattering problem under a plane wave incidence. The total pressure field is
then decomposed into an incident, a hypothetically reflected and a reflection-removed
scattered part. The scattered field is subsequently solved using the Wiener–Hopf method.
It is shown that a recent kernel factorization used in TE and LE noise modelling
appears not to be uniformly valid, but may be used as a reasonable approximation in
the high-frequency regime. Closed-form analytical Green’s functions in the form of
Fresnel integrals are obtained for any arbitrary piecewise linear serrations. Numerical
integration is used to validate the derivations, which shows excellent agreement with the
results given by the analytical formula. The Green’s function is then compared with the
scattered pressure calculated using FEM in COMSOL. The results clearly demonstrate
that the En(s) assumption is problematic at small kh values, but serves as reasonably good
approximations at large values. The noise directivity patterns are studied as a function of
the frequency, serration amplitude, source position and Mach number. It is shown that
the use of serrations enhances noise radiation at low observer angles. The strength of this
enhancement increases as the frequency increases. However, slight noise weakening may
occur at large observer angles, but such effects diminish as the frequency increases. These
directivity changes may be understood from the perspective of an extended or removed
rigid reflection surface, and are therefore more evident when the source moves closer to
the edge. Increasing the Mach number appears to amplify the sound at side angles but not
at Θ = 0◦ and Θ = 90◦. This seemingly strange behaviour is the consequence of using a
coordinate frame that is static relative to the TE noise source.

Due to its analytical nature, the Green’s function can be evaluated quickly. Because of
symmetry, it is applicable to both leading- and trailing-edge scatterings. Such a Green’s
function would be particularly suitable for developing a leading- or trailing-edge noise
model that is both highly efficient and three-dimensionally accurate. More importantly,
with a proper knowledge of the turbulence statistics inside a boundary layer, the Green’s
function may be used to consider the effects of non-frozen turbulence on TE noise and its
reduction using serrations. These form part of our future work.
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Appendix A. Analytical evaluation of H±
n (ri, θi) (n /= 0)

To evaluate (2.32), i.e.

D±
n (ri, θi) = −

√
2
κn

∫ ∞

−∞

sin
1
2
(θi + it)

cos(θi + it)+ cosΘ±
n

exp(iκnri cosh t) dt, (A1)

we note that

cos(θi + it)+ cosΘ±
n = 2 cos 1

2(θi + it +Θ±
n ) cos 1

2(θi + it −Θ±
n ), (A2a)

2 sin 1
2(θi + it) sin 1

2Θ
±
n = cos 1

2(θi + it −Θ±
n )− cos 1

2 (θi + it +Θ±
n ). (A2b)

Making use of (A2), the integrand in (A1) can be written as

1

4 sin
1
2
Θ±

n

⎡
⎢⎣ 1

cos
1
2
(it + θi +Θ±

n )

− 1

cos
1
2
(it + θi −Θ±

n )

⎤
⎥⎦ (A3)

and consequently

D±
n (ri, θi) = −

√
2
κn

1

sin
1
2
Θ±

n

[N(θi +Θ±
n )− N(θi −Θ±

n )], (A4)

where

N(ψ) =
∫ ∞

−∞
1

4 cos
1
2
(it + ψ)

exp(iκnri cosh t) dt. (A5)

Equation (A5) can be evaluated by multiplying both the numerator and denominator
of the integrand by cos 1

2(it − ψ) and making use of the odd and even properties of the
integrand, resulting in

N(ψ) =
∫ ∞

0

cosh
1
2

t cos
1
2
ψ

cosh t + cosψ
exp(iκnri cosh t) dt. (A6)

Letting τ = sinh 1
2 t and cosh t = 2τ 2 + 1, one can show that (Noble 1958)

N(ψ) = exp(−iκnri cosψ) cos
1
2
ψ

∫ ∞

0

exp
(

i2κnri

(
τ 2 + cos2 1

2
ψ

))

τ 2 + cos2 1
2
ψ

dτ. (A7)

It is well known that∫ ∞

0
exp

(
i2κnri

(
2τ 2 + cos2 1

2
ψ

))
dτ

= 1
2

exp
(

i2κnri cos2 1
2
ψ

)√
π

2κnri
exp

(
−i

π

4

)
. (A8)
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Acoustic scattering by a flat plate with a serrated edge

Integrating both side of (A8) with respect to ri, one can show that (A7) can be evaluated
to

N(ψ) = exp(−iκnri cosψ)
√

π exp
(
−i

π

4

)
F
(√

2κnri cos
1
2
ψ

)
, (A9)

where the Fresnel integral F is defined by (2.35). Substituting (A9) into (A4), we obtain
the final solution

D±
n (ri, θi) = −π

√
2
κn

I(κnri, θi,Θ
±
n )

sin
1
2
Θ±

n

, (A10)

where function I(κnri, θi,Θ
±
n ) is defined in (2.34). Using the above integral, we can

quickly obtain (2.36).

