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INCLUSION RELATIONS FOR GENERAL RIESZ
TYPICAL MEANS

BY
A. JAKIMOVSKI AND J. TZIMBALARIO

Let « be a non-negative real number, A={4,}(r>0) a strictly increasing un-
bounded sequence with 2,>0 and let >,»_, a,, be an arbitrary series with partial
sums s={s,}. Write

A (w) = A%, 0) = A (A, D, am; 0) = A4, 5,0) = z (w—2,)a, = f w(w—t)“ ds(1)

where s(t)=s, for 2,<t<1,,,s(t)=0for 0<¢t<4,. The series Y a, or the sequence
of partial sums s={s,} is summable to § by the Riesz method (R, 4, o) if

(R, A a,0) =R, A, o, Y a,,, ®) = (R, 4, , 5, 0) = 0 A% (w) — §
as w—co.

For a given non-negative integer p and a strictly increasing unbounded sequence
A={4,}(n>0) with ,>>0, denote by 7 and T the (C, 4, p) series-to-sequence
and sequence-to-sequence matrices, respectively; thus for p>0

T(ﬂ) = (1 Av/}'n—i—l) ' (l_lv/ln+p) (0 S v S n)s Ti;pv) = 0(1’ > n)

T® = AT® = TO—-T® |
and
TO =1 0<v<n), T9=0 (»>n)
T =0 (v n), T =1 (v =n).
The (C, 4, p) mean of a series > a,, with partial sums s is

t(zz) —_ t(p)(s) — t(p)(z a ) —_ ET(p)a = Z T(p) = C?)(S)/(Aaﬁl . lnﬂ))_
The series > a,, or the sequence of partial sums {s,,} is summable (C, 4, p) to §
if #”—s as n—o0. The inverse matrices
TP =(T8)  TV=(Ta) (m=0,12..)
of T and T, respectively, are given (see [21] p. 297-298) by

T;Ilip) = (=" Mpspr— A1 ** k+p/ﬂ(m O0<LkLr<Lk+p+1)
(1) k+p+1

T/® =0 otherwise, where 82’ = T['(4,—2;)
i=k
) T/ = z T O0<Lk<Lr<k+p), Tu» =0 otherwise;
v=k
II’ in (1) indicates that the zero factor corresponding to j=r is to be omitted.
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52 A. JAKIMOVSKI AND J. TZIMBALARIO [March

For an arbitrary B=(b,,) (p may be a continuous or discrete parameter) we
denote by ¢z and ¢}, respectively, the linear space of all B-limitable and B-limitable
to zero sequences. It was proved by Peyerimhoff [12, §8] that the linear spaces
Cim.2.m a0d C(r 1.4 With the norm |x|=sup,.,|(R, 4, @, x, )| are BK-spaces.
Denote these two BK-spaces, respectively, by R,.(c®) and R,,(c) and the norm by
I]l 2~ Given two matrices 4 and B, we say that B is stronger than 4 or includes 4
if ¢4 € cp. Limits of summation are assumed throughout 0, co unless otherwise
specified, and Ax,=x,—x,.;; A,=2,,1/(A,.1—4,). Sums >} = where n<m are
defined as equal to zero.

A number of special results exist for summability methods B which include
Riesz summability (R, 4, «)—see Kuttner [8], Russell [15], Rangachari [13], Meir
[11] and Borwein and Russell [3]. The question of necessary and sufficient con-
ditions to be satisfied by an arbitrary method in order that it will include (R, 4, «)
has received an answer for limited values of A and «. A complete solution was given
when 0<« <1 by Russell [20], without any restrictions on 4. Maddox [9] obtained
necessary conditions for a series-to-sequence method to include (R, 4, o) when
«>0 and 1 is suitably restricted. Maddox [9] conjectured that the necessary con-
ditions are also sufficient. This conjecture was proved by Russell [20, Theorem 2]}
for 0<«<1, by Jakimovski and Tzimbalario [6] for 1<«<2 and in Russell [21,
page 300] for «=2,3,4,..., with a weaker restriction on 4. Here we give a
complete solution for a sequence-to-sequence or series-to-sequence method B to
be stronger than (R, 4, «) if @ >2 too. Using this result we prove the conjecture by
Maddox for «>2 with the weaker restriction on 4 given by Russell. These results
are obtained by showing that certain sequences are a Schauder-basis in R,,(c?).

