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1. Introduction

Let (G, + ) be an arbitrary group and let T0(G) = {fe Map(G, G) : 0 / = 0};
the system composed of T0(G) and the operations of pointwise addition and
composition of functions form a (left) near-ring. Berman and Silverman, in their
investigation of near-rings of transformations [3], found that for every group G
the associated near-ring of transformations T0(G) has no proper ideals. In the
present paper left and right ideals of T0(G) are considered.

D. W. Blackett [4] investigated one-sided ideals in T0(G) for G finite. Blackett's
results appear as consequences of the more general study in this paper. We show
that for G finite T0(G) is the direct sum of minimal right ideals, but this does not
hold for G infinite. Minimal one-sided ideals will be characterized completely.
Maximal one-sided ideals are considered; every right (left) ideal is contained in a
maximal right (left) ideal. A correspondence between normal subgroups of G
and left ideals in T0(G) is given. The center of (T0(G), +) is found to be a left
ideal.

2. Preliminaries on near-rings

An algebraic system (N, +, •) is a (left) near-ring if

(1) (N, + ) is a group, not necessarily abelian,

(2) (N, •) is a semigroup,

(3) c(a + b) = ca + cb for each a, b, ce N.

In this paper it shall further be required that zero is a two-sided annihilator. This
is not a consequence of (l)-(3).

T0(G) serves as a motivational example of a near-ring. Furthermore every
near-ring can be embedded in a T0(G) for some G [5].

A group G together with a mapping (g, r) -> gr of GxNinto G such that for
xsG and n,meN

(1) x(n + m) = xn + xm

(2) x{nm) = (xn)m
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is a near-ring module over the near-ring TV. Note, it follows that if 0 e G, a e TV,
then Oa = 0.

Near-ring homomorphism and TV-homomorphism are defined as usual.
Ideals (submodules) are exactly the kernels of homomorphisms (TV-homomor-
phisms). It is well known that an ideal of jVis a subset M such that

(1) (M, + ) is a normal subgroup of (TV, + )

(2) nme M for each ne N,me M

(3) (ni+m)n2—nin2 e M for each me M,nltn2e N.

Subsets satisfying (1) and (2) are left ideals of TV and subsets satisfying (1) and (3)
are right ideals of TV. A subgroup B of (TV, + ) is an TV-subgroup (left TV-subgroup)
if b e B and n e TV implies bn e B(nb e B). Every right ideal is a 7\j(G)-subgroup,
but the converse does not hold.

3. Right ideals in T0(G)

Let S be a non-empty subset of G and define A(S) = {ae T0(G): Sot = 0}.
These annihilating sets, A(S), are right ideals of T0(G). For convenience let
Px = A(G—{x}),x =£ 0. Px may also be described as {oe(x, y) :ye G}, where
toc(x, y) = 0 if t # x and xx(x, y) = y. The following properties of the a(x, y)
follow immediately:

PROPERTY A. Ify ^ s ^ 0, then a(x, y)x{s, t) = a(x, 0) = 0
and a(x, s)cc(s, t) = a(x, t).

PROPERTY B. The set {a(x, x) : xe G— {0}} is a collection of pairwise
orthogonal idempotents.

PROPERTY C. 1) a(x, y) + tx(x, v) = a(x, y + v)

2) - a(x, y) = a(x, -y)

3) a(x, y)-a(x, v) = x(x,y-v).

PROPERTY D. For p e T0{G), a(jc, y)P = a(x, yf).
For any a(jc, y) e Px we have

oc(x, x)a(x, y) = a(x, y)

and hence Px is generated by the idempotent element <x(x, x). If y J= 0, then

a.(x, y)oc(y, x) = a{x, x)

and hence each a(x, y) generates Px. We have established

THEOREM 1. For each x # 0, Px is a minimal right ideal and a minimal T0(G)-
subgroup. Px is generated by the idempotent a(x, x) which acts as a left identity
forPx.
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It is easy to identify the groups (Px, + ). The mapping g -* a(x, g) is a group
isomorphism, hence Px s G.

Let x e G- {0}. Because of Theorem 1 Px n Ya?y = (°)> where >> e G - {0, x}.
Thus the sum of the Px is a (group) direct sum. For convenience denote this direct
sum by P.

THEOREM 2. P is a right ideal ofT0(G).
This theorem is a consequence of

LEMMA 0. IfFis a family of right ideals from a near-ring N, then IM, MeF, is
a right ideal ofN.

