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We consider an internally heated fluid between parallel plates with fixed thermal fluxes.
For a large class of heat sources that vary in the direction of gravity, we prove that
〈δT〉h ≥ σR−1/3 − μ, where 〈δT〉h is the average temperature difference between the
bottom and top plates, R is a ‘flux’ Rayleigh number and the constants σ, μ > 0 depend on
the geometric properties of the internal heating. This result implies that mean downward
conduction (for which 〈δT〉h < 0) is impossible for a range of Rayleigh numbers smaller
than a critical value R0 := (σ/μ)3. The bound demonstrates that R0 depends on the
heating distribution and can be made arbitrarily large by concentrating the heating near
the bottom plate. However, for any given fixed heating profile of the class we consider,
the corresponding value of R0 is always finite. This points to a fundamental difference
between internally heated convection and its limiting case of Rayleigh–Bénard convection
with fixed-flux boundary conditions, for which 〈δT〉h is known to be positive for all R.

Key words: turbulent convection, variational methods

1. Introduction

Convection driven by spatially varying heating is attracting attention as a generalisation
of internally heated convection (IHC) due to its relevance in studying different regimes of
heat transport by turbulence. Recent work demonstrates that varying the heating location
can enhance heat transport in bounded domains (Lepot, Aumaître & Gallet 2018; Bouillaut
et al. 2022; Kazemi, Ostilla-Mónico & Goluskin 2022) and that bounds on the heat
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Figure 1. (a) Internally heated and (b) RBC with fixed-flux boundaries, where H(z) is a positive non-uniform
heating profile. In both panels, the red dashed line denotes the conductive temperature profiles and the red solid
line the mean temperature profiles in the turbulent regime. In (a), the temperature profiles are for H(z) = 1.

transport depend on the supply of potential energy due to variable heating (Song, Fantuzzi
& Tobasco 2022). Such studies of non-uniformly heated convection have implications for
geophysical fluid dynamics, from mixing in lakes, where solar radiation acts as a spatially
varying heat source, to convection in the Earth’s mantle and liquid outer core driven by
energy released irregularly by radioactive isotopes and secular cooling (Schubert 2015).
Furthermore, non-uniform heating is theoretically significant because it induces a much
larger class of flows than those by boundary-forced examples such as Rayleigh–Bénard
convection (RBC).

This work considers non-uniform IHC between parallel plates with fixed thermal fluxes.
Specifically, we assume that the lower plate is a thermal insulator and that the upper plate is
a poor conductor in comparison with the fluid’s ability to transport heat (see for example
Goluskin 2015). The heat flux through the upper plate is therefore assumed fixed and,
to ensure that a statistically stationary state is realisable, is specified to match the total
heat input due to internal heating (figure 1a). The Rayleigh number R for this system,
defined precisely in §2, quantifies the destabilising effect of internal heating relative to
the stabilising effect of diffusion. An emergent physical property of the flow on which we
will focus is the mean temperature difference, 〈δT〉h, between the lower and upper plates
(we use 〈·〉 to represent an infinite time and volume average, with subscript h denoting a
horizontal average).

This paper communicates bounds on 〈δT〉h that depend on the Rayleigh number R of
the flow and the spatial distribution of the heat sources. More specifically, we prove that,
for any solution of the governing Boussinesq equations,

〈δT〉h := 〈T|z=0〉h − 〈T|z=1〉h ≥ σR−γ − μ, (1.1)

where σ, μ > 0 are constants depending only on the spatial distribution of the internal
heating, and γ is a scaling rate. A corollary of (1.1) is that downward conduction, here
defined as the emergent mean temperature of the upper plate being above that of the lower
plate, i.e. 〈T|z=1〉h > 〈T|z=0〉h, is impossible for R ≤ R0 = (σ/μ)1/γ , where R0 is a critical
Rayleigh number that depends on the spatial distribution of the internal heating.