The main results to be proved here are as follows:

THEOREM 1. Let a>0 and denote p<a<p+1, where p is an integer. In order
that a sequence-to-sequence or sequence-to-function method B=(b,,) shall include
(R, 4, @) it is necessary that
3 3limb,, =4, (»=012,...),

P
4) Alm Y b,, = B,
p P

and that a family of functions {g,} exists, defined in [A,, o) such that

5) () by =A, f Sy dg,@), (i) f “otldg (@) = M, < M < .

If 0<a<1 (without restrictions on ) then (3), (4) and (5) are also sufficient. If
a>1 it is also necessary that

D r
(6) lim 2 ( IT;$}.n+kt;12k(x))bp,n+r =0

n=or=1 \lk=
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for each p and each x € c{g,; ., and (without restrictions on ) (3), (4), (5) and
(6) are also sufficient. If the method B is row-finite i.e. b,,=0 for v>v(p) for each
p(»(p)<+0), then (3), (4) and (5) are necessary and sufficient for B to include
(R, 4, o) for a>0.

THEOREM 2. Let a>1. A sequence-to-sequence or sequence-to-function method
B=(b,,) which satisfies

@) |byy| < H,A7® for each p and each v =0, 1,2, . ..
includes (R, 2, &) if, and only if , (3) (4) and (5) are satisfied.

THEOREM 3. Let a>1 and assume A, _;=0(A,). A sequence-to-sequence or
sequence-to-function method B=(b,,) includes (R, 4, &) if, and only if, (3), (4), (5)
and (7) are satisfied.

THEOREM 4. Let a>0, assume A,5£0(1), and when «>1 assume A, ;=0(A,).
In order that a series-to-sequence or series-to-function method §=(5,,v) shall in-
clude (R, A, o) it is necessary and sufficient that

) Elliml-ipvsﬁv for v=0,1,2,...,
P
® 16,] < H,A,

and that a family of functions {g,} exists, defined in [2y, ), such that:
1 by=[To-trdg@, [Tolag@i=m, <M<
v Ao

If the method B is row-finite, it is not necessary to assume that A,_;=0(A\,) when
a>1 and (8) and (10) are necessary and sufficient for B to include (R, 2, «) when
a>0.

No real generality is lost by the assumption A,70(1), since otherwise (R, 1, «)
will be equivalent to convergence for all «>0 (Hardy and Riesz [5, Theorem 21])

THEOREM 5. For each a>0, a=p+J where p is an integer and 0<6<1, the
sequence {6(”""},.20 defined by 0P =T"Pei ¢i=(0,0,...,0,1,0,.. .) where 1is
the j-th coordinate, is a Schauder-basis in R,,(c°) and we have x=3 3, 1\" (x)5*""
for each x € R;,(c%), where convergence is in the norm of R,,(c°).

In the proof of these theorems we use the following lemmas.

LeMMA 1. Suppose p is a non-negative integer and 0<0<1. If > a,, is summable
(R, 2, p+6) to zero, then for k=0,1,...,p (R, A4k, a,, )=0(A%™") for
AL,

Proof. This is a limitation theorem for Riesz means in a form given by Borwein
[1, Lemma 2 in o-form].
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LeMMA 2. If a>0 and >0, then

I(oa+p+1)
INCE S NNE)

Proof. For this lemma see Hardy and Riesz [5, Lemma 6, p. 27].

(11) A (w) = f w(w-—u)”‘lA"‘(u) du,

LeMMA 3. Let a>0; if a>1 assume A,_;=0(A,). Then in order that y b,a,
(3 b,s,) should converge whenever Y a,(s) is summable (R, A, «), it is necessary
that b,=0(A,").

Proof. For this lemma see Russell [16, Theorem 2].

Given a function f, defined in an interval [a, b], and distinct points x; in this
interval, we define the divided differences by f[x]=f(x) and
FTx0s - oo s Xl ={f[Xos « o5 Xpal=f[X15 o o o s X, 1} (Xo—%,) (m=1,2,..0).

