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Abstract
Given a graph G and an integer � ≥ 2, we denote by α�(G) the maximum size of a K�-free subset of vertices
inV(G). A recent question of Nenadov and Pehova asks for determining the best possible minimumdegree
conditions forcing clique-factors in n-vertex graphs G with α�(G)= o(n), which can be seen as a Ramsey–
Turán variant of the celebrated Hajnal–Szemerédi theorem. In this paper we find the asymptotical sharp
minimum degree threshold for Kr-factors in n-vertex graphs G with α�(G)= n1−o(1) for all r ≥ � ≥ 2.
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1. Introduction
Let H be an h-vertex graph and G be an n-vertex graph. An H-tiling is a collection of vertex-
disjoint copies of H in G. An H-factor is an H-tiling which covers all vertices of G. The
celebrated Hajnal–Szemerédi theorem [18] states that for all integers n, r with r ≥ 2 and r|n,
any n-vertex graph G with δ(G)≥ (1− 1

r
)
n contains a Kr-factor. Since then there have been

many developments in several directions. From the insight of equitable colouring, Kierstead
and Kostochka proved the Hajnal–Szemerédi theorem with an Ore-type degree condition [23].
For a general graph H, Alon and Yuster [2] first gave an asymptotic result by showing that if
δ(G)≥

(
1− 1

χ(H)

)
n+ o(n), then G contains an H-factor, where χ(H) is the chromatic number

of H. Later, Kühn and Osthus [30] managed to characterise, up to an additive constant, the min-
imum degree condition that forces an H-factor. There are also several significant generalisations
in the setting of partite graphs [22], directed graphs [39] and hypergraphs [36].
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1.1. Motivation
Erdős and Sós [14] initiated the study of a variant of Turán problem which excludes all graphs
with large independence number. More generally, for an integer � ≥ 2 and a graph G, the
�-independence number of G, denoted by α�(G), is the maximum size of a K�-free subset of ver-
tices. Given integers n, r and a function f (n), we use RT�(n,Kr , f (n)) to denote the maximum
number of edges of an n-vertex Kr-free graph G with α�(G)≤ f (n). In particular, the Ramsey–
Turán density of Kr is defined as ��(r) := lim

α→0
lim
n→∞

RT�(n,Kr ,αn)
(n2)

. Szemerédi [38] first showed that

�2(4)≤ 1
4 . This turned out to be sharp as Bollobás and Erdős [7] provided amatching lower bound

using an ingenious geometric construction. There are some recent exciting developments in this
area [3, 4, 16, 24, 31, 33]. For further information on Ramsey–Turán theory the reader is referred
to a comprehensive survey [37] by Simonovits and Sós.

Note that the extremal example that achieves the optimality of the bound on δ(G) in the
Hajnal–Szemerédi theorem also has large independence number [6], which makes it far from
being typical. Following the spirit of the Ramsey–Turán theory, a natural question on the Hajnal–
Szemerédi theorem is whether the minimum degree condition can be weakened when the host
graph has sublinear independence number. The following Ramsey–Turán type problem was
proposed by Balogh, Molla and Sharifzadeh [6].

Problem 1.1 [6]. Let r ≥ 3 be an integer and G be an n-vertex graph with α(G)= o(n). What is
the minimum degree condition on G that guarantees a Kr-factor?

Balogh, Molla and Sharifzadeh [6] studied K3-factors and showed that if the independence
number of an n-vertex graphG is o(n) and δ(G)≥ n

2 + εn for any ε > 0, thenG contains a triangle
factor. Recently Knierim and Su [26] resolved the case r ≥ 4 by determining the asymptotically
tight minimum degree bound

(
1− 2

r
)
n+ o(n).

The following problem was proposed by Nenadov and Pehova [35].

Problem 1.2. For all r, � ∈N with r ≥ � ≥ 2, let G be an n-vertex graph with n ∈ rN and α�(G)=
o(n). What is the best possible minimum degree condition on G that guarantees a Kr-factor?

Nenadov and Pehova [35] also provided upper and lower bounds on the minimum degree
condition. In particular, they solved Problem 1.2 for r = � + 1 and proved that n/2+ o(n) is the
correct minimum degree threshold. Knierim and Su [26] reiterated Problem 1.2 in their paper and
proposed a minimum degree condition as follows.

Problem 1.3 [26, 35]. Is it true that for every r, � ∈N with r ≥ � ≥ 2 and μ > 0, there exists α > 0
such that for sufficiently large n ∈ rN, every n-vertex graph G with

δ(G)≥max
{
r − �

r
+ μ,

1
2

+ μ

}
n and α�(G)≤ αn

contains a Kr-factor?

Very recently, Chang, Han, Kim, Wang and Yang [8] determines the asymptotically opti-
mal minimum degree condition for � ≥ 3

4 r, which solves Problem 1.2 for this range, and indeed
provides a negative answer to Problem 1.3.

Theorem 1.4 [8]. Let r, � ∈N such that r > � ≥ 3
4 r. For any μ > 0, there exists α > 0 such that for

sufficiently large n ∈ rN, every n-vertex graph G with

δ(G)≥
(

1
2− ��(r − 1)

+ μ

)
n and α�(G)≤ αn

contains a Kr-factor. Moreover, the minimum degree condition is asymptotically best possible.
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Based on this result, Problem 1.3 should be revised as follows.

Problem 1.5. Is it true that δ(G)≥max
{
r−�
r + μ, 1

2−��(r−1) + μ
}
n suffices in Problem 1.3?

1.2. Main results and discussions
By the aforementioned results, Problem 1.5 is solved for � = 2 [26] and for � ≥ 3r/4 [8], both
done by quite involved proofs. It seems to us that a complete resolution of Problem 1.5 is a quite
challenging task.

The purpose of this paper is to extend the discussion on the problem to sublinear
�-independence numbers. We first state a simplified version of our main result which says that
the answer to Problem 1.5 is yes if we assume a slightly stronger assumption α�(G)≤ n1−o(1).

Theorem 1.6. For μ, c ∈ (0, 1), r, � ∈N such that r > � ≥ 2, the following holds for sufficiently large
n ∈ rN. Every n-vertex graph G with

δ(G)≥max
{
r − �

r
+ μ,

1
2− ��(r − 1)

+ μ

}
n and α�(G)≤ nc

contains a Kr-factor.

To state our main result, we define more general versions of the Ramsey–Turán densities as
follows.

Definition 1.7. Let f (n) be a monotone increasing function, and r, � ∈N, α ∈ (0, 1).

(i) Let RT�(n,Kr , f (αn)) be the maximum integerm for which there exists an n-vertex Kr-free
graph G with e(G)=m and α�(G)≤ f (αn). Then let

��(r, f ) := lim
α→0

lim sup
n→∞

RT�(n,Kr , f (αn))(n
2
) .

(ii) Let RT∗
�(n,Kr , f (αn)) be the maximum integer δ for which there exists an n-vertex Kr-free

graph G with δ(G)= δ and α�(G)≤ f (αn). Then let

�∗
� (r, f ) := lim

α→0
lim sup
n→∞

RT∗
�(n,Kr , f (αn))

n
.

