THE CHROMATIC NUMBER OF (P_6 , C_4 , diamond)-FREE **GRAPH[S](#page-0-0)**

KAIYANG LAN[®][,](https://orcid.org/0000-0002-2739-9053) YIDONG ZHO[U](https://orcid.org/0000-0002-7308-9443)[®] and FENG LIU[®]

(Received 23 July 2022; accepted 16 August 2022; first published online 3 October 2022)

Abstract

The diamond is the complete graph on four vertices minus one edge; P_n and C_n denote the path and cycle on *n* vertices, respectively. We prove that the chromatic number of a $(P_6, C_4,$ diamond)-free graph *G* is no larger than the maximum of 3 and the clique number of *G*.

2020 *Mathematics subject classification*: primary 05C15; secondary 05C17, 05C69. *Keywords and phrases*: chromatic number, induced subgraph, F -free graph.

1. Introduction

A graph is an ordered pair $G = (V, E)$, where V is a set and E is a collection of 2-subsets of *V*. Elements of *V* are referred to as vertices and elements of *E* are edges. All our graphs are finite and have no loops or multiple edges. If there is a risk of confusion, then the sets *V* and *E* will be denoted as $V(G)$ and $E(G)$, respectively. For classical graph theory, we use the standard notation, following Bondy and Murty [\[1\]](#page-8-0) and West [\[19\]](#page-9-0). If *X* is a set of vertices in *G*, denote by *G*[*X*] the subgraph of *G* whose vertex set is *X* and whose edge set consists of all edges of *G* which have both ends in *X*. For any $x \in V(G)$, let $N(x)$ denote the set of all neighbours of *x* in *G* and let $d_G(x) := |N(x)|$. The neighbourhood $N(X)$ of a subset $X \subseteq V(G)$ is the set of vertices in $V(G)\X$ which are adjacent to a vertex of *X*.

A *clique* in a graph is a set of pairwise adjacent vertices and a *stable set* is a set of pariwise nonadjacent vertices. A *k-colouring* of a graph *G* is a mapping $\varphi: V(G) \to \{1, 2, \ldots, k\}$ such that $\varphi(u) \neq \varphi(v)$ whenever *u* and *v* are adjacent in *G*.
Foutwalently a *k*-colouring of *G* is a partition of *V(G)* into *k* stable sets. A graph is Equivalently, a *k*-colouring of *G* is a partition of $V(G)$ into *k* stable sets. A graph is *k-colourable* if it admits a *k*-colouring. The *chromatic number* of a graph *G*, denoted by ^χ(*G*), is the minimum number *^k* for which *^G* is *^k*-colourable. The *clique number* of *G*, denoted by $\omega(G)$, is the size of the largest clique in *G*. Obviously, $\chi(H) \geq \omega(H)$ for

This research was partially supported by a grant from the National Natural Sciences Foundation of China (No. 11971111).

[©] The Author(s), 2022. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.

any induced subgraph *H* of *G*. However, the difference $\chi(H) - \omega(H)$ may be arbitrarily large as there are triangle-free graphs with arbitrarily large chromatic number (see [\[15\]](#page-9-1)). Furthermore, Erdős [[6\]](#page-8-1) showed that for any positive integers k and l there exists a graph *G* with $\chi(G) > k$ whose shortest cycle has length at least *l*.

The *complement* \bar{G} of a graph G has the same vertex set as G , and distinct vertices u, v are adjacent in \overline{G} just when they are not adjacent in *G*. A *hole* of *G* is an induced subgraph of *G* which is a cycle of length at least four, and a hole is said to be an odd hole if it has odd length. An *anti*-*hole* of *G* is an induced subgraph of *G* whose complement is a hole in \bar{G} . Given a graph with large chromatic number, it is natural to ask whether it must contain induced subgraphs with particular properties. A family $\mathcal F$ of graphs is said to be *χ*-*bounded* if there exists a function *f* such that $\chi(H) \leq f(\omega(H))$ for every graph *H* in \mathcal{F} . The function *f* is called a *χ*-*bounding* function of \mathcal{F} . If *f* is a linear function of ω , then we say that $\mathcal F$ is linearly χ -bounded. The notion of χ -bounded families was introduced by Gyárfás [[10\]](#page-9-2) in 1987. Since then, it has received considerable attention for $\mathcal F$ -free graphs. See [\[17,](#page-9-3) [18\]](#page-9-4) for further details.

