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INCLUSION RELATIONS FOR GENERAL RIESZ 
TYPICAL MEANS 

BY 

A. JAKIMOVSKI AND J. TZIMBALARIO 

Let a be a non-negative real number, 2.={2,n}(n>0) a strictly increasing un­
bounded sequence with A0>0 and let 2w=o am be an arbitrary series with partial 
sums s={sn}. Write 

ds(t) 
/•eo 

A%co) = Aa(?i,co) = A%?i,2am;co) = Aa(?i9sico)= 2 ( c o - A J X = O0" ' )" 
An<« Jo 

where s(t)=sn for Aw<f <AW+1, s(t)=Q for 0<t<A0. The series 2 an
 o r t r i e sequence 

of partial sums s={sn} is summable to i by the Riesz method (R, A, a) if 

(R, A, a, co) = CR, A, a, 2 m̂> w) = (R> K a> s, Q>) = co^AXœ) -> i 
as co->co. 

For a given non-negative integer/? and a strictly increasing unbounded sequence 
X={Xn}(n>G) with A0>0, denote by T{p) and T(3,) the (C, A, /?) series-to-sequence 
and sequence-to-sequence matrices, respectively; thus for/?>0 

f i»> = (1 -2V/An+1) • • • (1 -AVM„+*) (0 < f ^ n), f £> = 0(v > n) 

1 nv *-*y-L nv — A nv -1 n,\+l 

and 

T^ = l (0<v<n), fn
(
v
0) = 0 (v>n) 

T r = 0 ( v ^ n ) , Tn
(
v
0) = l (* = n). 

The (C, A,/?) mean of a series 2 #m with partial sums s is 

#> ES #>(s) EE # > £ O EE I f <fX = f T{:X EE C?^)/^^! • • • Xn+»\ 
v=0 v=0 

The series 2 #m o r t r i e sequence of partial sums {sm} is summable (C, A,/?) to s 
if t^-^s as fl->oo. The inverse matrices 

r (»> EE ( T J Ï ) r ( p ) EE ( T ^ ) (n, m = 0, 1, 2 , . . . ) 

of T(p) and T(2,), respectively, are given (see [21] p. 297-298) by 

(r™ = (-ir+1(V,+i-4)Vi • • • W/ft? (o < k < r < k+p+i) 
(1) { fc+P+1 

T&9) = 0 otherwise, where #*> = I T ( ^ - ^ ) 

(2) r;£p) = 2 r ; ^ ) (0 < fc < r < k+p), rr^ = O otherwise; 
v=fc 

H' in (1) indicates that the zero factor corresponding to j=r is to be omitted. 
51 
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52 A. JAKIMOVSKI AND J. TZIMBALARIO [March 

For an arbitrary B=(bpv) (p may be a continuous or discrete parameter) we 
denote by cB and c°B, respectively, the linear space of all iMimitable and iMimitable 
to zero sequences. It was proved by Peyerimhoff [12, §8] that the linear spaces 
c°{RtXta) and c(Rikia) with the norm M ^ s u p ^ o \(R, X, a, x, co)\ are .Bif-spaces. 
Denote these two BK-spaces, respectively, by RÀa(c°) and RÀ(X(c) and the norm by 
||-||Aa. Given two matrices A and B, we say that B is stronger than A or includes A 
if cA ç cB. Limits of summation are assumed throughout 0, oo unless otherwise 
specified, and Axn=xn—xn+1; An=Xn+1l(Xn+1 —Xn). Sums 2J=m where n<m are 
defined as equal to zero. 