LeMMA 4. Let p be a given positive integer. For each n>1, there exist real
numbers ¢.™”, o*? (j=0,1,...,p) satisfying 32 " =1, || <H” for
j=0,1,...,p, where H™ depends on p but not on n, Aoty KW < Ay for
j=0,1,...,p, where m=m(n) is defined by

Ampr—Am = max (A—2) if A/t < (p+1)7

n<j<n+p

and m=n+r where 0L<r<p, Apyrir|/Ans,>p+1 and

}‘n+i+1/ln+;‘ S p+1 for 0 SJ <r lf }*n—w/}'n > (P+1)p,

and t,(x)=27_o ¢ (R, 2, Ps X, ™) for any sequence x. In particular

/4y
2177 < (p+DH™
=

for n>1.

Proof. For this lemma see A. Meir [11, The Lemma and its proof], D. Borwein
and D. C. Russell [3, The Lemma and its proof], D. Borwein [2, Proof of the
Theorem], and D. C. Russell [17, Lemma 2'].

LeEMMA 5. Let p be a positive integer. Then for any infinite sequence x, we have:

A0y %, 0) = 3 BP®) (<0 < Apd)

where

/35(60) = (—l)ﬁlcw[lv, e Av+p+1]()°v+p+1_lv)lv+1 e z'v+17’
and
(w—=0* if 0Lt<w

Wlt] = (1) =
Clll = ¢7(1) 0 if t> o.
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We have also for 2, <w<A,,, and n—p<v<n ﬂi")(w)zo and

hm-— Z Biw) = 1.

o= ow? v=n—p

Proof. For this lemma see D. C. Russell [17, (33) and pp. 426-7; and 18].

LEMMA 6. Let a>1. Suppose x € C(p ;. and a=p+u where p is a positive
integer and 0<u<1. Then

19(x) = 0( min A:"“) as n—>oo for k=1,2,...,p
nSr<ntk
Proof. Suppose k=p. By Lemma 4, we get

1P| = zc‘;' (R, 4, p, x, &)

{zlc‘“’l} s IR Apx 0

=0 AmmSO=Am(n) 41
< (p+1H™ ,,,(,.,Si'u%mu.ml(R, A, p, X, ®)|
(and by Lemma 1)
= o(Ak)  (n— o).
Now for each g, 0<g<p, we have

}'n+q+l—)'n+a . lm(n)+1

lm(n)+1 - lm(n) )‘n+a+1

AN, =
S PO
Antasa 1= Ammr1
(and by Lemma 4)
< {lm(n)+l/3n+a+1 if 2pd, < (p+1)7°
TNA= A Amm)™ I AR > (pF1)°
Aol n < (P+1)° if Anppfds < (p+1)°
<

1\t 1
- (1—-———) = (—pi-'_) if An+p/2n > (p+1)p
p+1 p

= 0(1), n— oo.

Hence, for A,,,= min A,
n<r<n+op

lt(p)(x)l = O(A (n)) = 0((Am(n)/An+a) An+a)
= o(A%,) = o( min AY).

n<r<n+p
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Suppose now the lemma is true for some &, 1 <k < p. By Russell [17, (28)] we have

t(k"‘l)(x) = {ln_l_kt(k)(x)—l t(k)l(x)}/(ln+k

Since A,/ (Apix—42,) and 4,/(4,,,—4,) are not larger than min AT, we get
n<r<ntk—1

150(x)] < ( min A )<|t<k’(x)1+|t£1°_’1(x>1)

nSr<nt+k—1
= 0( min A““"_”) as n—»oo.
n<r<nt+k—1 "
Hence Lemma 6 is true for k—1 too; and by induction Lemma 6 is true for
1<k<Lp.

LemMA 7. Let p be a positive integer if p>1 suppose A,_;=0(A,). Then we have
for 1<k<r<p
IT;Z(:T).M-HCI S GﬂAz;wr'
Proof. This lemma is (29) in Russell [22].