Appendix B. Analytical evaluation of H0(ri, θi)

When n = 0, (2.27) reduces to

H0(ri, θi) = − i
2h̄

∫ ∞

−∞
1

(s − k1)2
1√

s − κ0
exp((−is cos θi − γ0 sin θi)ri) ds. (B1)

Upon deforming onto P2, one obtains

H0(ri, θi) = − i√
2κ0κ0h̄

∫ ∞

−∞

sin
1
2
(θi + it)

(cos(θi + it)+ cosΘ0)
2 exp(iκ0ri cosh t) dt. (B2)

To evaluate (B2), we make use of the same trigonometric identity shown in (A2) such at

H0(ri, θi) = − i√
2κ0κ0h̄

1

sin
1
2
Θ0

[M (θi +Θ0, θi −Θ0)− M (θi −Θ0, θi +Θ0)] , (B3)

where

M(ψ1, ψ2) =
∫ ∞

−∞
1

8 cos2 1
2
(it + ψ1) cos

1
2
(it + ψ2)

exp(iκ0ri cosh t) dt. (B4)

To evaluate (B4), we multiply both the numerator and denominator by cos2 1
2 (it −

ψ1) cos 1
2(it − ψ2), expand using trigonometric identities, and make use of the odd and

even properties of the integrand to rewrite (B4) as

∫ ∞

0

(1 + cosh t cosψ1)

(
cosh

1
2

t + cos
1
2
ψ2 − sinh t sinψ1 sinh

1
2

t sin
1
2
ψ2

)
(cosh t + cosψ1)2(cosh t + cosψ2)

× exp(iκ0ri cosh t) dt. (B5)

Let τ = sinh 1
2 t and hence cosh t = 1 + 2τ 2, then (B5) reduces to

M(ψ1, ψ2) =
∫ ∞

0

cos
(
ψ1 + ψ2

2

)
τ 2 + cos2 ψ1 cos

ψ2

2

2
(
τ 2 + cos2 ψ1

2

)2 (
τ 2 + cos2 ψ2

2

) exp(iκ0ri(2τ 2 + 1)) dt. (B6)
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B. Lyu

Note that the rational expression in the integrand of (B6) can be expanded in terms of
partial fractions, i.e.

cos
(
ψ1 + ψ2

2

)
τ 2 + cos2 ψ1 cos

ψ2

2

2
(
τ 2 + cos2 ψ1

2

)2 (
τ 2 + cos2 ψ2

2

)

= A1

τ 2 + cos2 1
2
ψ1

+ A2(
τ 2 + cos2 1

2
ψ1

)2 + A3

τ 2 + cos2 1
2
ψ2

, (B7)

where

A1 = − cos 1
2ψ2

2 sin2 1
2
(ψ1 − ψ2)

, (B8a)

A2 =
sin

1
2
ψ1 cos2 1

2
ψ1

sin
1
2
(ψ1 − ψ2)

, (B8b)

A3 = −A1. (B8c)

The first and third partial fractions are similar to (A7), therefore can be readily evaluated.
The second term can be evaluated by integrating (A8) twice with respect to ri, so that the
M(ψ1, ψ2) reduces to

M(ψ1, ψ2) = A1 exp
(
−i

π

4

) √
π

cos
1
2
ψ1

exp(−iκ0ri cosψ1)F
(√

2κ0ri cos
1
2
ψ1

)

+ A2 exp
(
−i

π

4

) √
π

cos3 1
2
ψ1

exp(−iκ0ri cosψ1)

×
(

2iκ0ri cos2 1
2
ψ1F

(√
2κ0ri cos

1
2
ψ1

)

+ 1
2

√
2κ0ri cos2 1

2
ψ1 exp

(
i2κ0ri cos2 1

2
ψ1

)
+ 1

2
F
(√

2κ0ri cos
1
2
ψ1

))

+ A3 exp
(
−i

π

4

) √
π

cos
1
2
ψ2

exp(−iκ0ri cosψ2)F
(√

2κ0ri cos
1
2
ψ2

)
. (B9)
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Acoustic scattering by a flat plate with a serrated edge

Substituting (B9) into (B3) and collecting common terms, we show that H0(ri, θi) can
be calculated explicitly as

H0(ri, θi) = iπ
4
√

2κ0κ0h̄
1

sin2 Θ0

2

⎡
⎢⎣ I(κ0ri, θi;Θ0)

sin
Θ0

2

− (2iκ0ri)J(κ0ri, θi;Θ0)

cos
Θ0

2

−
exp

(
−i

π

4

)
√

π
2
√

2κ0ri sin
θi

2
exp(iκ0ri)

⎤
⎥⎦ , (B10)

where the subscript i takes the value of either t or r. The Fresnel function I(κ0ri, θi;Θ0) is
defined in § 2, and J(κ0ri, θi;Θ0) is very similar to I(κ0ri, θi;Θ0), i.e.