We say that a graph *G* contains a graph *H* if *H* is isomorphic to an induced subgraph of *G*. A graph *G* is *H-free* if it does not contain *H*. For a family $\mathcal F$ of graphs, *G* is $\mathcal F$ *-free* if *G* is *H*-free for every $H \in \mathcal{F}$; when $\mathcal F$ has two elements H_1 and H_2 , we simply write *G* is (H_1, H_2) -free instead of $\{H_1, H_2\}$ -free. If $\mathcal F$ is a finite family of graphs, and if C is the class of $\mathcal F$ -free graphs which is χ -bounded, then by a classical result of Erdős [\[6\]](#page-8-1), at least one member of $\mathcal F$ is a forest (see also [\[10\]](#page-9-2)). A graph *G* is *perfect* if $\chi(H)$ = $\omega(H)$ for each induced subgraph *H* of *G*. A chordless cycle of length $2k + 1, k \ge 2$, satisfies $3 = \chi > \omega = 2$, and its complement satisfies $k + 1 = \chi > \omega = k$. These graphs are therefore *imperfect*. The strong perfect graph theorem [\[4\]](#page-8-2) says that the class of graphs without odd holes or odd anti-holes is linearly χ -bounded and the χ -bounding function is the identity function $f(x) = x$. If we only forbid odd holes, then the resulting class remains χ -bounded, but the best known χ -bounding function is not linear [\[17\]](#page-9-3). In recent years, there has been an ongoing project led by Scott and Seymour that aims to determine the existence of χ -bounding functions for classes of graphs without holes of various lengths (see the recent survey [\[18\]](#page-9-4)).

Let P_n, C_n and K_n denote the path, cycle and complete graph on *n* vertices, respectively. Gyárfás [[10\]](#page-9-2) showed that the class of P_t -free graphs is χ -bounded. Gravier *et al.* [\[9\]](#page-8-3) improved Gyárfás's bound slightly by proving that every P_t -free graph *G* satisfies $\chi(G) \le (t-2)^{\omega(G)-1}$. It is well known that every P_4 -free graph is perfect. The preceding result implies that every *P*₅-free graph *G* satisfies $\chi(G) \leq 3^{\omega(G)-1}$. The problem of determining whether the class of P_5 -free graphs admits a polynomial χ -bounding function remains open, and it is remarked in [\[14\]](#page-9-5) (without proof) that the known *χ*-bounding functions *f* for this class of graphs satisfy $c(\omega^2/\log \omega) \le$ $f(\omega) \leq 2^{\omega}$. So the recent focus is on obtaining *χ*-bounding functions for some classes of P_5 -free graphs. Chudnovsky and Sivaraman [\[5\]](#page-8-4) showed that every (P_5, C_5) -free graph *G* satisfies $\chi(G) \leq 2^{\omega(G)-1}$, and that every (P_5, bull) -free graph *G* satisfies $\chi(G) \leq {(\omega(G)+1) \choose 2}$. Schiermeyer [\[16\]](#page-9-6) showed that every (P_5, H) -free graph *G* satisfies $\chi(G) \le \omega(G)^2$, for some special graphs *H*. Char and Karthick [\[3\]](#page-8-5) showed that every

 $(P_5, 4$ -wheel)-free graph *G* satisfies $\chi(G) \leq \frac{3}{2}\omega(G)$. Gaspers and Huang in [\[7\]](#page-8-6) proved
that every (P_5, G_1) -free graph *G* has $\chi(G) \leq \frac{3}{2}\omega(G)$. This $\frac{3}{2}$ bound was improved that every (P_6, C_4) -free graph *G* has $\chi(G) \leq \frac{3}{2}\omega(G)$. This $\frac{3}{2}$ bound was improved
recently by Karthick and Maffray [12] to $\chi(G) \leq \frac{5}{2}\omega(G)$. Karthick and Maffray recently by Karthick and Maffray [\[12\]](#page-9-7) to $\chi(G) \leq \frac{5}{4}\omega(G)$. Karthick and Maffray
[11] also showed that every (P_{ϵ} diamond)-free graph G satisfies $\chi(G) \leq \omega(G) + 1$ [\[11\]](#page-9-8) also showed that every (P_5 , diamond)-free graph *G* satisfies $\chi(G) \leq \omega(G) + 1$, where the diamond is the complete graph on four vertices minus one edge. For the family of $(P_6,$ diamond)-free graphs, Karthick and Mishra $[13]$ showed that every $(P_6, \text{diamond})$ -free graph *G* satisfies $\chi(G) \leq 2\omega(G) + 5$. In the same paper, they proved that every $(P_6,$ diamond, K_4)-free graph is 6-colourable. In 2021, Cameron *et al.* [\[2\]](#page-8-7) improved the *χ*-bounding function of (P_6 , diamond)-free graphs to $\omega(G)$ + 3. In a recent paper [\[8\]](#page-8-8), Goedgebeur *et al.* proved that every $(P_6, diamond)$ -free graph G satisfies $\chi(G) \leq \max\{6, \omega(G)\}.$

We investigate the chromatic number of $(P_6, C_4, \text{diamond})$ -free graphs. We do this by reducing the problem to imperfect $(P_6, C_4, \text{diamond})$ -free graphs via the strong perfect graph theorem, dividing the imperfect graphs into several cases and giving a proper colouring for each case. More precisely, the result is stated in the following theorem.