To give context to this result, observe that a flow for which a rigorous characterisation
of 〈δT〉h is known is fixed-flux RBC, shown schematically in figure 1(b). In that case,
symmetric heating and cooling rates are prescribed at the upper and lower boundaries
(as opposed to internally), and the temperature drop satisfies the rigorous bound 〈δT〉h ≥
cR−1/3 for a constant c > 0 (Otero et al. 2002). The physical interpretation of this result
is that the upper plate, through which heat leaves the domain, must, on average, remain
colder than the lower one. Further, the difference in temperature between the plates
cannot decrease at a rate faster than R−1/3, where R → ∞ corresponds to an increasingly
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z = 0
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Figure 2. Examples of non-uniform heating profiles in a non-dimensionalised domain with illustrative
sketches of the conductive temperature profiles (black solid line) for fixed flux boundary conditions. In (a), the
heating is localised near the upper boundary and in (b) near the lower boundary while being zero elsewhere,
shown with red and white spaces, respectively. For (c) the heating is sinusoidal with a maximum at z = 0.25
(red solid line) and a minimum of zero at z = 0.75 (yellow solid line).

turbulent and homogenised flow. Noting that R is a flux-based Rayleigh number (rather
than being defined in terms of an imposed temperature difference), the provable decay
rate of the lower bound on 〈δT〉h agrees with the predictions of some phenomenological
theories, namely the so-called ultimate regime (Kraichnan 1962; Spiegel 1963). See
Doering (2020) and Lohse & Shishkina (2023) for recent reviews on the ultimate regime
in RBC.

There is a striking and crucial distinction between what can currently be proven about
the behaviour of the temperature drop 〈δT〉h in IHC compared with fixed-flux RBC. In
particular, while for fixed-flux RBC downward conduction can be ruled out for all Rayleigh
numbers (i.e. that 〈δT〉h > 0 must hold for all R), it is not yet known whether there are any
heating profiles H(z) that lead to the equivalent property in IHC. For example, in the
case where internal heating is applied uniformly (H ≡ 1), it was shown by Arslan et al.
(2021a) that 〈δT〉h ≥ 1.6552R−1/3 − 0.03868. This only rules out downward conduction
up to the critical Rayleigh number R0 = 78 389 = 54.437RL, where RL = 1440 denotes
the Rayleigh number at which the flow becomes linearly unstable (Goluskin 2015).

The bound (1.1), which is the main result of this paper, gives valuable additional
information on the gap between the known behaviour of 〈δT〉h for IHC with an insulating
bottom plate and fixed-flux RBC. Specifically, it allows us to understand how the gap
depends on the spatial distribution H(z) of the internally applied heating via the constants
μ = μ(H) and σ = σ(H) in (1.1). The dependence of this gap on H is interesting since
it is not unreasonable to expect that downward conduction may be more likely to occur if
heating is concentrated close to the upper plate, as in figure 2(a), rather than close to the
lower plate, as in figure 2(b). The specific expressions for μ and σ derived in this paper do
not allow downward conduction to be ruled out (i.e. R0 < ∞) for any fixed heating profile
H. However, we show that it is possible to construct a sequence of heating profiles Hr,
indexed by an integer r, in which heating is asymptotically concentrated towards the lower
plate as r → ∞, for which

R0(Hr) =
(

σ(Hr)

μ(Hr)

)1/γ (Hr)

→ ∞ as r → ∞. (1.2)

In this sense, we can partially bridge the gap between what is known about 〈δT〉h for
fixed-flux RBC and what appears, at least from the perspective of rigorous mathematical
analysis, to be the much more intricate behaviour of internally heated convective flows.

In summary, this paper proves a Rayleigh-dependent lower bound on 〈δT〉h that depends
on the geometric properties of the internally applied heating. As a corollary, for any
heating profile, we can find an expression for the critical Rayleigh number R0 below
which downward conduction is impossible for any solution of the governing equations.
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To do this, we develop the mathematical approach of Arslan et al. (2021a) for flows driven
by arbitrary (non-uniform) heating. The paper is structured as follows: § 2 describes the
problem set-up, in § 3 we prove the lower bound (1.1), § 4 highlights implications of the
bound on the possibility of downward conduction in geophysical flows and in § 5 we
conclude.

2. Set-up

We consider a layer of fluid between two horizontal plates separated by a distance d
and periodic in the horizontal (x and y) directions with periods Lxd and Lyd. The fluid
has kinematic viscosity ν, thermal diffusivity κ , density ρ, specific heat capacity cp and
thermal expansion coefficient α. Gravity acts in the negative vertical direction, and the
fluid is heated internally at a position-dependent non-negative volumetric rate H̃ ≥ 0. We
assume that H̃ is a non-negative integrable function on the domain that depends only on
the vertical coordinate and satisfies 〈H̃〉 > 0 strictly, and define a dimensionless heating as
H(z) := H̃/〈H̃〉. Note that 〈H〉 = ‖H‖1 = 1 because H(z) ≥ 0. Here and throughout the
paper, ‖ f ‖p is the standard Lp norm of a function f : [0, 1] → R.

