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1. Introduction

Let (G, +) be an arbitrary group and let To(G) = {fe Map(G, G) : 0f = 0};
the system composed of T,(G) and the operations of pointwise addition and
composition of functions form a (left) near-ring. Berman and Silverman, in their
investigation of near-rings of transformations [3], found that for every group G
the associated near-ring of transformations To(G) has no proper ideals. In the
present paper left and right ideals of To(G) are considered.

D. W. Blackett [4]investigated one-sided ideals in 7,(G) for G finite. Blackett’s
results appear as consequences of the more general study in this paper. We show
that for G finite T,(G) is the direct sum of minimal right ideals, but this does not
hold for G infinite. Minimal one-sided ideals will be characterized completely.
Maximal one-sided ideals are considered; every right (left) ideal is contained in a
maximal right (left) ideal. A correspondence between normal subgroups of G
and left ideals in To(G) is given. The center of (To(G), +) is found to be a left
ideal.

2. Preliminaries on near-rings

An algebraic system (N, +, -) is a (left) near-ring if

(1) (¥, +) is a group, not necessarily abelian,

(2) (&, -) is a semigroup,

(3) c(a+b) = ca+ch for each a, b, ce N.
In this paper it shall further be required that zero is a two-sided annihilator. This
is not a consequence of (1)-(3).

T'o(G) serves as a motivational example of a near-ring. Furthermore every
near-ring can be embedded in a T,(G) for some G [5].

A group G together with a mapping (g, r) — gr of G x N into G such that for
xeGandn, meN

(1) x(n+m) = xn+xm

(2) x(nm) = (xn)m
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is a near-ring module over the near-ring N. Note, it follows that if 0e G, ae N,
then 0a = 0.

Near-ring homomorphism and N-homomorphism are defined as usual.
Ideals (submodules) are exactly the kernels of homomorphisms (N-homomor-
phisms). It is well known that an ideal of N is a subset M such that

(1) (M, +) is a normal subgroup of (N, +)

(2) nme M for each ne Nyme M

(3) (n,+m)ny—nyn, € M for each me M, n,,n, e N.

Subsets satisfying (1) and (2) are left ideals of N and subsets satisfying (1) and (3)
are right ideals of N. A subgroup B of (¥, +)is an N-subgroup (left N-subgroup)

if be B and n e N implies bn € B(nb € B). Every right ideal is a To(G)-subgroup,
but the converse does not hold.

3. Right ideals in T,(G)

Let S be a non-empty subset of G and define A(S) = {a € To(G) : Sa = 0}.
These annihilating sets, A(S), are right ideals of T,(G). For convenience let
P, = A(G—{x}),x # 0. P, may also be described as {a(x,y):ye G}, where
ta(x,y) = 0 if ¢t # x and xa(x, y) = y. The following properties of the a(x, y)
follow immediately:

PROPERTY A. Ify # s # 0, then a(x, y)a(s, t) = a(x,0) = 0
and o(x, s)a(s, 1) = a(x, t).

PROPERTY B. The set {a(x,x):xeG—{0}} is a collection of pairwise
orthogonal idempotents.

ProPERTY C. 1) a(x, y)+a(x, v) = a(x, y+v)
2) —ot(x,y) = a(x’ _y)
3) a(x, y)—a(x, v) = a(x, y—v).

PROPERTY D. For B e To(G), a(x, y)B = a(x, yp).
For any a(x, y) € P, we have

(x, x)a(x, y) = a(x, y)

and hence P, is generated by the idempotent element «(x, x). If y % 0, then
a(x, y)a(y, x) = ax, x)

and hence each a(x, y) generates P,. We have established

THEOREM 1. For each x # 0, P, is a minimal right ideal and a minimal T(G)-
subgroup. P, is generated by the idempotent «(x, x) which acts as a left identity
for P,.
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It is easy to identify the groups (P,, + ). The mapping g — a(x, g) is a group
isomorphism, hence P, =~ G.

Let x € G— {0}. Because of Theorem 1 P, n Y , P, = (0), where y € G— {0, x}.
Thus the sum of the P, is a (group) direct sum. For convenience denote this direct
sum by P.

THEOREM 2. P is a right ideal of To(G).
This theorem is a consequence of

LeMMA 0. If Fis a family of right ideals from a near-ring N, then XM, M € F, is
aright ideal of N.

