THE CHROMATIC NUMBER OF (*P*₆, *C*₄, diamond)-FREE GRAPHS

KAIYANG LAN[®], YIDONG ZHOU[®] and FENG LIU[®]

(Received 23 July 2022; accepted 16 August 2022; first published online 3 October 2022)

Abstract

The diamond is the complete graph on four vertices minus one edge; P_n and C_n denote the path and cycle on *n* vertices, respectively. We prove that the chromatic number of a (P_6 , C_4 , diamond)-free graph *G* is no larger than the maximum of 3 and the clique number of *G*.

2020 *Mathematics subject classification*: primary 05C15; secondary 05C17, 05C69. *Keywords and phrases*: chromatic number, induced subgraph, \mathcal{F} -free graph.

1. Introduction

A graph is an ordered pair G = (V, E), where V is a set and E is a collection of 2-subsets of V. Elements of V are referred to as vertices and elements of E are edges. All our graphs are finite and have no loops or multiple edges. If there is a risk of confusion, then the sets V and E will be denoted as V(G) and E(G), respectively. For classical graph theory, we use the standard notation, following Bondy and Murty [1] and West [19]. If X is a set of vertices in G, denote by G[X] the subgraph of G whose vertex set is X and whose edge set consists of all edges of G which have both ends in X. For any $x \in V(G)$, let N(x) denote the set of all neighbours of x in G and let $d_G(x) := |N(x)|$. The neighbourhood N(X) of a subset $X \subseteq V(G)$ is the set of vertices in $V(G) \setminus X$ which are adjacent to a vertex of X.

A *clique* in a graph is a set of pairwise adjacent vertices and a *stable set* is a set of pariwise nonadjacent vertices. A *k-colouring* of a graph *G* is a mapping $\varphi: V(G) \rightarrow \{1, 2, ..., k\}$ such that $\varphi(u) \neq \varphi(v)$ whenever *u* and *v* are adjacent in *G*. Equivalently, a *k*-colouring of *G* is a partition of V(G) into *k* stable sets. A graph is *k-colourable* if it admits a *k*-colouring. The *chromatic number* of a graph *G*, denoted by $\chi(G)$, is the minimum number *k* for which *G* is *k*-colourable. The *clique number* of *G*, denoted by $\omega(G)$, is the size of the largest clique in *G*. Obviously, $\chi(H) \ge \omega(H)$ for

This research was partially supported by a grant from the National Natural Sciences Foundation of China (No. 11971111).

[©] The Author(s), 2022. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.

any induced subgraph *H* of *G*. However, the difference $\chi(H) - \omega(H)$ may be arbitrarily large as there are triangle-free graphs with arbitrarily large chromatic number (see [15]). Furthermore, Erdős [6] showed that for any positive integers *k* and *l* there exists a graph *G* with $\chi(G) > k$ whose shortest cycle has length at least *l*.

The *complement* \overline{G} of a graph G has the same vertex set as G, and distinct vertices u, v are adjacent in \overline{G} just when they are not adjacent in G. A *hole* of G is an induced subgraph of G which is a cycle of length at least four, and a hole is said to be an odd hole if it has odd length. An *anti-hole* of G is an induced subgraph of G whose complement is a hole in \overline{G} . Given a graph with large chromatic number, it is natural to ask whether it must contain induced subgraphs with particular properties. A family \mathcal{F} of graphs is said to be χ -bounded if there exists a function f such that $\chi(H) \leq f(\omega(H))$ for every graph H in \mathcal{F} . The function f is called a χ -bounding function of \mathcal{F} . If f is a linear function of ω , then we say that \mathcal{F} is linearly χ -bounded. The notion of χ -bounded families was introduced by Gyárfás [10] in 1987. Since then, it has received considerable attention for \mathcal{F} -free graphs. See [17, 18] for further details.

We say that a graph *G* contains a graph *H* if *H* is isomorphic to an induced subgraph of *G*. A graph *G* is *H*-free if it does not contain *H*. For a family \mathcal{F} of graphs, *G* is \mathcal{F} -free if *G* is *H*-free for every $H \in \mathcal{F}$; when \mathcal{F} has two elements H_1 and H_2 , we simply write *G* is (H_1, H_2) -free instead of $\{H_1, H_2\}$ -free. If \mathcal{F} is a finite family of graphs, and if *C* is the class of \mathcal{F} -free graphs which is χ -bounded, then by a classical result of Erdős [6], at least one member of \mathcal{F} is a forest (see also [10]). A graph *G* is *perfect* if $\chi(H) = \omega(H)$ for each induced subgraph *H* of *G*. A chordless cycle of length $2k + 1, k \ge 2$, satisfies $3 = \chi > \omega = 2$, and its complement satisfies $k + 1 = \chi > \omega = k$. These graphs are therefore *imperfect*. The strong perfect graph theorem [4] says that the class of graphs without odd holes or odd anti-holes is linearly χ -bounded and the χ -bounding function is the identity function f(x) = x. If we only forbid odd holes, then the resulting class remains χ -bounded, but the best known χ -bounding function is not linear [17]. In recent years, there has been an ongoing project led by Scott and Seymour that aims to determine the existence of χ -bounding functions for classes of graphs without holes of various lengths (see the recent survey [18]).