To non-dimensionalise the problem, we use d as the characteristic length scale, d2/κ

as the time scale and d2〈H̃〉/κρcp as the temperature scale. The velocity of the fluid
u(x, t) = (u(x, t), v(x, t), w(x, t)) and temperature T(x, t) in the non-dimensional domain
Ω = [0, Lx] × [0, Ly] × [0, 1] are then governed by the Boussinesq equations

∇ · u = 0, (2.1a)

∂tu + u · ∇u + ∇p = Pr ∇2u + Pr R Te3, (2.1b)

∂tT + u · ∇T = ∇2T + H(z). (2.1c)

The non-dimensional numbers are the Prandtl and Rayleigh numbers, defined as

Pr = ν

κ
and R = gα〈H̃〉d5

ρcpνκ2 . (2.2a,b)

The boundary conditions are no slip for the velocity and fixed flux for the temperature:

u|z={0,1} = 0, (2.3a)

∂zT|z=0 = 0, ∂zT|z=1 = −1. (2.3b)

A diagram of the system is shown in figure 1(a).
It proves useful to define a function η ∈ L2(0, 1) such that η(z) measures the total

(dimensionless) heat added to those parts of the domain below a height z:

η(z) :=
ˆ z

0
H(z) dz. (2.4)

The value η(1) = 1 corresponds to the total heat added to the domain and, therefore, to
the negative heat flux applied at the top boundary in (2.3b). We can obtain an identity for
the mean vertical heat transport of the system by multiplying (2.1c) by z and taking an
infinite-time and volume average. Use of (2.4) and a standard application of integration by
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parts with the boundary conditions (2.3a) and (2.3b) gives the identity

〈wT〉 + 〈δT〉h = −
ˆ 1

0
(z − 1)H dz =

ˆ 1

0
η(z) dz. (2.5)

The left-hand side of (2.5) is the sum of the mean vertical convective heat flux, 〈wT〉,
and the mean conductive heat flux, 〈δT〉h, and balances the potential energy added to the
system. To see why, note that −zH is the pointwise supply of (dimensionless) potential
energy (the negative sign is there because potential energy is created by positive heating
from below or negative heating from above). The middle term in (2.5) therefore accounts
for the potential energy created by internal heating and cooling from the top boundary
(alternatively, the shifted coordinate z �→ z − 1, centred on the top boundary, can be seen
as a means of removing the cooling at the top boundary from the calculation).

To remove the inhomogeneous boundary conditions on T , it is convenient to rewrite the
temperature field in terms of perturbations ϑ from the conductive profile Tc,

T(x, t) = ϑ(x, t) + Tc(z). (2.6)

The steady conductive temperature profile can be found after taking u = 0 and T(x, t) =
T(x) in (2.1c). Given the insulating lower boundary condition, T ′

c(z) = −η(z), where
primes denote derivatives with respect to z. Then, (2.1c) in terms of ϑ becomes

∂tϑ + u · ∇ϑ = ∇2ϑ + w η(z), (2.7)

∂zϑ |z={0,1} = 0. (2.8)

3. Bounding heat transport

To bound 〈δT〉h using methods that have been successfully applied to uniform IHC (Arslan
et al. 2021a), we search for an upper bound on 〈wT〉 and use (2.5) to bound 〈δT〉h. We will
prove upper bounds on 〈wϑ〉, which is equal to 〈wT〉 because the incompressibility of the
velocity field and the boundary conditions (2.3a) imply that any function f : [0, 1] → C

satisfies 〈wf 〉 = ´ 1
0 〈w〉hf (z) dz = 0. The derivation in § 3.1 is analogous to that in Arslan

et al. (2021a), so we only outline the main ideas in this paper.