A number of special results exist for summability methods B which include 
Riesz summability (R, X, cc)—see Kuttner [8], Russell [15], Rangachari [13], Meir 
[11] and Borwein and Russell [3]. The question of necessary and sufficient con­
ditions to be satisfied by an arbitrary method in order that it will include (R, X, a) 
has received an answer for limited values of X and a. A complete solution was given 
when 0<oc<l by Russell [20], without any restrictions on X. Maddox [9] obtained 
necessary conditions for a series-to-sequence method to include (R, X, a) when 
oc>0 and X is suitably restricted. Maddox [9] conjectured that the necessary con­
ditions are also sufficient. This conjecture was proved by Russell [20, Theorem 2] 
for 0 < a < l , by Jakimovski and Tzimbalario [6] for l < a < 2 and in Russell [21, 
page 300] for oc=2, 3 , 4 , . . . , with a weaker restriction on X. Here we give a 
complete solution for a sequence-to-sequence or series-to-sequence method B to 
be stronger than (R, X, a) if <x>2 too. Using this result we prove the conjecture by 
Maddox for oc>2 with the weaker restriction on X given by Russell. These results 
are obtained by showing that certain sequences are a Schauder-basis in RXoc(c°). 

The main results to be proved here are as follows : 

THEOREM 1. Let a > 0 and denote / ? < a < / ? + l , where p is an integer. In order 
that a sequence-to-sequence or sequence-to-function method B=(bpv) shall include 
(R, X, a) it is necessary that 

(3) 3 lim bpv = pv (v = 0, 1 ,2, . . .), 
p 

(4) 3 Jim 2 ^ = 18, 
P P 

and that a family of functions {gp} exists, defined in [X0, oo) such that 

(5) ( i )6 p v = A J (co-Xvydgp(co), (ii) co«\dgp(co)\=Mp<M< oo. 

7 / ' 0 < O C < 1 {without restrictions on X) then (3), (4) and (5) are also sufficient. If 
a > l it is also necessary that 

(6) Hm 2 ( 2 T'J£n+Jct
(:Ux))K,n+r = 0 

n-+oor=l \7c=l / 
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1974] RIESZ TYPICAL MEANS 53 

for each p and each x £c0
{RtX<x), and (without restrictions on X) (3), (4), (5) and 

(6) are also sufficient. If the method B is row-finite i.e. bpv=Ofor v>v(p)for each 
p(v(p)< + oc), then (3), (4) and (5) are necessary and sufficient for B to include 
(R, X, a) for a > 0 . 

THEOREM 2. Let a > l . A sequence-to-sequence or sequence-to-function method 
2?= (bpv) which satisfies 

(7) \bpv\ <, HpA~afor each p and each v = 0, 1, 2 , . . . 

includes (R, X, a) if, and only if, (3) (4) and (5) are satisfied. 

THEOREM 3. Let a > l and assume Aw_x=0(Aw). A sequence-to-sequence or 
sequence-to-function method B=(bpv) includes (R, X, a) //, and only if (3), (4), (5) 
and (7) are satisfied. 

THEOREM 4. Let a>0 , assume An7*0(1), and when a > l assume Aw_1=0(An). 
In order that a series-to-sequence or series-to-function method B=(bpv) shall in­
clude (JR, A, a) it is necessary and sufficient that 

(8) 3 1im£pv = /?v for v = 0, 1, 2 , . . . , 
p 

(9) l^vl < :H P A-*> 

and that a family of functions {gp} exists, defined in [X0, co), such that: 

(10) bpv = f%-A v ) a dg p (œ) , J V|dgp(a>)\ =Mp£M<œ. 

If the method B is row-finite, it is not necessary to assume that An_1=0(Aw) when 
a > l and (8) and (10) are necessary and sufficient for B to include (R, X, a) when 
a > 0 . 

No real generality is lost by the assumption An5é0(l), since otherwise (R, X, a) 
will be equivalent to convergence for all a > 0 (Hardy and Riesz [5, Theorem 21]) 

THEOREM 5. For each oc>0, u.=p + ô where p is an integer and 0<<5<1, the 
sequence {d{9-%>0 defined by ôipJ) = T'{l>)ej, ej=(0, 0,.. . , 0, 1, 0 , . . . ) where 1 is 
the j-th coordinate, is a Schauder-basis in RÀa(c°) and we have x=2JLo t(?\x)à(p'3) 

for each x e RÀ0C(c°), where convergence is in the norm of RX(X(c°). 
In the proof of these theorems we use the following lemmas. 

