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ABSTRACT. The spatial pattern of accumulation rate can be inferred from internal layers in glaciers and
ice sheets. Non-dimensional analysis determines where finite strain can be neglected (‘shallow-layer
approximation’) or approximated with a local one-dimensional flow model (‘local-layer approxima-
tion’), and where gradients in strain rate along particle paths must be included (‘deep layers’). We
develop a general geophysical inverse procedure to infer the spatial pattern of accumulation rate along
a steady-state flowband, using measured topography of the ice-sheet surface, bed and a ‘deep layer’.
A variety of thermomechanical ice-flow models can be used in the forward problem to calculate surface
topography and ice velocity, which are used to calculate particle paths and internal-layer shapes. An
objective tolerance criterion prevents over-fitting the data. After making site-specific simplifications in
the thermomechanical flow algorithm, we find the accumulation rate along a flowband through Taylor
Mouth, a flank site on Taylor Dome, Antarctica, using a layer at approximately 100m depth, or 20% of
the ice thickness. Accumulation rate correlates with ice-surface curvature. At this site, gradients along
flow paths critically impact inference of both the accumulation pattern, and the depth–age relation in
a 100m core.

1. INTRODUCTION
1.1. Radar layers
Ice-penetrating radars (IPR) were developed to measure ice
thickness in polar ice sheets (Paren and Robin, 1975). These
radars can also detect internal layers, which are commonly
interpreted as horizons of constant age (isochrones). These
layers can be used to infer the history of ice sheets, including
migration of ice divides (Nereson and others, 1998), changes
in thickness, and initiation of new ice divides (e.g. Conway
and others, 1999; Nereson and Raymond, 2001). The depths
of these layers also provide information on accumulation-
rate patterns; however, the most appropriate technique to
extract this information depends on the amount of strain that
the ice has experienced.

1.2. Strain regimes
In the uppermost few percent of an ice sheet, ground-
penetrating radars (GPR) also detect layers, and local ac-
cumulation rate can be viewed as directly proportional to
ice-equivalent layer depth (e.g. Pinglot and others, 2001;
Spikes and others, 2004). We call this the shallow-layer ap-
proximation (SLA).
Since older layers reflect longer-term patterns of climate,

there is also strong motivation to extract accumulation pat-
terns from these older layers. As the depth of an internal layer
increases to a larger fraction of the total ice thickness, the
ice above that layer has been subjected to increasing total
strain as a result of ice flow. The SLA is no longer appropri-
ate for layers buried by more than a few percent of the ice
thickness. For these layers, a layer-thinning correction must
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be applied. Accumulation rates have been extracted from
these layers by integrating local vertical strain rates in a one-
dimensional (1-D) flow model to get a strain correction (e.g.
Morse and others, 1999; Vaughan and others, 1999; Fahne-
stock and others, 2001; Kanagaratnam and others, 2001;
Pälli and others, 2002; Leysinger Vieli and others, 2004;
Siegert and Payne, 2004). We call this the local-layer ap-
proximation (LLA). Using the LLA is equivalent to assuming
that there are no horizontal gradients in geometry and strain
rate, or that a sandwich model as described by Reeh (1989)
adequately represents the flow.
However, even the LLA becomes inadequate for deeper

layers, where horizontal gradients in accumulation rate and
strain rate along particle paths have significantly affected
layer depths. Extraction of accumulation-rate information
from these layers is a challenging problem that requires a
full treatment of ice flow and accumulated strain along par-
ticle paths. We define these as deep layers for the purpose
of inferring accumulation-rate patterns.
In section 6, we derive non-dimensional numbers that de-

termine whether the SLA, the LLA or a deep-layer treatment
should be used for any particular layer. In this paper, we de-
scribe a general inverse method to extract accumulation-rate
information from deep layers.

1.3. Previous work
Several previous studies have avoided the limitations of the
LLA by using flowline particle-tracking models to calculate
layer shapes. Nereson and others (2000) used a two-
dimensional (2-D) flow model to estimate the spatial pat-
tern of accumulation across Siple Dome, Antarctica. They
approximated the spatial variation of accumulation rate with
an arctangent function, and used an inverse procedure to
select the two parameters defining its amplitude and length
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scale on each side of the divide. Baldwin and others (2003)
tracked particles backward along trajectories in a steady-state
model, starting from two internal layers of known ages in the
Greenland ice sheet. They used mismatches between their
modelled surface and the observed surface to infer correc-
tions to the measured accumulation pattern. The adjustment
algorithm allowed only corrections that varied slowly over
length scales greater than the particle-path lengths. Variabil-
ity over shorter distances could be incorporated only through
the initial guess, which was based on previously measured
accumulation rates. The algorithm could not create, correct
or remove short-wavelength structures. In practice, applica-
tion of the method was limited to relatively young layers with
short particle paths, or to regions with low spatial gradients
in accumulation rate, where layer ages are already known.
Parrenin and others (2006) presented analytical solutions for
steady-state shapes of deep layers. Hindmarsh and others
(2002) used a formal optimal-filter inverse approach tomatch
observed layers, andMartı́n and others (2006) used a control-
method approach to infer a spatial pattern of accumulation
rate from internal layers. Their work bears a strong concep-
tual connection to the work that we address here, although
it used a different inverse approach.
Here, we describe a general, robust procedure using geo-

physical inverse theory (e.g. Menke, 1989; Parker, 1994;
Aster and others, 2005) to recover the spatial pattern and
magnitude of accumulation rate along a flowband, using
a deep layer. The method can recover the information on
spatial patterns of accumulation rate as retained in internal-
layer geometry, without additional assumptions about scales
of variability, or layer age.

1.4. Forward and inverse problems
The forward problem is the calculation of ice-velocity and
ice-temperature fields, ice-surface topography and shapes of
internal layers. The forward problem is described by a set
of conservation and constitutive equations, boundary con-
ditions and parameter values. Those boundary conditions
include the spatial pattern of accumulation rate. In the corre-
sponding inverse problem, we know the equations, and we
may know some or all of the boundary conditions, and some
or all of the parameter values. We incorporate data into the
solution procedure in order to infer the remaining unknown
boundary conditions and parameters.
In our specific inverse problem, we can use surface-profile

and layer-depth information, as well as other data (if avail-
able), such as point measurements of surface velocity and
accumulation rate, in order to find a smooth accumulation-
rate profile and other model parameters that together pro-
duce an expected level of mismatch between the data and
corresponding values calculated using these model par-
ameters in the forward problem.
Since fully general inverse procedures can be computa-

tionally expensive, it is desirable to customize and reduce
the complexity of the inverse procedure by exploiting any
simplifications that can be justified in each particular ap-
plication. After describing the inverse procedure in its
general form, we apply the method to an internal layer ob-
served along a flowline near Taylor Dome, Victoria Land,
Antarctica. By introducing additional approximations that
are appropriate to this particular flowline, we illustrate how
the general procedure can be simplified for this particular
field site.

Notation
We use boldface lower-case type to represent vectors, and
single subscripts to indicate their components. We use bold-
face upper-case type to represent matrices, and double sub-
scripts to denote their components.

2. FORWARD PROBLEM
We solve our forward problem to find ice-surface elevation,
ice velocities and layer shapes, using a flowband with steady-
state surface, velocities and temperature. The flowband has
variable width W (x), where x follows the flow direction,
y is horizontal and transverse to the flow, and z is the ver-
tical coordinate. S(x) is the ice-equivalent surface elevation,
B(x) is the bed elevation, (S − z) is the depth below the
surface, and H(x) = S(x) − B(x) is ice-equivalent thickness.
Our model can be applied to any limited region of an ice
sheet, including those that do not include an ice divide. Our
formulation is designed to allow a wide range of thermo-
mechanical calculations to be adapted to it.

2.1. Flowband geometry
With the assumption that flow direction is controlled by the
local surface slope, flowlines can be defined as trajectories
that are everywhere parallel to the gradient of the measured
surface topography. When surface-velocity measurements
are also available, that assumption can be relaxed, and flow-
lines can be defined as trajectories that are everywhere par-
allel to the measured velocities. A flowband is the volume
bounded by two vertical surfaces directly beneath two nearby
flowlines. We use a steady-state flowband of variable width
W (x), where x follows the ice-flow direction along the cen-
ter of the flowband, y is horizontal and transverse to the
flow, and z is elevation. The bed elevation B(x) must also
be known along the flowband. Bed elevation B(x), ice thick-
ness S(x), and the components of velocity v = (u, v ,w ) in
the x and z directions are assumed to be uniform in the y
direction transverse to the central flowline. In solving our for-
ward problem, we calculate the steady-state ice-equivalent
ice-surface topography S(x), and the steady-state flow field
v everywhere in the flowband. The velocity is tangential to
the vertical boundaries of the flowband, and u and w are
invariant in the y direction across the flowband. Depth be-
low the surface is (S(x)− z), and ice-equivalent thickness is
H(x) = S(x)− B(x).

2.2. Rheological parameters
When the coordinates (x, y , z) are written in index notation
as (x1, x2, x3), ice strain rate ε̇ij = 1/2(∂ui/∂xj + ∂uj/∂xi )
is calculated from a temperature-dependent flow law (e.g.
Glen, 1958; Paterson, 1994, ch. 5), using

ε̇ij = EA(θ) τ
n−1
e τij , (1)

where i and j can take values from 1 to 3, τij is the deviatoric
stress tensor, τe is its second invariant, n = 3 is the flow-
law exponent, and θ is temperature. A(θ) is a temperature-
dependent softness or fluidity parameter; A(θ) is generally
written as Ao exp(−Q/R θ) (Paterson, 1994, p. 86), where
Q = 60kJmol−1 is the activation energy for creep, and
R = 8.314 Jmol−1 K−1 is the gas constant. We use Ao =
4.0×10−4 kPa−3 s−1, the value derived from Paterson (1994,
p. 97, table 5.2) for temperatures below −10◦C. At a given
temperature θ, the rheological behavior of ice in our model is
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fully determined by a single adjustable model parameter, the
enhancement factor E . Under other circumstances, E may
vary spatially (e.g. to represent a contrast between ice-age
and interglacial ice). If ice is treated as an anisotropic mate-
rial, a different constitutive relation may replace Equation (1),
and additional parameters may be introduced.

2.3. Thermomechanical flow calculations
Calculation of surface topography and velocity requires cal-
culation of the temperature field θ, because strain rate ε̇ij in
ice (Equation (1)), basal-sliding rate, and basal-melting rate
all depend on the temperature distribution. In many cases,
the temperature calculations also depend on ice flow. Any
steady-state thermomechanical calculation also requires a
specified ice thickness at one location to provide a bound-
ary condition. For example, we might use the measured ice
thickness at an ice-core site. When the parameters control-
ling mass balance, rheological properties and thermal con-
ditions have been specified, the forward problem can be
solved using any of a wide variety of ice-flow models to
calculate the steady-state surface topography, ice velocity,
and temperature. These thermomechanical calculations gen-
erally proceed by integrating a rheological relation such as
Equation (1), while simultaneously solving a heat-flow equa-
tion for the temperature. Because the required complexity
of these calculations can be site-specific, we do not de-
scribe a general thermomechanical calculation procedure.
In Appendix B, we describe a specific simplified thermo-
mechanical calculation procedure that is appropriate for our
site at Taylor Mouth, Antarctica.