3.1. The auxiliary functional method
Rigorous bounds on the mean quantities of turbulent flows can be found with the
background method (Doering & Constantin 1994, 1996; Constantin & Doering 1995),
which we formulate here in the more general framework of the auxiliary functional method
(Chernyshenko et al. 2014; Fantuzzi, Arslan & Wynn 2022). We consider the quadratic
auxiliary functional

V{u, ϑ} =
 

Ω

a
2 Pr R

|u|2 + b
2

∣∣∣∣ϑ − ϕ(z)
b

∣∣∣∣
2

dx, (3.1)

where a and b are non-negative scalars and ϕ(z) a function, all to be optimised. As
demonstrated by Chernyshenko (2022), the use of quadratic auxiliary functionals is
equivalent to the background method, where a and b are referred to as balance parameters
and ϕ(z)/b is the background temperature field satisfying the boundary conditions on ϑ

in (2.8). With a slight abuse of terminology, we refer to ϕ(z) as the background field.
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Given that V{u, ϑ} remains bounded in time along solutions of (2.1a), (2.1b) and (2.7)
for any given initial u and ϑ , the infinite-time average of the time derivative of V is zero.
Using this property, we can write

〈wϑ〉 = U −
(

U − 〈wϑ〉 − lim sup
τ→∞

1
τ

ˆ τ

0

d
dt
V{u, ϑ} dt

)
, (3.2)

and deduce that 〈wϑ〉 ≤ U, if after rearranging, the functional in the brackets in (3.2)
is pointwise in time non-negative. Following computations analogous to Arslan et al.
(2021a), the terms in the brackets of (3.2) becomes

S{u, ϑ} :=
 

Ω

a
R

|∇u|2 + β|∇ϑ |2 − (a + 1 + bη(z) − ϕ′(z))wϑ − ϕ′(z)∂zϑ + U dx.

(3.3)

The positivity of (3.3) is demonstrated by first exploiting horizontal periodicity and using
the Fourier series [

ϑ(x, y, z)
u(x, y, z)

]
=

∑
k

[
ϑ̂k(z)
ûk(z)

]
ei(kxx+kyy), (3.4)

where the sum is over suitable wavenumbers k = (kx, ky) with magnitude k =
√

k2
x + k2

y

and where the complex-valued Fourier amplitudes satisfy the complex conjugate relations
û−k = û∗

k and T̂−k = T̂∗
k . Then, S{u, ϑ} can be lower bounded by

S{u, ϑ} ≥ S0{ϑ̂0} +
∑

k

Sk{ŵ0, ϑ̂0}, (3.5)

where

S0{ϑ̂0} = U +
ˆ 1

0
b|ϑ̂ ′

0|2 − ϕ′ϑ̂ ′
0 dz (3.6)

and

Sk{ŵk, ϑ̂k} = a
R k2 ‖ŵ′′

k‖2
2 + 2a

R
‖ŵ′

k‖2
2 + ak2

R
‖ŵk‖2

2 + b‖ϑ̂ ′
k‖2

2 + bk2‖ϑ̂k‖2
2

−
ˆ 1

0
(a + 1 + bη(z) − ϕ′(z)) Re{ŵkϑ̂∗

k} dz ≥ 0. (3.7)

Standard arguments (Arslan et al. 2021a,b) imply that one can assume that ŵk and ϑ̂k to
be real-valued functions.

Ensuring that Sk ≥ 0 for any functions ŵk(z), ϑ̂k(z) satisfying the boundary conditions

ŵk(0) = ŵk(1) = ŵ′
k(0) = ŵ′

k(1) = 0, (3.8a)

ϑ̂ ′
k(0) = ϑ̂ ′

k(1) = 0, (3.8b)

is commonly referred to as a spectral constraint at wavenumber k. The right-hand side
of (3.5) is non-negative if the spectral constraint is satisfied for each wavenumber k ∈
N0. This, in turn, implies the desired property that S(u, ϑ) ≥ 0 for any solution to the
governing equations. It then follows from (3.2) that 〈wT〉 ≤ U for any solution of the
governing equations, where U is the scalar appearing in (3.6) for the spectral constraint at
wavenumber k = 0.
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The simple structure of the spectral constraint at wavenumber k = 0 can give useful
information on the upper bound U that can be proven using the auxiliary function method.
In particular, if a, b, ϕ(z) can be chosen so that the spectral constraints Sk{ŵk, ϑ̂k} ≥ 0
holds for all non-zero wavenumbers, then it is possible to prove a bound and the numerical
value of the best provable bound U can be found by minimising (3.6) over functions ϑ̂0
that satisfy the boundary conditions (3.8b) at k = 0. This gives a best provable bound
(after fixing ϕ(z), a and b) of

U =
ˆ 1

0

ϕ′(z)2

4b
dz. (3.9)

Although the parameter a does not appear in (3.9), there is an implicit interplay between
a and ϕ(z) since, given (3.7), both must be chosen appropriately if the spectral constraint
at non-zero wavenumbers is to be satisfied. This is clarified in § 3.2.