By definition trivially it holds that �∗
� (r, f )≤ ��(r, f ). It is proved in [8] that �∗

� (r, f )= ��(r, f )
if there exists c ∈ (0, 1) such that xf (n)≤ f (x1/cn) for every x ∈ (0, 1) and n ∈N.

The full version of our result is stated as follows.

Theorem 1.8. For μ > 0, r, � ∈N such that r > � ≥ 2, there exists α > 0 such that the following
holds for sufficiently large n ∈ rN. Let λ = 1/	 r

�
+ 1
 and f (n)≤ n1−ω(n) log−λ n be a monotone

increasing function, where ω(n)→ ∞ slowly.1 Then every n-vertex graph G with

δ(G)≥max
{
r − �

r
+ μ,

1
2− �∗

� (r − 1, f )
+ μ

}
n and α�(G)< f (αn)

contains a Kr-factor.

In fact, Theorem 1.8 implies Theorem 1.6 by the observation that �∗
� (r − 1, f )≤ �∗

� (r − 1)=
��(r − 1) holds for any function f (n)= nc with c ∈ (0, 1). We shall supply lower bound con-
structions (see next subsection) which show that the minimum degree condition in Theorem 1.8
is asymptotically best possible for α�(G) ∈ (n1−γ , n1−ε), for any γ ∈

(
0, �−1

�2+2�

)
and any ε > 0.

1The strange-looking function n1−ω(n) log−λ n satisfies n1−ε < n1−ω(n) log−λ n < n
log n for any constant ε > 0.
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This can be seen as a stepping stone towards a full understanding of the Ramsey–Turán tiling
thresholds for cliques where α�(G) ∈ [2, o(n)].

Here we also provide some concrete thresholds that we could spell out from Theorem 1.8.
Recall that Nenadov and Pehova [35] solved Problem 1.2 for r = � + 1 whilst Knierim and Su [26]
solved the case � = 2, r ≥ 4. Now we consider the first open case r = � + 2, � ≥ 3. Note that �∗

� (� +
1, f )= ��(� + 1)= 0. Then Theorem 1.4 says that for � ≥ 6 (that is, � ≥ 3

4 (� + 2)) and α�(G)=
o(n), n

2 + o(n) is the minimum degree threshold forcing a K�+2-factor. For the remaining cases
� ∈ {3, 4, 5}, Theorem 1.8 implies that the minimum degree threshold is n

2 + o(n) under a stronger
condition α�(G)≤ n1−ε for any fixed ε > 0.

Our proof of Theorem 1.8 uses the absorption method and the regularity method. In partic-
ular, we use dependent random choice for embedding cliques in regular tuples with sublinear
independence number, which is closely related to the Ramsey–Turán problem.

1.3. Sharpness of the minimum degree condition
We note that both terms in the minimum degree condition in Theorem 1.8 are asymptotically
best possible. First, we show that the first term cannot be weakened when α�(G) ∈ (n1−γ , o(n)) for
some constant γ as follows.

Proposition 1.9. Given integers r, � ∈N with r > � ≥ 2 and constants η, γ with η ∈ (0, r−�
r
)
, γ ∈(

0, �−1
�2+2�

)
, the following holds for all sufficiently large n ∈N and constant μ := r

r−�

( r−�
r − η

)
.

There exists an n-vertex graph G with δ(G)≥ ηn and α�(G)< n1−γ such that every Kr-tiling in G
covers at most (1− μ)n vertices.

Indeed, Proposition 1.9 also gives, in the setting that α�(G)≤ n1−o(1), a lower bound con-
struction for the minimum degree condition forcing an almost Kr-tiling that leaves a constant
number of vertices uncovered. More results on almost graph tilings can be found in a recent
comprehensive paper [19].

The second term 1
2−�∗

� (r−1,f ) is also asymptotically tight, which is given by a cover threshold
construction as follows.

1.3.1. Cover threshold
To have a Kr-factor in G, a naive necessary condition is that every vertex v ∈V(G) is covered by
a copy of Kr in G. The cover threshold has been first discussed in [20] and appeared in a few
different contexts [8, 9, 12].

Now we give a construction that shows the optimality of the term 1
2−�∗

� (r−1,f ) for the func-
tion f (n) as in Theorem 1.8. A similar construction can be found in [8]. Given integers r, � and
constants ε, α, x ∈ (0, 1), we construct (for large n ∈ rN) an n-vertex graph G by

(i) first fixing a vertex v such that N(v)= xn and G[N(v)] =:G′ is a Kr−1-free subgraph with
δ(G′)≥ �∗

� (r − 1, f )xn− εn and α�(G′)≤ f (αxn);
(ii) and then adding a clique of size n− xn− 1 that is complete to N(v).

There exists no copy of Kr covering v and thus G contains no Kr-factor; moreover, by choosing
x= 1

2−�∗
� (r−1,f ) , we obtain δ(G)≥ 1

2−�∗
� (r−1,f )n− εn and α�(G)= α�(G′)≤ f (αn).

Notation. Throughout the paper we follow standard graph-theoretic notation [11]. For a graph
G= (V , E), let v(G)= |V| and e(G)= |E|. For U ⊆V , G[U] denotes the induced subgraph of G
on U. The notation G−U is used to denote the induced subgraph after removing U, that is,
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G−U := G[V \U]. For two subsets A, B⊆V(G), we use e(A, B) to denote the number of edges
joining A and B. Given a vertex v ∈ v(G) and X ⊆V(G), denote byNX(v) the set of neighbours of v
in X and let dX(v) := |NX(v)|. In particular, we write NG(v) for the set of neighbours of v in G. We
omit the indexG if the graph is clear from the context. Given a setV and an integer k, we write

(V
k
)

for the family of all k-subsets of V . For all integers a, b with a≤ b, let [a, b] := {i ∈Z : a≤ i≤ b}
and [a] := {1, 2, . . . , a}.

When we write α  β  γ , we always mean that α, β , γ are constants in (0, 1), and β  γ

means that there exists β0 = β0(γ ) such that the subsequent arguments hold for all 0< β ≤ β0.
Hierarchies of other lengths are defined analogously. In the remaining proofs, we always take
λ = 1/	 r

�
+ 1
 and f (n)≤ n1−ω(n) log−λ n unless otherwise stated.

2. Proof strategy and preliminaries
Our proof uses the absorption method, pioneered by the work of Rödl, Ruciński and Szemerédi
[36] on perfect matchings in hypergraphs, though similar ideas already appeared implicitly in
previous works, for example Krivelevich [29]. A key step in the absorption method for H-factor
problem is to show that for every set of h := |V(H)| vertices, the host graph G contains (nb)
b-vertex absorbers (to be defined shortly). However, as pointed out in [6], in our setting this is
usually impossible because when we construct the absorbers using the independence number con-
dition, it does not give such a strong counting. Instead, a much weaker notion has been used in
this series of works, that is, we aim to show that for (almost) every set of h vertices, the host graph G
contains (n) vertex-disjoint absorbers. Note that this weak notion of absorbers have been
successfully used in our setting [26, 35] and the randomly perturbed setting [9].

2.1. The absorptionmethod
Following typical absorption strategies, our main work is to establish an absorbing set (see Lemma
2.2) and find an almost-perfect tiling (see Lemma 2.3). We first introduce the following notions of
absorbers and absorbing sets from [35].