2.4. Kinematic representation of velocity

For a given accumulation-rate pattern ḃ(x) and basal melting-
rate pattern ṁ(x), both expressed in ice-equivalent units,
the steady-state ice-flux profile q(x) along the flowband is
given by

q(x) = q in +
∫ x

xin

(
ḃ(ζ)− ṁ(ζ)

)
W (ζ) dζ , (2)

where q in is the flux entering or leaving the flowband at
x = xin. At any location x, the flowband has cross-sectional
areaW (x)×H(x). The ice flux q(x) through the cross-section
is also proportional to ū(x), the horizontal velocity u(x, z)
averaged over that cross-section, through

q(x) =W (x)
∫ S (x )

B(x )
u(x, z) dz =W (x)H(x) ū(x) . (3)

The distribution of velocity with depth depends on the basal
boundary conditions and on the selected thermomechanical
ice-flow algorithm. In order to make the inverse procedure
independent of details of specific algorithms for thermo-
mechanical flow calculations, and to standardize procedures
for particle tracking, we represent horizontal velocities u(x, z)
along a vertical profile at any position x as the product of the
depth-averaged velocity ū(x), and a non-dimensional shape
function φ(x, ẑ ) (Reeh, 1988), which describes how the hori-
zontal velocity varies with depth, giving

u(x, z) = ū(x)φ(x, ẑ ) , (4)

where ẑ is normalized non-dimensional height above the
bed, given by

ẑ =
z − B(x)
S(x) − B(x) . (5)

The horizontal-velocity shape function φ(x, ẑ ) is produced
by the forward algorithm, in which many different thermo-
mechanical ice-flow models can be used. The sophistication
required of the thermomechanical model depends on the
characteristics of the particular site under investigation. One
approach is to use the shape functions φ(x, ẑ ) generated by a
simple kinematic approximation such as the Dansgaard and
Johnsen (1969) model. A second approach is to use shape
functions based on the shallow-ice approximation (SIA; e.g.
Paterson, 1994, p. 262), incorporating depth-varying tem-
perature. A third approach, followed by Nereson and others
(1998) and by Nereson and Waddington (2002), is to use
polynomial approximations to the velocity profiles produced
by a finite-element momentum-conservation flowmodel (e.g.
Raymond, 1983; Hvidberg, 1996) that incorporates all stress
components for plane strain, and incorporates the influence
of temperature on strain rates.
The strain rate transverse to the flowband is (e.g. Wadding-

ton, 1982)

∂v (x, z)
∂y

=
1

W (x)
dW
dx

u(x, z) . (6)

The vertical velocity w (x, z) can then be recovered from in-
compressibility,

∂w
∂z

= −
(

∂u
∂x

+
∂v
∂y

)
. (7)

At the bed (z = B(x), or ẑ = 0), the vertical velocity is

w (x,B(x)) = −ṁ(x) + ū(x)φ(x, 0)
dB
dx
, (8)

where the first term represents vertical motion due to basal
melting, and the second term represents vertical motion due
to sliding over basal topography. Melting and sliding can be
calculated by appropriate equations or algorithms in the for-
ward problem. A vertical integration of Equation (7) from the
bed, together with Equations (2–6) leads to an expression for
the vertical velocity:

w (x, z) = −
(
ḃ(x)− ṁ(x)

)
ψ(x, ẑ )− ṁ(x)

+ u(x, z)
(
(1− ẑ) dB

dx
+ ẑ

dS
dx

)

− ū(x)H(x)
∫ ẑ

0

∂φ(x, ζ̂)
∂x

dζ̂ , (9)

where

ψ(x, ẑ) =
∫ ẑ

0
φ(x, ζ̂) dζ̂ . (10)

In the absence of basal melting, basal sliding and horizontal
gradients in surface elevation, bed elevation and horizontal-
velocity shape function, the first term fully describes the
vertical velocity; hence, ψ(x, ẑ) is sometimes called a vertical-
velocity shape function.

2.5. Particle paths and layers
Finally, particle paths are found by integrating the velocity
field in Equations (4) and (9), viewed as the material deriva-
tive of particle position. To find the depth h(m)(x,A) (‘m’ for
modelled) of a modelled layer of age A, we join the end
points of paths at time t = 0 for a number of particles that
started at the ice-sheet surface S(x), at points x = x (s)j , (‘s’ for
surface) at t = −A.
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3. INVERSE PROBLEM
3.1. Strategy
The standard approach when solving a geophysical inverse
problem (see, e.g., Menke, 1989; Parker, 1994) is to find a
‘model’. The model is a vector p comprising a set of Np
model parameters ({pj , j = 1, . . . ,Np}), which are required
in the solution of the forward problem. Many forward prob-
lems are diffusive in character, so that details of the initial
conditions are forgotten over time, and details in boundary
conditions are attenuated with distance from the boundaries.
When those initial or boundary conditions are model par-
ameters that we wish to recover by solving an inverse prob-
lem, the data may contain enough information to recover
only weighted averages of those initial or boundary values.
The data may also retain insufficient information to reject
large and physically unrealistic oscillations in those initial or
boundary values, and spurious structures can appear in the
solution. Therefore, we must stabilize, or regularize, the solu-
tion to find a preferred model that is also physically plausible
(e.g. Parker, 1994; Truffer, 2004; Aster and others, 2005). One
way to regularize an inverse problem is to require that the
solution be smoothly varying.
The inversion procedure selects a model p that has a min-

imum magnitude, as measured by some scalar functional
called a ‘model norm’, which we write as ||p || . This model
norm provides the means by which we impose regulariza-
tion on the problem. For example, if the model is the spa-
tial accumulation-rate distribution, then we might choose to
minimize a model norm where ||p || is a roughness measure.
Minimizing a norm that measures roughness allows us to
select a spatially smooth accumulation-rate solution from
among a large number of possible solutions, most of which
may be less physically plausible. Other choices of model
norm are also possible.
Because the data contain measurement errors, and be-

cause our formulation of the forward problem may be im-
perfect, we should not fit the data too closely. Over-fitting
data can also produce a model that contains more structure
(e.g. spatial oscillations in the accumulation-rate profile) than
is necessary to ‘explain’ the data, within their uncertainties,
and this structure is likely to be spurious. We prefer to seek
robust models, in which all structure is required by the data,
at the expense of potentially failing to detect model struc-
ture that might be present but which is not absolutely re-
quired by the data. The preferred model should reproduce
the Nd observations ({o (d)i , i = 1, . . . ,Nd}) (‘d’ for data) at
an acceptable tolerance level T , which is determined by the
statistical uncertainties in the data. To quantify data misfit, we
also define a scalar ‘data norm’ ||d || , which is a measure of
non-dimensional mismatch between the data vector o(d) and
the model predictions o(m) of the corresponding observables
from a solution of the forward problem.
This mismatch criterion

||d ||2 − T 2 = 0 (11)

forms a constraint that must be satisfied by the model p,
as its model norm ||p || is minimized. There is extensive lit-
erature on constrained minimization of quadratic functions
(e.g. Morse and Feshbach, 1953). We define a performance
index Ip :

Ip = ||p ||2 + ν
(
||d ||2 − T 2

)
, (12)

where ν is a positive Lagrange multiplier. In the language of
the calculus of variations, the vector p and value of ν that
minimize ||p ||2 subject to the constraint in Equation (11) are
found at a stationary point of Ip in (p, ν) space. This stationary
point can be found by solving the set of Np + 1 equations

∂Ip
∂pj

= 0 j = 1, . . . ,Np (13)

∂Ip
∂ν

= 0 . (14)

TheNp equations in (13) lead naturally to the normal equa-
tions for a least-squares minimization problem. In the lan-
guage of inverse theory, the Lagrange multiplier ν is called a
trade-off parameter because it expresses the ‘best’ balance,
or trade-off, between minimizing the model norm ||p || , and
fitting the data through the data norm ||d || , as expressed in
Equation (11). The model solution vector p is the smoothest
result that also fits the data at tolerance level T (not better
and not worse).

3.2. Model parameters
We know the bed elevation B(x), and the widthW (x) along
the flowband. We also know the mean annual temperature at
the ice-sheet surface, and the ice thickness along the flow-
band. In general, the model parameters p that we wish to
find then comprise the accumulation-rate profile ḃ(x), the
ice flux qin entering or leaving the flowband at one bound-
ary, the age A of the layer, the ice thickness H0 at one point
along the flowband, the flow enhancement factor E and the
geothermal flux qgeo. If the bed reaches the pressure-melting
temperature, then basal sliding u(x, 0) and basal melting ṁ(x)
must be included in the parameter list, either directly as spa-
tial profiles, or through a few parameters that allow their
values to be calculated in the forward algorithm. In some sit-
uations, the inverse procedure can be simplified by assigning
fixed values to some of these quantities, rather than retaining
them as adjustable model parameters.
So that we can reduce p to a finite number of parameters,

we represent the accumulation pattern ḃ(x) by a piecewise-
linear function. We select Nn nodes {x (n)j , j = 1, . . . ,Nn}
(‘n’ for nodes). Then, the accumulation-rate parameters are
the values ḃj ≡ ḃ(x (n)j ) of accumulation rate at nodes x (n)j .

3.3. Model norm
Since we expect that the accumulation rate varies smoothly
along the flowband, we choose to minimize a model norm
that measures model roughness. We represent global model
roughness in scalar form by the square of the second deriva-
tive d2ḃ/dx2 of the accumulation rate ḃ(x), integrated along
the flowband. Because ḃ(x) is piecewise-linear, its second
derivative is actually zero everywhere except at the nodes
x (n)j , where it can be infinite. So, instead of using the ac-
tual curvature of the piecewise-linear function, we estimate
smoothness in the vicinity of node x (n)j by attributing a uni-

form curvature to the x interval of length Δxj = (x (n)j+1 −
x (n)j−1)/2, which joins the midpoints of two adjacent linear

segments, i.e. in the vicinity of node x (n)j , the upstream and
downstream boundaries for intervals of uniform curvature
are (x (n)j−1 + x

(n)
j )/2 and (x

(n)
j + x (n)j+1)/2. We use a standard

finite-difference representation of a uniform second deriva-
tive in this interval, based on the accumulation-rate model
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parameters ḃj , and non-dimensionalized with a characteris-
tic length scale L(c) (e.g. characteristic ice thickness, or char-
acteristic length scale of surface undulations, both of which
can be related to accumulation-rate variations), and a charac-
teristic accumulation rate ḃ (c) (e.g. the value from a core site),
giving non-dimensional curvature in the jth such interval as

cj =
L(c)

2

ḃ(c)
d2ḃ
dx2

=
L(c)

2

ḃ (c)

⎡
⎢⎢⎣

(
ḃj+1−ḃj
x (n)j+1−x (n)j

)
−

(
ḃj−ḃj−1

x (n)j −x (n)j−1

)
Δxj

⎤
⎥⎥⎦ .