Let P_n , C_n and K_n denote the path, cycle and complete graph on n vertices, respectively. Gyárfás [10] showed that the class of P_t -free graphs is χ -bounded. Gravier *et al.* [9] improved Gyárfás's bound slightly by proving that every P_t -free graph G satisfies $\chi(G) \leq (t-2)^{\omega(G)-1}$. It is well known that every P_4 -free graph is perfect. The preceding result implies that every P_5 -free graph G satisfies $\chi(G) \leq 3^{\omega(G)-1}$. The problem of determining whether the class of P_5 -free graphs admits a polynomial χ -bounding function remains open, and it is remarked in [14] (without proof) that the known χ -bounding functions f for this class of graphs satisfy $c(\omega^2/\log \omega) \leq f(\omega) \leq 2^{\omega}$. So the recent focus is on obtaining χ -bounding functions for some classes of P_5 -free graphs. Chudnovsky and Sivaraman [5] showed that every (P_5, C_5) -free graph G satisfies $\chi(G) \leq 2^{\omega(G)-1}$, and that every (P_5, H) -free graph G satisfies $\chi(G) \leq (\omega^{(G)+1})$. Schiermeyer [16] showed that every (P_5, H) -free graph G satisfies $\chi(G) \leq \omega(G)^2$, for some special graphs H. Char and Karthick [3] showed that every

(P_5 , 4-wheel)-free graph *G* satisfies $\chi(G) \leq \frac{3}{2}\omega(G)$. Gaspers and Huang in [7] proved that every (P_6 , C_4)-free graph *G* has $\chi(G) \leq \frac{3}{2}\omega(G)$. This $\frac{3}{2}$ bound was improved recently by Karthick and Maffray [12] to $\chi(G) \leq \frac{5}{4}\omega(G)$. Karthick and Maffray [11] also showed that every (P_5 , diamond)-free graph *G* satisfies $\chi(G) \leq \omega(G) + 1$, where the diamond is the complete graph on four vertices minus one edge. For the family of (P_6 , diamond)-free graphs, Karthick and Mishra [13] showed that every (P_6 , diamond)-free graph *G* satisfies $\chi(G) \leq 2\omega(G) + 5$. In the same paper, they proved that every (P_6 , diamond, K_4)-free graph is 6-colourable. In 2021, Cameron *et al.* [2] improved the χ -bounding function of (P_6 , diamond)-free graphs to $\omega(G) + 3$. In a recent paper [8], Goedgebeur *et al.* proved that every (P_6 , diamond)-free graph *G* satisfies $\chi(G) \leq \max\{6, \omega(G)\}$.

We investigate the chromatic number of (P_6 , C_4 , diamond)-free graphs. We do this by reducing the problem to imperfect (P_6 , C_4 , diamond)-free graphs via the strong perfect graph theorem, dividing the imperfect graphs into several cases and giving a proper colouring for each case. More precisely, the result is stated in the following theorem.

THEOREM 1.1. Let G be a $(P_6, C_4, diamond)$ -free graph. Then $\chi(G) \leq \max\{3, \omega(G)\}$.

We end this section by setting up the notation that we will be using. Let X and Y be any two subsets of V(G). We write [X, Y] to denote the set of edges that have one end in X and other end in Y. We say that X is complete to Y or [X, Y] is *complete* if every vertex in X is adjacent to every vertex in Y; and X is *anti-complete* to Y if $[X, Y] = \emptyset$. If X is a singleton, say $\{u\}$, we simply write u is complete (anti-complete) to Y instead of writing $\{u\}$ is complete (anti-complete) to Y.

2. $(P_6, C_4, \text{diamond})$ -free graphs

One of the most celebrated theorems in graph theory is the strong perfect graph theorem [4].

THEOREM 2.1. A graph is perfect if and only if it does not contain an odd hole or an odd anti-hole as an induced subgraph.