Definition 2.1. Let H be a graph with h vertices and G be a graph with n vertices.

1. We say that a subset A⊆V(G) is a ξ -absorbing set for some ξ > 0 if for every subset R⊆
V(G) \A with |R| ≤ ξn and |A∪ R| ∈ hN, G[A∪ R] contains an H-factor.

2. Given a subset S⊆V(G) of size h and an integer t, we say that a subset AS ⊆V(G) \ S is an
(S, t)-absorber if |AS| ≤ ht and both G[AS] and G[AS ∪ S] contain an H-factor.

Now we are ready to state our first crucial lemma, whose proof can be found in Section 4.

Lemma 2.2 (Absorbing lemma). Given positive integers r, � with r > � ≥ 2 and constantsμ, γ with
0< γ <

μ
2 , there exist α, ξ > 0 such that the following holds for sufficiently large n ∈ rN. Let G be

an n-vertex graph with

δ(G)≥max
{
r − �

r
+ μ,

1
2− �∗

� (r − 1, f )
+ μ

}
n and α�(G)< f (αn).

Then G contains a ξ -absorbing set A of size at most γ n.

Our second crucial lemma is on almost Kr-factor as follows, whose proof will be given in
Section 3.

Lemma 2.3 (Almost-perfect tiling). Given positive integers r, � such that r > � ≥ 2 and positive
constants μ, δ, the following statement holds for sufficiently large n ∈ rN. Every n-vertex graph G
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with δ(G)≥ ( r−�
r + μ

)
n and α�(G)< f (n) contains a Kr-tiling that leaves at most δn vertices in G

uncovered.

Now we are ready to prove Theorem 1.8 using Lemmas 2.2 and 2.3.

Proof of Theorem 1.8. Given any positive integers �, r with r > � ≥ 2 and a constant μ > 0.
Choose 1

n  α  δ  ξ  γ  μ. Let G be an n-vertex graph with

δ(G)≥max
{
r − �

r
+ μ,

1
2− �∗

� (r − 1, f )
+ μ

}
n and α�(G)< f (αn).

By Lemma 2.2 with γ ≤ μ
2 , we find a ξ -absorbing set A⊆V(G) of size at most γ n for some ξ > 0.

Let G1 := G−A. Then we have δ(G1)≥
( r−�

r + μ
)
n− γ n≥ ( r−�

r + μ
2
)
n. Therefore by applying

Lemma 2.3 on G1 with δ, we obtain a Kr-tilingM that covers all but a set R of at most δn vertices
in G1. Since δ  ξ , the absorbing property of A implies that G[A∪ R] contains a Kr-factor R,
which together withM forms a Kr-factor in G. �

3. Finding almost-perfect tilings
In this section we address Lemma 2.3. The proof of Lemma 2.3 uses the regularity method, a tiling
result of Komlós (Theorem 3.6), and dependent random choice (Lemma 3.7). We shall first give
the crucial notion of regularity and then introduce the powerful Szemerédi’s Regularity Lemma.

3.1. Regularity
Given a graph G and a pair (X, Y) of vertex-disjoint subsets in V(G), the density of (X, Y) is
defined as

d(X, Y)= e(X, Y)
|X||Y| .

For constants ε, d > 0, we say that (X, Y) is an ε-regular pair with density at least d (or (X, Y) is
(ε, d)-regular) if d(X, Y)≥ d and for all X′ ⊆ X, Y ′ ⊆ Y with |X′| ≥ ε|X|, |Y ′| ≥ ε|Y|, we have

|d(X′, Y ′)− d(X, Y)| ≤ ε.
Moreover, a pair (X, Y) is called (ε, d)-super-regular if (X, Y) is (ε, d)-regular, dY (x)≥ d|Y| for all
x ∈ X and dX(y)≥ d|X| for all y ∈ Y . The following fact is an easy consequence of the definition of
regularity.

Fact 3.1. Given constants d, η > ε > 0 and a bipartite graph G= (X ∪ Y , E), if (X, Y) is (ε, d)-
regular, then for all X1 ⊆ X and Y1 ⊆ Y with |X1| ≥ η|X| and |Y1| ≥ η|Y|, we have that (X1, Y1) is
(ε′, d − ε)-regular in G for any ε′ ≥max{ ε

η
, 2ε}.

Fact 3.2. Given constants η > ε > 0 and a bipartite graph G= (A∪ B, E), if (A, B) is ε-regular,
then for all X ⊆A and Y ⊆ B with |X| ≥ η|A| and |Y| ≥ η|B|, we have that (X, Y) is ε′-regular in
G for any ε′ ≥max{ ε

η
, 2ε}.

Given a family of vertex-disjoint sets in V(G) which are pairwise ε-regular, we can find in each
set a large subset such that every pair of resulting subsets is super-regular.

Proposition 3.3 (see Proposition 2.6 in [8]). Given a constant ε > 0 and integers m, t with t <
1
2ε , let G be an n-vertex graph and V1,V2, . . . ,Vt+1 be vertex-disjoint subsets each of size m in
G such that every pair (Vi,Vj) is ε-regular with density dij := d(Vi,Vj). Then there exists for each
i ∈ [t + 1] a subset V ′i ⊆Vi of size at least (1− tε)m such that every pair (V ′i,V ′j) is (2ε, dij − (t +
1)ε)-super-regular.

We now state a degree form of the regularity lemma (see [27, Theorem 1.10]).
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Lemma 3.4 (Degree form of the regularity lemma [27]). For every ε > 0 there is an N =N(ε) such
that the following holds for any real number d ∈ [0, 1] and n ∈N. Let G= (V , E) be a graph with n
vertices. Then there exists a partition P = {V0, . . . ,Vk} of V and a spanning subgraph G′ ⊆G with
the following properties:

(a) 1
ε

≤ k≤N;
(b) |Vi| ≤ εn for 0≤ i≤ k and |V1| = |V2| = · · · = |Vk| =m for some m ∈N;
(c) dG′(v)> dG(v)− (d + ε)n for every v ∈V(G);
(d) every Vi is an independent set in G′;
(e) each pair (Vi,Vj), 1≤ i< j≤ k is ε-regular in G′ with density 0 or at least d.

Awidely used auxiliary graph accompanied with the regular partition is the reduced graph. The
d-reduced graph Rd ofP is a graph defined on the vertex set {V1, . . . ,Vk} such thatVi is connected
to Vj by an edge if (Vi,Vj) has density at least d in G′. So if Vi is not connected to Vj, then (Vi,Vj)
has density 0 by property (e) above. To ease the notation, we use dR(Vi) to denote the degree of Vi
in Rd for each i ∈ [k]. Note that Rd also can be regarded as a weighted graph in which the weight
for each edge ViVj, denoted by dij for simplicity, is exactly the density of the pair (Vi,Vj) in G′.
Fact 3.5. For positive constants d, ε and c, let G= (V , E) be a graph on n vertices with δ(G)≥ cn.
Let G′ and P be obtained by applying Lemma 3.4 on G with constants d and ε. Let Rd be the
d-reduced graph as given above. Then for every Vi ∈V(Rd) we have dR(Vi)≥ (c− 2ε − d)k.