(15)
If the profiles of basal sliding u(x, 0) or melting ṁ(x) are
included as model parameters, they can be regularized in
a similar way through a smoothness condition analogous to
Equation (15); however, if basal sliding or melting are cal-
culated in the forward algorithm from a few physical par-
ameters, rather than specified directly as series of unknown
model parameters, a different treatment is needed. None of
the parameters qin,A,H0, E or qgeo, or parameters for calcu-
lating basal sliding or melting profiles can be included in a
smoothness measure, because they do not naturally belong
in a spatial sequence with other parameters. However, we
can include each of these parameters in the model norm by
penalizing its distance from an expected value p (e)j (‘e’ for

expected). An initial guess for the ice flux q (0)in can be de-
rived from rough ideas about the upstream catchment area
and accumulation rate. An initial guess for the layer age A(0)
might be derived from a nearby ice core. An initial guess
for H (0)0 could be its measured value, and an initial estimate
for the enhancement factor could be E (0) = 1. An initial guess
for the geothermal flux q (0)geo could be derived from know-
ledge of the tectonic setting. In the model norm, distance
from this expected value is expressed in non-dimensional
units measured by a characteristic acceptable deviation
δp (c)j , i.e.

cj =
pj − p (e)j

δp (c)j
. (16)

Assigning a large value to δp (c)j expresses limited conviction
in our expectations, and allows the model to deviate more
readily from the corresponding expectation p (e)j , for a given
contribution of model parameter pj (through cj ) to the model
norm

||p ||2 =
Np∑
j=1

(
w (c)j

)2
c2j . (17)

In Equation (17), the positive non-dimensional weights(
w (c)j

)2
depend on the type of contribution cj . When cj rep-

resents the uniform curvature of accumulation rate in the
vicinity of node x (n)j (Equation (15)), its squared value c2j
is integrated over the non-dimensional x interval Δxj/Δx,
where Δx = (x (n)N − x (n)1 )/(Nn − 1) is the average length
of these intervals Δxj along the flowband, leading to the

weight w (c)j =
(
Δxj/Δx

)1/2
. When j identifies one of the

other model parameters (e.g. qin, A, H0, E or qgeo), then
w (c)j = 1.
The contributions cj to the model norm can be viewed as

model residuals, in the sense that they measure the degree

to which the parameters fail to match expectations, either
of zero curvature in Equation (15), or of a preconceived
value p (e)j in Equation (16).

3.4. Data norm
The inversion procedure must incorporate data that constrain
the current geometry, and data that constrain rates of flow
in the forward problem. The geometric observations com-
prise the depth h(d)(x) (‘d’ for data) of a layer measured by
ice-penetrating radar, and surface elevation S (d)(x) measured
by global positioning system (GPS) or optical survey tech-
niques. During the inversion procedure, these profiles are
resampled to produce datasets h(d)i ≡ h(d)(xhi ) at Nh positions
{xhi , i = 1, . . . ,Nh}, and surface elevation S (d)i ≡ S (d)(xSi ) at
NS positions {xSi , i = 1, . . . ,NS}.
The rate-constraining data comprise observations of ac-

cumulation rate ḃ(d)i ≡ ḃ (d)(xḃi ) at Nḃ positions {xḃi , i =
1, . . . ,Nḃ}, and ice velocity u(d)i ≡ u(d)(xui ) at Nu positions
{xui , i = 1, . . . ,Nu} along the flowband (if available). The
observations of each type can be written as a vector, h(d), S(d),

ḃ
(d)
and u(d), and these vectors are then combined to form the

vector of observations o(d) of lengthNd = Nh+NS+Nḃ+Nu .
For each observation o (d)i , there is also a corresponding

quantity calculated in the forward problem; we call this the
modelled observable o (m)i , and we form the non-dimensional
residual

ri =
o (m)i − o (d)i

σ(d)i
(18)

comprising the mismatch, divided by the standard error σ(d)i
of the measurement.
We can apply Equation (18) to find residuals for each data

type; these residuals can be written as column vectors rh , rS ,

rḃ and ru , whose elements are rhi ≡ rh (xhi ), r Si ≡ r S (xSi ), r ḃi ≡
r ḃ (xḃi ), and r

u
i ≡ ru (xui ), respectively. When these residuals

are all combined into a single residual vector r, the global
mismatch is expressed by the data norm ||d || defined by

||d ||2 =
Nd∑
i=1

r2i =
Nd∑
i=1

[
(o (m)i − o (d)i )

σ(d)i

]2
. (19)

If the non-dimensional mismatches in Equation (18) were
linearly independent and normally distributed, then the tol-
erance T to which we should match the data (using Equa-
tion (11)) could be represented through the expected value
of the square root of a sum of squares of N realizations of
a process with zero mean and unit variance (Parker, 1994,
p. 124), i.e.

T ≈ N1/2d

[
1− 1

4Nd
+

1
32N2d

+O (N−3
d )

]
. (20)

Although the residuals may not be strictly independent and
normally distributed, Equation (20) provides a useful estimate
for T , and we can test its validity after we have found a
solution vector p. (See section 5.1.)

3.5. Solution procedure
Equation (13) can be written in terms of model residuals cj
from Equation (17), which depend on the model parameters
pj through Equations (15) and (16), and data residuals rj from
Equation (19), which depend on the model parameters pj
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through the model predictions o (m)i of observable quantities
in Equation (18). The o (m)i predictions are not linear functions
of the model parameters pj , so Equations (13) and (14) cannot
be solved directly. In order to find the ‘best’ model-parameter
vector p and trade-off parameter ν, we start with a trial solu-
tion p(0) and ν (0). Initial guesses for parameters qin, A, H0, E
and qgeo can be the expected values p (e)j for those parameters.

For example, the flux q (0)in can be estimated from rough ideas
about the upstream catchment area and accumulation rate.
An initial estimate for the enhancement factor is E (0) = 1.
We can use the SLA (sections 1.2 and 6.5) to estimate the
accumulation-rate parameters. Dividing the layer-depth data
h(d)(x (n)j ) at the nodes x

(n)
j , by the initial estimate A(0) of the

layer age, gives ḃ (0)j = h(d)(x (n)j )/A(0). An initial guess for the
trade-off parameter could be ν (0) = 1.0. However, there are
two problems with this initial guess.
First, when used with ν (0) in the forward model, the model-

parameter vector p(0) may not produce a minimum Ip in
Equation (12). Therefore, the estimate of themodel-parameter
vector p must be improved by iteration. At iteration k , the
unknown parameters p(k ) that would satisfy Equations (13)
are expressed in terms of the known current estimates p(k−1),
and unknown corrections Δp(k ):

p(k ) = p(k−1) + Δp(k ). (21)

Here, we outline the solution procedure. Details are given
in Appendix A. Expanding the unknown updated model re-
siduals c(k ) and data residuals r(k ) in Equations (17) and (19)
in terms of the unknown parameter corrections Δp(k ) in the
vicinity of c(k−1) and r(k−1) respectively, produces a set of
(Np + Nd) linear equations for the parameter corrections
Δp(k ). In block-matrix form, the equations to be solved are[

Wc 0
0 Wr

] [
Jc
Jr

] [
Δp

]
= −

[
Wc 0
0 Wr

] [
c
r

]
, (22)

where c and r are the parameter-residual and data-residual
vectors, and Jc and Jr are Jacobian matrices whose elements
in row i and column j are the partial derivatives ∂ci/∂pj
and ∂ri/∂pj , respectively. In general, these partial derivatives
must be evaluated numerically by perturbing each model
parameter pj in turn, and recalculating all the model resid-
uals ci and data residuals ri . Diagonal matrices Wc and Wr

contain weights; their ith diagonal elements are w (c)i and
ν1/2, respectively.
Letting A be the product of the two matrices on the left

side of Equation (22), we use singular value decomposition
(SVD; e.g. Press and others, 1986, p. 52) to find a generalized
inverse of A, after zeroing the inverses of singular values
that fail to pass a round-off criterion. In practice, with our
smoothness regularization criterion (Equations (15) and (17)),
singular values are only occasionally too small.
Iterations continue until changes in Δp(k ) are small or fail

to reduce Ip.
Second, even when Equation (13) has been satisfied, the

vector p will produce model observables o(m) (layer depth,
ice-surface elevation, and mass balance or ice velocity at
a number of points on the surface) that may not satisfy the
mismatch constraint given by Equation (11). Therefore, the
estimate of the trade-off parameter ν must also be improved
by iteration, until Equation (11) is satisfied. Figure 1, based
on application of the method to observations at Taylor Mouth

0 0.5 1 1.5 2
−50

0

50

100

150

      ν

||d
||

2  −
 T

 2

Fig. 1. Sensitivity of data-mismatch criterion ( ||d ||2 − T 2) to trade-
off parameter, ν. For each value of ν, we find the model-parameter
vector p that minimizes Ip . For data from Taylor Mouth (Figs 2–4),
ν � 1.3 satisfies Equation (11), and we accept the corresponding
solution vector p.

(section 4), shows how the data mismatch ||d ||2 typically
varies with trade-off parameter ν. When ν is small, minimiz-
ing Ip with respect to the parameters (Equation (13)) over-
emphasizes model smoothness at the expense of a large data
misfit ||d ||2. When ν is large, minimizing Ip overemphasizes
data fit, making ||d ||2 very small at the expense of model
smoothness, and ( ||d ||2 − T 2) becomes negative; the data
vector d (or the noise in the data) has been fit more closely
than the data uncertainties can justify. This high degree of
fit is achieved by the presence of extraneous structure in
the solution vector p. For Taylor Mouth data, as shown in
Figure 1, the model fits the data at the expected level T 2

for ν = 1.3, and the model-parameter vector p found when
using this value of ν is the preferred solution.

4. TAYLOR MOUTH
To illustrate the solution of an inverse problem with this ap-
proach, we have found the spatial accumulation-rate pattern
at Taylor Mouth, a site in Antarctica at the head of Taylor
Valley (Fig. 2). Taylor Mouth is approximately 30 km north-
east of the Taylor Dome ice-core site, where an ice core to
bedrock was collected in 1994 (Grootes and others, 1994).
That core has provided a 150 kyr stable-isotope paleoclimate
record (Steig and others, 2000; Grootes and others, 2001)
and an atmospheric CO2 record for the past 60 kyr (Inder-
muhle and others, 2000). Several short (100m) firn cores
were also collected, in order to assess the spatial variability
of climate, and climate-signal preservation in the area. One
of these cores was collected from Taylor Mouth (Neumann
and others, 2005).

4.1. Observations and flowband
The ice at the Taylor Mouth core site (TM in Fig. 3) origi-
nates along a flowline from a saddle approximately 12 km
to the northwest (Figs 2 and 3). Strong internal layers are
visible in the radar profile (Fig. 4). The strain network shown
in Figure 3 provided surface ice-velocity data. We surveyed
the flow markers by optical methods tied to a local bedrock
monument (on the nunatak near [49 km, 10 km] in Fig. 3),
which had been tied to a reference GPS base station at
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Fig. 2. Location of Taylor Dome. Solid dot marks location of 554m Taylor Dome ice core. Surface-elevation contours were measured by
airborne radar survey (Morse, 1997). Box denotes Taylor Mouth study site, shown in Figure 3. Open circle marks 100m core.