LEMMA 1. Suppose p is a non-negative integer and 0<cS<l. If£ an is summable 
(R, X,p+ô) to zero, then for /c=0, 1 , . . . ,p (R,X,k,^am, a>)=o(A"~*) for 
Xn<co<Xn+1. 

Proof. This is a limitation theorem for Riesz means in a form given by Borwein 
[1, Lemma 2 in o-form]. 
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LEMMA 2. I/OL>0 and/?>0, then 

(11) A (co) = Cco—uYLA"(u)du> 
K J K J r(oc+l)r(£)Jo V J W 

Proof. For this lemma see Hardy and Riesz [5, Lemma 6, p. 27]. 

LEMMA 3. Let oc>0; if OL>1 assume An_1=0(An). Then in order that ^bnan 

(£bnsn) should converge whenever ^an(s) is summable (R, A, a), it is necessary 
that bn=0(A-n"). 

Proof. For this lemma see Russell [16, Theorem 2]. 

Given a function / , defined in an interval [a9 b], and distinct points x5 in this 
interval, we define the divided differences by f[x]=f(x) and 

f[x0,.. . , xn] = {/[x0,. . . , x n_i]- / [xi , • • •, xn]}l(x0-xn) (n = 1, 2 , . . . ) . 

LEMMA 4. Let p be a given positive integer. For each n>\9 there exist real 
numbers c?'*\ co{P'v) (7=0, 1, . . . ,p) satisfying 2?-o*iw 'p)==l, \c\n'v)\<H{v)for 
7=0 , 1, . . . ,p, where H{v) depends on p but not on n, Aw(n)<w/*'p)<Am(n)+1/0r 
j = 0, 1, . . . ,p, where m=m(n) is defined by 

^m+i-^m= max (A i+1-A,) if K+vlK<(P+lY> 

and m=n+r where 0<r<p, An+r+1IXn+r>p+l and 

A n + m / A n + i < p + l for 0<j<r if Xn+JXn > ( p + l ) " ; 

and *„(X)=2f=o c\n,/ï>) (R, A,/?, x, œ{*tV)) for any sequence x. In particular 

I\c{P'p)\<(p+l)HM 

for ri>\. 

Proof. For this lemma see A. Meir [11, The Lemma and its proof], D. Borwein 
and D. C. Russell [3, The Lemma and its proof], D. Borwein [2, Proof of the 
Theorem], and D. C. Russell [17, Lemma 2']. 

LEMMA 5. Let p be a positive integer. Then for any infinite sequence x, we have: 

A\X, x,io)= 2 niotffXx) (An <co< 1„+1) 
V=n—V 

where 

and 
10 if t > co. 
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We have also for An<co<An+1 andn—p<v<n p? (co)>0 and 

co-• oo CO v=n—v 

Proof. For this lemma see D. C. Russell [17, (33) and pp. 426-7; and 18]. 

LEMMA 6. Let a > l . Suppose xec\Rka) and OL=P+{JL where p is a positive 
integer and 0 < fx < 1. Then 

t{nXx) = °( m i n K) as n->oo for fc = l , 2 , . . . , p. 

Proof. Suppose &=/?. By Lemma 4, we get 

(PVYM ^_ ITOI 
j = 0 

^ ( i l ^ l l sup \(R,l,p,x,œ)\ 

<,(p+l)HM
 <Sup |(K,A,/>,x,a>)| 

(and by Lemma 1) 

= °(KM) (n -> oo). 