THEOREM 1.1. Let G be a $(P_6, C_4, diamond)$ -free graph. Then $\chi(G) \le \max\{3, \omega(G)\}\$.

We end this section by setting up the notation that we will be using. Let *X* and *Y* be any two subsets of $V(G)$. We write $[X, Y]$ to denote the set of edges that have one end in *X* and other end in *Y*. We say that *X* is complete to *Y* or [*X*, *Y*] is *complete* if every vertex in *X* is adjacent to every vertex in *Y*; and *X* is *anti-complete* to *Y* if $[X, Y] = \emptyset$. If *X* is a singleton, say $\{u\}$, we simply write *u* is complete (anti-complete) to *Y* instead of writing {*u*} is complete (anti-complete) to *Y*.

2. $(P_6, C_4,$ diamond)-free graphs

One of the most celebrated theorems in graph theory is the strong perfect graph theorem [\[4\]](#page-8-2).

THEOREM 2.1. *A graph is perfect if and only if it does not contain an odd hole or an odd anti-hole as an induced subgraph.*

Karthick and Maffray [\[12\]](#page-9-7) proved the following lemma.

LEMMA 2.2. *Let G be any* (P_6, C_4) -free graph. Then $\chi(G) \leq \lceil \frac{5}{4} \omega(G) \rceil$.

We first study the structure of imperfect $(P_6, C_4, \text{diamond})$ -free graphs. Since a P_6 -free graph contains no hole of length at least 7, and a diamond-free graph contains no anti-hole of length at least 7, by Theorem [2.1,](#page-2-0) we have the following result.

LEMMA 2.3. *Every imperfect* (*P*6, *C*4, *diamond*)*-free graph contains an induced C*5*.*

Let $G = (V, E)$ be an imperfect $(P_6, C_4, \text{diamond})$ -free graph that contains an induced *C*₅. Denote the vertex set of this *C*₅ by $P := \{u_1, u_2, u_3, u_4, u_5\}$ and its edge set by $\{u_1u_2, u_2u_3, u_3u_4, u_4u_5, u_5u_1\}$. Define the sets.

 $N_1 := \{u \in V(G) \setminus \mathcal{P} : N(u) \cap \mathcal{P} \neq \emptyset\}$ and $N_2 := V(G) \setminus (N_1 \cup \mathcal{P})$.

It is straightforward to see that $V(G) = \mathcal{P} \cup \mathcal{N}_1 \cup \mathcal{N}_2$.

From now on, every subscript is taken modulo 5. Since *G* is diamond-free and C_4 -free, we may assume that each vertex in \mathcal{N}_1 is either adjacent to exactly one vertex in $\mathcal P$ or exactly two consecutive vertices in $\mathcal P$. That is, $\mathcal N_1$ can be partitioned into two subsets

$$
A_i := \{u \in \mathcal{N}_1 : N(u) \cap \mathcal{P} = \{u_i\}\} \text{ and } B_{i,i+1} := \{u \in \mathcal{N}_1 : N(u) \cap \mathcal{P} = \{u_i, u_{i+1}\}\}.
$$

Let $A := \bigcup_{i=1}^{5} A_i$ and $B := \bigcup_{i=1}^{5} B_{i,i+1}$ so that $N(\mathcal{P}) = A \cup B$ and $V(G) = \mathcal{P} \cup A \cup B$ $B \cup N_2$.

We now claim that \mathcal{N}_2 is empty. For otherwise, suppose that there is a vertex $z \in \mathcal{N}_2$. Then *z* has a neighbour $x \in A \cup B$ since *G* is connected. Without loss of generality, we may assume that *x* is adjacent to u_i , but adjacent to none of u_{i+2}, u_{i+3} and u_{i+4} . Then $\{z, x, u_i, u_{i+2}, u_{i+3}, u_{i+4}\}$ induces a P_6 . However, this is a contradiction and so $V(G)$ = $P ∪ A ∪ B.$

We next observe a few useful properties of the sets *A* and *B* before proceeding with the proof of the theorem.