J(κ0ri, θi;Θ0) = 1√
π

exp
(
−i

π

4

) [
sin(Θ0 + θi) exp(−iκ0ri cos(Θ + θ))

× F
(√

2κ0ri cos
Θ0 + θi

2

)
− sin(Θ0 − θi)

× exp(−iκ0ri cos(Θ0 − θi))F
(√

2κ0ri cos
Θ0 − θi

2

)]
. (B11)

Appendix C. Green’s function for other piecewise linear serration profiles

As mentioned in § 2, the Green’s function can be calculated analytically for arbitrary
piecewise linear serrations. For other serration profiles, the scattered Green’s function
Gs can still be written as

Gs(r, θ, y2) = 1
2π

exp(ikMy1/β
2)

∞∑
n=−∞

−i(
√

k1 − κn)

×
[∫ ∞

−∞
En(s)
s − k1

1√
s − κn

exp((−is cos θ − γn sin θ)r) ds
]
, (C1)

where the integral path is given by P0, as shown in figure 2, and En(s) is defined by (2.15).
For square-shaped serrations,

En(s) =
2 sin

1
2

nπ

nπ
exp

(
−i

1
2

nπ

)
cos

[
(s − k1)h̄ + nπ

2

]
. (C2)

Note that En(s) can be readily written as

En(s) =
sin

1
2

nπ

nπ
exp

(
i
1
2

nπ

)(
exp

(
i
[
(s − k1)h̄ − nπ

2

])

+ exp
(
−i
[
(s − k1)h̄ − nπ

2

]))
. (C3)

Equation (C3) is similar to (2.17) (after trigonometric expansions), and the Green’s
function can be calculated in a similar manner (without performing additional integration)
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to yield

Gs(r, θ, y) = 1
2π

exp(ikMy1/β
2)

∞∑
n=−∞

−i(
√

k1 − κn) exp(iχny2)
sin

1
2

nπ

nπ
exp

(
i
1
2

nπ

)

×
(

exp
(
−i
(

k1h̄ + nπ

2

))
D0(rt, θt)− exp

(
i
(

k1h̄ + nπ

2

))
D0(rr, θr)

)
,

(C4)

where D0(ri, θi) ≡ D+
0 (ri, θi) ≡ D−

0 (ri, θi) is defined in (2.33). Note that D0(ri, θi) does
not depend on n, which is different from that for sawtooth serrations. In fact, we can show
that En(s) for arbitrary piecewise linear serrations can be written in a similar form as those
shown in (C3), therefore, their corresponding Green’s functions can be calculated similarly
in a straightforward manner. We omit a repetitive description here.

Appendix D. An alternative decomposition

When we use the decomposition Ga = pin + Gs instead, the scattered wave Gs( y; x, ω)
satisfies

β2 ∂
2Gs

∂y2
1

+ ∂2Gs

∂y2
2

+ ∂2Gs

∂y2
3

− 2ikM
∂Gs

∂y1
+ k2Gs = 0, (D1)

and the following boundary conditions:

∂Gs

∂y3

∣∣∣∣
y3=0

= ik3 exp(−ik1y1/β) exp
(

i
kM
β2 y1

)
exp(−ik2y2), y1 < hF( y2); (D2a)

Gs|y3=0 = 0, y1 > hF( y2); (D2b)

Gs|y2=0 = Gs|y2=1eik2; (D2c)

∂Gs

∂y2

∣∣∣∣
y2=0

= ∂Gs

∂y2

∣∣∣∣
y2=1

eik2 . (D2d)

Eliminating the first-order term in (D1) by the transformation Gs = Ḡs exp(ikMy1/β
2),

one obtains

β2 ∂
2Ḡs

∂y2
1

+ ∂2Ḡs

∂y2
2

+ ∂2Ḡs

∂y2
3

+
(

k
β

)2

Ḡs = 0. (D3)

Note here, we can use either the non-orthogonal transformation commonly used in
previous works or the simple stretching transformation shown in § 2. The two would
yield identical results. However, since § 2 uses the latter, here we choose to use the
former just for comparison. Introducing the non-orthogonal coordinate transformation
ξ1 = ( y1 − hF( y2))/β, ξ2 = y2 and ξ3 = y3 yields