Now for each q, 0<q<p, we have 

Am(w)/An+ff — 

^n+g+l~~""n+q # KnVnM 

I ^n+ff+1 "n+Q 1 

(and by Lemma 4) 

< 

^m(n)+lMn+ff+l ^ K+pl^n < CP+1) 

if U^XP+I)* 

(1—^m(n)Mm(n)+l) if K+JK > (P + ̂ Y 

(K+JK<(P+1Y if W,<(P+D' 

= (p+l) 

= 0(1), n -> oo. 

i('--r= 
Hence, for An+Q= min Ar 

n<r<«+ï> 

|#>(x)| = o(A^(n)) = o((Am(n)/An+î)'A£+a) 

= o(A*+(7) = o( min A?). 
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Suppose now the lemma is true for some k, 1 <k<p. By Russell [17, (28)] we have 

Since An+kl(An+k-K) and KKK+n-k) are not larger than min Ar, we get 
n<r<n+k—1 

\t{t°(x)\^l min A^dt^i+ieiWI) 
\ n < r < n + f c - l / 

= o( min Al-{k-1]) as n->oo. 
\ n < r < w + f c - l / 

Hence Lemma 6 is true for A:—1 too; and by induction Lemma 6 is true for 
l<k<p. 

LEMMA 7. Let p be a positive integer if p>l suppose An_1=0(An). Then we have 
for\<k<r<p 

IT/(p) I < G Kv 
\L n+r,n+k\ - ^ ^ r^ -w+r* 

Proof. This lemma is (29) in Russell [22]. 

Proof of Theorem 5. For any sequence {yj}3->0 we have, since ô{p,j)=T'{p)ej 

n n n n+î> 

5=0 j=0 3=0 5=0 

where fJn) = (r / ( 3 , )^ for 0<j<n, since r(3J> is a normal matrix and only the 
elements T'^ (n—p<k<n, n=0, 1,2,...) may be different from zero. Since in 
the space Rj,a(c°) the coordinates are continuous (see Peyerimhoff [12, §8]) x= 
2?=oy^{p,J) implies (T'^—Xj for;>0, or T,{p)y=x. Hence y=T<p)x or y~ 
t^ix) fory>0. We get in particular for any sequence x 

(12) 2 < ? ' W « M = 2 V - 2 lT%L+kt%Ux))en+r> 
3=0 j=o r=i \fc=l / 

since T'{v) is a normal matrix and only the elements T'^] with n—p<k<n, n— 
0 , 1 , 2 , . . . may be different from zero. To complete the proof we have to show that 
for each x e R^a(c

0) the norm of the sequence nx defined by 

nx = x-Zt{»Xx)ô{pJ) 

3=0 

tends to zero as n-+co. We have 

(13) nx = x-ftf(x)à{*>» 
3=0 

= r{v\T{v)x)-^t\?\x)d{v'j) 
3=0 

= T'{»XT{2))x-2t{?Xxy) 
3=0 

= T^^Xx) 
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where iin)(x)=0 for 0<Ar<n and iin)(x)=tiv)(x) for k>n. By Lemma 5 we get 
now 

'0 for O^m^K+i 

n+r 

( 1 4 ) AV(A, nX, CO) = \ v=n+l 

<A*(X, x, Û>) 

By (11) and (14) we get for x e RÀX(c°) 

l<,r<p 

for co > An+3)+1. 

(15) 
p\ r ( a - p ) ! r(a-p) r » 

— - (£, À, a, nx, co) = oT* A\K nx, w)(a)-w)a-2,-1 du = 
r ( a+ l ) Jo 

(16) = 

co 
(Q-l fXn+r+i n+r 

i . r=lt /An + r v=n+l 

for 0 <Ç co < An+1 

f*(o n+a 

2 frXuWXxKa-uy-*-1 du s Jn,v(x, to) 
JXn+gv=n+ n+1 

= { for Xn+Q <co< Àn+Q+1 

p pÀn+r+i n+r 1 

2 2 Wutf'XxXa-ur*-1 du\ 
r=l JAn+l V=w+1 / 

+<o-"\ A^x.uXa-uf-^du for co > Xn+P+1 
^ «/An+Î)+1 

For ^n+Q<a)<K+Q+u ^<q<P and n+\<v<n+q, we have 

I f*to I 

co"" iSJ(«)4J,,(x)(ft) -u)*-»-1 du 

^ l ^ ' W l t sup |/9Ktt)tt-*|L- t o-p>r ( m - t t ) - » " 1 ^ 

(and by Lemma 5, since /?Jp)(f/)^0) 