- M1. For any $v \in V(G)$, $N(v)$ induces a P_3 -free graph, so each $G[A_i]$ is the disjoint union of complete graphs for all $i \in [5]$. This follows directly from the fact that *G* is diamond-free.
- M2. The set A_i is anti-complete to A_{i+1} for all $i \in [5]$. For if $a_1 \in A_i$ and $a_2 \in A_{i+1}$ are adjacent, then $\{a_1, a_2, u_i, u_{i+1}\}$ induces a C_4 and $\{a_1, a_2, u_{i+1}, u_{i+2}, u_{i+3}, u_{i+4}\}$ induces a P_6 , which is a contradiction.
- M3. The set A_i is complete to A_{i+2} for all $i \in [5]$. For if $a_1 \in A_i$ and $a_2 \in A_{i+2}$ are not adjacent, then $\{a_1, a_2, u_{i-2}, u_{i-1}, u_i, u_{i+2}\}$ induces a P_6 , which is a contradiction.
- M4. Each $G[B_{i,i+1}]$ is a clique for all $i \in [5]$. For if $b_1, b_2 \in B_{i,i+1}$ are not adjacent, then ${b_1, b_2, u_i, u_{i+1}}$ induces a diamond, which is a contradiction.
- M5. The set $B = B_{i,i+1} \cup B_{i+2,i+3}$ for some *i*. It suffices to show that for each *i* at least one of $B_{i,i+1}, B_{i-1,i}$ is empty. Suppose the contrary. Let $b_1 \in B_{i,i+1}$ and $b_2 \in B_{i-1,i}$. Then, either $\{b_1, b_2, u_i, u_{i+1}\}$ induces a diamond if $b_1b_2 \in E$ or ${b_1, b_2, u_{i-1}, u_{i+1}, u_{i+2}, u_{i+3}}$ induces a P_6 if $b_1b_2 \notin E$, which is a contradiction.
- M6. The set $B_{i,i+1}$ is anti-complete to $A_i \cup A_{i+1}$ for all $i \in [5]$. By symmetry, it suffices to show that $B_{i,i+1}$ is anti-complete to A_i . If $a \in A_i$ and $b \in B_{i,i+1}$ are adjacent, then $\{a, b, u_i, u_{i+1}\}$ induces a diamond, which is a contradiction.
- M7. Either $B_{i,i+1} = \emptyset$ or $A_{i-1} \cup A_{i+2} = \emptyset$ for all $i \in [5]$. To the contrary, assume that *a* ∈ *A*_{*i*+2} and *b* ∈ *B*_{*i*,*i*+1}. If *a* and *b* are adjacent, then {*a*, *b*, *u*_{*i*+1}, *u*_{*i*+2}} induces a C_4 , which is a contradiction. If a and b are not adjacent, then ${a, b, u_i, u_{i+2}, u_{i+3}, u_{i+4}}$ induces a P_6 , which is a contradiction. The case with $a \in A_{i-1}$ is symmetric.
- M8. If *A_i* contains an edge, then $A_{i+2} = A_{i+3} = B_{i+1,i+2} = B_{i-2,i-1} = ∅$ for all $i ∈ [5]$. Suppose that *A_i* contains an edge a_1a_2 . If there is a vertex *x* in $A_{i+2} \cup A_{i+3}$, then

x is adjacent to a_1 and a_2 by M3. Then $\{x, a_1, a_2, u_i\}$ induces a diamond, which is a contradiction. Since $A_i \neq \emptyset$, it follows that $B_{i+1,i+2} = B_{i-2,i-1} = \emptyset$ by M7.

- M9. If $A_i \neq \emptyset$, then each of $B_{i+1,i+2} = B_{i-2,i-1} = \emptyset$ for all $i \in [5]$. This follows directly from M7.
- M10. The set $B_{i,i+1}$ is anti-complete to $B_{i+2,i+3}$ for all $i \in [5]$. For if $b_1 \in B_{i,i+1}$ and $b_2 \in B_{i+2,i+3}$ are such that b_1 and b_2 are adjacent, then $\{b_1, b_2, u_{i+1}, u_{i+2}\}$ induces a *C*4, which is a contradiction.

3. Proof of Theorem [1.1](#page-2-1)

In this section, we show that every $(P_6, C_4, \text{diamond})$ -free graph *G* is $(\omega(G) + 1)$ colourable and *G* is $\omega(G)$ -colourable if $\omega \geq 3$. The following lemma can be verified routinely.

LEMMA 3.1 (Cameron *et al.* [\[2\]](#page-8-7)). *Let G be a graph that can be partitioned into two cliques X and Y such that the edges between X and Y form a matching. If* $max\{|X|, |Y|\} \le$ *k* for some integer $k \geq 2$, then G is k-colourable.

To prove Theorem [1.1,](#page-2-1) we shall use induction on the number of vertices in *G*. The proof follows the pretty idea presented in [\[2\]](#page-8-7). Two nonadjacent vertices *x* and *y* in a graph *G* are *comparable* if $N(x) \subseteq N(y)$ or $N(y) \subseteq N(x)$. The major work lies in proving the following auxiliary theorem.