McMurdo Station, Antarctica, as described by Morse and
others (2007). We estimated the standard error of these vel-
ocity data to be σ(d)u = 0.05ma−1. To find the flowline shown
in Figure 3, we interpolated the velocity field between these
measured markers. Starting at the core site and working both
upstream and downstream, we tracked the locus of points
that was everywhere parallel to the local velocity field. To
find the relative flowband width W (x) shown in Figure 5d,
we repeated the flowline calculation, starting from two points
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Fig. 3. Surface topography and ice flow of Taylor Mouth area. Local
coordinate system is as described by Morse and others (2007). Dots
represent poles in strain grid used to infer surface ice-flow velocities
and the flowband through the core site at TM. Stars denote locations
of gross-β accumulation and 10m firn-temperature measurements.
Black area in lower right is a nunatak, to which velocity surveys
were referenced.

near the core site but offset several hundred meters in oppo-
site directions transverse to the flow. The relative flowband
width W (x) is the separation between these two flowlines,
normalized by their separation at the core site.
Wemeasured ice thickness along that central flowline with

the University of Washington ice-penetrating radar system
described by Weertman (1993) and Gades (1998). This pro-
file also includes internal layers (Fig. 4); we attribute a stan-
dard error of σ(d)h = 5m to the depth of the layer indicated
by the dashed curve. We converted the radar travel times
to depths using the known source–receiver separation, and
wave speeds of 300mμs−1 in air for the direct wave, and
168mμs−1 in ice. After accounting for the two-way travel
time through the ice and approximately 15m of air in the
firn, we recovered ice-equivalent depths.
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Fig. 4. Ice-penetrating radar profile along Taylor Mouth flowband.
Vertical bar marks the 100m core hole. Bold solid curve marks
the internal layer used as data in the inverse problem. (Apparent
surface-parallel features in upper 50m are an artifact.)
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Fig. 5. (a) Accumulation-rate solution ḃ(x). Gray band spans range
of solutions associated with uncertainties in data as described in
section 5.2. (b) Narrow triangles show locations and widths of a
series of perturbations (amplitudes not to scale) that were added to
individual nodes of the preferred accumulation-rate solution in (a).
Each corresponding bold curve is a model-resolving function, which
shows the ability of the inverse procedure to recover that perturba-
tion. (c) Vertical section along flowband. End points of dotted parti-
cle paths define 1662 year layer (bold solid curve). Other modelled
layers, at 500 year intervals, are shown by dashed and dotted sub-
horizontal curves. Other particle paths (solid curves) provide model
ages for the ice core (bold vertical line). (d) Non-dimensional flow-
band width W (x), inferred from surface topography and surface-
velocity measurements (Fig. 3). (e) Positive surface curvature (con-
cave topography) correlates with high accumulation rate, probably
due to deceleration of both upslope and downslope winds.

Surface elevations in Figure 3 were measured along 5 km
gridlines as part of an airborne ice-penetrating radar sur-
vey with GPS control (Morse, 1997). We also measured the
surface-elevation profile shown in Figure 5c, with a ground-
based continuous GPS survey along the flowline. The surface
elevations are known to within σ(d)S = 2m.
Morse and others (1999) detected the radioactive horizons

from above-ground bomb testing in the 1950s and 1960s
(Picciotto and Wilgain, 1963) using gross-β measurements
on a shallow core. As a result of the low net accumulation
rate at the Taylor Mouth core site (Fig. 5), these horizons
are not well preserved, resulting in relatively low confidence
(high uncertainty) in the accumulation-rate measurement.
The average accumulation rate at the core site was ḃ =
0.023ma−1, with σ(d)

ḃ
= 0.01ma−1 over the four decades

between 1955 and 1994.

4.2. Data for inverse problem
We used our inverse procedure to determine the accumula-
tion rate at 60 nodes x (n)i spaced at 200m along the flowband
through the Taylor Mouth core site. Our data comprised:
the ice-surface profile (Fig. 5c); the uppermost continuous

Table 1. Expected values and solution characteristics for model par-
ameters pj and trade-off parameter ν. Ice flux qin is reported in

m3 a−1 per m width of flowband at the boundary. H0 is the ice-
equivalent thickness at the core site. Standard deviations of the
solution were calculated from 100 parameter solutions derived from
randomly perturbed datasets

Parameter Expected Acceptable Solution Standard
value p (e)j deviation δp (c)j pj deviation

ḃj Fig. 6 smooth Fig. 6 Fig. 5
qin 16.5m2 a−1 3.8m2 a−1 17.8m2 a−1 2.2m2 a−1
A 2000 years 400 years 1662 years 126years
H0 646.5m 2m 647.8m –
E 1.0 0.3 0.75 –
qgeo 77mWm−2 5mWm−2 – –

ν (0) Solution

ν 1.0 – 1.3 –

internal layer (highlighted in Fig. 4); the ice velocity measured
at the core site and at three other sites along the flow-
band (see Fig. 3); and the accumulation rate measured at
the core site (TM in Fig. 3). The ice-surface data comprised
elevations at theNS = 60 nodes x

(n)
i spaced at 200m, and the

internal-layer data comprised measured depths at the ending
x positions of 70 particle paths in the forward model (e.g. see
Fig. 5c).

4.3. Site-specific simplifications
In section 3, we described the inversion procedure in very
general form. We now select an appropriate thermo-
mechanical ice-flow model for the Taylor Mouth flowband.
This flow model should be as sophisticated as necessary to
accurately represent the flow field as it impacts the targeted
layer along this flowband, while being as simple as possible
to facilitate the inversion procedure.

Thermomechanical calculations
At Taylor Mouth, we use horizontal-velocity shape functions
φ(x, ẑ) based on the SIA (e.g. Paterson, 1994, p. 262), in-
corporating depth-varying temperature. Measured accumu-
lation rates are only a few centimeters (ice equivalent) per
year, so vertical velocities are small and advective heat
transfer is unimportant. We calculate a 1-D vertical temper-
ature profile θ(x, z) at each node x (n)i using the 1-D steady-
state temperature model of Firestone and others (1990). By
using the Taylor Dome value of geothermal flux (Table 1),
in which we have high confidence, we decouple qgeo from
the other model parameters. Since the basal temperature is
below the melting point everywhere along the flowband, we
set basal sliding u(x, 0) = 0 and basal melting ṁ(x) = 0,
further simplifying the inverse problem. Details of our
thermomechanical ice-flow calculations are provided in
Appendix B.

Jacobian matrices
The matrices Jc and Jr of partial derivatives ∂ci/∂pj and
∂ri/∂pj in Equation (22) are straightforward to construct nu-
merically, by perturbing each parameter pj in turn, and recal-
culating all the model residuals ci and data residuals ri with
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Fig. 6. (a) Model estimates of ḃ(x) start from the LLA (thin solid
curve), and converge to bold solid curve. (b) Corresponding mod-
elled internal-layer shapes. Initial estimate (thin solid curve), found
by using LLA-derived accumulation in (a) in forward algorithm, is
a poor match to the observed layer (solid gray curve). Final mod-
elled layer is shown by bold solid curve. (c) Distribution of non-
dimensional mismatches (Equation (18)) between observations and
model, normalized to have unit integral. Resemblance to normal
probability-density distribution (solid curve) confirms that Equa-
tion (20) defines appropriate tolerance level T .

the forward thermomechanical model. However, this pro-
cedure is computationally intensive. Instead, we first note
that the expressions for ci in Equations (15) and (16) can
be differentiated directly. Then, noting that the residuals ri
(Equation (18)) depend on the parameters pj only through the
observables o (m)i , we express each observable quantity o (m)i
as a function of the model parameters p so that we can find
analytical expressions for these derivatives wherever possi-
ble. For example, the accumulation rate ḃ(x) at any x can
be interpolated from the bi model parameters. Ice flux q(x)
can be related to p through Equation (2). Velocity u(x, S(x))
at the ice surface S(x) at any position x can be expressed in
terms of the parameters by first expressing velocity in terms
of flux q(x) using Equations (3) and (4).

Surface-profile data
The modelled ice-surface profile S (m)(x) cannot be written
readily as an analytical function of the model parameters,
and as a result, the partial derivatives ∂S (m)(x (n)i )/∂pj need
to be evaluated numerically. We avoided this computational
cost by decoupling the ice-surface residuals from the other
data, and at the same time decoupling the enhancement fac-
tor, E , from the other model parameters. E appears only in
Equation (B8) (see Appendix B), where it is used to find the
steady-state surface profile, S (m)(x), with a dynamic calcu-
lation. We chose to use the observed surface, S (d)(x), while
finding values for all the other parameters, p, in the inver-
sion process. After solving the inverse problem, we incor-
porated those solution parameters in Equation (B8), and ad-
justed E to minimize the mismatch between the modelled
surface, S (m)(x), and the observed surface, S (d)(x). For our
Taylor Mouth dataset, we were able to match the surface
to within observational error, using E = 0.75. This internal

consistency after the calculations were completed justifies
decoupling E from the other model parameters.
For some other datasets, it may be more important to in-

clude E as a coupled model parameter throughout the inver-
sion, and to include the observed surface topography, S (d)(x),
as data to be matched at each iteration.

Model-parameter considerations
For this inverse solution, we assigned a characteristic length
scale, L(c) = 700m, which is comparable to the ice thickness,
and a characteristic accumulation rate, ḃ (c) = 0.025ma−1,
which is comparable to the value at the core site. These val-
ues were used in Equation (15). We initially estimated the
input flux, qin, by extrapolating the flowband upstream to
the ice divide, and applying ḃ (c) in that area. We initially
estimated the layer age with the LLA, using the measured
depth of the layer at the core site, and the average of ḃ(c)

and the measured accumulation rate at the core site. We
attributed large acceptable deviations, δp (c)j , to these model
parameters (see Equation (16), and Table 1). As a result, our
preconceptions had only a small impact on the solution for
qin, and A. In Table 1 we show expected values, p (e)j , and

acceptable deviations, δp (c)i , from those expectations for the
model parameters qin, A, H0, E and qgeo. Our site-specific
simplifications allowed us to decouple H0, E and qgeo from
the main inverse problem, and thereby to significantly re-
duce computational time. In section 5.1, we show why this
simplification was justified.

5. RESULTS
5.1. Model parameters and predicted observables
We solved the non-linear system of Equation (13) for the
range of values of ν shown in Figure 1. The mismatch cri-
terion Equation (11) is satisfied by ν = 1.3; we accepted
the accumulation-rate profile and other model parameters
associated with ν = 1.3.
Using the preferred value for the trade-off parameter, ν =

1.3, we inferred the accumulation-rate profile in Figure 6a,
shown before and after it evolved through successive itera-
tions. The corresponding modelled internal-layer shapes are
shown in Figure 6b. The final modelled layer agrees closely
(but not too closely) with the observed layer. Table 2 shows
how well the modelled observables match the data. In spite
of the large observational uncertainty, the modelled accumu-
lation rate at the core site exceeds the measured value from
bomb fallout by more than 1σ(d)

ḃ
. Three of the four modelled

surface velocities matched the measured velocities to within
1 σ(d)u . To estimate the standard deviations of the modelled
observables in Table 2, we created 100 predictions of all ob-
servables using 100 realizations of the parameter solution,
as described in section 5.2.
Figure 6c shows a histogram of the mismatches (70 points

in the layer-depth profile, four surface velocity points, and ac-
cumulation at the core site), non-dimensionalized with the
standard errors of the data. The histogram amplitudes are
also normalized so that they integrate to unity. Because we
incorporated the mismatch criterion Equation (11), the mis-
matches do approximate a set of samples from a probability-
density distribution with zero mean and unit variance (thin
solid curve in Fig. 6c), i.e. the model solution is a reasonable
fit to the data.
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The solution of the inverse problem also returned the age
of the layer, A = 1662 years, and the ice flux entering the
upstream end of the flowband, qin = 17.8m

3 a−1 per meter
width of flowband. To assess the appropriateness of decoup-
ling H0 and E from the other model parameters, we ran a
series of dynamic steady-state forward models as described
by Equation (B8) in Appendix B, and driven by our preferred
solution for boundary flux, qin, and accumulation-rate pro-
file, ḃ(x). We varied the ice thickness, H0, at the core site
and enhancement factor, E , in Equation (1), and for each pair
we calculated the root-mean-square (rms)mismatch between
the surface-profile data and the surface predicted by the for-
ward calculation. Figure 7 shows that the surface profile from
the dynamic flow model agreed with the measured surface
to within 1m (rms) for H0 = 647m and E = 0.75. This
finding confirms that if we had included H0 and E as model
parameters in the general inverse procedure, we would have
obtained E ≈ 1, in agreement with our expectations, and the
other model parameters, p, would have been very similar to
those that we actually obtained. Therefore, decoupling the
surface topography calculation and the enhancement factor
from the inverse problem was appropriate at Taylor Mouth.