PrOOF. It is well known that XM is a normal subgroup of (N, +). Let

m = Z’i‘:l m;, where m; € M; € F, be any element in ZM. The proof that
(ny+mn,—nn, e IM,
for each n,, n, € N, is by induction on k. The case k¥ = 1 being obvious we proceed
to the inductive step. Let ¢; = Y 7., m;. Note that
(ny ey )+mny~(ny+c, -y )ny € M,

and that (n,+c,.)n,—nn, € M by the induction hypothesis. So
(ny+m)ny—nyn, is in IM.

Note that if G is finite, say |G| = n, then T,(G) and P have the same car-

dinality, n"~'. A consequence of these remarks is the following theorem originally
arrived at by Blackett {4, p. 39] in a different fashion.

THEOREM 3. If G is finite, then T(G) is the direct sum of the minimal right

ideals.
This theorem is not true for G infinite. This can be seen in a variety of ways,
one of the simpler being to examine cardinality: |To(G)| = |G|'°!, while |P| = |G].

The following four lemmas lead a complete classification of minimal right
ideals in T4(G). In the following M is a non-zero right ideal of T,(G).

LeMMA 1. For each x € G, there exists € M, t € G, such that tff = x.
LEMMA 2. There exists non-zero p € M, t € G such that tp = 0.
PrOOF. Let rng B = {xf: x € G}. We consider two cases.

CasE 1. There exists f € M such that |[rng | > 2. Then there exists non-zero
X, te G, x # t, such that
=y #z=xp#0.

Choose y;, 7, € To(G) so that
vy = —», 1=~z (=2h2=—2z, (=¥ =0.
Letp = (y;+B)y2—717,- Then xp = z £ 0 and 1p = 0.
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Before turning to the case where |rng ] = 2 we dispose of the special situa-
tion |G| < 4. Since M is non-zero, |G| = 1 is not under consideration. For
|G| = 2, To(G) itself is the only minimal right ideal. Finally for |G| = 3 the
minimal right ideals are:

{(0,0,0), (0,0,1), (0,0,2)} and {(0,0,0), (0, 1,0), (0,2,0)},

where (x,, x,, x,) represents the function oh Cj that takes i into x,. In each of
these two cases the lemma is easily seen to be satisfied. For the remainder of the
proof take |G| = 4.

Cask 2. For each non-zero S € M, |rng | = 2. Let f§ be a non-zero element
of M. Then there is a non-zero element x of G such that (x)f =y # 0. Lettbea
second non-zero element of G. Choose y,, 7, € To(G) such that

(x)yy = —», (t)y, = z where z is not 0, —y, nor —y—y,
(=92 = ~»,2zy2 =0, and (z+y)y, = (z+128)y, = 0.

Then (y, +B)y, — 717, is the desired mapping p.

LemMA 3. If M is a minimal right ideal, then G = G, v G,, where
Gl N GZ = 0, OEGl, GZ # 0, G1M= {O},
and for each x € G, xB # 0 for each non-zero B € M.

ProOF. There exists non-zero xe G, fe M such that xf = 0. The set
{y e M : xy = 0} is a non-zero right ideal of To(G) and hence is equal to M. Let

Gl = {tEG:th {0}} and GZ = G_’Gl.
It is easily seen that G, and G, are the required sets.

LemMa 4. If M is a minimal right ideal, then |rng | = 2 for every non-zero
f € M. Hence G, is a singleton.

Proor. Suppose fe Mand0, y,,and y, are distinct elements of the range of
B.Choosey € To(G)sothatty = 0if ¢ # y,,y,y = y,.Forsomex; € G, x,f = y,,
hence x, By = 0. Since there exists x, € G such that x, = y, and therefore
X,y = y, we have that fy is a non-zero element of M that takes x, into zero, a
contradiction to x, f§ # 0 and Lemma 3.

In the proof of Lemma 2 the case |G| < 4 was completely investigated so we
may take |G| = 4.

Suppose |G,| > 1. Then there exists distinct elements x, ¢t € G,. Choose a
non-zero mapping f. € M and let rng f, = {0, c¢}. Choose y,, 7, € To(G) such that
Xy, = —¢, ty; = b # ¢, where b is not 0 or —¢—c, (—c)y, = —¢, by, = 0.
Note that b+c¢ is not b, ¢, or —c¢ so we can define (b+c)y, = 0. Then
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(1 +S)r2=v1v2) = ¢ and (D[(yy + £ )y2—7172]1 = 0.

But (v, +£.)y2—7:72 € M so t € G,, a contradiction.
Thus every element in a minimal right ideal is of the form «(x, y) for some
fixed non-zero x. We thus have

THEOREM 4. The only minimal right ideals of T,(G) are the P, .