THEOREM 3.2. *Let G be a connected* (*P*6, *C*4, *diamond*)*-free graph without clique cutsets and comparable vertices. Then* $\chi(G) \le \max\{3, \omega(G)\}.$

PROOF. Let $G = (V, E)$ be a graph satisfying the assumptions of the theorem. In what follows, we let ω denote the clique number of a graph under consideration. If $\omega \leq 2$, then the theorem follows from Lemma [2.2.](#page-2-2) Therefore, we can assume that $\omega \geq 3$. Aiming for a contradiction, we assume that *G* is imperfect and hence it contains an induced C_5 by Lemma [2.3,](#page-2-3) say $P := \{u_1, u_2, u_3, u_4, u_5\}$ (in order). Define the sets \mathcal{P}, A, B, A_i and $B_{i,i+1}$ for each $i \in \{1, 2, 3, 4, 5\}$ as before. By M5, we may assume that $B = B_{2,3} \cup B_{4,5}$. The idea is to colour $P \cup A \cup B_{2,3} \cup B_{4,5}$ using exactly ω colours. We consider several cases. In each case, we give a desired colouring explicitly. In the following, when we say that we colour a set, say *X*, with a certain colour *a*, we mean that we colour each vertex in *X* with that colour *a*. We now proceed by considering the following cases.

*Case 1. A*₁ *contains an edge.* By M8, $A_3 = A_4 = B_{2,3} = B_{4,5} = \emptyset$. Since $B_{2,3} = B_{4,5} = \emptyset$, *B* is empty, that is, $V(G) = \mathcal{P} \cup A$. Furthermore, A_1 is anti-complete to $A_2 \cup A_5$ by M2, and A_2 and A_5 are complete to each other by M3. Now we can colour $P \cup A$ as follows.

- (i) *A*₂ contains an edge (so that $A_5 = \emptyset$ by M8).
	- Colour $P := u_1, u_2, u_3, u_4, u_5$ with colours 1, 2, 1, 2, 3 in order.
	- Colour each component of A_1 with colours in $\{2, 3, \ldots, \omega\}$.
	- Colour each component of A_2 with colours in $\{1, 3, 4, \ldots, \omega\}$.

- (ii) A_2 is stable.
	- Colour $P := u_1, u_2, u_3, u_4, u_5$ with colours 2, 1, 2, 3, 1 in order.
	- Colour each component of A_1 with colours in $\{1, 3, 4, \ldots, \omega\}$.
	- If A_5 contains an edge, then $A_2 = \emptyset$ by M8 and we colour each component of A_5 with colours in $\{2, 3, ..., \omega\}$. Otherwise, colour A_5 with colour 2 if $A_5 \neq \emptyset$ and colour A_2 with colour 3 if $A_2 \neq \emptyset$ colour A_2 with colour 3 if $A_2 \neq \emptyset$.

We note that this colouring is well defined. Since the components of A_1 and A_2 are cliques of size at most $\omega - 1$, every vertex is coloured with some colour. We now show that this is an ω -colouring of $\mathcal{P} \cup A$. Observe first that each trivial component of A_1 is coloured with colour 2. By M1, the colouring is proper on $\mathcal{P} \cup A$. This proves that the colouring is a proper colouring.

Case 2. A₁ is stable but not empty. By M8, there are no edges in A_3 and A_4 . By M9, $B_{2,3} = B_{4,5} = 0$, that is, $V(G) = \mathcal{P} \cup A$. If both A_2 and A_5 are stable sets or both A_2 and A_5 are empty, then $\omega = 2$, which is a contradiction. If A_2 is stable but not empty, then A_5 contains no edges by M8, which is a contradiction to $\omega \geq 3$. Therefore, it follows from M2 that the following gives an ω -colouring of $\mathcal{P} \cup A$.

- (i) A_2 contains an edge (so that $A_4 = A_5 = \emptyset$ by M8).
	- Colour $P := u_1, u_2, u_3, u_4, u_5$ with colours 2, 1, 2, 1, 3 in order.
	- Colour A_1 and A_3 with colours 1 and 3, respectively.
	- Colour each component of A_2 with colours in $\{2, 3, \ldots, \omega\}$.
- (ii) *A*₂ is empty. (Note that A_5 must contains an edge in this case since $\omega \ge 3$, and hence $A_3 = \emptyset$ by M8.)
	- Colour $\{u_1, u_2, u_3, u_4, u_5\}$ with colours 2, 1, 2, 3, 1 in order.
	- Colour A_1 and A_4 with colour 1 and 2 (if $A_4 \neq \emptyset$), respectively.
	- Colour each component of A_5 with colours in $\{2, 3, \ldots, \omega\}$.

By M2 and M3, it is easily verified that the colouring is proper.

Case 3. A₁ is empty. In this case, we further consider the following two subcases.

*Subcase 3.1. A*₂ *contains an edge.* By M8, $A_4 = A_5 = \emptyset$. By M9, $A_3 \neq \emptyset$ and $B_{4,5} \neq \emptyset$ cannot occur simultaneously. That is, either A_3 is empty or $B_{4,5}$ is empty.