Finding a good bound within the auxiliary function method then corresponds to
identifying a, b and ϕ(z), which satisfy the spectral constraints for positive wavenumbers
while keeping the value of U given by (3.9) as small as possible.

3.2. Enforcing the spectral constraint for non-zero wavenumbers
Recall that the cumulative heating function η(z) ∈ L2(0, 1) is given by (2.4) and that
η(z) is an increasing function satisfying η(0) = 0 and η(1) = 1. The aim now is to find
parameters a, b, ϕ(z) such that the spectral constraints Sk{ŵk, ϑ̂k} ≥ 0 hold for every
non-zero wavenumber k. To this end, we choose the background field as

ϕ′(z) = (a + 1)

‖η‖2

⎧⎪⎨
⎪⎩

0, 0 ≤ z ≤ δ,

η(z) + ‖η‖2, δ ≤ z ≤ 1 − δ,

0, 1 − δ ≤ z ≤ 1,

(3.10)

where δ ≤ 1
2 is the width of the boundary layers of ϕ′(z). We also set

b = a + 1
‖η‖2

. (3.11)

The motivation for these parameter choices is as follows. The background field ϕ(z)
is chosen such that in the ‘bulk region’ δ ≤ z ≤ 1 − δ, the term (a + 1 + bη(z) − ϕ′(z))
appearing in the final, sign-indefinite, integral of (3.7) is identically equal to zero.
Consequently, to verify the spectral constraint Sk{ŵk, ϑ̂k} ≥ 0 we only need to estimate
the final integral term in (3.7) for integrals over only the ‘boundary layers’ 0 ≤ z ≤ δ

and 1 − δ ≤ z ≤ 1. As we show below this can be achieved by using standard functional
estimates that exploit the boundary conditions (3.8a) and (3.8b).

In the boundary layers, for simplicity, ϕ′(z) is chosen to be zero to satisfy the assumed
boundary conditions on ϕ(z) and give no detrimental contribution to the bound U in (3.9).
Once these choices have been made, the key parameter is the boundary layer width δ, and
there is a natural tension in that a large value of δ improves (reduces) the bound U but
makes verification of the spectral constraint increasingly difficult (see (3.16)).

Finally, the motivation for the choice of b comes from the fact that for the case of
uniform heating (where η(z) = z and ‖η‖2 = 1/

√
3) previous work (Arslan et al. 2021a)

reveals that as R increases a decreases to zero whereas b → √
3. The choice (3.11) respects

this relation and maintains algebraic simplicity in the following derivations.
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We begin by formulating a simpler sufficient condition for the spectral constraint (3.7)
to hold. First, we drop the positive terms in ŵ′

k(z), ŵk(z) and ϑ̂ ′
k(z). Then, we plug in our

choices (3.10) for ϕ′(z) and (3.11) for b, and use the inequality η(z) ≤ 1 to conclude that
(3.7) holds if

a
Rk2 ‖ŵ′′

k‖2
2 + a + 1

‖η‖2
k2‖ϑ̂k‖2

2 − a + 1
‖η‖2

(1 + ‖η‖2)

ˆ
(0,δ)∪(1−δ,1)

|ŵkϑ̂k| dz ≥ 0. (3.12)

Note that the boundary layers (0, δ) and (1 − δ, 1) are disjoint because δ ≤ 1
2 by

assumption.
Next, given the boundary conditions on wk(z) from (3.8a), the use of the fundamental

theorem of calculus and the Cauchy–Schwarz inequality gives

ŵk(z) =
ˆ z

0

ˆ ξ

0
ŵ′′

k(σ ) dσ dξ ≤
ˆ z

0

√
ξ ‖ŵ′′

k‖2 dξ = 2
3

z3/2 ‖ŵ′′
k‖2. (3.13)

Using (3.13) and the Cauchy–Schwarz inequality, we can estimate
ˆ δ

0
|ŵkϑ̂k| dz ≤

ˆ δ

0
|ŵk||ϑ̂k| dz ≤ 2

3
‖ŵ′′

k‖2

ˆ δ

0
z3/2|ϑ̂k| dz

≤ 2
3
‖ŵ′′

k‖2‖ϑ̂k‖2

(ˆ δ

0
z3 dz

)1/2

= δ2

3
‖ŵ′′

k‖2‖ϑ̂k‖2. (3.14)