Proof. Note that |V0| ≤ εn and |Vi| =m for each Vi ∈V(Rd). Thus we have∑
Vj∼Vi

dij|Vi||Vj| = eG′(Vi,∪j�=iVj)≥ (δ(G′)− |V0|)|Vi| ≥
(
c− 2ε − d

)
nm,

which implies

dR(Vi)=
∑
Vj∼Vi

1≥
∑
Vj∼Vi

dij ≥ (c− 2ε − d)nm
m2 ≥ (c− 2ε − d)k.

�
To find an almost-perfect Kr-tiling, we shall also make use of the following result of Komlós

[28] on graph tilings. Given a graph H on r vertices, the critical chromatic number of H is defined
as χcr(H)= (k−1)r

r−σ
, where k= χ(H) and σ = σ (H) denotes the smallest size of a colour class over

all k-colourings of H.

Theorem 3.6 (Komlós [28]). Given any graph H and a constant γ > 0, there exists an integer n0 =
n0(γ ,H) such that every graph G of order n≥ n0 with δ(G)≥

(
1− 1

χcr(H)

)
n contains an H-tiling

covering all but at most γ n vertices.

Based on this result, we will first apply the regularity lemma toG to get a reduced graph R := Rd
for a constant d > 0, and then apply Theorem 3.6 to get anH-tiling ofR covering almost all vertices
for a suitably chosen auxiliary graph H. To get an almost Kr-tiling of G from this almost H-tiling
of R, we will use the following lemma which says if we can find a Kq in a copy of H in R, then we
can find a Kpq in G under certain conditions on αp(G). Its proof follows from that of Claim 6.1 in
[5], where a similar assumption on α(G) (instead of αp(G)) is used. For completeness we include
a proof of Lemma 3.7 in the appendix.

Lemma 3.7. Given a constant d > 0 and integers p, q≥ 2, there exist C, ε such that for any constant
η > 0 the following holds for every sufficiently large n ∈N and g(n) := n1−C log−1/q n. Let G be an
n-vertex graph with αp(G)< g(n) and V1,V2, . . . ,Vq be pairwise vertex-disjoint sets of vertices in

https://doi.org/10.1017/S0963548323000081 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548323000081


672 J. Han et al.

G with |Vi| ≥ ηn for each i ∈ [q] and every pair (Vi,Vj) being (ε, d)-regular. Then there exists a copy
of Kpq in G which contains exactly p vertices in each Vi for i ∈ [q].

3.2. Proof of Lemma 2.3

Proof of Lemma 2.3. Given r, � ∈N such that r > � ≥ 2 and μ > 0, δ > 0, we choose
1
n  ε  μ, δ, 1r .

Let G be an n-vertex graph with δ(G)≥ ( r−�
r + μ

)
n and α�(G)< f (n). By applying Lemma 3.4 on

G with constants ε > 0 and d := μ
4 , we obtain a partition P = {V0, . . . ,Vk} for some 1

ε
≤ k≤N

and a spanning subgraph G′ ⊆G with properties (a)-(e) as stated. Let m := |Vi| for all i ∈ [k]
and Rd be the corresponding d-reduced graph of P . Then it follows from Fact 3.5 that δ(Rd)≥
( r−�

r + μ
4 )k.

Let r = x� + y for some integers x, y with x≥ 1, 1≤ y≤ �. Note that the complete (x+ 1)-
partite graph H := Ky,�,...,� has χcr(H)= r

�
. Now we apply Theorem 3.6 on Rd with γ = δ

2 and
H =Ky,�,...,� to obtain a family H of vertex-disjoint copies of H that cover all but at most δ

2k
vertices of Rd.

Given a copy of H in H, without loss of generality, we may assume that its vertex set is
{V1, . . . ,Vr} together with the parts denoted by

W1 = {V1, . . . ,Vy} andWs+1 = {Vy+1+(s−1)�, . . . ,Vy+s�} for s ∈ [x].
Note that every pair of clusters Vi,Vj from distinct parts forms an ε-regular pair with density at
least d.

We shall greedily embed in the original graphG vertex-disjoint copies of Kr that together cover
almost all the vertices in ∪r

i=1Vi. Now for each i ∈ [y] we divide Vi arbitrarily into � subclus-
ters Vi,1, . . . ,Vi,� of (almost) equal size. For each j ∈ [y+ 1, r] we divide Vj into y subclusters
Vj,1, . . . ,Vj,y of (almost) equal size. Here for simplicity we may further assume that |Vi,i′ | = m

�
for

i ∈ [y], i′ ∈ [�] and |Vj,j′ | = m
y for every j ∈ [y+ 1, r], j′ ∈ [y]. We call a family {Vis,js}x+1

s=1 of x+ 1
subclusters legal ifVis ∈Ws for each s ∈ [x+ 1], i.e., {Vis}x+1

s=1 forms a copy ofKx+1 in Rd. Note that
each Ws (s ∈ [x+ 1]) contains exactly y� subclusters in total. Therefore we can greedily partition
the set of all subclusters into y� pairwise disjoint legal families.

Now if we have a Kr-tiling in G for every legal family {Vis,js}x+1
s=1 , that covers all but at most

rδ
4y�m vertices of

⋃x+1
s=1 Vis,js , then we can find a Kr-tiling covering all but at most rδ

4 m vertices of
V1 ∪V2 ∪ · · · ∪Vr . Applying this to all copies ofH fromHwould give us aKr-tiling inG covering
all but at most

|V0| + δ
2km+ |H| rδ4 m< εn+ δ

2n+ δ
4n< δn

vertices. So to complete the proof of Lemma 2.3, it is sufficient to prove the following claim.

Claim 3.8. Given any legal family {Vis,js}x+1
s=1 , G

[⋃x+1
s=1 Vis,js

]
admits a Kr-tiling covering all but at

most rδ
4y�m vertices of

⋃x+1
s=1 Vis,js .

Proof of claim. For convenience, we write Ys := Vis,js with s ∈ [x+ 1]. Recall that |Y1| = m
�
and

|Ys| = m
y for s ∈ [2, x+ 1]. If we can greedily pick vertex-disjoint copies of Kr such that each con-

tains exactly y vertices in Y1 and � vertices in Ys for each s ∈ [2, x+ 1], then almost all vertices in
∪x+1
s=1Ys can be covered in this way. Now it suffices to show that for any Y ′s ⊆ Ys with s ∈ [x+ 1],

each of size at least δ
4y�m, there exists a copy of Kr with exactly y vertices inside Y ′

1 and � vertices
inside each Y ′s.
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For any distinct s, t ∈ [x+ 1], the pair (Vis ,Vit ) is ε-regular with density at least d. Then Fact 3.1
implies that every two sets from Y ′

1, . . . , Y ′x+1 form an ε′-regular pair with density at least d − ε,
where ε′ = 4y�

δ
ε. Therefore as 1

n  ε  δ, 1r , by applying Lemma 3.7 on G with Vi = Y ′i, p= �, q=
x+ 1, η = δ

4y�
m
n and the fact that f (n)≤ g(n), we obtain a copy of K(x+1)� which contains exactly

� vertices in each Y ′s for s ∈ [x+ 1]. Thus we obtain a desired copy of Kr by discarding arbitrary
� − y vertices from Y ′

1 from the clique above. �

4. Building an absorbing set
The construction of an absorbing set is now known via a novel idea ofMontgomery [34], provided
that (almost) every set of h vertices has linearly many vertex-disjoint absorbers as aforementioned.
Such an approach is summarised as the following result by Nenadov and Pehova [35].