If $A_3 \neq \emptyset$, then $B_{4,5} = \emptyset$ by M9. That is, $V(G) = \mathcal{P} \cup A_2 \cup A_3 \cup B_{2,3}$. Consider the following colouring of $\mathcal{P} \cup A_2 \cup A_3 \cup B_{2,3}$.

- Colour $P := u_1, u_2, u_3, u_4, u_5$ with colours 1, 2, 1, 2, 3 in order.
- Colour each component of A_2 with colours in $\{1, 3, 4, \ldots, \omega\}$.
- Colour each component of A_3 with colours in $\{2, 3, \ldots, \omega\}$.
- Colour vertices in $B_{2,3}$ with colours in $\{3, 4, \ldots, \omega\}$.

By M4, $|B_{2,3}| \le \omega - 2$. An argument similar to that in Case 1 shows that the above is a proper ω -colouring of $\mathcal{P} \cup A_2 \cup A_3 \cup B_{2,3}$.

Suppose now that A_3 is empty. That is, $V(G) = \mathcal{P} \cup A_2 \cup B_{2,3} \cup B_{4,5}$. Since *G* is diamond-free, the edges (if there are any) between $B_{4,5}$ and each component of A_2 form a matching. Consider the following colouring of $\mathcal{P} \cup A \cup B_{2,3} \cup B_{4,5}$.

- Colour $P := u_1, u_2, u_3, u_4, u_5$ with colours 3, 1, 2, 1, 2 in order.
- Colour each component of A_2 with colours in $\{2, 3, \ldots, \omega\}$. By Lemma [3.1,](#page-4-0) there exists an (ω – 2)-colouring of $B_{4,5}$ with colours in {3, 4, ..., ω } by permuting colours in A_2 (if necessary).
- By M10, it is easily verified that there exists an $(\omega 2)$ -colouring of $B_{2,3}$ with colours in $\{3, 4, \ldots, \omega\}$.

Since $B_{2,3}$ and A_2 are anti-complete by M6, the above colouring gives a proper $ω$ -colouring of $P ∪ A_2 ∪ B_{2,3} ∪ B_{4,5}$.

Subcase 3.2. A₂ is stable but not empty. Suppose first that A_3 contains an edge. By M8, $A_5 = B_{4,5} = \emptyset$. By M8, A_4 contains no edges since $A_2 \neq \emptyset$.

If A_4 is empty, one can easily verify that the following is a proper ω -colouring of $P \cup A \cup B_{2,3} \cup B_{4,5}.$

- Colour $P := u_1, u_2, u_3, u_4, u_5$ with colours 1, 2, 1, 3, 2 in order.
- Colour A_2 with 1 and colour each component of A_3 with colours in $\{2, 3, \ldots, \omega\}$.
- Colour vertices in $B_{2,3}$ with colours in $\{3, 4, \ldots, \omega\}$.

If A_4 is stable but not empty, then $B_{2,3} = \emptyset$ by M9. That is, $V(G) = \mathcal{P} \cup A$. One can obtain a proper colouring of P ∪ *A* as follows.

- Colour $P := u_1, u_2, u_3, u_4, u_5$ with colours 1, 2, 1, 3, 2 in order.
- Colour *A*² and *A*⁴ with colours 3 and 2, respectively, and colour each component of A_3 with colours in $\{2, 3, \ldots, \omega\}.$

Now suppose that A_3 is stable but not empty. Then, by M9, $B_{4,5} = \emptyset$, and by M8, both A_4 and A_5 are stable since $A_2 \neq \emptyset$. So, each A_i is stable for $2 \leq i \leq 5$. We can obtain a proper colouring of $P \cup A \cup B$ as follows.

- Colour $P := u_1, u_2, u_3, u_4, u_5$ with colours 1, 2, 1, 3, 2 in order.
- Colour A_2 , A_3 , A_4 and A_5 with colours 3, 3, 2 and 1, respectively, and colour each component of $B_{2,3}$ with colours in $\{3, 4, \ldots, \omega\}$.

Therefore, we may suppose that $A_3 = \emptyset$. Then, by M8, both A_4 and A_5 are stable since $A_2 \neq \emptyset$ and, by M9, either $A_4 = \emptyset$ or $B_{2,3} = \emptyset$. Now we consider the following two colourings.

- (i) $A_4 = \emptyset$.
	- Colour $P := u_1, u_2, u_3, u_4, u_5$ with colours 3, 2, 1, 2, 1 in order.
	- Colour A_2 and A_5 with colours 1 and 2, respectively.
	- By M10, there exists an $(\omega 2)$ -colouring of $B_{2,3} \cup B_{4,5}$ with colours in $\{3, 4, \ldots, \omega\}.$

(ii) $A_4 \neq \emptyset$, that is, $B_{2,3} = \emptyset$.