PROOF. It is well known that IM is a normal subgroup of (N, +). Let
m = YJ= i"i,-, where mt e M; e F, be any element in IM. The proof that

(nt +m)n2— nln2 e IM,

for each nt, n2 e iV, is by induction on k. The case k = 1 being obvious we proceed
to the inductive step. Let c, = X/=i m;. Note that

and that («1 + ck_1)«2 —
wi«2 e ^ ^ by the induction hypothesis. So

(«! +m)n2-nln2 is in I M .
Note that if G is finite, say |G| = n, then T0(G) and P have the same car-

dinality, n""1. A consequence of these remarks is the following theorem originally
arrived at by Blackett [4, p. 39] in a different fashion.

THEOREM 3. If G is finite, then T0(G) is the direct sum of the minimal right
ideals.

This theorem is not true for G infinite. This can be seen in a variety of ways,
one of the simpler being to examine cardinality: \T0(G)\ = |G||G|, while |P| = \G\.

The following four lemmas lead a complete classification of minimal right
ideals in T0(G). In the following M is a non-zero right ideal of T0(G).

LEMMA 1. For each x e G, there exists ft e M, t e G, such that tp = x.

LEMMA 2. There exists non-zero p e M, t e G such that tp = 0.

PROOF. Let rng p = {JC/? : x e G}. We consider two cases.

CASE 1. There exists j3 e M such that |rng jS| > 2. Then there exists non-zero
x,teG,x=£t, such that

tp = y # z = xP # 0.

Choose >>!, y2 e T0(G) so that

(Oli = -y, (*)7i = -z, {-z)y2 = -z, (-y)y2 = 0.

Let/? = (yi + P)y2—l\l2- Then xp = z # 0 and tp = 0.
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Before turning to the case where |rng /?| = 2 we dispose of the special situa-
tion \G\ < 4. Since M is non-zero, \G\ — 1 is not under consideration. For
\G\ = 2, T0(G) itself is the only minimal right ideal. Finally for \G\ = 3 the
minimal right ideals are:

{(0, 0, 0), (0, 0, 1), (0, 0, 2)} and {(0, 0, 0), (0, 1, 0), (0, 2, 0)},

where (x0, xl, x2) represents the function oh C3 that takes i into *,. In each of
these two cases the lemma is easily seen to be satisfied. For the remainder of the
proof take \G\ ^ 4.

CASE 2. For each non-zero /? e M, |rng /?| = 2. Let /? be a non-zero element
of M. Then there is a non-zero element x of G such that (x)fi = y # 0. Let t be a
second non-zero element of G. Choose y t , y2 e r o(G) such that

(*)yi = " ^ (O^i = z where z is not 0, — y, nor — .y— j>,

{-y)li = - 7 , ^ 2 = 0, and (z+y)y2 = (z + t/3)y2 = 0.

Then (yi+/?)y2—yiy2 ' s the desired mapping/".

LEMMA 3. If M is a minimal right ideal, then G = Gl u G2, wA r̂e

Gt n G2 = 0, 0 e Gt , (72 # 0, Gt M = {0},

and for each xeG2, xfi ^ Ofor each non-zero ft e M.

PROOF. There exists non-zero x e G, /? e M such that x(l = 0. The set
{y e M : xy = 0} is a non-zero right ideal of ro(G) and hence is equal to M. Let

Gi = { / £ ( ? : / ¥ = {0}} and G2 = G - G j .

It is easily seen that Gx and G2 are the required sets.

LEMMA 4. If M is a minimal right ideal, then |rng /?| = 2 /or wery non-zero
P e M. Hence G2 w fl singleton.

PROOF. Suppose /? e M and 0, jFt, and y2 are distinct elements of the range of
p. Choose y e T0(G) so that ty = 0 if t ¥= y2,y2y = y2 • For some xt e G, xtp = ylt

hence Xj/?y = 0. Since there exists x2 e G such that x2/? = j 2 and therefore
*2/?7 = yi w e have that jffy is a non-zero element of M that takes jct into zero, a
contradiction to x ^ ^ 0 and Lemma 3.

In the proof of Lemma 2 the case |G| < 4 was completely investigated so we
may take \G\ ^ 4.

Suppose |G2| > 1. Then there exists distinct elements x, teG2. Choose a
non-zero mapping/,, e M and let rng/c = {0, c}. Choose yt, y2 e T0(G) such that
xyt = —c,tyl = b # c, where & is not 0 or —c — c, ( — c)y2 = — c, by2 = 0.
Note that b + c is not Z>, c, or — c so we can define (b + c)y2 = 0. Then
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= c and {t)[{yl+fc)y2-yly2\ = 0.