A submodule N of the R-module My, is called a simple submodule of My if it
contains no proper (nontrivial) submodules. P is a To(G)-module and because of
Theorem 1, P, is a simple submodule of P. The following lemma enables us to
characterize all right ideals of 7,(G) which are contained in P.

Lemma 5. (Beidleman [1, p. 60]). If My is a near-ring module, then the fol-
lowing are equivalent:

(1) Every submodule is a sum of simple submodules of My,
(2) My is a sum of simple submodules,

(3) My is a direct sum of simple submodules,
(4) Every submodule of My is a direct summand.

THEOREM 5. Every right ideal of To(G) which is also contained in P is of the
form
Y @ P, where xe H= G—{0}.

The proof follows from Theorems 1 and 4, Lemma $, and
P=) ®P,xeG-{0}.

The above are ‘internal’ facts about P. The following are “external” facts.

P is contained in a maximal right ideal. In fact a standard Zorn’s Lemma
argument shows that every right ideal is contained in a maximal right ideal. What
maximal right ideals are available? For any non-zero x € G let A(x) = A({x}).

THEOREM 6. Every A(x),x # 0, is a maximal right ideal and a maximal
To(G)-subgroup.

PROOF. Since every right ideal of To(G) is also a T,(G)-subgroup, it suffices
to show that A(x) is a maximal T,(G)-subgroup of To(G). Let B be a T,(G)-sub-
group of To(G) which properly contains A(x). Choose 8 € B such that (x)f =
b # 0. Take neTyG) such that (b)y = x and (t)y =0 for each ¢ # b.
Then Bne B and (x)Bn = x. Hence, we can assume that xf = x. Choose
@ € A(x) such that (£)@ = —(£)f+1,if t # x. Then (1)[f+P] =1 if t # x and
(x)[B+®] = x, hence B+ @ is the identity mapping on G. Since f+ & —f € A(x),
it follows that f+ @ e B. This shows that B = T,(G) and the theorem follows.

Beidleman [2] defines the radical J(M ) of a near-ring module M), as the inter-
section of all submodules which are maximal as N-subgroups. As a consequence
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of Theorem 6, J(To,(G)) = 0. Note that every right ideal of To(G) is a To(G)-
submodule and conversely.
It is easy to see that P is not contained in any A(x). In fact P, n A(x) = (0).
By Theorem 6 it follows that To(G) = P, @ A(x). Note that by Theorem 5
A(x)nP =X @ P,,t # 0, x and hence (by the 2nd isomorphism theorem for
near-ring modules)
To(G)/P = P+ A(x)/P = A(x)/P n A(x).

There is an ascending sequence of right ideals containing P, however. Let

T, = {feTo(G) : |support f| < N},

for each ordinal A. Here support f = {x e G : xf # 0}. Each T, is a right ideal and
since P is exactly those functions of finite support we have P = T,. Also for
N. =|q]

P=Ty,cT, c - <cT, c TyG),

where T, is contained in a maximal right ideal; the question arises: is T, maximal?
The right ideals 4, = A({x,, - * -, x,}), where the x, are distinct non-zero
elements of G, gives rise to an infinite descending chain of right ideals in the
case where G is infinite. So To(G) is not right Artinian for G infinite. The question
of whether T,(G) is right Noetherian is open, even for G countable.
The following general lemma will prove useful in the next theorem.

Lemma 6. (Beidleman [1, p. 541). If the N-module M, is the direct sum of
submodules M;, A € A, then for eachm = m; + -+ +m, in M, where m;, e M, ,
and for each r e N,

mr =myr+ - +m,r.

THEOREM 7. If there exists a right ideal V of To(G) such that P @ V = T,(G),
then G is finite and V = (0), i.e. P cannot be a proper direct summand.

Proor. If G is finite, then P = T, O(G) because of Theorems 3 and 4. Hence,
assume G is infinite and ¥ # (0). Then

= alx;,y)+ - +alx,, y,)+p, pe V.

This yields —y;+x; = x;pfori = 1,2,---,nand for ¢t # x;, t = tp. If for some
J, y; # x;, then we arrive at a contradiction as follows. Choose B, € To(G) such
that ¢8, = x,if ¢ # 0, where x¢ {x;, -, x,,0}. Then using Lemma 6, and
property D we obtain

ﬁx = lﬁx = Z oc(x,-, x)+pﬂx

i=1

and x = x;B, = x+(—y;+x;)p. = x+x,0orx = 0.
Hence
1 = a(‘xl9 x1)+ e +(Z(x", xn)+p;
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so again using Lemma 6 we have a(x, x) = pa(x, x)foreachx # x;,i = 1, -, n.
But pa(x, x) e ¥, so 0 # pa(x, x)e P n V, contrary to P n V = (0).