- Colour $P := u_1, u_2, u_3, u_4, u_5$ with colours 3, 2, 1, 2, 1 in order.
- Colour A_2 , A_4 and A_5 with colours 1, 3 and 2, respectively.
- By M4, there exists an $(\omega 2)$ -colouring of $B_{4,5}$ with colours in $\{3, 4, ..., \omega\}$.

By M4 and M10, one can easily verify that the above is a proper ω -colouring of $P \cup A \cup B_2$ ₃ ∪ B_4 ₅.

Subcase 3.3. A₂ is empty. Suppose first that A_3 contains an edge. By M8, $A_5 = B_4$, $= \emptyset$. By M9, either $A_4 = \emptyset$ or $B_{2,3} = \emptyset$. We consider the following two colourings.

 (i) $A_4 = \emptyset$.

- Colour $P := u_1, u_2, u_3, u_4, u_5$ with colours 3, 2, 1, 2, 1 in order.
- Colour each component of A_3 with colours in $\{2, 3, \ldots, \omega\}$.
- Colour vertices in $B_{2,3}$ with colours in $\{3, 4, \ldots, \omega\}$.

(ii)
$$
A_4 \neq \emptyset
$$
, that is, $B_{2,3} = \emptyset$.

- Colour $P := u_1, u_2, u_3, u_4, u_5$ with colours 2, 3, 1, 2, 1 in order.
- Colour each component of A_3 with colours in $\{2, 3, \ldots, \omega\}$.
- Colour each component of A_4 with colours in $\{1, 3, 4, \ldots, \omega\}$.

One can easily verify that the above is a proper ω -colouring of $\mathcal{P} \cup A \cup B_{2,3} \cup B_{4,5}$.

Now suppose that A_3 is stable but not empty. Then, by M9, $B_{4,5}$ is empty and, by $M8$, A_5 is stable. We consider the following two colourings.

(i)
$$
A_4 = \emptyset
$$
.

- Colour $P := u_1, u_2, u_3, u_4, u_5$ with colours 3, 1, 2, 1, 2 in order.
- Colour A_3 and A_5 with colours 1 and 3, respectively.
- Colour vertices in $B_{2,3}$ with colours in $\{3, 4, \ldots, \omega\}$.
- (ii) $A_4 \neq \emptyset$, that is, $B_{2,3} = \emptyset$.
	- Colour $P := u_1, u_2, u_3, u_4, u_5$ with colours 1, 3, 2, 1, 2 in order.
	- Colour A_3 and A_5 with colours 1 and 3, respectively, and colour each component of A_4 with colours in $\{2, 3, \ldots, \omega\}$.

By M2 and M3, one can easily verify that the above is a proper ω -colouring of $P \cup A \cup B_{2,3} \cup B_{4,5}.$

Finally, we suppose that A_3 is empty. That is, $V(G) = \mathcal{P} \cup A_4 \cup A_5 \cup B_{2,3} \cup B_{4,5}$. By M9, either $A_4 = \emptyset$ or $B_{2,3} = \emptyset$. Since G is diamond-free, the edges (if there are any) between $B_{2,3}$ and each component of A_5 form a matching. Consider the following two colourings of $\mathcal{P} \cup A_4 \cup A_5 \cup B_{2,3} \cup B_4$,

- (i) $A_4 = \emptyset$.
	- Colour $P := u_1, u_2, u_3, u_4, u_5$ with colours 3, 2, 1, 2, 1 in order.
- Colour each component of A_5 with colours in $\{2, 3, \ldots, \omega\}$.
- By Lemma [3.1,](#page-4-0) there exists an $(\omega 2)$ -colouring of $B_{2,3}$ with colours in $\{3, 4, \ldots, \omega\}$ by permuting colours in A_5 (if necessary).
- Colour vertices in $B_{4,5}$ with colours in $\{3, 4, \ldots, \omega\}$.
- (ii) $A_4 \neq \emptyset$, that is, $B_{2,3} = \emptyset$.
	- Colour $P := u_1, u_2, u_3, u_4, u_5$ with colours 3, 1, 2, 1, 2 in order.
	- Colour each component of A_4 with colours in $\{2, 3, \ldots, \omega\}$.
	- Colour each component of A_5 with colours in $\{1, 3, 4, \ldots, \omega\}$.
	- Colour B_4 ₅ with colours in $\{3, 4, \ldots, \omega\}$.