But (y, +fc)y2 — >"i y2 e A/ so / e G!, a contradiction.
Thus every element in a minimal right ideal is of the form a(x, y) for some

fixed non-zero x. We thus have

THEOREM 4. Tfte on/y minimal right ideals ofT0(G) are the Px.
A submodule N of the i?-module MR is called a simple submodule of MR if it

contains no proper (nontrivial) submodules. P is a r0(G)-module and because of
Theorem 1, Px is a simple submodule of P. The following lemma enables us to
characterize all right ideals of T0(G) which are contained in P.

LEMMA 5. (Beidleman [ l ,p . 60]). If MR is a near-ring module, then the fol-
lowing are equivalent:

(1) Every submodule is a sum of simple submodules of MR,

(2) MR is a sum of simple submodules,

(3) MR is a direct sum of simple submodules,

(4) Every submodule of MR is a direct summand.

THEOREM 5. Every right ideal of T0(G) which is also contained in P is of the
form

X © px> wnere xeH ^ G- {0}.
X

The proof follows from Theorems 1 and 4, Lemma 5, and

The above are 'internal' facts about P. The following are "external" facts.
P is contained in a maximal right ideal. In fact a standard Zorn's Lemma

argument shows that every right ideal is contained in a maximal right ideal. What
maximal right ideals are available? For any non-zero x e G let A(x) = A({x}).

THEOREM 6. Every A(x), x # 0, is a maximal right ideal and a maximal
T0(G)-sub group.

PROOF. Since every right ideal of T0(G) is also a 7~0(G)-subgroup, it suffices
to show that A(x) is a maximal r0(G)-subgroup of T0(G). Let B be a ro(G)-sub-
group of T0(G) which properly contains A(x). Choose p e B such that (x)/? =
b # 0. Take n e T0(G) such that (b)n = x and (t)rj = 0 for each t # b.
Then fin e B and (x)fin = x. Hence, we can assume that xji = x. Choose
<PeA(x) such that (t)<P = -(t)p + t, if t ^ x. Then (*)[/? + $ ] = t if t ^ x and
(x)[/? + <£] = x, hence P + <P is the identity mapping on G. Since fl + $ — fie A(x),
it follows that fi + <PeB. This shows that 5 = T0(G) and the theorem follows.

Beidleman [2] defines the radical J(M) of a near-ring module MN as the inter-
section of all submodules which are maximal as iV-subgroups. As a consequence
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of Theorem 6, J(T0(G)) = 0. Note that every right ideal of T0(G) is a T0(G)-
submodule and conversely.

It is easy to see that P is not contained in any A(x). In fact Px n A(x) = (0).
By Theorem 6 it follows that T0(G) = Px © A(x). Note that by Theorem 5
A(x) n P = £ ® Pt, t jt 0, x and hence (by the 2nd isomorphism theorem for
near-ring modules)

T0(G)IP = P+A(x)/P s A(x)/P n A(x).

There is an ascending sequence of right ideals containing P, however. Let

T, = {/e ro(G) : |support/ | < K,} ,

for each ordinal 1. Here support/ = {x e G : xf # 0}. Each TA is a right ideal and
since P is exactly those functions of finite support we have P = To. Also for
Kr = \G\

i> = r o c r l C - - c r t c ro(G),

where TT is contained in a maximal right ideal; the question arises: is Tt maximal1?
The right ideals An = A({xt, • • •, xB}), where the xn are distinct non-zero

elements of G, gives rise to an infinite descending chain of right ideals in the
case where G is infinite. So T0(G) is not right Artinian for G infinite. The question
of whether T0(G) is right Noetherian is open, even for G countable.

The following general lemma will prove useful in the next theorem.

LEMMA 6. (Beidleman [1, p. 54]). If the N-module MN is the direct sum of
submodules M^, X e A, then for each m = mXi + • • • +m)n in M, where mx, e Mk.,
and for each r e N,

mr = mXlr+ • • • +mxj.

THEOREM 7. If there exists a right ideal VofT0(G) such that P ® V = T0(G),
then G is finite and V = (0), i.e. P cannot be a proper direct summand.

PROOF. If G is finite, then P = T0(G) because of Theorems 3 and 4. Hence,
assume G is infinite and V # (0). Then

1 = «(x1,yi)+ ••• +<x(xn,yn)+p,pe V.

This yields —yi+Xi = xtp for / = 1, 2, • • •, n and for t # xt, t = tp. If for some
j,yj # Xj, then we arrive at a contradiction as follows. Choose (5xe T0(G) such
that tpx = x, if / # 0, where x $ {xt, • • -, xn, 0}. Then using Lemma 6, and
property D we obtain „t
and x = Xjpx = x+(—yj+Xj)flx = x+x, or x = 0.