^i^'wi ( sup (^(«)«-)l—(?=*a*y 
Un+q<u<a> ) K — p \ CO 1 

<L \t(:\x)\ f sup «- "f / « ) — (^M"-" 
lAn + 3<w<An + f l + 1 v=n+<z-3? ) CL — p \ CO J 

n+Q 

(and by Lemma 5, since limiT3* 2 i^(M) = *> ^n+* < w <̂  ̂ n+a+i) 

(and by Lemma 6) 

W-*oo V=W+<Z—2> 

^XIA^V'^'WI 
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as n—>co uniformly in Xn+q<Cco<ÇAn_|_c+1 and in l ^ ^ ^ p a n d n-{-l<Çiv^Ç.n-\-q. Hence 

f*(o n+q 

(17) co"" j j8iJ,)(M)t|?,)(x)(tt)-M)*-1,-1du-vO 

as 72->oo uniformly in An+a<a><An+(H:1 and 1 <q<p. Similarly we get for 1 <r<m, 
l<m<p, and co>Xm+1, since &T(a_:p)(co—w)*-25-1 is a decreasing function of co, 
that 

(17a) 
"'•n+r 

£K\t<?\x)\A£?>)-»0 1 ^(u^'CxXco-uy-*-1 du I 
«/2n + r v=n+l I 

as rc->oo uniformly in co>Xm+1. By (16), (17) and (17a) we see that 

(18) /„.«(*, Û > ) - 0 

as 7i->oo uniformly in Xn+Q<co<Xn+Q+1, l<q<p; and that 

{ P /•An+r+i W+r 1 

2 2 /SftOtf'OeXûj-K)-*-1 d« ^ 0 
as »-^oo uniformly in co>Aw+p+1. We have for co>^^+39+1 

(20) co~v 4*( A, x, u)(co - uf'p-1 du 

= «>""{ ~ UXK *> uXco-uf-*-1 du 

(and by [23, Lemma 1.42 for l=a.—p, k=p and ?>(x)=xa] we get) 

as rc-^oo uniformly in to>Xn+II+1. By (16), (18), (19) and (20) we see that 

x-2t^\x)ô^4 ->0 

as n-^oo, which completes the proof. 

Proof of Theorem 1. Necessity Since for oc>0 (R, X, a) is regular, (4) is necessary 
and we may assume x e RÀa(c°). By the argument in Peyerimhoff [12, §8] and 
Maddox [9, p. 166] with minor modifications, the general continuous linear 
functional on R^ic0), oc>0, is of the form 

f{x) = A\l, x, co)dg(co), co" \dg(co)\ < oo, 
JAO %/Ao 

and | | / | | = J* <*>" \dg(co)\. The proof that for oc>0 (3) and (5) are necessary, is due 
to Peyerimhoff [12], Maddox [9] and Russell [20]. Briefly if ^vbPvxv converges 
for each p whenever x e jRAa(c°), t h e n / , (x)=^>,vbpvxv is a continuous linear 
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functional on i^a(
c°) a n d hence 

(21) fp(x) = 2 bpvxv = f V ( A , x, co) d g » , ||/p|| = f V |dgp(co)\ < oo. 

Choosing x=e n («>0) in (21) we get (5)(i) in the form 

(22) bpv = ("(R, K a, e\ to) dgp(co). 