Proof of Theorem 5. For any sequence {y;},~, We have, since §(?-9)=T"(»)¢i

n+p

zy 6(1: %)) ___zy Tl(p) i — T/(p)zy ea — Z 5(”) i

=0

where &™=(T"""y), for 0< j<n, since 7"’ is a normal matrix and only the
elements T'(”) (n—p<k<n, n=0,1, 2,...) may be different from zero. Since in
the space R,,(c®) the coordinates are continuous (see Peyerimhoff [12, §8]) x=
> 2oy;0®? implies (T'®y);=x; for j>0, or T'®y=x. Hence y=T®x or y,=
t{")(x) for j>0. We get in particular for any sequence x

(1) 3100087 = S x¢'= 3 ( ST 0t

= =1
since 7' is a normal matrix and only the elements 7’ with n—p<k<n, n=
0, 1,2, ... may be different from zero. To complete the proof we have to show that
for each x € R,,(c?) the norm of the sequence "x defined by

n
Ny — x— Zt(:?)(x) 6(11,7)
=0
tends to zero as n—oc0. We have

(13) ny — x_zot(ﬂ'p)(x) 5.9
j=
— T/(p)(T(an)x)_ gotgw)(x) 6(1:.7')

— T/(p)(T(p)x_ Et(j-"’(x)ei)
j=0
= T’(’)E(")(x) '
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where £ (x)=0 for 0<k<n and & (x)=1"(x) for k>n. By Lemma 5 we get
now

0 for 0<w<LA,

ntr
(14 AP(4, "x, w) = vgﬂ:ﬂﬂf(a))ti”’(x) for Ay <o < gy

1<r<p
Ap()'a X, 60) fOl' (0] > }"ﬂ+1)+1'
By (11) and (14) we get for x € R;,(c%)
p' T(2—p)
@ T RA ey, ) = o f AP, ", u)(—u) " du =
r(a+1) )
0 for 0<w<L A,y
a—1 ("Anyry1 BT
A3 TS B e d
r=1Vipyr v=n+l

(0]

+[7 S P =y du = 7, (x, @)

Angq v=n+1

(16) = for Apie < 0 < Apyona
1<q<p

» Antri+1 ntr
o3 5 i = dul

r=1JAp4q v=n+1

n+p+1

4™ f A", x, u)(w—u)**1du  for o > A
A

n+p+1

For A, ;<0< 011, 1£g<p and n+1<v<n+q, we have

] o[ e = du
Antq

<t s 1ulfo e [ mwrta
Antq

InteSusSow
( : a)
w

<ol s w3 ) ()

AntqSUS Anygry V=n+¢—p

(and by Lemma 5, since B () >0)

<191 | sup_ (ﬁ“’(u)u‘”)}

InseSuSo

n+a
(and by Lemma 5, since limu™ 3 pu) =1, Ayag < U L Apigsa)
u—* 0 v=n+4q—>p
< KA1 P
(and by Lemma 6)

—0
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as n—oo uniformly in 4, , <0 <2, 4, and in 1 <g<p and n+1<v<n+q. Hence

(2] n+aq
17 of"‘f S B (x)(0—u)y " du —0
Antq r=n+1

as n—co uniformly in 4, ,<w<4,,,.; and 1 <g<p. Similarly we get for 1 <r<m,
1<m<p, and ©> 1,4, since w @ (w—u)""" is a decreasing function of w,
that

An.r

N a0 — ) du

Angr  v=n+l

(172) [ ™ < KIWPEAE —0

as n—oo0 uniformly in w>4,,,,. By (16), (17) and (17a) we see that

(18) I ox, 0) >0

as n—oo0 uniformly in 4, ,<w<4, 41, 1<g<p; and that
D Antr+1 ntr

(19) oS [T S g - duf o
r=1Jn4r v=n+l

as n—oo uniformly in >1,,,.,. We have for w>1,,, .4

20) o~ f C A, x, u)(w—u) " du

5} Antp+1
= w‘“{f ——f }A”(l, X, W) (w—u)*"?"1 du
0 0

(and by [23, Lemma 1.42 for /=a—p, k=p and ¢(x)=x"] we get)
—0
as n—oo uniformly in w>24,,,,;. By (16), (18), (19) and (20) we see that

X — z t‘,."’(x) S ?

=0

—0

Aa

as n—o0, which completes the proof.

Proof of Theorem 1. Necessity Since for >0 (R, Z, «) is regular, (4) is necessary
and we may assume x € R;,(c®). By the argument in Peyerimhoff [12, §8] and
Maddox [9, p. 166] with minor modifications, the general continuous linear
functional on R,,(c%), «>0, is of the form

10 = [ a5, 0)dg0). [0 ldgo) < o,
and ||f]|=f7 w” |dg(w)|. The proof that for «>0 (3) and (5) are necessary, is due

to Peyerimhoff [12], Maddox [9] and Russell [20]. Briefly if 3, b,,x, converges
for each p whenever x € R;,(c°), then f, (¥)=23, b,,x, is a continuous linear
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functional on R,,(c’) and hence
@) 1) = Sbpx, = [ 4%, ) dgy (o, 1] = [ “o*ldg (0] < .
v 0 “0
Choosing x=e"(n>0) in (21) we get (5)(i) in the form

(R, 2, a, €', w) dg,(w).