Hence
1 = cc(x1,x1)+ • • • +ct(xn,xn)+p;
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so again using Lemma 6 we have a(x, x) = pot(x, x) for each x # xt, i = 1, • • •, n.
But pa(x, x) e V, so 0 ^ pa(x, x)eP n F, contrary to i> n F = (0).

4. Left ideals

Let C+ be the center of (T0(G), + ) and let C(G) be the center of G.

LEMMA 7. An element f is in C+ if and only if the image off, written rng/,
is in C(G).

PROOF. Let fe C+. Consider (x)f for any non-zero xeG. For each y e G
there exists h e T0(G) such that (x)h = y. So

(x)f+y = (x)[f+h] = (x)[h+f) = j +(x)/

and hence (x)fe C(G).
The converse follows immediately.

LEMMA 8. C+ is a left ideal ofT0(G).

PROOF. Of course C+ is a normal subgroup of (T0(G), +). Since for each
geT0(G),feC+:

rng gf <= rng/ s C(G),

it follows by Lemma 7 that #/e C+.

NOTE. For any element c e C(G) the mapping/c e ro(G) denned by xfc = c,
for x # 0, has its image in C(G) and hence must be in C+. So if G has a non-
trivial center then C+ # (0); moreover (T0(G), +) is centerless if and only if
G is centerless.

Next left ideals of T0(G) will be classified in terms of normal subgroups of
G. Let L be a left r0(G)-subgroup of T0(G). Define GL = {xl\xe G, I eL}.

LEMMA 9. (a) If L is a left T0(G)-subgroup ofT0(G), then GL is a subgroup
ofG.

(b) IfL is a left ideal of T0(G), then GL is a normal subgroup of G.

PROOF, (a) Let x(lteGL,i= 1,2. Then there exists fe T0(G) such that
x2f = xt. Thus

= (x2)fl1-(x2)l2 =

Since/?! G L it follows that/^ -l2 e L, hence (xi)l1-(x2)l2 e GL. This shows GL
is a subgroup of G.

(b) Let {x)leGL and # e G. Consider g + (x)l—g. There exists heT0(G)
such that (x)/z = #, hence
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Now h + l—heL, hence GL is a normal subgroup of G.

To each left ideal L there corresponds a normal subgroup GL. This cor-
respondence need not be one-to-one. Note that GL — (0) if and only if L = (0)
and GT0(G) = G. It is possible for GL = G and yet L be a proper left ideal, as
the following example illustrates.

EXAMPLE. Let G be infinite and define

Bk = {/ e ro(G) : | rng/ | < KA}.

For each ordinal X, Bk is a left ^(G^-subgroup. Consider G abelian and XA ^ |G|;
then i?A is a proper left ideal of T0(G) and satisfies GB^ = G. The latter is clear
since for each non-zero ae G the function xfa = 0 if x # a, a/a = a is in Bx.
For Ka = |G| we have the proper ascending chain of left ideals.

(0) c Bo c Bx c • • • c 5 , c ro(G).

For any group G if z e GL, then for each non-zero x e G, a(x, z) e L. Some
consequences and their immediate corollaries are given in the following

THEOREM 8. Let Lbe a left T0(G)-subgroup.

(1) IfGL = G,thenP <=L,

(2) IfGL = G and G is finite, then L = T0(G),

(3) If G is a finite simple group, then T0(G) has no proper left ideals,

(4) If L is also a right T0(G)-subgroup, then P ^ L and if in addition G is
finite, then L = T0(G),

(5) IfG is finite, then T0(G) is a simple near-ring,

(6) If G is a simple group, then P is contained in every non-zero left ideal of
T0(G).

To each normal subgroup N of G there corresponds a left ideal of T0(G).
Consider

LN = {leT0(G):Gl<=N}.

LEMMA 10. LNisaleftidealofT0(G).

LEMMA 11. If M and N are normal subgroups of G and M ^ N,thenLM £ LN.
IfLy andL2 are left ideals ofT0(G) andLt c L2, then GLt £ GL2.

The proof of each of these lemmas follows directly from the definitions.

The inter-relationship between the normal subgroups given by Lemma 9
and the left ideals given by Lemma 10 is investigated next.

Starting with a left ideal L we pass to a normal subgroup GL and then a left
ideal LGL. We have L £ LaL. Again using Lemma 9 we obtain the normal sub-
groups GL and GLGL where GL £ GLGL by Lemma 11. But GLCL £ GL by
definition so GL = GLCL.
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Next start with any normal subgroup N of G, then pass to the left ideal LN

and the normal subgroup GLN. As in the previous paragraph, but using LN as the
left ideal, this yields LN s LM, where M = GLN. But M = GLN £ N, so LM E LlV

and hence LN = LM.
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