Karthick and Maffray [12] proved the following lemma.

LEMMA 2.2. Let G be any (P_6, C_4) -free graph. Then $\chi(G) \leq \lceil \frac{5}{4}\omega(G) \rceil$.

We first study the structure of imperfect (P_6 , C_4 , diamond)-free graphs. Since a P_6 -free graph contains no hole of length at least 7, and a diamond-free graph contains no anti-hole of length at least 7, by Theorem 2.1, we have the following result.

LEMMA 2.3. Every imperfect (P_6 , C_4 , diamond)-free graph contains an induced C_5 .

Let G = (V, E) be an imperfect (P_6, C_4 , diamond)-free graph that contains an induced C_5 . Denote the vertex set of this C_5 by $\mathcal{P} := \{u_1, u_2, u_3, u_4, u_5\}$ and its edge

set by $\{u_1u_2, u_2u_3, u_3u_4, u_4u_5, u_5u_1\}$. Define the sets.

 $\mathcal{N}_1 := \{ u \in V(G) \setminus \mathcal{P} : N(u) \cap \mathcal{P} \neq \emptyset \}$ and $\mathcal{N}_2 := V(G) \setminus (\mathcal{N}_1 \cup \mathcal{P}).$

It is straightforward to see that $V(G) = \mathcal{P} \cup \mathcal{N}_1 \cup \mathcal{N}_2$.

From now on, every subscript is taken modulo 5. Since G is diamond-free and C_4 -free, we may assume that each vertex in \mathcal{N}_1 is either adjacent to exactly one vertex in \mathcal{P} or exactly two consecutive vertices in \mathcal{P} . That is, \mathcal{N}_1 can be partitioned into two subsets

$$A_i := \{u \in \mathcal{N}_1 : N(u) \cap \mathcal{P} = \{u_i\}\}$$
 and $B_{i,i+1} := \{u \in \mathcal{N}_1 : N(u) \cap \mathcal{P} = \{u_i, u_{i+1}\}\}.$

Let $A := \bigcup_{i=1}^{5} A_i$ and $B := \bigcup_{i=1}^{5} B_{i,i+1}$ so that $N(\mathcal{P}) = A \cup B$ and $V(G) = \mathcal{P} \cup A \cup B \cup \mathcal{N}_2$.

We now claim that N_2 is empty. For otherwise, suppose that there is a vertex $z \in N_2$. Then z has a neighbour $x \in A \cup B$ since G is connected. Without loss of generality, we may assume that x is adjacent to u_i , but adjacent to none of u_{i+2}, u_{i+3} and u_{i+4} . Then $\{z, x, u_i, u_{i+2}, u_{i+3}, u_{i+4}\}$ induces a P_6 . However, this is a contradiction and so $V(G) = \mathcal{P} \cup A \cup B$.

We next observe a few useful properties of the sets *A* and *B* before proceeding with the proof of the theorem.

- M1. For any $v \in V(G)$, N(v) induces a P_3 -free graph, so each $G[A_i]$ is the disjoint union of complete graphs for all $i \in [5]$. This follows directly from the fact that G is diamond-free.
- M2. The set A_i is anti-complete to A_{i+1} for all $i \in [5]$. For if $a_1 \in A_i$ and $a_2 \in A_{i+1}$ are adjacent, then $\{a_1, a_2, u_i, u_{i+1}\}$ induces a C_4 and $\{a_1, a_2, u_{i+1}, u_{i+2}, u_{i+3}, u_{i+4}\}$ induces a P_6 , which is a contradiction.
- M3. The set A_i is complete to A_{i+2} for all $i \in [5]$. For if $a_1 \in A_i$ and $a_2 \in A_{i+2}$ are not adjacent, then $\{a_1, a_2, u_{i-2}, u_{i-1}, u_i, u_{i+2}\}$ induces a P_6 , which is a contradiction.
- M4. Each $G[B_{i,i+1}]$ is a clique for all $i \in [5]$. For if $b_1, b_2 \in B_{i,i+1}$ are not adjacent, then $\{b_1, b_2, u_i, u_{i+1}\}$ induces a diamond, which is a contradiction.
- M5. The set $B = B_{i,i+1} \cup B_{i+2,i+3}$ for some *i*. It suffices to show that for each *i* at least one of $B_{i,i+1}, B_{i-1,i}$ is empty. Suppose the contrary. Let $b_1 \in B_{i,i+1}$ and $b_2 \in B_{i-1,i}$. Then, either $\{b_1, b_2, u_i, u_{i+1}\}$ induces a diamond if $b_1b_2 \in E$ or $\{b_1, b_2, u_{i-1}, u_{i+1}, u_{i+2}, u_{i+3}\}$ induces a P_6 if $b_1b_2 \notin E$, which is a contradiction.
- M6. The set $B_{i,i+1}$ is anti-complete to $A_i \cup A_{i+1}$ for all $i \in [5]$. By symmetry, it suffices to show that $B_{i,i+1}$ is anti-complete to A_i . If $a \in A_i$ and $b \in B_{i,i+1}$ are adjacent, then $\{a, b, u_i, u_{i+1}\}$ induces a diamond, which is a contradiction.
- M7. Either $B_{i,i+1} = \emptyset$ or $A_{i-1} \cup A_{i+2} = \emptyset$ for all $i \in [5]$. To the contrary, assume that $a \in A_{i+2}$ and $b \in B_{i,i+1}$. If a and b are adjacent, then $\{a, b, u_{i+1}, u_{i+2}\}$ induces a C_4 , which is a contradiction. If a and b are not adjacent, then $\{a, b, u_i, u_{i+2}, u_{i+3}, u_{i+4}\}$ induces a P_6 , which is a contradiction. The case with $a \in A_{i-1}$ is symmetric.
- M8. If A_i contains an edge, then $A_{i+2} = A_{i+3} = B_{i+1,i+2} = B_{i-2,i-1} = \emptyset$ for all $i \in [5]$. Suppose that A_i contains an edge a_1a_2 . If there is a vertex x in $A_{i+2} \cup A_{i+3}$, then