∂2Ḡs

∂ξ2
1

+ ∂2Ḡs

∂ξ2
2

+ ∂2Ḡs

∂ξ2
3

− 2h̄F′(ξ2)
∂2Ḡs

∂ξ1∂ξ2

− h̄F′′(ξ2)
∂Ḡs

∂ξ1
+ h̄2F′2(ξ2)

∂2Ḡs

∂ξ2
1

+ k̄2Ḡs = 0, (D4)
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Acoustic scattering by a flat plate with a serrated edge

where the stretched constants are defined as h̄ = h/β and k̄ = k/β. Now the boundary
conditions read

∂Ḡs

∂ξ3

∣∣∣∣
ξ3=0

= ik3 exp(−ik1(ξ1 + h̄F(ξ2))) exp(−ik2ξ2) ξ1 < 0; (D5a)

Ḡs|ξ3=0 = 0, ξ1 > 0; (D5b)

Ḡs|ξ2=0 = Ḡs|ξ2=1eik2; (D5c)

∂Ḡs

∂ξ2

∣∣∣∣
ξ2=0

= ∂Ḡs

∂ξ2

∣∣∣∣
ξ2=1

eik2 . (D5d)

We can now perform the Fourier transform along the ξ1 direction, i.e.

G(s, ξ2, ξ3) =
∫ ∞

−∞
Ḡs(ξ1, ξ2, ξ3) exp(isξ1) dξ1, (D6)

and (D4) then reduces to

∂2G
∂ξ2

2
+ ∂2G
∂ξ2

3
+ 2ish̄F′(ξ2)

∂G
∂ξ2

+ ish̄F′′(ξ2)G − s2h̄2F′2(ξ2)G + (k̄2 − s2)G = 0. (D7)

Upon use of the last two boundary conditions shown in (D5), (D7) can be solved by using
the method of separation variables such that for ξ3 > 0, (the corresponding result for ξ3 <

0 is similar due to the antisymmetry):

G(s, ξ2, ξ3) =
∞∑

n=−∞
An(s) exp(−γnξ3) exp(−ish̄F(ξ2)) exp(iχnξ2), (D8)

where χn = 2nπ − k2, γn = √
s2 − κ2

n and κn =
√

k̄2 − χ2
n . The complex function An(s)

will need to be determined by making use of the first two boundary conditions shown in
(D5) by using the Wiener–Hopf method, i.e.

G′(s, ξ2, 0) = k3

(s − k1)

∞∑
n=−∞

En(s) exp(−ish̄F(ξ2)) exp(iχnξ2)

+
∞∑

−∞
G′+

n (s) exp(−ish̄F(ξ2)) exp(iχnξ2); (D9a)

G(s, ξ2, 0) =
∞∑

n=−∞
G−

n (s) exp(−ish̄F(ξ2)) exp(iχnξ2), (D9b)

where the symbol ′ denotes the first derivative with respect to ξ3, and G−
n (s) and

G′+
n (s) are the expansion coefficients of functions G−(s, ξ2, 0) and G′+(s, ξ2, 0) using the

basis functions exp(−ish̄F(ξ2)) exp(iχnξ2), n = 0,±1,±2 · · · , and they are unknown at
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this stage. Here, En can be found to be

En(s) =
∫ 1

0
exp(i(k − s)h̄F(ξ2)) exp(−i2nπξ2) dξ2. (D10)

Making use of orthogonality of the basis functions exp(−ish̄F(ξ2)) exp(iχnξ2), n = 0,
±1,±2 · · · , we arrive at the following matching conditions for mode n:

−γnAn(s) = k3

(s − k1)
En(s)+ G′+

n (s); (D11a)

An(s) = G−
n (s). (D11b)

We can proceed by eliminating A(s) and arrive at

γnG−
n (s)+ k3

s − k1
En(s)+ G′

n(s) = 0. (D12)

Again, when En(s) is assumed to be a factor of both G−
n (s) and G′+

n (s), it becomes a routine
procedure to factorize the kernel as

√
s − κn

√
s + κn, and

A(s) = G−
n (s) = −k3En(s)

(s − k1)

1√
s − κn

1√
k1 + κn

. (D13)

With the same definition of r and θ shown in § 2, the scattered pressure field Gs can be
found to be

Gs(r, θ, y) = exp(ikMx/β2)

∞∑
n=−∞

−k3 exp(iχny)√
k1 + κn

×
[

1
2π

∫ ∞

−∞
En(s)
(s − k1)

1√
s − κn

exp((−is cos θ − γn sin θ)r) ds
]
, (D14)

where the integral is along the path P0 shown in figure 2.
Comparing (2.23) and (D14), we see that when n = 0, the summands in these two

equations are equal to each other. However, for other values of n, the summands differ.
This already signals a problem in the validity of the assumption that En(s) is a factor in R−

n
and R′+

n , i.e. if such an assumption were true, the two methods should yield completely
identical results.
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