Lemma 4.1 [35]. Let H be a graph with h vertices and let γ > 0 and t ∈N be constants. Then
there exist ξ = ξ (h, t, γ ) and n0 ∈N such that the following statement holds. Suppose that G is a
graph with n≥ n0 vertices such that every S ∈ (V(G)h

)
has a family of at least γ n vertex-disjoint (S, t)-

absorbers. Then G contains a ξ -absorbing set of size at most γ n.

4.1. Finding absorbers
In order to find linearly many vertex-disjoint absorbers for (almost) every h-subset, we shall use a
notion of reachability introduced by Lo andMarkström [32]. Here we introduce a slightly different
version in our setup. Let G be a graph of n vertices and H be a graph of h vertices. For any two
vertices u, v ∈V(G), a set S⊂V(G) is called an H-reachable set for {u, v} if both G[{u} ∪ S] and
G[{v} ∪ S] have H-factors. For t ≥ 1 and β > 0, we say that two vertices u and v are (H, β , t)-
reachable (in G) if there are βn vertex-disjointH-reachable sets S in G, each of size at most ht − 1.
Moreover, we say that a vertex setU ⊆V(G) is (H, β , t)-closed if any two vertices inU are (H, β , t)-
reachable in G. Note that the corresponding H-reachable sets for u, v may not be included in
U. We say U is (H, β , t)-inner-closed if U is (H, β , t)-closed and additionally the corresponding
H-reachable sets for every pair u, v also lie inside U.

The following result from [19] builds a sufficient condition to ensure that every h-subset S has
linearly many vertex-disjoint absorbers.

Lemma 4.2 [19]. Given h, t ∈N with h≥ 3 and β > 0, the following holds for any h-vertex graph
H and sufficiently large n ∈N. Let G be an n-vertex graph such that V(G) is (H, β , t)-closed. Then
every S ∈ (V(G)h

)
has a family of at least β

h3t n vertex-disjoint (S, t)-absorbers.

Based on this lemma, it suffices to show that V(G) is closed. However, we shall show a slightly
weaker result, namely, there exists a small vertex set B such that the induced subgraph G− B is
inner-closed. The proof of Lemma 4.3 can be found in Section 4.2.

Lemma 4.3. Given r, � ∈N with r > � ≥ 2 and τ ,μ with 0< τ < μ, there exist α, β > 0 such that
the following holds for sufficiently large n ∈N. Let G be an n-vertex graph with

δ(G)≥max
{
r − �

r
+ μ,

1
2− �∗

� (r − 1, f )
+ μ

}
n and α�(G)< f (αn).

Then G admits a partition V(G)= B∪U such that |B| ≤ τn and U is (Kr , β , 4)-inner-closed.

Then by Lemma 4.2 applied on G[U], we can easily get the following corollary.

Corollary 4.4. Given positive integers r, � with r > � ≥ 2 and τ ,μ with 0< τ < μ, there exist 0<

α < β < μ3 such that the following holds for sufficiently large n ∈N. Let G be an n-vertex graph with
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δ(G)≥
(

1
2−�∗

� (r−1,f ) + μ
)
n and α�(G)< f (αn). Then G admits a partition V(G)= B∪U such that

|B| ≤ τn and every S ∈ (Ur ) has a family of at least β

4r3 n vertex-disjoint (S, 4)-absorbers in U.

To deal with the exceptional vertex set B, we shall pick mutually vertex-disjoint copies of Kr
each containing a vertex in B. To achieve this, one has to make sure that every vertex v ∈V(G)
is covered by many copies of Kr in G (the aforementioned cover threshold). The following result
enables us to find linearly many copies of Kr covering any given vertex.

Proposition 4.5. Given r, � ∈N and a constant μ > 0, there exists α > 0 such that for all suffi-
ciently large n the following holds. Let G be an n-vertex graph with δ(G)≥

(
1

2−�∗
� (r−1,f ) + μ

)
n

and α�(G)≤ f (αn). If W is a subset of V(G) with |W| ≤ μ
2 n, then for each vertex u ∈V(G) \W,

G[V(G) \W] contains a copy of Kr covering u.

Proof. We choose 1
n  α  μ, 1

�
and let G1 := G[V(G) \W]. It suffices to show that for each

vertex u ∈V(G1), there is a copy of Kr−1 in NG1 (u). Note that for every vertex u in G1, we
have |NG1 (u)| ≥ δ(G1)≥ δ(G)− |W| ≥

(
1

2−�∗
� (r−1,f ) + μ

2

)
n. Given any vertex v ∈NG1 (u) with

dG1 (u, v) := |NG1 (u)∩NG1 (v)|, we have

dG1 (u, v)−
(
�∗

� (r − 1, f )+ μ
4
)
dG1 (u)≥ dG1 (u)+ dG1 (v)− n− (

�∗
� (r − 1, f )+ μ

4
)
dG1 (u)

≥ (2− �∗
� (r − 1, f )− μ

4
)
δ(G1)− n>

μ
8 n> 0.

Thus δ(G[NG1 (u)])> (�∗
� (r − 1, f )+ μ

4 )|NG1 (u)|. Therefore by the definition of �∗
� (r − 1, f ) and

the choice that 1
n  α  μ, G[NG1 (u)] contains a copy of Kr−1, which together with u yields a

copy of Kr in G1. �
Now we are ready to prove Lemma 2.2 using Corollary 4.4 and Proposition 4.5.

Proof of Lemma 2.2. Given positive integers �, r with r > � ≥ 2 and μ, γ with 0< γ ≤ μ
2 , we

choose 1
n  α  ξ  β , τ  γ , 1r . Let G be an n-vertex graph with δ(G)≥

(
1

2−�∗
� (r−1,f ) + μ

)
n,

α�(G)< f (αn) and n ∈ rN. Then Corollary 4.4 implies that G admits a partition V(G)= B∪U
such that |B| ≤ τn and every S ∈ (Ur ) has a family of at least β

4r3 n vertex-disjoint (S, 4)-absorbers in
U. Let G1 := G[U]. Then by applying Lemma 4.1 on G1, we obtain in G1 a ξ -absorbing subset A1
of size at most β

4r3 n.
Now, we shall iteratively pick vertex-disjoint copies of Kr each covering at least a vertex in B

whilst avoiding using any vertex in A1, and we claim that every vertex in B can be covered in this
way.