5

x is adjacent to a_1 and a_2 by M3. Then $\{x, a_1, a_2, u_i\}$ induces a diamond, which is a contradiction. Since $A_i \neq \emptyset$, it follows that $B_{i+1,i+2} = B_{i-2,i-1} = \emptyset$ by M7.

- M9. If $A_i \neq \emptyset$, then each of $B_{i+1,i+2} = B_{i-2,i-1} = \emptyset$ for all $i \in [5]$. This follows directly from M7.
- M10. The set $B_{i,i+1}$ is anti-complete to $B_{i+2,i+3}$ for all $i \in [5]$. For if $b_1 \in B_{i,i+1}$ and $b_2 \in B_{i+2,i+3}$ are such that b_1 and b_2 are adjacent, then $\{b_1, b_2, u_{i+1}, u_{i+2}\}$ induces a C_4 , which is a contradiction.

3. Proof of Theorem 1.1

In this section, we show that every $(P_6, C_4, \text{diamond})$ -free graph G is $(\omega(G) + 1)$ colourable and G is $\omega(G)$ -colourable if $\omega \ge 3$. The following lemma can be verified
routinely.

LEMMA 3.1 (Cameron *et al.* [2]). Let G be a graph that can be partitioned into two cliques X and Y such that the edges between X and Y form a matching. If $\max\{|X|, |Y|\} \le k$ for some integer $k \ge 2$, then G is k-colourable.

To prove Theorem 1.1, we shall use induction on the number of vertices in *G*. The proof follows the pretty idea presented in [2]. Two nonadjacent vertices *x* and *y* in a graph *G* are *comparable* if $N(x) \subseteq N(y)$ or $N(y) \subseteq N(x)$. The major work lies in proving the following auxiliary theorem.

THEOREM 3.2. Let G be a connected (P_6 , C_4 , diamond)-free graph without clique cutsets and comparable vertices. Then $\chi(G) \leq \max\{3, \omega(G)\}$.

PROOF. Let G = (V, E) be a graph satisfying the assumptions of the theorem. In what follows, we let ω denote the clique number of a graph under consideration. If $\omega \le 2$, then the theorem follows from Lemma 2.2. Therefore, we can assume that $\omega \ge 3$. Aiming for a contradiction, we assume that *G* is imperfect and hence it contains an induced C_5 by Lemma 2.3, say $\mathcal{P} := \{u_1, u_2, u_3, u_4, u_5\}$ (in order). Define the sets \mathcal{P}, A, B, A_i and $B_{i,i+1}$ for each $i \in \{1, 2, 3, 4, 5\}$ as before. By M5, we may assume that $B = B_{2,3} \cup B_{4,5}$. The idea is to colour $\mathcal{P} \cup A \cup B_{2,3} \cup B_{4,5}$ using exactly ω colours. We consider several cases. In each case, we give a desired colouring explicitly. In the following, when we say that we colour a set, say *X*, with a certain colour *a*, we mean that we colour each vertex in *X* with that colour *a*. We now proceed by considering the following cases.