5.2. Confidence limits on solution
Because of the standard errors associated with each obser-
vation, our dataset is just one realization out of an infinite
number of possible realizations of the same set of observ-
able quantities. In order to estimate uncertainties in the de-
rived model-parameter vector p, we created 100 synthetic
datasets, and derived a corresponding set of model param-
eters from each. We assumed that each observation o (d)j
of accumulation rate or velocity was independent of
the other data. In each synthetic dataset, we replaced the
accumulation-rate measurement and each velocity observa-
tion by a value selected at random from our estimate of its
underlying normal probability-density distribution, defined
by its mean (assumed to be its observed value o (d)j ) and its

observational uncertainty σ(d)j . We assumed that the obser-

vations of layer depth h(d)i were cross-correlated. We repre-
sented correlated noise among the layer-depth data using a
red-noise process. A red-noise series f (x) can be generated by

f (x +Δx) = α f (x) + σ n(x), (23)

where α describes the cross-correlation of the noise series at
lag Δx, and σ is an amplitude scaling a random-noise ser-
ies n(x), with zero mean and unit variance. To create each
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Fig. 7. Root-mean-square mismatch between observed surface to-
pography and topography calculated with forward model (see Equa-
tion (B8) in Appendix B), for a range of ice thickness H0 at core
site, and enhancement factor E , using qin and ḃj parameters from
preferred solution of the inverse problem in all cases. Minimum at
H0 = 646m and E = 0.75 suggests that if H0 and E had not been
decoupled from the other parameters to simplify this particular in-
verse problem, values similar to these would have been obtained.

synthetic dataset, we added red noise to the observed layer-
depth profile h(d)(x). We generated 100 red-noise series with
Equation (23), using Δx = 200m (the node separation) and
α = 0.9866, which creates cross-correlation ‘memory’ over
distances of several kilometers. We used σ = 5m, which
is also the uncertainty σ(d)h in the layer-depth measurements.
After solving the inverse problem for each of these 100 syn-
thetic datasets, we constructed a statistical representation of
the solution, by finding the mean and standard deviation of
each parameter pj .
The gray band in Figure 5a shows our estimate of the un-

certainty in our accumulation-rate solution, based on the
spread of results from this suite of experiments with syn-
thetic datasets. Clearly, the peak in accumulation rate near
x = 4km is a robust feature. The associated standard devia-
tions in layer ages A and incoming ice flux qin are shown in
Table 1.

5.3. Topography and accumulation rate
King and others (2004) related accumulation-rate variations
(at the scale of 1 km) to modelled wind speed and snow
transport associated with subtle slope changes at Lyddan ice
rise, Antarctica. Vaughan and others (1999) found a strong

Table 2. Data and modelled observables. Standard deviations of modelled observables were calculated from 100 sets of data predictions
using 100 parameter solutions derived from randomly perturbed datasets

Datum Measured Measurement Modelled Standard
value o (d)i uncertainty σ(d)j value o (m)i deviation σ(m)j

hd (x ) Fig. 6 5m Fig. 6 4.6m
ḃ1 (core site) 0.023ma−1 0.010ma−1 0.036ma−1 0.009ma−1

ḃ2 (site 607) 0.051ma−1 0.005ma−1 0.070ma−1 0.006ma−1
u1 0.69ma−1 0.05ma−1 0.73ma−1 0.016ma−1
u2 1.51ma−1 0.05ma−1 1.61ma−1 0.022ma−1
u3 2.65ma−1 0.05ma−1 2.59ma−1 0.029ma−1
u4 2.81ma−1 0.05ma−1 2.80ma−1 0.031ma−1
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Fig. 8. Density variation with depth in the Taylor Mouth core, based
on mass and volume measurements of core sections (data from
P.M. Grootes and E.J. Steig).

correlation between accumulation rate and surface slope
dS/dx on Fletcher Promontory, Antarctica, and Frezzotti and
others (2004, 2007) also found a correlation between net
accumulation rate and surface slope in East Antarctica. At
Taylor Mouth, accumulation is also related to topography;
however, we find a better correlation with surface curva-
ture d2S/dx2. Highest accumulation occurs where the sur-
face is concave (near x = 4km in Fig. 5e). There, upslope
winds encounter steepening slopes, and downslope winds
encounter lessening slopes. In both cases, wind speed tends
to decrease, and suspended and saltating snow tends to be
deposited. This effect is probably widespread; Leonard and
others (2004) found a region of high accumulation rate along
the western shore of Subglacial Vostok Lake, Antarctica,
where the surface is also concave upward.

5.4. Depth–age scale
Since the Taylor Mouth core is 100m long, it is composed
primarily of firn rather than ice. Because the flowband model
uses ice-equivalent thickness, we converted the measured
thickness along the flowband to ice-equivalent thicknessH(x)
using the density–depth profile ρ(z) (Fig. 8), measured on the
Taylor Mouth ice core. Near-surface density at the core site
was also measured by M. Duval (personal communication)
in a 2m deep snow pit.
We then used our accumulation-rate solution (Fig. 5a), to-

gether with the particle-tracking module described in sec-
tion 2, to calculate the steady-state depth–age relationship
(in ice equivalent) of the Taylor Mouth ice core. This depth-
age estimate takes into account spatial variations in accu-
mulation rate, ice thickness, and strain associated with flow
upstream from the core site. Finally, we converted this depth–
age relation back to true depth, using ρ(z). This depth–age
scale is shown by the solid white curve in Figure 9. The gray
band shows the range of depth–age curves resulting from
the range of solutions, p, that generated the gray band in
Figure 5a.

6. DISCUSSION
6.1. Steady-state assumption
We assumed that ice flow at Taylor Mouth is in steady
state. We used a time-dependent flowband model (not de-
scribed here) to verify this assumption. Following a climate

perturbation, ice flux in our time-dependent flow model re-
laxed with an e-folding time of approximately 5000 years.
The climate at Taylor Dome has probably been relatively
stable over the past 6000 years (Morse and others, 1998;
Steig and others, 1998; Monnin and others, 2004), so ice-
age transients have largely run their course, and therefore
ice flow at Taylor Mouth is approximately in steady state.
Our steady-state forward ice-flow model, when run with

the accumulation-rate solution (Fig. 5a), also matches the
shapes of deeper layers, although, as might be expected,
with a somewhat higher standard deviation (∼10m) than we
find for the layer that we used in the inverse problem. We
also obtained solutions for (assumed) steady accumulation-
rate profiles by repeating the inversion process, using several
successively deeper layers with ages up to 2700 years in the
solutions. These accumulation-rate solutions had magnitudes
and structure similar to the solution in Figure 5a. These re-
sults suggest that our assumption of steady-state thickness
and flow is reasonable, over millennial timescales.

6.2. Millennial accumulation patterns
Accumulation rates derived from near-surface internal layers
by the SLA are necessarily short-term averages (e.g. ∼10–
100 year averages). Since accumulation rates in the polar
regions are influenced by multi-annual (El Niño–Southern
Oscillation (ENSO), e.g. Bromwich and others, 2004) to
multi-decadal atmospheric cycles (Arctic/Antarctic Oscilla-
tions, e.g. Appenzeller and others, 1998; Noone and Sim-
monds, 2002), short-term accumulation rates may not be
applicable over longer timescales, and should be used with
caution in ice-flow studies. Our formal inverse-problem
approach allows deeper (and therefore older) internal layers
to be used to determine longer-term average accumulation
rates.
Our geophysical-inverse approach assumes that accumu-

lation rate is constant in time, and that ice flow is steady.
For deep layers that pre-date the relative stability of the late
Holocene, these may be questionable assumptions. It should
be possible to relax these two model assumptions independ-
ently. We could determine the accumulation-rate pattern at
different times in the past by using multiple layers in the
inverse procedure. In addition, replacing Equation (B8) with
a transient continuity equation (e.g. Paterson, 1994, p. 322)
would also allow for changes in ice thickness along the flow-
band as a function of time.

6.3. Response to incompatible data
The inversion procedure assumes steady-state accumulation
and flow, and expects the data to represent long-term aver-
age values of the observable quantities. Ice-sheet thickness
and velocity change slowly, and are insensitive to decadal or
centennial fluctuations in accumulation rate, because of the
5000 year response time. It takes a long time for accumula-
tion variations to build up thicker ice or steeper slopes, and
these slow changes control velocity changes. Although we
obtained our velocity and ice-thickness data over a period of
only a few years, we can expect those data to be represen-
tative of behavior on a millennial timescale.
In contrast, accumulation rate can change rapidly (Van der

Veen, 1993; McConnell and others, 2000). The inversion
procedure can inform us how well observations represent
long-term averages. One of the larger mismatches (≈1.5σ)
among all our data points (see Table 2) occurred for the
measured accumulation rate at the Taylor Mouth core
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site. The measured value (0.023 ± 0.01m a−1), using bomb
radioactivity, represents an average over approximately
40 years. This value is less than two-thirds of the solution of
0.036±0.009ma−1 in Figure 5a, which provides an average
value over 1662 years.
This large mismatch suggests that the accumulation rate

between 1955 and 1995 was significantly lower than the
millennial average. Morse and others (1999) used gross-β
activity in bomb layers to measure accumulation rate at a
second site (607 in Fig. 3). Because site 607 lies 2 km from the
flowline, we did not use its accumulation-rate data (0.051±
0.005ma−1) when solving the inverse problem. However,
the ‘bowl’ shape of the Taylor Mouth catchment (Fig. 3) tends
to funnel katabatic flow, so it is reasonable to expect that
accumulation rate at any given time varies primarily in the
downslope direction, and is relatively uniform along the con-
tours over short distances where the slopes do not vary sig-
nificantly. Site 607 projects along the 2250m contour onto
the flowband at x = 5.5km, where our solution (Fig. 5a)
finds a larger accumulation rate of 0.070± 0.006ma−1.
At both site 607 and the core site, the millennial value

of accumulation rate is approximately 50% larger than the
measurements from 1955 to 1994, indicating that the late
20th century was probably relatively dry throughout the Tay-
lor Mouth area.
Measurements of cosmogenic 10Be also suggest that the

accumulation rate derived from bomb layers was lower than
the long-term average. Over timescales longer than the
11year sunspot cycle, 10Be is often assumed to fall out at
a constant rate. Because snow dilutes the 10Be, the con-
centration of 10Be should be inversely proportional to the
accumulation rate. Steig (1996) measured the average con-
centration of 10Be at Taylor Mouth in the upper 5m, which
spans approximately 80 years. On the basis of thosemeasure-
ments, Morse and others (1999) reported an average accu-
mulation rate of 0.0395ma−1 at the Taylor Mouth core site.
This value is indistinguishable from our millennial average
of 0.036±0.004m a−1, suggesting that, if the late 20th cen-
tury was dry in the Taylor Mouth basin, then the early 20th
century had compensating above-average snowfall.
While technically reliable, the gross-β measurement of

accumulation rate at the Taylor Mouth core site was not a
good measure of the quantity that the inversion procedure
expected it to represent, i.e. an accumulation rate over the
past 1662 years. Because of our steady-state assumption and
the inherent short-term variability of accumulation, this data
point was incompatible with the other data, which better
represented conditions averaged over a millennium. As a re-
sult of this incompatibility, the inversion procedure was un-
able to fit this data point closely. Baldwin and others (2003)
also noted systematic differences between short-term surface
measurements of accumulation rate, and long-term values
inferred from internal layers in Greenland.