The same estimate applies to
´ 1

1−δ
|ŵkϑ̂k| dz, so we conclude that (3.12) holds if

a
Rk2 ‖ŵ′′

k‖2
2 + a + 1

‖η‖2
k2‖ϑ̂k‖2

2 − 2(a + 1)

3‖η‖2
(1 + ‖η‖2)δ

2‖ŵ′′
k‖2‖ϑ̂k‖2 ≥ 0. (3.15)

The left-hand side of this inequality is a homogeneous quadratic form in ‖ŵ′′
k‖2 and

‖ϑ̂k‖2 and it is non-negative if it has a non-positive discriminant. Therefore, the spectral
constraint is satisfied if

δ4 ≤ 9a‖η‖2

(a + 1)(1 + ‖η‖2)2R
. (3.16)

3.3. Estimating the bound
Next, we estimate the bound U in (3.9) given our ansätze (3.11) and (3.10). Making use of
the fact that η(z) ≥ 0 gives, after rearranging,

U = a + 1
4‖η‖2

ˆ 1−δ

δ

(η(z) + ‖η‖2)
2 dz

= a + 1
4‖η‖2

ˆ 1

0
(η(z) + ‖η‖2)

2 dz − a + 1
4‖η‖2

ˆ
(0,δ)∪(1−δ,1)

(η(z) + ‖η‖2)
2 dz

≤ 1
2
(a + 1)(‖η‖2 + ‖η‖1 − ‖η‖2δ). (3.17)
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By definition, a is real and positive, which means that (a + 1)m ≥ 1 for all m > 0.
Therefore, taking δ as large as possible in (3.16) and substituting into (3.17) gives

U ≤ 1
2
(a + 1)(‖η‖2 + ‖η‖1) −

√
3

2
‖η‖5/4

2
(1 + ‖η‖2)1/2 (a + 1)3/4a1/4R−1/4

≤ 1
2
(a + 1)(‖η‖2 + ‖η‖1) −

√
3

2
‖η‖5/4

2
(1 + ‖η‖2)1/2 a1/4R−1/4. (3.18)

We now minimise the last expression in (3.18) over a to obtain the best possible estimate
on U. The optimal choice of a is

a∗ = a0‖η‖5/3
2

(‖η‖2 + ‖η‖1)4/3(1 + ‖η‖2)2/3 R−1/3, (3.19)

where a0 = ( 9
256 )1/3. Finally, substituting for a in (3.18), rearranging and since 〈wϑ〉 ≤ U,

we get

〈wϑ〉 ≤ 1
2
(‖η‖2 + ‖η‖1) − a1‖η‖5/3

2
(‖η‖2 + ‖η‖1)1/3(1 + ‖η‖2)2/3 R−1/3, (3.20)

where a1 = 3
√

3
8 a1/4

0 . Then, by (2.5),

〈δT〉h ≥ − 1
2
(‖η‖2 − ‖η‖1)︸ ︷︷ ︸

μ

+ a1‖η‖5/3
2

(‖η‖2 + ‖η‖1)1/3(1 + ‖η‖2)2/3︸ ︷︷ ︸
σ

R−1/3, (3.21)

completing the proof of (1.1) for the η-dependent values of μ and σ indicated in (3.21).
Finally, we must also check that requirement that the choice of δ in the above argument

via (3.16) satisfies the constraint δ ≤ 1
2 to ensure that the two boundary layers do not

interact. This gives a minimum Rayleigh number R = Rm above which the final bound
(3.21) holds. With δ defined by (3.16), it follows that

Rm = 18‖η‖2
2

(‖η‖1 + ‖η‖2)(1 + ‖η‖2)2 . (3.22)

In practice, this does not place a strong restriction on our results. For example, consider
the case of uniform heating where H(z) = 1. Here, one has η(z) = z and obtains from
(3.21) the lower bound 〈δT〉h ≥ −0.03868 + 0.1850R−1/3, valid for all R ≥ Rm = 2.2384
which is far below the critical Rayleigh number for linear instability of R = 1440. The
bound matches the scaling and asymptote of Arslan et al. (2021a). The difference in the
constant multiplying the O(R−1/3) term is due to the choice taken in Arslan et al. (2021a)
of a ϕ′(z) with linear (rather than constant) boundary layers. To obtain as simple a bound
as possible in (3.21), the constant multiplying the R scaling was not optimised in this work.