Case 1. A_1 *contains an edge.* By M8, $A_3 = A_4 = B_{2,3} = B_{4,5} = \emptyset$. Since $B_{2,3} = B_{4,5} = \emptyset$, *B* is empty, that is, $V(G) = \mathcal{P} \cup A$. Furthermore, A_1 is anti-complete to $A_2 \cup A_5$ by M2, and A_2 and A_5 are complete to each other by M3. Now we can colour $\mathcal{P} \cup A$ as follows.

- (i) A_2 contains an edge (so that $A_5 = \emptyset$ by M8).
 - Colour $\mathcal{P} := u_1, u_2, u_3, u_4, u_5$ with colours 1, 2, 1, 2, 3 in order.
 - Colour each component of A_1 with colours in $\{2, 3, \ldots, \omega\}$.
 - Colour each component of A_2 with colours in $\{1, 3, 4, \dots, \omega\}$.

(ii) A_2 is stable.

- Colour $\mathcal{P} := u_1, u_2, u_3, u_4, u_5$ with colours 2, 1, 2, 3, 1 in order.
- Colour each component of A_1 with colours in $\{1, 3, 4, \dots, \omega\}$.
- If A_5 contains an edge, then $A_2 = \emptyset$ by M8 and we colour each component of A_5 with colours in $\{2, 3, ..., \omega\}$. Otherwise, colour A_5 with colour 2 if $A_5 \neq \emptyset$ and colour A_2 with colour 3 if $A_2 \neq \emptyset$.

We note that this colouring is well defined. Since the components of A_1 and A_2 are cliques of size at most $\omega - 1$, every vertex is coloured with some colour. We now show that this is an ω -colouring of $\mathcal{P} \cup A$. Observe first that each trivial component of A_1 is coloured with colour 2. By M1, the colouring is proper on $\mathcal{P} \cup A$. This proves that the colouring is a proper colouring.

Case 2. A_1 *is stable but not empty.* By M8, there are no edges in A_3 and A_4 . By M9, $B_{2,3} = B_{4,5} = \emptyset$, that is, $V(G) = \mathcal{P} \cup A$. If both A_2 and A_5 are stable sets or both A_2 and A_5 are empty, then $\omega = 2$, which is a contradiction. If A_2 is stable but not empty, then A_5 contains no edges by M8, which is a contradiction to $\omega \ge 3$. Therefore, it follows from M2 that the following gives an ω -colouring of $\mathcal{P} \cup A$.

- (i) A_2 contains an edge (so that $A_4 = A_5 = \emptyset$ by M8).
 - Colour $\mathcal{P} := u_1, u_2, u_3, u_4, u_5$ with colours 2, 1, 2, 1, 3 in order.
 - Colour A_1 and A_3 with colours 1 and 3, respectively.
 - Colour each component of A_2 with colours in $\{2, 3, \ldots, \omega\}$.
- (ii) A_2 is empty. (Note that A_5 must contains an edge in this case since $\omega \ge 3$, and hence $A_3 = \emptyset$ by M8.)
 - Colour $\{u_1, u_2, u_3, u_4, u_5\}$ with colours 2, 1, 2, 3, 1 in order.
 - Colour A_1 and A_4 with colour 1 and 2 (if $A_4 \neq \emptyset$), respectively.
 - Colour each component of A_5 with colours in $\{2, 3, \ldots, \omega\}$.

By M2 and M3, it is easily verified that the colouring is proper.

Case 3. A_1 is empty. In this case, we further consider the following two subcases.

Subcase 3.1. A_2 contains an edge. By M8, $A_4 = A_5 = \emptyset$. By M9, $A_3 \neq \emptyset$ and $B_{4,5} \neq \emptyset$ cannot occur simultaneously. That is, either A_3 is empty or $B_{4,5}$ is empty.

If $A_3 \neq \emptyset$, then $B_{4,5} = \emptyset$ by M9. That is, $V(G) = \mathcal{P} \cup A_2 \cup A_3 \cup B_{2,3}$. Consider the following colouring of $\mathcal{P} \cup A_2 \cup A_3 \cup B_{2,3}$.

- Colour $\mathcal{P} := u_1, u_2, u_3, u_4, u_5$ with colours 1, 2, 1, 2, 3 in order.
- Colour each component of A_2 with colours in $\{1, 3, 4, \ldots, \omega\}$.
- Colour each component of A_3 with colours in $\{2, 3, \ldots, \omega\}$.
- Colour vertices in $B_{2,3}$ with colours in $\{3, 4, \ldots, \omega\}$.