LetG2 := G−A1. For u ∈ B, we apply Proposition 4.5 iteratively to find a copy ofKr covering u
in G2, while avoiding A1 ∪ B and all copies of Kr found so far. Because of the fact that β , τ  γ , 1r ,
this is possible as during the process, the number of vertices that we need to avoid is at most
|A1| + r|B| ≤ β

4r3 n+ rτn≤ μ
2 n. Let K be the union of the vertex sets over all copies of Kr covering

B and A := A1 ∪K. Recall that A1 is a ξ -absorbing set for G1 =G− B, and B⊆K ⊆A. Then it is
easy to check that A is a ξ -absorbing set for G and

|A| = |A1| + |K| ≤ β

4r3 n+ rτn≤ γ n,

where the last inequality follows since β , τ  γ , 1r . �
Now it remains to prove Lemma 4.3, which is done in the next subsection.
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Figure 1. Si and Ti : here we take � = 3, y= 1 for instance.

4.2. Proof of Lemma 4.3
The proof of Lemma 4.3 makes use of Szemerédi’s Regularity Lemma and a result in [8].

Lemma 4.6 [8, Lemma 5.1]. Given n, r, � ∈N with r > � ≥ 2 and a monotone increasing function
f (n), for all τ ,μ with 0< τ < μ, there exist positive constants β1, γ1 and α > 0 such that the follow-
ing holds for sufficiently large n ∈N. Let G be an n-vertex graph with δ(G)≥

(
1

2−�∗
� (r−1,f ) + μ

)
n

and α�(G)≤ f (αn). Then G admits a partition V(G)= B∪U such that |B| ≤ τn and every vertex in
U is (Kr , β1, 1)-reachable to at least γ1n other vertices in U with all the corresponding Kr-reachable
sets belonging to U.

Proof of Lemma 4.3. Given r, � ∈N with r > � ≥ 2 and τ ,μ with 0< τ < μ, we choose
constants

1
n  α  β  ε  β1, γ1  τ ,μ, 1

�

and let G be an n-vertex graph with δ(G)≥max{ r−�
r + μ, 1

2−�∗
� (r−1,f ) + μ}n and α�(G)< f (αn).

Then by applying Lemma 4.6, we obtain a partition V(G)= B∪U such that |B| ≤ τn and every
vertex in U is (Kr, β1, 1)-reachable (in G[U]) to at least γ1n other vertices in U. For any two
vertices u, v ∈U, we shall prove in G[U] that u, v are (Kr , β , 4)-reachable.

Let X and Y be the sets of vertices that are (Kr, β1, 1)-reachable to u and v, respectively. By
taking subsets from them and renaming if necessary, we may further assume that X ∩ Y = ∅ and
|X| = |Y| = γ1n

2 . Then by applying Lemma 3.4 onGwith positive constants ε  β1, γ1 and d := μ
4 ,

we obtain a refinement P := {V0,Vi, . . . ,Vk} of the original partition {X, Y ,V(G)− X − Y} and
a spanning subgraph G′ ⊆G with properties (a)-(e), where we let m := |Vi| for all i ∈ [k] and
Rd be the corresponding d-reduced graph. Without loss of generality, we may assume that V1 ⊆ X
andV2 ⊆ Y . Note that by Fact 3.5, we can observe that δ(Rd)≥max{ r−�

r + μ
2 ,

1
2−�∗

� (r−1,f ) + μ
2 }k≥

( 12 + μ
2 )k. Let V3 be a common neighbour of V1 and V2 in Rd.

Now we shall show that u and v are (Kr , β , 4)-reachable. We write r = �x+ y for some integers
x, ywith x> 0, 0≤ y≤ � − 1. Note that δ(Rd)≥

( r−�
r + μ

2
)
k≥ ( x−1

x + μ
2
)
k. Thus every x vertices

in Rd have at least μ
2 xk common neighbours and we can greedily pick two copies of Kx+1 in Rd

that contain the edge V1V3 and V2V3 respectively and overlap only on the vertex V3. We use
A= {V1,V3,Va1 ,Va2 , . . . ,Vax−1} and T = {V2,V3,Vb1 ,Vb2 , . . . ,Vbx−1} to denote the two family
of clusters related to the two copies of Kx+1 in Rd. Applying Lemma 3.7 on G with η = 1

2
m
n , q=

x+ 1, p= � and V1,V3,Va1 , . . . ,Vax−1 playing the role of V1, . . . ,Vq, we can iteratively take m
2�

vertex-disjoint copies of Kr+1 (since r + 1≤ pq) which are denoted by S1, S2, . . . , S m
2�
, such that

each Si has exactly y+ 1 vertices in V3, � vertices in V1 and Vai , i ∈ [x− 1] (see Figure 1). Let
V ′3 ⊆V3 be a subset obtained by taking exactly one vertex from each such Si. Then |V ′3| = m

2�
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Figure 2. Constructions of Kr-reachable sets Ei .

and again by applying Lemma 3.7 on G with η = 1
4�

m
n , q= x+ 1, p= � and V2,V ′

3,Vb1 , . . . ,Vbx−1
playing the role of V1, . . . ,Vq, we can greedily pick m

4�2 vertex-disjoint copies of Kr+1, denoted
by T1, T2, . . . , T m

4�2
, such that each Ti has exactly y+ 1 vertices in V ′

3, � vertices in V2 and Vbi ,
i ∈ [x− 1].

Now it remains to show the following statement with βn≤ m
4�2 . Recall thatm≤ εn.

Claim 4.7. There exist βn vertex-disjoint Kr-reachable sets for u, v, each of size 4r − 1.

Proof of claim. Here the main idea is to extend all such Ti’s to pairwise vertex-disjoint Kr-
reachable sets. Note that for each Ti, there exists Si′ such that the two copies of Kr+1 intersect on
exactly one vertex inV ′

3, denoted bywi. Let ui be an arbitrary vertex chosen from Si′ that lies inV1,
and vi be chosen from Ti that lies in V2. Then by the assumption that u is (Kr , β1, 1)-reachable to
u1, there exist at least β1n vertex-disjoint Kr-reachable sets for u and ui (resp. v and vi). Therefore
by the fact that ε  β1, we can greedily choose two vertex-disjoint Kr-reachable sets, say Ci and
Di, for u, ui and v, vi, respectively (see Figure 2), which are also disjoint from all cliques Si or Tj

for i ∈ [m2�] , j ∈ [ m
4�2

]
. It is easy to check that the set

Ei := V(Si′)∪V(Ti)∪ Ci ∪Di

has size 4r − 1 and G[Ei ∪ {u}] (similarly for Ei ∪ {v}) contains 4 copies of Kr , which are induced
on the sets {u} ∪ Ci,V(Si′)− {wi},V(Ti)− {vi} and {vi} ∪Di, respectively. Thus by definition Ei is
a Kr-reachable set for u and v. A desired number of mutually disjoint Kr-reachable set Ei can be
chosen by extending each Ti as above. �

5. A construction
In this section, we shall use a construction of K�+1-free graphs G with small α�(G) to prove
Proposition 1.9. An explicit construction was firstly obtained by Erdős and Rogers [13] in the
setting that α�(G)= o(n). Here we give a probabilistic construction as follows, whose proof is very
similar to that of a result of Nenadov and Pehova (see Proposition 4.1 in [35]).

Lemma 5.1. For any � ∈N with � ≥ 2, a constant γ ∈
(
0, �−1

�2+2�

)
and sufficiently large integer n,

there exists an n-vertex K�+1-free graph G� such that α�(G�)≤ n1−γ .