6.4. Resolving power
Before making physical inferences from our preferred solu-
tion, it is important to assess the resolving power of the
model. The model size is defined in section 3.3 through
a smoothness condition on the accumulation-rate profile
(Equation (15)). As outlined in section 3.1, this smoothness
condition regularizes the model, and prevents spurious de-
tailed structures from appearing in the model solution. It can
also limit our ability to resolve real structures at fine spatial
scales. Parker (1994) showed that, in a regularized model,
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Fig. 9. Estimates of Taylor Mouth depth–age scale. Bold dashed
curve produced by 1-D flow algorithm (Equation (35)), using mea-
sured density of the core (Fig. 8), and measured accumulation rate
(ḃ = 0.023± 0.010ma−1) at the core site (x = 11.2 km in Fig. 5).
Gray region reflects uncertainty in measured ḃ. Solid black curve
and hatched area result from 1-D flow algorithm (section 6.6) using
long-term accumulation rate at the core site (0.036± 0.009ma−1)
inferred from flowband inverse problem. Solid white curve is de-
rived from accumulation-rate solution and particle paths in Fig-
ure 5. Gray band around it spans age predictions from the same 100
accumulation-rate profiles used to generate gray band in Figure 5a.

the true solution has been smoothed by a set of narrowly
peaked resolving functions. These model-resolving functions
indicate how closely the preferred solution is able to repro-
duce detailed structure in the underlying ‘true’ solution.
Following Parker (1994) and Truffer (2004), we can calcu-

late the model-resolving function for each model parameter
in our preferred solution, which we will call p0. Using p0
in the forward algorithm produces a synthetic dataset o(m)0 .
Because the solution procedure does not fit the data exactly
(see Equation (11)), this dataset o(m)0 and the actual measured
dataset o(d) can be viewed as two equivalent realizations of
the same underlying observables, and their differences r (see
Equation (18)) are distributed across all dimensions of the
data space. If we then solve the inverse problem using o(m)0
as the data, we recover a new set of model parameters p(rec)0
(‘rec’ for recovered). Because p0 and p

(rec)
0 are recovered from

equivalent realizations of the data, their difference (p(rec)0 −p0)
should be small, and distributed across all the model param-
eters. Their rms difference shows the level of uncertainty that
we can expect in general in the solution.
Next we perturb in turn each model parameter pj in the

preferred solution p0, producing a perturbed vector of model
parameters that we call p(j). We then run the forward model
using each p(j) to generate a perturbed set of observables
o(m)(j) . Using these calculated observables as new data o(d)(j) ,
we then solve the new inverse problem to recover a new
vector of parameters p(rec)(j) , using the trade-off parameter ν

from the preferred model solution. The question of interest is
how well we were able to recover the original perturbation
to parameter pj .
We cannot just subtract each new solution p(rec)(j) from our

original preferred (and unperturbed) solution p0, because the
small random differences (p(rec)0 − p0) would confound the
quest to isolate the recovered image of the perturbation. We
eliminate that confounding effect by forming the difference
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(p(rec)(j) − p(rec)0 ) to produce an image of the original impulsive
perturbation to the corresponding model parameter pj . This
image is the model-resolving function for that model par-
ameter. We would like to be able to recover that impulsive
perturbation exactly; invariably, however, some information
is lost. In general, the resolving functions also have non-zero
amplitudes at other parameters. When the parameter pj is
part of a spatial sequence (e.g. accumulation-rate parameters
ḃj ), its resolving function tends to display a broadened peak
involving other nearby model parameters. The width of each
resolving function gives a physical scale of meaningful struc-
ture that can be resolved in the inverse problem. Steep gra-
dients in true accumulation rates will appear as spread-out
gentler gradients if they are limited to length scales shorter
than the width of the resolving function.
Narrow triangles in Figure 5b show perturbations added

to individual nodes of the preferred accumulation-rate so-
lution in Figure 5a. The corresponding bold curves are the
model-resolving functions, which demonstrate the ability of
the inverse procedure to recover details about accumula-
tion rate at a single node. The width of the resolving func-
tion increases with distance along the flowband, because
ice velocity increases with distance from the divide, and ice
particles that comprise the target layer travel longer distances
and can experience larger ranges of accumulation rate and
strain. This indicates that further from the divide a layer re-
tains less information about short-scale spatial variability in
accumulation; therefore our ability to discern such spatial
variability decreases with distance from the divide. However,
our preferred accumulation-rate solution shows major vari-
ations on spatial scales larger than the half-width spread of
the resolving functions (of 1–2 km). Although only weighted
mean values of accumulation rate can be resolved on length
scales shorter than the resolving functions, the variations in
our solution accurately reflect real trends over length scales
of several kilometers.
Similarly, we can create data-resolving functions, by per-

turbing each data value in o(d) in turn, to create new datasets
o(d)pert. Then we solve the inverse problem using each new

dataset o(d)pert in turn to find new model-parameter solutions
p. Finally, we run the forward model with each new param-
eter set p in turn, to generate associated sets of observables
o(m). Subtracting each new set of observables o(m) from our
original (and unperturbed) dataset o(d) produces an image of
the impulsive perturbation to the corresponding data value;
this image is the data-resolving function for that observation.
Each data-resolving function represents the degree to which
that individual observable (data value) contributes unique
information to the inverse procedure. Our data-resolution
functions have widths comparable to those of the model-
resolution functions. They also broaden in the downstream
direction, indicating that useful information for the inverse
problem is provided by progressively broader weighted av-
erages of layer depth.

6.5. Strain regimes and choice of forward algorithm
Before attempting to extract accumulation-rate information
from a particular layer, we must determine the appropriate
level of complexity required in the thermomechanical for-
ward algorithm. For any layer, we can distinguish three sit-
uations, based on the impact of vertical strain on the depth
of the layer, and on the impact of gradients of strain and
accumulation rate along particle paths that reach the layer.

Shallow-layer approximation (SLA)
For accumulation rate ḃ and ice thickness H, a character-
istic vertical strain rate is given by ε̇char = −ḃ/H. After we
account for firn compaction, very shallow layers with depth h
and age A have experienced almost no cumulative dynamic
strain ε associated with ice flow, if

|ε| ≈ |ε̇char ×A| = ḃ
H
A � 1. (24)

Consequently, accumulation can be estimated locally from
layer depth and age, through

ḃ ≈ h
A . (25)

Combining Equations (24) and (25) shows that this approxi-
mation is valid only when h/H � 1 (e.g. in the upper few
meters of a valley glacier, or in the upper 10–20m (ice equiv-
alent) of a thick ice sheet). The largest contributor to uncer-
tainty can be imperfect knowledge of the density variation
with depth. Pinglot and others (2001) used this approach for
very shallow layers.

Local-layer approximation (LLA)
Where layers from several decameters depth or deeper are
observed, the SLA (Equation (25)) cannot be used, because
significant dynamic vertical strain has accumulated. Correc-
tions based on a 1-D flow model are often applied at each
site to account for vertical strain, i.e. the local vertical strain is
used to approximate the strain encountered along an actual
particle path. For example, if, following Morse and others
(1999), we assume that the vertical velocity w (z) is approxi-
mately linear with depth, such that the characteristic vertical
strain rate ε̇char applies at all depths, then

w (z) ≈ −ḃ z
H
, (26)

which leads to the improved approximation

ḃ ≈ −ln
(
1− h

H

)
H
A ≈ h

A

[
1 +

1
2

(
h
H

)
+O

((
h
H

)2)]

(27)
When a local 1-D or sandwich model (Reeh, 1989) is used to
make a strain correction, we call that process the LLA. For ex-
ample, the LLA was used by Morse and others (1999), Fahne-
stock and others (2001), Kanagaratnam and others (2001)
and Leysinger Vieli and others (2004).

Deep layers
We consider a layer to be ‘deep’ when the LLA is no longer
applicable. For near-surface layers, the LLA may be as ef-
fective as the full inverse procedure that we have presented
here, and less computationally intensive. For deeper layers,
however, two effects warrant the use of a higher-dimensional
inverse model.
First, in steady state, the downward ice velocity depends

strongly on the local accumulation rate. Therefore, the depth
of the layer at a particular point is a function of the aver-
age accumulation rate along the particle path, from its point
of origin on the surface to the point where it intersects the
measured layer (Fig. 5c). As the depth to an internal layer
increases, a particle path is more likely to traverse regions
of higher or lower accumulation rate, where the downward
velocity pushes the path to a deeper or shallower trajectory,
when compared with a path through a region of uniform ac-
cumulation rate. If the accumulation rate varies slowly with
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position, ice can follow a very long particle path, while still
reaching a depth consistent with the LLA, based on the local
accumulation rate at the end point. On the other hand, if
the accumulation-rate gradient is large (as at Taylor Mouth),
even moderate ice-flow velocities will cause internal-layer
depths to differ significantly from the depth predicted with
the LLA.
Second, as the depth of an internal layer increases to a

larger fraction of the total ice thickness, the ice above that
layer can be subjected to a greater total strain as a result
of ice flow. Spatial variations of total vertical strain alter the
depth of a layer, independent of the local accumulation rate,
as demonstrated by Hindmarsh and others (2002). Variations
in strain are commonly associated with spatial gradients in
ice thickness. Large thickness gradients along a particle path
can have a strong influence on layer depth at the end point
of that path.
To decide whether horizontal gradients are important, we

compare the total length Lpath of a particle path, to char-
acteristic lengths, Lḃ and LH, associated with accumulation-
rate and ice-thickness gradients, respectively. We express the
particle-path length as

Lpath = Ū ×A , (28)

where Ū is the temporally averaged horizontal velocity of
a particle as it follows a particle path, and A is the age
of the layer. A characteristic length Lḃ, associated with
the accumulation-rate gradient, is the length over which ḃ
changes by an appreciable fraction:

1
Lḃ
=

∣∣∣∣1ḃ dḃdx
∣∣∣∣ . (29)

Similarly, a characteristic length LH associated with the ice-
thickness gradient is the length over which ice thickness
changes by an appreciable fraction:

1
LH

=

∣∣∣∣ 1H dHdx
∣∣∣∣ . (30)

When several processes act simultaneously or sequentially
to modify a quantity of interest such as layer depth, we also
want to characterize their combined effects. One way to do
this is to combine characteristic numbers that represent each
process individually, in ways that reflect the nature of those
interactions. If the characteristic numbers describe difficulty
in achieving an effect, or resistance to a process, they can
be combined as serial and parallel resistors in a network, the
total resistance of which is the characteristic value that we
seek. This approach is used to study rates of aerosol deposi-
tion to environmental surfaces such as snow (e.g. Davidson,
1989). Waddington and others (2002) used this approach to
explore the stability of stable-isotope ratios in polar snow.
For our current question, a large characteristic length sug-
gests that the depth to the internal layer varies slowly, so
these characteristic lengths can be viewed as resistances to
layer-depth variations. Because accumulation gradients and
ice-thickness gradients act simultaneously, we can combine
resistances Lḃ and LH in parallel to create a characteristic
length scale Lδh, which represents total resistance to layer-
depth variations from the combined effects of accumulation
gradients and ice-thickness gradients:

1
Lδh

=
1
Lḃ
+
1
LH

. (31)

We now compare Lpath to Lδh, to generate a non-dimen-
sional number D :

D =
Lpath
Lδh

. (32)

If D � 1, then spatial gradients in ḃ and H do not signifi-
cantly impact layer depth, and the LLA can be used. How-
ever, if D ≥ 1, then layer depth at a point is not necessarily
directly related to accumulation rate at that point, and amore
sophisticated approach should be used. At Taylor Mouth,
both Lḃ and LH are important, and D ∼ 1 for the layer that
we used. This conclusion is confirmed by the differences be-
tween the initial and final accumulation rate and modelled
layer (Fig. 6). Clearly the initial guess, which was the LLA,
was inadequate, and a deep-layer treatment is required.