2o

(22) b

v =

Since lim, f, (x) exists for each x € R;,(c) it follows by the uniform boundedness
principle that (5)(ii) is necessary. Now if p<a<p+1 we get by (12), (22) and
Theorem 5 for each p and each x € R;,(c?)

(23) f(x) = hmfp( S 12)(x) 6% ,))
—tim {1,( $x¢) = 3 ( S T80t 6700

n— o r=1 \k=1
& () (p)
!
= llm { E bmx Zl (kz Tn-fr ’n+kt7|1—)§—k(x)) bp.n+f}‘
n=> o r= =1

Since Y, b,;x; is assumed convergent for each p and each x € R,,(c°) it follows by
the definition f, (x)=2}; b,;x; that (6) is necessary.

Sufficiency. The sufficiency of (3), (4) and (5) if 0<«<1 is due to Russell [20,

Theorem 1]. We assume p<a<p+1 and prove that (3), (4), (5) and (6) are suffi-
cient. The functions g, existing by (5) define continuous linear functionals

£, = f " 4502, x, ) dg ()

on R;,(c%. The norms of these continuous linear functionals are uniformly bounded
by (5)(ii), and by (3) lim, f, (6-?) exists for each j >0 (since {0?},_, is a finite
linear combination of €/, . . . , e/t?) where, by Theorem 5, {6®"},_, is a Schauder-
basis for R;,(c°). Hence lim, f, (x) exists for each x € R,,(c?). Now by (23) and (6)
we have
n+p
fo(x) =lim {920 b,x;— Zl ( kZ T'(m G ./ k(x)) . n+r} = Z b,ix;
n= oo\ j=l r= =1 )

for each p and each x € R;,(c"). The existence of lim, f, (x) for each x € R;,(c°)
implies that lim, Y, b,;x; exists for each x € R,,(c®) which completes the proof.

Proof of Theorem 2. Define the integer p by p<a<p+1. By (7), Lemma 6 and
Lemma 7, we have for each x € ¢{5 ; ,) and each k, 1<k<p:

p n+r( Z Tl(fr) n+kt(n]-}|2k(x))

(p) )
<z|bp 'n+rl [T':r n+k| ltiz’i}—k(x)l

<Z(H AL G - 0( min A;—ﬂ)

n+k<q<ntk+p

—>0 as n — o (since n+k < n+p <n+k+p) uniformlyin 1 <r < p.
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Hence (6) is satisfied; the proof follows now by Theorem 1.
Proof of Theorem 3. The proof follows by Theorem 2 and Lemma 3.

Proof of Theorem 4. For the necessity of (8), (9) and (10), if «>0 and for the
sufficiency of (8), (9) and (10) if 0<a<1 see Russell [20, Theorem 2]. For the
sufficiency of (8), (9) and (10) if «=2, 3,4, ... see Russell [21, p. 300]. Assume
p<e<p+1 and that (8), (9) and (10) are satisfied. Define b,,=b,,—b, .. Then
(3) holds with 8,=8,—f,.,. By (10), (5) holds and b,,—0 as »—oo for each p.
Hence 3, b,,=b,, and (4) holds with f=/f,. The assumption A, ;=0(A,) and
(9) imply (7). Thus, the conditions of Theorem 2 hold for the method B and B
includes (R, 4, o). Now given any series >, ¢, with partial sums s,, we have

N—-1

N - -
(24) szvcv = z bvav-I-prSN.
v=0

v=0

If 3 ¢, is summable (R, 4, o) to §, then we may assume without loss of generality
that =0 (since (R, 4, «) is regular and lim, } b,, exists) and then, by the limita-
tion theorem for Riesz means [5, Theorem 21], sy=o0(A%). Hence by (9) and (24)
we get >, b,,c,=>, b,,s, whenever either side exists. Since B includes (R, 4, «),
also B include (R, 4, ).
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