Now we firstly give a short proof of Proposition 1.9, and then present the proof of Lemma 5.1
at the end of this section.

Proof of Proposition 1.9. Fix r > � ≥ 2 and constants η, γ as in the statement. Let n be sufficiently
large and defineμ = r

r−�

( r−�
r − η

)
> 0. Then by Lemma 5.1, we chooseG� to be a (1− η)n-vertex

K�+1-free graph with α�(G�)≤ |G�|1−γ .
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Let G be an n-vertex graph with vertex partition V(G)= X1 ∪ X2 such that

(i) G[X1] is a clique with |X1| = ηn;
(ii) G[X1, X2] is a complete bipartite graph;
(iii) G[X2] induces a copy of G�.

Now we claim that G has the desired properties. Indeed it is easy to see that δ(G)≥ ηn and
α�(G)≤ α�(G�)< n1−γ . Since G[X2] is K�+1-free, every copy of Kr must intersect X1 on at least
r − � vertices. Thus every Kr-tiling in G contains at most |X1|

r−�
= η

r−�
n vertex-disjoint copies of Kr ,

which together cover at most rη
r−�

n= (1− μ)n vertices. �
Proof of Lemma 5.1. We only consider � ≥ 3 as the case � = 2 follows from a celebrated
result on Ramsey number that R(3, n)= �(n2/ log n) [25]. We choose 1

n  γ , 1
�
and let x=

2−γ
�+1 . Considering the random graph G=G(n, p) with p= n−x, we shall verify that with pos-
itive probability, G is K�+1-free and α�(G)≤ n1−γ . By applying the FKG inequality [15], we
have that

P[G is K�+1-free]≥
∏

S∈(V(G)�+1 )

P[G[S] �=K�+1]

≥
(
1− p(

�+1
2 )
)( n

�+1) ≥ exp
(
−2p(

�+1
2 )n�+1

)
= exp

(
−2n1+

γ
2 �
)
,

where we bound 1− x≥ e−2x for x ∈ (0, 12). Now it remains to determine the probability of the
event that α�(G)≤ n1−γ .

Let I be the random variable counting all sets A such that |A| = n1−γ and G[A] is K�-free.
Then

E(I)=
∑

|A|=n1−γ

P[G[A] is K�-free].

Here we shall use a powerful inequality of Janson [21], where for each �-set S⊆A we denote
by XS the indicator variable for the event that G[S]=K�. Let X =∑

S∈(A�) XS. Then by Janson’s
inequality, we obtain that

P[G[A] is K�-free]= P[X = 0]≤ exp
(

−E(X)+ �

2

)
,

where E(X)= (|A|
�

)
p(

�
2) = �

(
n(1−γ )�− 2−γ

�+1 (
�
2)
)
and � = ∑

S �=S′,|S∩S′|≥2
P[XS = 1, XS′ = 1]. Note that

� =
∑

S �=S′,|S∩S′|≥2

P[XS = 1, XS′ = 1]

≤
(|A|

�

)
p(

�
2)

∑
2≤s≤�−1

(
�

s

)(|A| − �

� − s

)
p(

�
2)−(s2)

≤E(X)
∑

2≤s≤�−1

(
�

s

)
n(�−s)(1−γ−x �+s−1

2 )

= o(E(X)),
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where the last equality follows because x= 2−γ
�+1 and thus 1− γ − x �+s−1

2 ≤ − γ
2 holds for

any s≥ 2. Therefore E(I)≤ 2n exp
(
−�

(
n(1−γ )�− 2−γ

�+1 (
�
2)
))

and by Markov’s inequality, with

probability at least 1− 2n exp
(
−�

(
n(1−γ )�− 2−γ

�+1 (
�
2)
))

, we have I = 0, that is, α�(G)≤ n1−γ .
By the inclusive-exclusive principle, the probability of the event thatG isK�+1-free and α�(G)≤

n1−γ is at least

exp
(
−2n1+

γ
2 �
)

− 2n exp
(
−�

(
n(1−γ )�− 2−γ

�+1 (
�
2)
))

and it is positive for sufficiently large n as long as

1+ γ

2
� < (1− γ )� − 2− γ

� + 1

(
�

2

)
,

which follows easily as γ < �−1
�2+2� . �

6. Concluding remarks
In this paper we study the minimum degree condition for Kr-factors in graphs with sublinear
�-independence number. Our result is asymptotically sharp when α�(G) ∈ (n1−γ , n1−ω(n) log−λ n)
for any constant 0< γ < �−1

�2+2� .
This leads to the following question: What is the general behaviour of the minimum degree

condition forcing a clique-factor when the condition of �-independence number is imposed
within the range (1, n)? We formulate this as follows. Given integers n> r > � ≥ 2 with n ∈ rN, a
constant α > 0 and a monotone increasing function g(n) ∈ [n], we denote by RTT�(n,Kr , g(αn))
the maximum integer δ such that there exists an n-vertex graph G with δ(G)≥ δ and α�(G)≤
g(αn) which does not contain a Kr-factor. Here we try to understand when and how the value
RTT�(n,Kr , g(αn)) changes sharply when the magnitude of g(n) varies. This can be seen as a
degree version of the well-known phase transition problem for RT2(n,Kr , g(n)) in Ramsey–Turán
theory (see [3, 5, 24]). It is worth noting that many open questions on the phase transition problem
of RT2(n,Kr , g(n)) are essentially related to Ramsey theory.

Here we consider the basic case RTT2(n,Kr , g(n)). Recall that Knierim and Su [26] resolved
Problem 1.1 for r ≥ 4 by giving an asymptotically tight minimum degree bound

(
1− 2

r
)
n+ o(n).

In our context of g(n)= n, this can be roughly reformulated as

RTT2(n,Kr , o(n))= r − 2
r

n+ o(n) for r ≥ 4.

Also, for integers r, � with r > � ≥ 3
4 r, Theorem 1.4 can be stated as

RTT�(n,Kr , o(n))= 1
2− ��(r − 1)

n+ o(n).

In this paper, our main theorem combined with Proposition 1.9 and the cover threshold implies
that for r > � ≥ 2, γ ∈

(
0, �−1

�2+2�

)
and n1−γ ≤ f (n)≤ n1−ω(n) log−λ n,

RTT�(n,Kr , f (o(n)))=max
{
r − �

r
n,

1
2− �∗

� (r − 1, f )
n
}

+ o(n).