By M4, $|B_{2,3}| \le \omega - 2$. An argument similar to that in Case 1 shows that the above is a proper ω -colouring of $\mathcal{P} \cup A_2 \cup A_3 \cup B_{2,3}$.

7

Suppose now that A_3 is empty. That is, $V(G) = \mathcal{P} \cup A_2 \cup B_{2,3} \cup B_{4,5}$. Since *G* is diamond-free, the edges (if there are any) between $B_{4,5}$ and each component of A_2 form a matching. Consider the following colouring of $\mathcal{P} \cup A \cup B_{2,3} \cup B_{4,5}$.

- Colour $\mathcal{P} := u_1, u_2, u_3, u_4, u_5$ with colours 3, 1, 2, 1, 2 in order.
- Colour each component of A_2 with colours in $\{2, 3, ..., \omega\}$. By Lemma 3.1, there exists an $(\omega 2)$ -colouring of $B_{4,5}$ with colours in $\{3, 4, ..., \omega\}$ by permuting colours in A_2 (if necessary).
- By M10, it is easily verified that there exists an $(\omega 2)$ -colouring of $B_{2,3}$ with colours in $\{3, 4, \ldots, \omega\}$.

Since $B_{2,3}$ and A_2 are anti-complete by M6, the above colouring gives a proper ω -colouring of $\mathcal{P} \cup A_2 \cup B_{2,3} \cup B_{4,5}$.

Subcase 3.2. A_2 is stable but not empty. Suppose first that A_3 contains an edge. By M8, $A_5 = B_{4,5} = \emptyset$. By M8, A_4 contains no edges since $A_2 \neq \emptyset$.

If A_4 is empty, one can easily verify that the following is a proper ω -colouring of $\mathcal{P} \cup A \cup B_{2,3} \cup B_{4,5}$.

- Colour $\mathcal{P} := u_1, u_2, u_3, u_4, u_5$ with colours 1, 2, 1, 3, 2 in order.
- Colour A_2 with 1 and colour each component of A_3 with colours in $\{2, 3, \ldots, \omega\}$.
- Colour vertices in $B_{2,3}$ with colours in $\{3, 4, \ldots, \omega\}$.

If A_4 is stable but not empty, then $B_{2,3} = \emptyset$ by M9. That is, $V(G) = \mathcal{P} \cup A$. One can obtain a proper colouring of $\mathcal{P} \cup A$ as follows.

- Colour $\mathcal{P} := u_1, u_2, u_3, u_4, u_5$ with colours 1, 2, 1, 3, 2 in order.
- Colour A_2 and A_4 with colours 3 and 2, respectively, and colour each component of A_3 with colours in $\{2, 3, ..., \omega\}$.

Now suppose that A_3 is stable but not empty. Then, by M9, $B_{4,5} = \emptyset$, and by M8, both A_4 and A_5 are stable since $A_2 \neq \emptyset$. So, each A_i is stable for $2 \le i \le 5$. We can obtain a proper colouring of $\mathcal{P} \cup A \cup B$ as follows.

- Colour $\mathcal{P} := u_1, u_2, u_3, u_4, u_5$ with colours 1, 2, 1, 3, 2 in order.
- Colour A₂, A₃, A₄ and A₅ with colours 3, 3, 2 and 1, respectively, and colour each component of B_{2,3} with colours in {3, 4, ..., ω}.

Therefore, we may suppose that $A_3 = \emptyset$. Then, by M8, both A_4 and A_5 are stable since $A_2 \neq \emptyset$ and, by M9, either $A_4 = \emptyset$ or $B_{2,3} = \emptyset$. Now we consider the following two colourings.

- (i) $A_4 = \emptyset$.
 - Colour $\mathcal{P} := u_1, u_2, u_3, u_4, u_5$ with colours 3, 2, 1, 2, 1 in order.
 - Colour A_2 and A_5 with colours 1 and 2, respectively.
 - By M10, there exists an $(\omega 2)$ -colouring of $B_{2,3} \cup B_{4,5}$ with colours in $\{3, 4, \ldots, \omega\}$.

(ii) $A_4 \neq \emptyset$, that is, $B_{2,3} = \emptyset$.

- Colour $\mathcal{P} := u_1, u_2, u_3, u_4, u_5$ with colours 3, 2, 1, 2, 1 in order.
- Colour A_2, A_4 and A_5 with colours 1, 3 and 2, respectively.
- By M4, there exists an $(\omega 2)$ -colouring of $B_{4,5}$ with colours in $\{3, 4, \dots, \omega\}$.