6.6. Application to depth–age scales
Whenever the LLA is inadequate to infer accumulation rate
from a layer, use of a 1-D modelling approach to produce a
depth–age scale for a core to similar depth is also question-
able. We illustrate this point by comparing two depth–age
scales for the Taylor Mouth core. The first is produced by
our flowband model, while the second is produced by the
following 1-D flow model.

A 1-D flow model
The depth–age relationship A(z) for a firn core can be esti-
mated from the measured density profile ρ(z) in the core if
we make simplifying assumptions:

1. Firn compaction is a steady-state process that follows
Sorge’s law (Paterson, 1994, p. 14):

∂ρ

∂t
= 0 and

∂w
∂t

= 0 . (33)

2. The downward velocity w (S) at the surface is equal to the
net accumulation rate of snow at the site.

3. The accumulation rate is constant and uniform, i.e. inde-
pendent of t , x and y .

Then conservation of mass, ∇ · (ρv) = 0, yields
dw (z)
dz

= −w (z)
ρ(z)

dρ(z)
dz

− ε̇H , (34)

where ε̇H = (∂u/∂x) + (∂v/∂y) is the horizontal strain rate,
which we assume is independent of depth over the length
of the core, because horizontal velocity generally changes
very little in the upper 20% of the ice column. Equation (34)
can be integrated numerically from the surface, where w (S)
is known, to yield the vertical-velocity profile w (z).
A second vertical integration,

A(z) =
∫ z

S

dη
w (η)

, (35)

produces an estimate of the depth–age scale A(z) for the
core. This analysis assumes that the area around the Taylor
Mouth core site is horizontal. An identical analysis can be
carried out for a sloping surface and a surface-normal core
by rotating the coordinate system accordingly. Because the
surface slope at Taylor Mouth is small (∼0.02), accounting for
non-orthogonality of the surface and the core hole changed
our calculated vertical velocity by <0.1%.
From repeated position measurements of the network of

poles shown in Figure 3, the horizontal strain rate, ε̇H, at
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the core site was determined to be 1.2 × 10−4 a−1. The
depth–age scale derived from the 1-D compaction model
with the measured accumulation rate at the core site (0.023±
0.010ma−1) is shown by the bold dashed black curve and
the broad gray zone in Figure 9. This 1-D model can provide
ages only down to the depth (60m) at which the density
of the core reaches the density of ice; the predicted age at
60m is 2700 ± 900 years. When we repeated the calcula-
tion with ε̇H varied by ±10%, the calculated age varied by
±75 years at 60m depth. Clearly, uncertainty in the accumu-
lation measurement is the major contributor to uncertainty
in depth–age, when using this 1-D model.

Comparison with flowband model
These results would form our best estimate of the depth–age
scale, if we had no additional information from other loca-
tions along the flowline. However, the bold solid black curve
and the associated hatched zone show the range of depth–
age scales from the 1-D compaction model when we used
this 1-D model together with our new estimate of 0.036 ±
0.009ma−1 (from Fig. 5a) for the 1662 year average accu-
mulation rate at the core site. This calculation produced an
age of 1610 (+620, –350) years at 60m depth.
The 1-D model in Equation (35) is attractive in its sim-

plicity. However, it cannot recognize the incompatibility of
the measured (short-term) accumulation rate at the core site
with respect to our (long-term) problem formulation (see sec-
tion 6.3). As a result, it produced an error in age of 1090 years,
or 68%, at 60m depth, when using the measured accumu-
lation rate, rather than the inferred long-term accumulation
rate at the site. In addition, the 1-D model took into account
environmental conditions only at the core site. This model
may yield reasonable estimates for short cores from envi-
ronments with low spatial gradients of accumulation rate.
Longer cores contain ice that originated some distance up-
stream, and this ice may have experienced different climate
and flow conditions. The same criterion D � 1 (see Equa-
tion (32)) with which we assessed the validity of the LLA
can also be used to assess the validity of a 1-D flow model
applied to ice-core dating.
We also calculated a depth–age relationship (solid white

curve in Fig. 9) for the core using the inferred accumulation-
rate profile (Fig. 5a) in our forward Taylor Mouth flowband
model, and finding travel times of particles on paths that ter-
minated at the core. As expected, both 1-D and 2-D models
predict the same slope of the depth–age scale A(z) near
the surface when both models use accumulation rates from
Figure 5a. However, the two estimates diverge with depth,
since A(z) from the flowband model incorporates upstream
variations in accumulation rate and vertical strain. Since the
accumulation rate increases upstream from the core site, the
flowband model puts thicker layers in the upper 60m and
therefore puts younger ice at 60m depth, where the two
depth–age scales differ by 300years, or approximately 18%.
Because the flowband model can exploit all data con-

tained in the layer geometry to constrain accumulation rate,
its error limits on depth–age are smaller than those for the
1-D model. This analysis confirms our expectation, based on
the non-dimensional analysis in section 6.5, that the depth–
age scale from the flowband model must be used for the
Taylor Mouth ice core. More generally, the analysis confirms
our expectation that non-dimensional analysis can determine
whether a 1-D approach to calculation of a depth–age scale
is valid or not for ice at any desired depth at any ice-core site.

7. CONCLUSIONS

Internal layers in polar ice sheets contain the only remain-
ing detailed record of past accumulation rates; however, re-
covering that information requires integrated application of
a thermomechanical ice-flow algorithm and formal inverse
methods. The depths of near-surface layers in an ice sheet
can provide a direct measurement of accumulation rate
using the SLA, because they require neither complicated
strain corrections nor knowledge of the total ice thickness.
However, shallow layers can provide average accumulation
rate only over short timescales in the recent past. For deeper,
older layers for which vertical strain is appreciable, a local
strain correction can be applied to derive an accumulation-
rate profile using the LLA. When internal-layer depths have
been affected significantly by spatially variable ice strain and
accumulation rate along particle trajectories, the LLA can
be inadequate. The non-dimensional number, D , in Equa-
tion (32) determines when the LLA can be used, and when
the full flowband particle-path treatment for deep layers is
required. The same non-dimensional analysis can determine
when a depth–age scale for an ice core can be derived with
a 1-D analysis, and when spatial gradients of accumulation
rate and ice thickness necessitate a full deep-layer treatment,
with a 2-D or 3-D thermomechanical ice-flow algorithm.
When a deep-layer treatment is required, recovering the

spatial pattern of accumulation rate should be posed as an
inverse problem. We describe a general and versatile frame-
work that incorporates a thermomechanical ice-flow algo-
rithm to solve the forward problem, and uses radar data from
a deep layer, together with other available data, including
surface velocity, or accumulation-rate measurements in order
to find a smooth accumulation-rate profile. Our procedure
achieves an objective trade-off between solution smoothness
and data fit, to avoid over-fitting the data.
To solve an inverse problem, we must solve the associated

forward problem hundreds to thousands of times. To reduce
computational time, the procedure used to solve the inverse
problem should have the flexibility to make simplifications as
necessary, while still capturing the essential physics of flow
at each site. By describing ice velocities and particle paths
in kinematic terms (see section 2.4), our approach offers
the flexibility to choose the simplest thermomechanical ice-
flow model for each problem. Simplifications can include
force-balance approximations such as the SIA; decoupling
of the thermal and mechanical forward calculations; isola-
tion of model parameters that are not strongly coupled to
the other model parameters, or that are independently well
known; and isolation of datasets that can be matched readily
using the partial model-parameter solution for other model
parameters.
Although it spans less than the upper 20% of the ice depth,

the depth–age scale for the Taylor Mouth ice core is signif-
icantly affected by regions of relatively high accumulation
rate upstream from the core site. That region of high accumu-
lation correlates with a region of concave surface topography,
in which both upslope and downslope wind speeds might
be expected to decrease, dropping suspended and saltating
snow.
In future work, the next step is to simultaneously infer both

ice-sheet surface evolution and changing accumulation-rate
patterns over time, by assimilating a series of both deep and
shallow layers, using an objective trade-off criterion (Equa-
tion (11)). There is much still to be learned about our ability
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to resolve model parameters, and to assess the utility of the
various data, as described in section 6.4, for the long-term
transient case.
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APPENDIX A
LEAST-SQUARES SOLUTION PROCEDURE
Using Equations (17) and (19), the performance index in
Equation (12) can be written as

Ip =
Np∑
i=1

(
w (c)i

)2
c2i +

Nd∑
i=1

(
w (r)i

)2
r2i − ν T 2, (A1)

where Np is the number of model parameters, and Nd =
Nh + NS + Nḃ + Nu is the total number of data, compris-
ing the layer-depth profile, surface-elevation profile, and any
available measurements of accumulation rate and surface

velocity. The positive weights
(
w (r)i

)2
are all equal to the

trade-off parameter ν. The goal is to find a vector of param-
eters pj that minimize Ip for a given value of ν. The model
residuals ci depend on the model parameters pj , through
Equations (15) and (16), and the data residuals ri depend
on the model parameters pj , through the model predictions
o (m)i of observable quantities in Equation (18). Starting from
estimates p (0)j of the parameters, we calculate trial values c (0)i
of the model residuals and r (0)i of the data residuals. These
values, when substituted into Equation (A1) along with an
estimate ν (0) of the trade-off parameter, are unlikely to pro-
duce a minimum in Ip . However, we can approximate the
unknown values of the model residuals ci and data residu-
als ri that would minimize Ip with ν = ν (0) by expanding ci
and ri in the vicinity of their current estimates, c

(0)
i and r (0)i :

ci = c (0)i +
Np∑
k=1

∂ci
∂pk

Δpk

ri = r (0)i +
Np∑
k=1

∂ri
∂pk

Δpk . (A2)

Substituting Equation (A2) into Equation (A1) produces

Ip =

⎡
⎣ Np∑
i=1

(
w (c)i

)2 (
c (0)i

)2
+

Nd∑
i=1

(
w (r)i

)2 (
r (0)i

)2
− ν (0) T 2

⎤
⎦

+ 2

⎡
⎣ Np∑
i=1

(
w (c)i

)2
c (0)i

Np∑
k=1

∂ci
∂pk

Δpk

+
Nd∑
i=1

(
w (r)i

)2
r (0)i

Np∑
k=1

∂ri
∂pk

Δpk

⎤
⎦

+

⎡
⎢⎣ Nd∑
i=1

(
w (c)i

)2 ⎛
⎝ Np∑
k=1

∂ci
∂pk

Δpk

⎞
⎠
2

+
Nd∑
i=1

(
w (r)i

)2 ⎛
⎝ Np∑
k=1

∂ri
∂pk

Δpk

⎞
⎠
2
⎤
⎥⎦ . (A3)
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Because model residuals ci and data residuals ri appear in
similar forms, we can simplify the notation by combining
them into a single column vector e

e = −
[
c
r

]
. (A4)