4. Implications of the bound

Inequality (3.21) states that 〈δT〉h < 0 (i.e. downward conduction) is impossible for
Rayleigh numbers R satisfying

Rm ≤ R ≤ R0 := 8a3
1‖η‖5

2
(1 + ‖η‖2)2(‖η‖2 + ‖η‖1)(‖η‖2 − ‖η‖1)3 . (4.1)

The above expression for R0 is obtained simply by setting the right-hand side of (3.21) to
zero. The magnitude of R0 is plotted as a function of ‖η‖1 and ‖η‖2 in figure 3. The domain
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Figure 3. (a) Contour plot of R0 as given in (4.1) with the inset (b) highlighting a region ([0.925, 1] ×
[0.95, 1]) where ‖η‖1 ∼ ‖η‖2. In (a) the green cross highlights uniform heating, drawn in (c), the blue cross
highlights heating near the lower boundary drawn in (d), the yellow cross highlights heating near the upper
boundary (e) and the black cross (×) highlights sinusoidal heating, ( f ).

of the function shown in figure 3 respects the fact that

‖η‖1 ≤ ‖η‖2 ≤
√

‖η‖1, (4.2)

for any increasing function η(z) satisfying η(0) = 0 and η(1) = 1. The lower bound
follows from the Cauchy–Schwarz inequality, while the upper bound is a simple
consequence of η(z) ≤ 1 for any 0 ≤ z ≤ 1.

An important implication of these inequalities is that μ = −1
2(‖η‖2 − ‖η‖1) is strictly

negative unless ‖η‖2 = ‖η‖1. When μ is strictly negative, the corresponding value of R0
is finite, meaning that there is a maximum Rayleigh number (indicated in figure 3) up to
which downward conduction can be ruled out. Given this observation, it is natural to ask
whether there are fixed heating profiles for which ‖η‖2 = ‖η‖1, then one could provably
eliminate the possibility of downward conduction for arbitrarily large Rayleigh numbers.
Interestingly, given the restrictions that η(0) = 0 and η(1) = 1, this is only possible in the
limiting case that H(z) is a single Dirac measure of unit heating at the lower boundary
z = 0.

The inequality in (3.21) applies to all heating profiles that can be specified as a function
of z and integrated to unity. Figure 3(a) is a contour plot of the critical R0 over the
open region satisfying the inequalities (4.2). Examples of non-uniform heating profiles
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Figure 4. Panel (a) plots heating profiles H(z), with mean one, where the heating is uniform in a region (0, ε)

near the lower boundary and zero elsewhere. In (a) eight cases are plotted of ε ∈ [0.05, 0.5], where ε = 0.05 is
in yellow (yellow solid line) and ε = 0.5 in black (black solid line). Panel (b) plots ε against R0, the value below
which downwards conduction is ruled out. The vertical dashed line (- - -) corresponds to ε = 1.366 × 10−7

intersecting the red line at R0 = 1022. For a given Rayleigh number (i.e. 1022) (b) can be used to find the value
of ε for heating profiles in (a) below which downwards conduction is impossible.

from figure 2 appear in figure 3 for cases in which the heating is (d) near the bottom
boundary, (e) near the upper boundary and ( f ) sinusoidal, with the corresponding value
of R0 highlighted with crosses in figure 3(a). The profiles (c)–( f ) and their corresponding
R0 can be compared with physical examples of IHC, but before doing so, we note that the
precise values of R0 computed in figure 3 are not as important as the relative magnitudes
of R0.

The bounds we obtain can help justify physical observations. In the case of mantle
convection, it is difficult to accurately determine the distribution of the radioactive heating
sources is unknown, and the Rayleigh number (but is believed to be of the order 106 to
108 (Schubert 2015)). However, a higher concentration of the heat in the upper mantle,
in comparison with a uniform distribution, will give rise to smaller R0 and a smaller
magnitude of 〈δT〉h that would align with the observation of the slower-than-expected
cooling rate of the Earth’s interior (Jaupart et al. 2015). Alternatively, convection in
the Sun resembles heating similar to (d), of distributed heating near the lower regions
of the convective zone. Heating concentrated at the bottom of the domain, as seen in
figure 3, results in a value of R0 much larger than the case of uniform heating. Moreover,
for estimated Rayleigh numbers of 1022 (Schumacher & Sreenivasan 2020), downwards
conduction can be ruled out for heating concentrated sufficiently closely to the lower
boundary.