By M4 and M10, one can easily verify that the above is a proper ω -colouring of $\mathcal{P} \cup A \cup B_{2,3} \cup B_{4,5}$.

Subcase 3.3. A_2 is empty. Suppose first that A_3 contains an edge. By M8, $A_5 = B_{4,5} = \emptyset$. By M9, either $A_4 = \emptyset$ or $B_{2,3} = \emptyset$. We consider the following two colourings.

(i)
$$A_4 = \emptyset$$
.

- Colour $\mathcal{P} := u_1, u_2, u_3, u_4, u_5$ with colours 3, 2, 1, 2, 1 in order.
- Colour each component of A_3 with colours in $\{2, 3, \ldots, \omega\}$.
- Colour vertices in $B_{2,3}$ with colours in $\{3, 4, \ldots, \omega\}$.
- (ii) $A_4 \neq \emptyset$, that is, $B_{2,3} = \emptyset$.
 - Colour $\mathcal{P} := u_1, u_2, u_3, u_4, u_5$ with colours 2, 3, 1, 2, 1 in order.
 - Colour each component of A_3 with colours in $\{2, 3, \ldots, \omega\}$.
 - Colour each component of A_4 with colours in $\{1, 3, 4, \ldots, \omega\}$.

One can easily verify that the above is a proper ω -colouring of $\mathcal{P} \cup A \cup B_{2,3} \cup B_{4,5}$.

Now suppose that A_3 is stable but not empty. Then, by M9, $B_{4,5}$ is empty and, by M8, A_5 is stable. We consider the following two colourings.

(i)
$$A_4 = \emptyset$$
.

- Colour $\mathcal{P} := u_1, u_2, u_3, u_4, u_5$ with colours 3, 1, 2, 1, 2 in order.
- Colour A₃ and A₅ with colours 1 and 3, respectively.
- Colour vertices in $B_{2,3}$ with colours in $\{3, 4, \ldots, \omega\}$.
- (ii) $A_4 \neq \emptyset$, that is, $B_{2,3} = \emptyset$.
 - Colour $\mathcal{P} := u_1, u_2, u_3, u_4, u_5$ with colours 1, 3, 2, 1, 2 in order.
 - Colour A₃ and A₅ with colours 1 and 3, respectively, and colour each component of A₄ with colours in {2, 3, ..., ω}.

By M2 and M3, one can easily verify that the above is a proper ω -colouring of $\mathcal{P} \cup A \cup B_{2,3} \cup B_{4,5}$.

Finally, we suppose that A_3 is empty. That is, $V(G) = \mathcal{P} \cup A_4 \cup A_5 \cup B_{2,3} \cup B_{4,5}$. By M9, either $A_4 = \emptyset$ or $B_{2,3} = \emptyset$. Since G is diamond-free, the edges (if there are any) between $B_{2,3}$ and each component of A_5 form a matching. Consider the following two colourings of $\mathcal{P} \cup A_4 \cup A_5 \cup B_{2,3} \cup B_{4,5}$.

- (i) $A_4 = \emptyset$.
 - Colour $\mathcal{P} := u_1, u_2, u_3, u_4, u_5$ with colours 3, 2, 1, 2, 1 in order.

- Colour each component of A_5 with colours in $\{2, 3, \ldots, \omega\}$.
- By Lemma 3.1, there exists an $(\omega 2)$ -colouring of $B_{2,3}$ with colours in $\{3, 4, \ldots, \omega\}$ by permuting colours in A_5 (if necessary).
- Colour vertices in $B_{4,5}$ with colours in $\{3, 4, \ldots, \omega\}$.
- (ii) $A_4 \neq \emptyset$, that is, $B_{2,3} = \emptyset$.
 - Colour $\mathcal{P} := u_1, u_2, u_3, u_4, u_5$ with colours 3, 1, 2, 1, 2 in order.
 - Colour each component of A_4 with colours in $\{2, 3, \ldots, \omega\}$.
 - Colour each component of A_5 with colours in $\{1, 3, 4, \ldots, \omega\}$.
 - Colour $B_{4,5}$ with colours in $\{3, 4, \ldots, \omega\}$.

Since $B_{2,3}$ and A_2 are anti-complete, the above colouring gives a proper ω -colouring of $\mathcal{P} \cup A_4 \cup A_5 \cup B_{2,3} \cup B_{4,5}$. This concludes the proof of Theorem 3.2.

Now we can easily deduce Theorem 1.1.