This provides an insight into the general behaviour of RTT�(n,Kr , f (n)) but the asymptotic
behaviour of RTT�(n,Kr , g(n)) for a general g(n) seems to be out of reach. It will be interesting to
study the case g(n)= nc for any constant c ∈

(
0, 1− �−1

�2+2�

)
.
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Combinatorics, Paul Erdős is Eighty, Vol. 2 (Keszthely, 1993). Bolyai Society.
[28] Komlós, J. (2000) Tiling Turán theorems. Combinatorica 20(2) 203–218.
[29] Krivelevich, M. (1997) Triangle factors in random graphs. Comb. Probab. Comput. 6(3) 337–347.
[30] Kühn, D. and Osthus, D. (2009) The minimum degree threshold for perfect graph packings. Combinatorica 29(1)

65–107.
[31] Liu, H., Reiher, C., Sharifzadeh, M. and Staden, K. (2021) Geometric constructions for Ramsey–Turán theory. arXiv

preprint arXiv:2103.10423.
[32] Lo, A. and Markström, K. (2015) F-factors in hypergraphs via absorption. Graph Comb. 31(3) 679–712.
[33] Lüders, C. M. and Reiher, C. (2019) The Ramsey-Turán problem for cliques. Isr. J. Math. 230(2) 613–652.
[34] Montgomery, R. (2019) Spanning trees in random graphs. Adv. Math. 356 106–793.
[35] Nenadov, R. and Pehova, Y. (2020) On a Ramsey–Turán variant of the Hajnal–Szemerédi theorem. SIAM J. Discrete

Math. 34(2) 1001–1010.
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A. Proof of Lemma 3.7
We use the method of dependent random choice to prove Lemma 3.7. The method was developed
by Füredi, Gowers, Kostochka, Rödl, Sudakov, and possibly many others. The next lemma is taken
from Alon, Krivelevich and Sudakov [1]. Interested readers may check the survey paper on this
method by Fox and Sudakov [17].

Lemma A.1 (Dependent random choice). [1] Let a, d,m, n, r be positive integers. Let G= (V , E)
be a graph with n vertices and average degree d = 2e(G)/n. If there is a positive integer t such that

dt

nt−1 −
(
n
r

) (m
n

)t ≥ a, (A.1)

then G contains a subset U of at least a vertices such that every r vertices in U have at least m
common neighbours.

Conlon, Fox, and Sudakov [10] extended Lemma A.1 to hypergraphs. The weight w(S) of a set
S of edges in a hypergraph is the number of vertices in the union of these edges.

Lemma A.2 (Hypergraph dependent random choice). [10] Suppose s,� are positive integers,
ε, δ > 0, and Gr = (V1, . . . ,Vr ; E) is an r-uniform r-partite hypergraph with |V1| = . . . = |Vr| =N
and at least εNr edges. Then there exists an (r − 1)-uniform (r − 1)-partite hypergraph Gr−1 on the
vertex sets V2, . . . ,Vr which has at least εs

2 N
r−1 edges and such that for each nonnegative integer

w≤ (r − 1)�, there are at most 4r�ε−sβswr�rwNw dangerous sets of edges of Gr−1 with weight w,
where a set S of edges of Gr−1 is dangerous if |S| ≤ � and the number of vertices v ∈V1 such that for
every edge e ∈ S, e+ v ∈Gr is less than βN.

Proof of Lemma 3.7. Given a constant d > 0 and integers p, q≥ 2, we choose
1
n  1

C , ε  d, 1p ,
1
qand in addition 1

n  η.

Let G be an n-vertex graph with αp(G)< g(n), where

g(n)= n2−C log1−1/q n.

Let V1,V2, . . . ,Vq be given such that |Vi| ≥ ηn, i ∈ [q] and every pair (Vi,Vj) is ε-regular with
density at least d. We define a q-uniform q-partite hypergraphH0 whose vertex set is ∪i∈[q]Vi and
edge set E(H0) is the family of q-sets that span q-cliques in G and contain one vertex from each of
V1, . . . ,Vq. We may assume |Vi| = ηn =:N, then by the counting lemma, |E(H0)| ≥ ε0Nq, where
ε0 > (d/3)(

q
2). Let

β = g(n)
N , s= log

1
q n, εi = εs

i
0 2

− si−1
s−1 , ri = q− i, �i = pri and wi = pri.

We start from H0. For 1≤ i≤ q− 2 we apply Lemma A.2 to Hi−1 with � = �i, ε = εi−1, r = ri−1
andw=wi to getHi. Note that�, ε0, r,w are all constants and 1

C  d, 1p ,
1
q . It is easy to check that

for 1≤ i≤ q− 2, we have

4r�ε−sβswr�rwNw = O

(
22 log

i−1
q nε

− log
i
q n

0 (1/η)log
1
q n2−C log n(ηn)w

)
= O(n−C/2)= o(1)< 1.

Then by Lemma A.2 there exists an ri-uniform ri-partite hypergraph Hi on the vertex sets
Vi+1, . . . ,Vq that contains at least εiNri edges and contains no dangerous sets of �i edges on
wi vertices. (Recall that a set S of �i edges on wi vertices is dangerous if the number of vertices
v ∈Vi for which for every edge e ∈ S, e+ v ∈Hi−1 is less than βN). Now we have a hypergraph
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sequence {H�}q−2
�=0. We will prove by induction on i that there is a p-set Aq−� ⊂Vq−� for 0≤ � ≤ i

such that G[Aq−�]=Kp and Hq−i−1[
⋃i

�=0 Aq−�] is complete rq−i−1-partite. Note that if a vertex
set T is an edge of H0, then G[T] is a q-clique. So G[

⋃q−1
�=0 A

q−�]=Kpq, which will prove Lemma
3.7.

We first show that the induction hypothesis holds for i= 1. Note that rq−2 = 2, so Hq−2 is a
bipartite graph on 2N vertices with at least εq−2N2 edges. We now apply Lemma A.1 toHq−2 with

a= 2βN, d = εq−2N, t = s, r = p and m= βN.
We check condition (1):

(εq−2N)s

(2N)s−1 −
(
2N
p

)(
βN
2N

)s
≥ (ε0/2)log

1−1/q nN − np(1/2η)log
1
q n2−C log n

= (ε0/2)log
1−1/q nN − o(1)≥ 2βN,

where the last equality and inequality follow as long as C >max
{
p, log 2

ε0

}
. Therefore we have a

subset U of Vq−1 ∪Vq with |U| = 2βN such that every p vertices in U have at least βN common
neighbours in Hq−2. Either Vq−1 or Vq contains at least half of the vertices of U, so w.l.o.g. we
may assume thatU ′ =U ∩Vq−1 contains at least βN =m vertices. Because αp(G)<m, the vertex
set U ′ contains a p-vertex set Aq−1 such that G[Aq−1]=Kp. The vertices of Aq−1 have at least m
common neighbours in Vq, so their common neighbourhood also contains a p-vertex subset Aq

of Vq such that G[Aq]=Kp. Now Hq−2[Aq−1 ∪Aq] is complete bipartite. We are done with the
base case i= 1.

For the induction step, assume that the induction hypothesis holds for i− 1, then we can find a
complete rq−i-partite subhypergraph H̃q−i of Hq−i spanned by

⋃i−1
�=0 Aq−�, where G[Aq−�]=Kp

for every �. The hypergraph Hq−i has no dangerous set of �q−i edges on wq−i vertices, and H̃q−i

contains pi=wq−i vertices and pi = �q−i edges, so H̃q−i is not dangerous. Then we can find a set
B of βN vertices in Vq−i such that for every edge e ∈ H̃q−i and every vertex v ∈ B, e+ v ∈Hq−i−1,
whichmeans thatHq−i−1[B∪⋃i−1

�=0 Aq−�] is complete rq−i−1-partite. Then, because αp(G)< βN,
we can find a p-vertex subset Aq−i of B such that G[Aq−i]=Kp. �
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