Finally, we demonstrate an application of the bounds obtained in this work. Instead
of starting with a fixed H(z) and asking for the corresponding R0, we can instead take
a given Rayleigh number, motivated by a geophysical or astrophysical flow, and for a
family of H(z) (figure 3d to f are different one-parameter families of heating profiles)
asses which heating profiles in that family guarantee that downwards conduction is ruled
out. For example, taking figure 3(c) where heating is uniform in a region (0, ε) where
ε ≤ 1, by our result in (4.1) we can obtain a value for R0 as ε decreases, as plotted
in figure 4(b). Then, for example, taking a Rayleigh number of 1022, our bound (3.21)
indicates that downward conduction is impossible when the heating profile is such that
ε < 1.366 × 10−7 figure 4(b). For the Sun, where the convective zone is estimated to be
of the order of 0.713R� (where R� is the solar radius) (Miesch 2005), this corresponds to
heating in a region of 6.8 cm. Note that 1022 is an estimated Rayleigh number that arises
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from including boundary and internal heating in the definition of R. For a well-chosen R,
(3.21) has direct implications on physical flows, especially if one can establish the optimal
constants in the R scaling of (3.21). This exercise highlights the use of bounds to assess
cases of IHC in nature where downward conduction is ruled out.

5. Conclusion

We have obtained lower bounds on the mean vertical conductive heat transport, 〈δT〉h, for
non-uniform IHC between parallel plates with fixed-flux thermal boundary conditions.
The bounds are expressed in terms of a Rayleigh number and the mean vertical heat
flux η(z), corresponding to the prescribed internal heating H(z) integrated upwards from
the bottom boundary to a height z. In particular, we proved with the auxiliary functional
method that 〈δT〉h ≥ −μ + σR−1/3 in (3.21), where μ, σ > 0. We were, therefore, able
to obtain an explicit Rayleigh number R0, in terms of η(z), below which it is possible to
guarantee that 〈δT〉h ≥ 0. The results are consistent with those obtained from the particular
case of uniform internal heating (η = z) (Arslan et al. 2021a). As an addendum, while this
paper only considers no-slip boundary conditions, by the arguments in Fantuzzi (2018),
the same result of (3.21), albeit with a different value of a1, is obtained for stress-free
boundary conditions.

Only in the limit of heat being concentrated entirely at the bottom boundary is it possible
to guarantee that 〈δT〉h ≥ 0 for all R (μ = 0 in the previous paragraph). However, in a
mathematical sense, such heating profiles are distributions rather than functions of z, lying
beyond the scope of the internal heating profiles considered in this work and constitute the
closure, of the open set of pairs (‖η‖1, ‖η‖2) that determine μ and σ (shown in figure 3).
In this regard, there is an intriguing connection with RBC, for which 〈δT〉h ≥ 0 for all R
(Otero et al. 2002).

While the auxiliary functional method provides a rigorous bound on 〈δT〉h, it does
not guarantee the existence of flows that saturate the bound or provide insight into the
predominant physical processes responsible for extremising 〈δT〉h. In other words, the
question of whether there are solutions to the Boussinesq equations that produce negative
mean vertical conductive heat transport (〈δT〉h < 0) when R > R0 remains an open and
interesting problem to investigate in the future. A possible avenue for exploring this
question is the method of optimal wall-to-wall transport (Tobasco & Doering 2017), which
would yield a velocity field that minimises 〈δT〉h subject to a prescribed set of constraints,
along with upper bounds on 〈δT〉h.

Finally, caution should be applied in interpreting the Rayleigh number used to study
non-uniform IHC. Our Rayleigh number follows convention by defining temperature and
length scales using the volume-averaged internal heating and domain height. However, in
cases with heating concentrated towards the top of the domain, the physical interpretation
of the Rayleigh number as quantifying the size of destabilising forces relative to the
stabilising effects of diffusion is questionable. Although the choice of Rayleigh number
is somewhat superficial, an appropriate choice might shed light on the dependence of
the bounds on R in terms of the underlying physics. Heating and cooling that is applied
non-uniformly over the horizontal as well as vertical directions (Song et al. 2022) poses
further challenges in this regard, and an opportunity to extend the results reported in this
work.
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