We also introduce the Np ×Np diagonal weight matrixWc,
whose i th diagonal element isw (c)i , and theNd×Nd diagonal
weight matrixWr, whose ith diagonal element isw (r)i = ν1/2.
We can then form a (Np +Nd)× (Np +Nd) diagonal weight
matrix

W =
[
Wc 0
0 Wr

]
. (A5)

Finally, we form aNp×Np Jacobian matrix Jc, whose element
in row i and column j is the partial derivative ∂ci/∂pj , and
a Nd × Np Jacobian matrix Jr, whose element in row i and
column j is the partial derivative ∂ri/∂pj . From these two
matrices we form a global (Np +Nd)×Np Jacobian matrix, J:

J =
[
Jc
Jr

]
. (A6)

The minimization Equation (13) becomes:

∂Ip
∂pj

= 2

⎡
⎣Np+Nd∑

i=1

(
W 2
ii e

(0)
i

∂ei
∂pj

)

+
Np+Nd∑
i=1

Np∑
k=1

(
W 2
ii

∂ei
∂pj

∂ei
∂pk

Δpk

)⎤
⎦ = 0 . (A7)

We can now express the complete set of these Np so-called
normal equations for the least-squares solution in the matrix
form

JT WTW JΔp = JT WTW e , (A8)

the solution of which is

Δp =
[
JT WT W J

]−1
JT WT W e . (A9)

Defining a (Np + Nd) × Np matrix A = WJ, and a column
vector b = We, of length (Np + Nd), we can express Equa-
tion (A8) as

AT AΔp = AT b , (A10)

which has the standard form of the normal equations of the
least-squares problem of finding the vector Δp that mini-
mizes the quadratic form |AΔp− b|2 (e.g. Press and others,
1986, p. 512).
However, the solution expressed in the form of Equa-

tion (A9) can be unstable or non-existent, if the matrixAT A =
JT WT W J is near-singular or singular. To avoid this problem,
we use the singular value decomposition (SVD; e.g. Press
and others, 1986, p. 52) of matrix A, which in its reduced
form is

A = UΛVT , (A11)

where V is a Np ×Np matrix whose columns v(i) (i = 1, . . . ,
Np), are orthonormal basis vectors that span the Np-dimen-
sional parameter space of all possible vectors Δp. The vec-
tor b exists in a (Np + Nd)-dimensional space of residuals.
However, the matrix A, by multiplying any vector Δp, can
produce only vectors b that lie within an Np-dimensional
sub-space known as the range of A. The columns u(i), (i =
1, . . . ,Np) of the non-square (Np + Nd) × Np matrix U are
orthonormal basis vectors that span the range of A within

that (Np + Nd)-dimensional residuals space. Finally, Λ is a
Np × Np diagonal matrix whose diagonal elements λii are
called the singular values, which are also the square roots of
the eigenvalues of AT A.
Because columns of U and V are orthonormal, UT U and

VT V produce identity matrices, and because Λ is diagonal,
ΛT = Λ, and its inverse Λ−1 is also a Np × Np diagonal
matrix, with 1/λii as the ith diagonal element. With these
simplifications, Equation (A8) reduces to[

UΛVT
]
Δp = AΔp = b , (A12)

and the solution Equation (A9) reduces to

Δp =
[
VΛ−1UT

]
b =

[
VΛ−1UTW

]
e . (A13)

The Np × (Np +Nd) matrix [VΛ−1UT] is known as the gen-
eralized inverse of the (Np +Nd)×Np matrix A =WJ.
SVD helps us to find a solution when AT A is ill-condi-

tioned. Equation (A12) defining the problem can also be
written in terms of the basis vectors u(i) and v(i) as

e =
Np∑
i=1

(
λiiv(i) ·Δp

)
u(i) . (A14)

When the vector e (representing the known model residuals
and data residuals) is written as a linear combination of the
basis vectors u(i) spanning the range of A in the residuals
space, the coefficient of each u(i) is given by the projection
v(i) · Δp of the parameter-correction vector onto the corre-
sponding ith basis vector in the parameter space, weighted
by the ith singular value. If any parameter-change vector Δp
lies entirely along a particular v(i), then the residual vector
that it produces lies entirely along u(i) in the residuals space.
If the weight λii is small, then the component of Δp aligned
with the corresponding basis vector v(i) has very little influ-
ence on the residual vector e, in the sense that the matrix A
maps it onto some very small vector b. When the physical
processes in the forward algorithm (represented by A) are
integrative or diffusive, the basis vectors v(i) associated with
small λii tend to be highly oscillatory, and the oscillations
tend to cancel when v(i) is mapped to the residuals space
by A.
The solution vector Δp in Equation (A13) can also be writ-

ten as a linear combination of the basis vectors v(i) in the
parameter space (Press and others, 1986, p. 516),

Δp =
Np∑
i=1

(
u(i) · e

λii

)
v(i) , (A15)

and the coefficient of each basis vector v(i) is the projec-
tion of the residuals vector b onto the corresponding basis
vector u(i) in the range of A, weighted by the inverse of the
corresponding singular value λii . Near-zero or zero singu-
lar values λii produce large or infinite weights 1/λii . Any
component of the residual vector that lies along u(i) will
make a very large (or infinite) contribution to the solution
Δp, through its corresponding (and often highly oscillatory)
unit vector v(i) in the parameter space.
The standard remedy (e.g. Press and others, 1986, p. 56)

is to set to zero each large diagonal element 1/λii in Λ−1

that may have been corrupted by round-off errors. This pre-
vents the solution procedure from attempting to ‘explain’ the
component of the residuals vector e that is aligned with the
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corresponding residuals basis vector u(i) by adding a very
large multiple of the possibly oscillatory corresponding basis
vector v(i) to the solution Δp. Leaving a part of the residuals
‘unexplained’ is generally preferable to polluting the solu-
tion with a large and generally meaningless component. In
practice, our regularization through the smoothness criterion
(Equations (15) and (17)), tends to keep A well conditioned,
and singular values are only occasionally too small.

APPENDIX B
FLOW MODEL FOR TAYLOR MOUTH
Velocity and temperature calculations
We assume that ice deformation follows a temperature-
dependent Glen-type flow law (Glen, 1958). In the Taylor
Mouth flowband, we use the SIA (e.g. Paterson, 1994, p. 262),
in which the dominant deviatoric-stress component in Equa-
tion (1) is surface-parallel shear stress τxz, so that Equation (1)
reduces to

∂u
∂z

= 2EA(θ)
(
−ρg

dS(x)
dx

)n
(S(x) − z)n , (B1)

where ρ is ice density, g is gravitational acceleration, n = 3
is the flow-law exponent, and θ is temperature. A(θ) is a
temperature-dependent softness or fluidity parameter, as de-
scribed in section 2.2. While longitudinal stresses may be
comparable in some places along the flowband, particularly
in the deep ice near the steep bedrock slope at x = 3.5 km,
their impact on particle paths in the upper 20% of the ice
depth should be small.
In our flowband model for Taylor Mouth, the rheological

behavior of ice is fully determined by two model parameters,
the enhancement factor E and the geothermal flux qgeo. We
decouple E , H0 (ice thickness at the core site) and qgeo from
the other model parameters, and treat E as a spatially uniform
adjustable parameter (Fig. 7). We treat qgeo as a constant,
using the value determined nearby at Taylor Dome (Table 1).
At each x, we then calculate the velocity u(x, ẑ ) as a func-

tion of non-dimensional height ẑ using Equation (5) to re-
place z by ẑ, and integrating Equation (B1) from the bed at
ẑ = 0, to elevation ẑ:

u(x, ẑ) = ū(x)φ(x, 0) + 2
(
−ρ g

dS(x)
dx

)n
H(x)n+1

·
∫ ẑ

0
E (x, ζ̂)A(θ(x, ζ̂)) (1− ζ̂)n dζ̂ . (B2)

Equation (B2) can be written in the form of Equation (4),
with

ū(x) = 2
(
−ρ g

dS(x)
dx

)n
H(x)n+1

1− φ(x, 0)

·
∫ 1

0

∫ ẑ

0
E (x, ζ̂)A(θ(x, ζ̂)) (1− ζ̂)n dζ̂ dẑ , (B3)

and the horizontal-velocity shape function given by:

φ(x, ẑ) =
u(x, ẑ)
ū(x)

. (B4)

For the special case of an isothermal vertical column of
ice with temperature θo, no sliding (φ(x, 0) = 0), no melting
(ṁ(x) = 0), and uniform E :

ū(x) =
1

n + 2
2EA(θo)

(
−ρg

dS
dx

)n
H(x)n+1 (B5)

φ(x, ẑ) =
n + 2
n + 1

[
1− (1− ẑ )n+1

]
. (B6)

Finally, to evaluate φ(x, ẑ) with vertical temperature gra-
dients, we calculate the temperature profile θ(x, z) at each
node x (n)i with the 1-D steady-state temperature model of
Firestone and others (1990), using estimated mean annual
surface temperatures (interpolated from measured 10m firn
temperatures on the flowline), and estimated regional geo-
thermal flux measured in the Taylor Dome borehole 20 km
away (personal communication from G.D. Clow, 1999; see
Table 1) as boundary conditions. Measured accumulation
rates are only a few cm (ice equivalent) annually, so verti-
cal velocities are also small. With characteristic ice thick-
ness of 700m, and thermal diffusivity κ ≈ 10−6m2 s−1,
the Péclet number (e.g. Nereson and Waddington, 2002) is
Pe = Hḃ/κ ≈ 0.5 at Taylor Mouth, implying that neither
horizontal advection nor errors in calculated vertical advec-
tion have an appreciable impact on the near-linear vertical
temperature profiles. At sites with larger Péclet numbers, a
more extensive treatment of temperature may be necessary.
The bedrock is cold, so we can assume no melting and no
sliding.

Surface topography
When the flowband widthW (x) and the bedrock height B(x)
are known and the temperature field has been estimated
as above, we can calculate a modelled ice-sheet surface
elevation S(x) in two additional steps. First, we equate
the depth-averaged ice velocity (Equation (B3)) using a
temperature-dependent softness parameter, to the depth-
averaged velocity (Equation (B5)) calculated for an isother-
mal column with temperature θo(x), and we solve for the
effective isothermal softness parameter A(θo(x)) at each
position x:

A(θo(x)) = (n + 2)
∫ 1

0

∫ ẑ

0
A(θ(x, ζ̂)) (1− ζ̂)n dζ̂ dẑ . (B7)

Second, using Equation (3) to replace ū(x) by q(x)/
[H(x)W (x)], and recalling thatH(x) = S(x)−B(x), we rewrite
Equation (B5) as an ordinary differential equation for the ice-
surface elevation, S(x), along the flowband:

dS(x)
dx

= −
[

(n + 2) q(x)
2EA(θo(x))(ρ g )n W (x) (S(x)− B(x))n+2

]1/n
.

(B8)
This equation can be solved numerically using Runge–Kutta
methods (e.g. Press and others, 1986, p. 550) for the ice-
surface elevation S(x) when the ice flux q(x) along the flow-
band is known from Equation (2). A known ice thickness
at a single point along the flowband provides the necessary
boundary condition. For example, the measured elevation
at the core site allows us to integrate Equation (B8) both up-
stream and downstream.
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