Since l i m ^ (x) exists for each x e Rxa(c°) it follows by the uniform boundedness 
principle that (5)(ii) is necessary. Now if p<a<p+l we get by (12), (22) and 
Theorem 5 for each p and each x e R^(c°) 

(23) Ux)=Umff(2^\x)ô('A 
n~* oo \j=0 J 

( /n+v \ v / r \ \ 

fp( 2 V - 2 M,U + *<Ï Ï* (* ) /p(«n+r) 
\ i = 0 / r = l \k=l / / 

(n+2) 2> / r \ \ 

j=0 r=l \k=l / ; 

Since ̂  bpjXj is assumed convergent for each p and each x e R^a(c°) it follows by 
the definition^ (*)=2* ^PÔXJ that (6) is necessary. 

Sufficiency. The sufficiency of (3), (4) and (5) if 0 < a < l is due to Russell [20, 
Theorem 1]. We assumep<a<p+l and prove that (3), (4), (5) and (6) are suffi­
cient. The functions gp existing by (5) define continuous linear functionals 

/•oo 

= A\X9x9 
JAO 

/„(*)= A%l9x9a>)dgp(œ) 
JAO 

on Rxa(c°). The norms of these continuous linear functionals are uniformly bounded 
by (5)(ii), and by (3) limp/p (#*•'>) exists for eachy>0 (since {d<*'%>0 is a finite 
linear combination of e\ . . . , ej+2>) where, by Theorem 5, {<5(2M)},->0 is a Schauder-
basis for RÀa(c°). Hence limp/p (x) exists for each x G RÀa(c°). Now by (23) and (6) 
we have 

( n+p V [ r \ \ 

2 hp,*,- 2 lT'^.n+/:Ux))bp.n+r\ = 2 *„*„ 
3=0 r = l \Jc=l / ) j 

for each p and each x G R^a(c°). The existence of l i m ^ (x) for each x G Rxa(c°) 
implies that limp ̂  bpjx5 exists for each x e i^a(c0) which completes the proof. 

Proof of Theorem 2. Define the integer/? by /?<a< /?+ l . By (7), Lemma 6 and 
Lemma 7, we have for each x e c0

{RXa) and each k, \<k<p: 

®p,n+r\ 2* *• n+r,n+k^n+k\X) I ^ 2*\bp,n+r\ ' I •* w+r,n+fcl * Uw+fcWl 
\fc=l /1 k=l 

<i(HpA;+r)(GpA»n+r)-o( min A T " ) 
k=l \ n+k<Q < n+k+p J 

• 0 as n -> oo (since n+fc < n + p <n+/c+p) uniformly in 1 < r <i p. 
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Hence (6) is satisfied; the proof follows now by Theorem 1. 

Proof of Theorem 3. The proof follows by Theorem 2 and Lemma 3. 

Proof of Theorem 4. For the necessity of (8), (9) and (10), if a > 0 and for the 
sufficiency of (8), (9) and (10) if 0<oc<l see Russell [20, Theorem 2]. For the 
sufficiency of (8), (9) and (10) if oc=2, 3 , 4 , . . . see Russell [21, p. 300]. Assume 
p<u<p+l and that (8), (9) and (10) are satisfied. Define bpv=bpv—bpv+1. Then 
(3) holds with £v=/?v-/?v+1. By (10), (5) holds and Z?pv->0 as *>->oo for each />. 
Hence ^vbpv=bp0 and (4) holds with /?=/?0. The assumption Aw_!=0(An) and 
(9) imply (7). Thus, the conditions of Theorem 2 hold for the method B and B 
includes (R, A, a). Now given any series ]?v cv with partial sums sv, we have 

N _ N-l 

(24) J,bpycv = 2 bpvsv+bpNsN. 
v=0 v=0 

If 2 cv *s summable (R, A, a) to s, then we may assume without loss of generality 
that s=0 (since (R, A, a) is regular and limp 2 bpv exists) and then, by the limita­
tion theorem for Riesz means [5, Theorem 21], sN=o(Ax

N). Hence by (9) and (24) 
we get 2v bpvcv=

y£v bpvsv whenever either side exists. Since B includes (R, A, a), 
also E include (R, A, a). 
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