Since $B_{2,3}$ and A_2 are anti-complete, the above colouring gives a proper ω -colouring of $\mathcal{P} \cup A_4 \cup A_5 \cup B_{2,3} \cup B_{4,5}$. This concludes the proof of Theorem 3.2 of $P \cup A_4 \cup A_5 \cup B_{2,3} \cup B_{4,5}$. This concludes the proof of Theorem [3.2.](#page-4-1)

Now we can easily deduce Theorem [1.1.](#page-2-1)

PROOF OF THEOREM [1.1.](#page-2-1) If $\omega \leq 2$, then the theorem follows from Lemma [2.2.](#page-2-2) Therefore, we can assume that $\omega \geq 3$ and we prove the theorem by induction on |*V*|. We may assume that *G* is connected. For otherwise, the theorem holds by applying the inductive hypothesis to each connected component of *G*. If *G* contains a clique cutset *S*, that is, $G[V - S]$ is the disjoint union of two subgraphs X_1 and X_2 , then $\chi(G) = \max{\chi(G[V(X_1) \cup S])}, \chi(G[V(X_2) \cup S])\}$ directly from the inductive hypothesis. If *G* contains two nonadjacent vertices *x* and *y* such that $N(y) \subseteq N(x)$, then $\chi(G) = \chi(G[V - \{y\}])$ and $\omega(G) = \omega(G[V - \{y\}])$, and the theorem holds by applying the inductive hypothesis to $G[V - \{y\}]$. Therefore, we can assume that G is a connected graph with no pair of comparable vertices and no clique cutsets. Thus, the theorem follows directly from Theorem [3.2.](#page-4-1) -

References

- [1] J. Bondy and U. S. R. Murty, *Graph Theory*, Graduate Texts in Mathematics, 244 (Springer, Berlin, 2008).
- [2] K. Cameron, S. Huang and O. Merkel, 'An optimal χ -bound for $(P_6,$ diamond)-free graphs', *J. Graph Theory* 97 (2021), 451–465.
- [3] A. Char and T. Karthick, 'Coloring of (P5, 4-wheel)-free graphs', *Discrete Math.* 345 (2022), Article no 112795, 22 pages.
- [4] M. Chudnovsky, N. Robertson, P. Seymour and R. Thomas, 'The strong perfect graph theorem', *Ann. of Math. (2)* 164 (2006), 51–229.
- [5] M. Chudnovsky and V. Sivaraman, 'Perfect divisibility and 2-divisibility', *J. Graph Theory* 90 (2019), 54–60.
- [6] P. Erdős, 'Graph theory and probability', *Canad. J. Math.* 11 (1959), 34-38.
- [7] S. Gaspers and S. Huang, 'Linearly χ-bounding ^H-free graphs', *J. Graph Theory* ⁹² (2019), 322–342.
- [8] J. Goedgebeur, S. Huang, Y. Ju and O. Merkel, 'Colouring graphs with no induced six-vertex path or diamond', Preprint, 2021, [arXiv:2106.08602v1.](https://arxiv.org/abs/2106.08602v1)
- [9] S. Gravier, C. Hoàng and F. Maffray, 'Coloring the hypergraph of maximal cliques of a graph with no long path', *Discrete Math.* 272 (2003), 285–290.

- [10] A. Gyárfás, 'Problems from the world surrounding perfect graphs', *Zastos. Mat.* XIX (1987), 413–441.
- [11] T. Karthick and F. Maffray, 'Vizing bound for the chromatic number on some graph classes', *Graphs Combin.* 32 (2016), 1447–1460.
- [12] T. Karthick and F. Maffray, 'Square-free graphs with no six-vertex induced path', *SIAM J. Discrete Math.* 33 (2019), 874–909.
- [13] T. Karthick and S. Mishra, 'On the chromatic number of (*P*5, diamond)-free graphs', *Graphs Combin.* 34 (2018), 677–692.
- [14] H. Kierstead, S. Penrice and W. Trotter, 'On-line and first-fit coloring of graphs that do not induce *P*5', *SIAM J. Discrete Math.* 8 (1995), 485–498.
- [15] J. Mycielski, 'Sur le coloriage des graphes', *Colloq. Math.* 3 (1955), 161–162.
- [16] I. Schiermeyer, 'Chromatic number of *P*5-free graphs: Reed's conjecture', *Discrete Math.* 343 (2016), 1940–1943.
- [17] A. Scott and P. Seymour, 'Induced subgraphs of graphs with large chromatic number. I. Odd holes', *J. Combin. Theory Ser. B* 121 (2016), 68–84.
- [18] A. Scott and P. Seymour, 'A survey of χ-boundedness', *J. Graph Theory* ⁹⁵ (2020), 473–504.
- [19] D. West, *Introduction to Graph Theory*, 2nd edn (Prentice-Hall, Englewood Cliffs, NJ, 2000).

KAIYANG LAN, Center for Discrete Mathematics, Fuzhou University, Fujian 350003, PR China e-mail: kylan95@126.com

YIDONG ZHOU, Center for Discrete Mathematics, Fuzhou University, Fujian 350003, PR China e-mail: zoed98@126.com

FENG LIU, Department of Mathematics, East China Normal University, Shanghai 200241, PR China e-mail: liufeng0609@126.com