PROOF OF THEOREM 1.1. If $\omega \le 2$, then the theorem follows from Lemma 2.2. Therefore, we can assume that $\omega \ge 3$ and we prove the theorem by induction on |V|. We may assume that *G* is connected. For otherwise, the theorem holds by applying the inductive hypothesis to each connected component of *G*. If *G* contains a clique cutset *S*, that is, G[V - S] is the disjoint union of two subgraphs X_1 and X_2 , then $\chi(G) = \max{\chi(G[V(X_1) \cup S]), \chi(G[V(X_2) \cup S])}$ directly from the inductive hypothesis. If *G* contains two nonadjacent vertices *x* and *y* such that $N(y) \subseteq N(x)$, then $\chi(G) = \chi(G[V - \{y\}])$ and $\omega(G) = \omega(G[V - \{y\}])$, and the theorem holds by applying the inductive hypothesis to $G[V - \{y\}]$. Therefore, we can assume that *G* is a connected graph with no pair of comparable vertices and no clique cutsets. Thus, the theorem follows directly from Theorem 3.2.

References

- [1] J. Bondy and U. S. R. Murty, *Graph Theory*, Graduate Texts in Mathematics, 244 (Springer, Berlin, 2008).
- [2] K. Cameron, S. Huang and O. Merkel, 'An optimal χ -bound for (P_6 , diamond)-free graphs', J. Graph Theory **97** (2021), 451–465.
- [3] A. Char and T. Karthick, 'Coloring of (P5, 4-wheel)-free graphs', *Discrete Math.* **345** (2022), Article no 112795, 22 pages.
- [4] M. Chudnovsky, N. Robertson, P. Seymour and R. Thomas, 'The strong perfect graph theorem', *Ann. of Math.* (2) 164 (2006), 51–229.
- [5] M. Chudnovsky and V. Sivaraman, 'Perfect divisibility and 2-divisibility', J. Graph Theory 90 (2019), 54–60.
- [6] P. Erdős, 'Graph theory and probability', Canad. J. Math. 11 (1959), 34–38.
- [7] S. Gaspers and S. Huang, 'Linearly χ -bounding \mathcal{H} -free graphs', J. Graph Theory **92** (2019), 322–342.
- [8] J. Goedgebeur, S. Huang, Y. Ju and O. Merkel, 'Colouring graphs with no induced six-vertex path or diamond', Preprint, 2021, arXiv:2106.08602v1.
- [9] S. Gravier, C. Hoàng and F. Maffray, 'Coloring the hypergraph of maximal cliques of a graph with no long path', *Discrete Math.* 272 (2003), 285–290.

- [10] A. Gyárfás, 'Problems from the world surrounding perfect graphs', Zastos. Mat. XIX (1987), 413–441.
- [11] T. Karthick and F. Maffray, 'Vizing bound for the chromatic number on some graph classes', *Graphs Combin.* 32 (2016), 1447–1460.
- [12] T. Karthick and F. Maffray, 'Square-free graphs with no six-vertex induced path', SIAM J. Discrete Math. 33 (2019), 874–909.
- [13] T. Karthick and S. Mishra, 'On the chromatic number of (P₅, diamond)-free graphs', Graphs Combin. 34 (2018), 677–692.
- [14] H. Kierstead, S. Penrice and W. Trotter, 'On-line and first-fit coloring of graphs that do not induce P₅', SIAM J. Discrete Math. 8 (1995), 485–498.
- [15] J. Mycielski, 'Sur le coloriage des graphes', *Colloq. Math.* **3** (1955), 161–162.
- [16] I. Schiermeyer, 'Chromatic number of P₅-free graphs: Reed's conjecture', Discrete Math. 343 (2016), 1940–1943.
- [17] A. Scott and P. Seymour, 'Induced subgraphs of graphs with large chromatic number. I. Odd holes', J. Combin. Theory Ser. B 121 (2016), 68–84.
- [18] A. Scott and P. Seymour, 'A survey of χ -boundedness', J. Graph Theory 95 (2020), 473–504.
- [19] D. West, Introduction to Graph Theory, 2nd edn (Prentice-Hall, Englewood Cliffs, NJ, 2000).

KAIYANG LAN, Center for Discrete Mathematics, Fuzhou University, Fujian 350003, PR China e-mail: kylan95@126.com

YIDONG ZHOU, Center for Discrete Mathematics, Fuzhou University, Fujian 350003, PR China e-mail: zoed98@126.com

FENG LIU, Department of Mathematics, East China Normal University, Shanghai 200241, PR China e-mail: liufeng0609@126.com