4. Left ideals
Let C* be the center of (T,(G), +) and let C(G) be the center of G.
LeMMA 7. An element f is in C* if and only if the image of f, written rng f,
is in C(G).

Proor. Let fe C*. Consider (x)f, for any non-zero x € G. For each y e G
there exists & € To(G) such that (x)z = y. So

(xX)f+y = X)W +hl = X[+, = y+(x)f

and hence (x)fe C(G).
The converse follows immediately.

LEMMA 8. C™ is a left ideal of To(G).

PrOOF. Of course C* is a normal subgroup of (T,(G), +). Since for each
geTo(G), feC*:
mg gf < mgf < C(G),

it follows by Lemma 7 that gfe C*.

Nortke. For any element ¢ € C(G) the mapping 1, € To(G) defined by xf. = ¢,
for x # 0, has its image in C(G) and hence must be in C*. So if G has a non-
trivial center then C* # (0); moreover (To(G), +) is centerless if and only if
G is centerless.

Next left ideals of To(G) will be classified in terms of normal subgroups of
G. Let L be a left To(G)-subgroup of To(G). Define GL = {xl|xe G, /e L}.

LemMA 9. (a) If L is a left To(G)-subgroup of To(G), then GL is a subgroup
of G.

(b) If L is a left ideal of To(G), then GL is a normal subgroup of G.

ProoF. (a) Let x;/;e GL,i = 1,2. Then there exists fe€ To(G) such that
x,f = x,.Thus

(el = () = G)fly = (%), = (x2)[fly — 1)

Since fI; € L it follows that f/, — I, € L, hence (x,)/, —(x,)l, € GL. This shows GL
is a subgroup of G.

(b) Let (x)/ e GL and g€ G. Consider g+ (x)/—g. There exists & € To(G)
such that (x)2 = g, hence

g+x)N—g = (x)h+(x)—(x)h = (x)[h+1-h].
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Now h+1—h e L, hence GL is a normal subgroup of G.

To each left ideal L there corresponds a normal subgroup GL. This cor-
respondence need not be one-to-one. Note that GL = (0) if and only if L = (0)
and GTo(G) = G. 1t is possible for GL = G and yet L be a proper left ideal, as
the following example illustrates.

EXAMPLE. Let G be infinite and define

B, = {feTo(G) :Irmgf| < N;}.

For each ordinal 4, B, is a left To(G)-subgroup. Consider G abelian and X ; < |G[;
then B, is a proper left ideal of T,(G) and satisfies GB; = G. The latter is clear
since for each non-zero a € G the function xf, = 0 if x # a, af, = a is in B;.
For X, = |G} we have the proper ascending chain of left ideals.

(0) @ By = B, = - -+ = B, « Ty(G).

For any group G if z € GL, then for each non-zero x € G, a(x, z) € L. Some
consequences and their immediate corollaries are given in the following

THEOREM 8. Let L be a left To(G)-subgroup.

(1) IfGL = G,thenP < L,

(2) If GL = G and G is finite, then L = T((G),

(3) If G is a finite simple group, then To(G) has no proper left ideals,

(4) If L is also a right T(G)-subgroup, then P < L and if in addition G is
Sinite, then L = Ty(G),

(5) If G is finite, then To(G) is a simple near-ring,

(6) If G is a simple group, then P is contained in every non-zero left ideal of
To(G).

To each normal subgroup N of G there corresponds a left ideal of To(G).
Consider

Ly = {leTy(G): Gl < N}.

Lemma 10. Ly is a left ideal of To(G).

LemMa 11. If M and N are normal subgroups of Gand M = N, then Ly, < Ly.
If L, and L, are left ideals of To(G) and L, < L,, then GL, < GL,.
The proof of each of these lemmas follows directly from the definitions.

The inter-relationship between the normal subgroups given by Lemma 9
and the left ideals given by Lemma 10 is investigated next.

Starting with a left ideal L we pass to a normal subgroup GL and then a left
ideal Lg;. We have L = L, . Again using Lemma 9 we obtain the normal sub-
groups GL and GL;, where GL < GLg, by Lemma 11. But GL;, < GL by
definition so GL = GLg,.
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Next start with any normal subgroup N of G, then pass to the left ideal Ly
and the normal subgroup GLy. As in the previous paragraph, but using Ly as the
left ideal, this yields Ly < L, where M = GL,. But M = GLy < N,so Ly S Ly
and hence Ly = L.
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