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1. Introduction

In this section we will give some basic notions we shall use in the paper. Moreover, we

will state the background and the main theorem.

1.1. Basic notions. Let X be a topological space and let G be a group. A homomorphism

φ of G into the semigroup of all continuous self-mappings of X is called an action of G

on X. (Note that each φ(g) is a homeomorphism of X with a continuous inverse φ(g−1).)

For brevity, we usually use gx or g(x) instead of φ(g)(x) for g ∈ G and x ∈ X. The orbit

of x ∈ X under the action of G is the set Gx ≡ {gx : g ∈ G}. If Gx is finite, then x is

called a periodic point of φ and the cardinality n of Gx is called the order of x; we also

say that x is an n-periodic point (respectively a fixed point if n = 1, i.e. if gx = x for all

g ∈ G). A subset Y of X is called G-invariant if g(Y ) ⊂ Y for all g ∈ G. A Borel measure

µ on X is called G-invariant if µ(g(A)) = µ(A) for every Borel set A in X and every

g ∈ G.

Amenability was first introduced by von Neumann. Recall that a group G is called an

amenable group if there is a sequence of finite sets Fi (i = 1, 2, 3, . . . ) with
⋃∞
i=1 Fi =

G such that lim
i→∞

(|gFi △ Fi |/|Fi |) = 0 for every g ∈ G, where |Fi | is the number of
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FIGURE 1. A uniquely arcwise connected continuum which is the union of two copies of the Warsaw circle.

elements in Fi ; the set Fi is called a Følner set. It is well known that solvable groups

and finite groups are amenable; every subgroup of an amenable group is amenable. It is

also known that any group containing a free non-commutative subgroup is not amenable.

An important characterization of a countable amenable group is that G is amenable if and

only if every action of G on a compact metric space X has a G-invariant Borel probability

measure on X. One may consult [8] for a systematic introduction to amenability.

By a continuum, we mean a connected compact metric space. A continuum is

non-degenerate if it is not a single point. An arc is a continuum which is homeomorphic

to the closed interval [0, 1]. A continuum X is uniquely arcwise connected if for any two

points x 6= y ∈ X there is a unique arc [x, y] in X which connects x and y. A dendrite is

a locally connected, uniquely arcwise connected continuum. A tree is a dendrite which is

the union of finitely many arcs. Clearly, the class of uniquely arcwise connected continua

is strictly larger than that of dendrites. For example, the Warsaw circle is uniquely arcwise

connected but not locally connected.

We provide in the following an example of a uniquely arcwise connected continuum

contained in the plane, which will be repeatedly mentioned throughout the paper.

Example 1.1. (See Figure 1.) Let R2 be the Euclidean plane. For each positive integer n, let

In, I−n, Jn, and J−n be the segments between ((n− 1)/n, 0) and (n/(n+ 1), 1), between

(−(n− 1)/n, 0) and (−n/(n+ 1), 1), between (n/(n+ 1), 0) and (n/(n+ 1), 1), and

between (−n/(n+ 1), 0) and (−n/(n+ 1), 1), respectively. Let S− =
⋃∞
n=1(I−n ∪ J−n)

and S+ =
⋃∞
n=1(In ∪ Jn). Let L, B, R, and M be the segments between (−1, −1) and

(−1, 1), between (−1, −1) and (1, −1), between (1, −1) and (1, 1), and between (0, −1)

and (0, 0), respectively. Let X = L ∪ B ∪ R ∪M ∪ S− ∪ S+. Then X is a uniquely

arcwise connected continuum which is not locally connected.

1.2. Background and the main theorem. For an action of a group G on a topological

space X, an interesting question is whether there exists a fixed point or a periodic point of

the action. The answer to this question certainly depends on the topology of X and involves

the algebraic structure of G.

In 1975, Mohler proved in [6] that every homeomorphism (i.e. Z-action) on a uniquely

arcwise connected continuum has a fixed point, which answered a question proposed by

Bing (see [1]). In 2009, this result was generalized to nilpotent group actions by Shi and
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Sun (see [9]). In 2010, Shi and Zhou further showed that every solvable group action on

such continua has a periodic point of order ≤ 2 (see [11]). In 2017, Shi and Ye proved

that every countable amenable group action on a dendrite has a periodic point of order

≤ 2 (see [10]). One may consult [2, 4, 5] for some interesting discussions about fixed

point theory for mappings on uniquely arcwise connected continua. We also remark that

a continuous map on a uniquely arcwise connected continuum may have no fixed points

(see [12]).

We get the following theorem in this paper, which generalizes all the corresponding

results stated above. (Noting that the integer group is amenable, we see by the following

theorem that any integer group action on a uniquely arcwise connected continuum

preserves either a point or an arc, which implies the existence of fixed points.)

THEOREM 1.2. Any action of a countable amenable group on a uniquely arcwise

connected continuum has a periodic point of order ≤ 2.

We should note that the set of end points and the set of branch points of a uniquely

arcwise connected continuum X are each homeomorphism invariants. So, if the set of end

points of X is finite, or if the set of branch points of X is finite but non-empty, then any

group action on X admits periodic points, which easily implies the existence of a periodic

point of order ≤ 2. However, a uniquely arcwise connected continuum may have infinitely

many branch points and even uncountably many end points. This complicates the problem.

We also remark that if the acting group G is the free group Z ∗ Z (not amenable), then

there does exist counterexamples of G-actions on some dendrites without periodic points

(see [10, Theorem 6.1]); if G is the solvable group (Z/2Z)⋉ Z, then G can act on the

closed interval [0, 1] with a periodic point of order two and with no fixed points (see [11,

Remark 1.3]).

The proofs of the main theorems in [9, 11] heavily rely on the existence of a decreasing

sequence of commutator subgroups ending at the identity, which reduces the proof to the

case of abelian group actions; however, such subgroup sequences do not exist in amenable

groups in general. So, we have to develop some new techniques to overcome this difficulty.

In §2, we introduce some notions and results concerning the structure and mapping

properties of uniquely arcwise connected continua. In §3, we construct a convex metric on

a special class of arcwise connected subsets of uniquely arcwise connected continua and

study their completions with respect to this metric. Specially, we establish a connection

between the group actions on dendrites and those on uniquely arcwise connected continua.

Based on the connection established in §3 and the main theorem in [10], we prove

Theorem 1.2 in §4.

2. Preliminaries

In this section we will introduce several notions which are important for the study of our

question, including the convex hulls, dendrites, rays and lines in a compact metric space,

and the quasi-retractions.

2.1. Convex hulls. Let X be a uniquely arcwise connected continuum. If S is a subset of

X, we denote by [S] the intersection of all arcwise connected subsets containing S and call
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it the convex hull of S in X. Clearly, [S] is the minimal one among all the arcwise connected

subsets which contain S. We remark here that [S] need not be compact in general. Denote

by [a, b] the unique arc in X connecting a and b and by [a, b), (a, b], and (a, b) the sets

[a, b] − {b}, [a, b] − {a}, and [a, b] − {a, b}, respectively.

The following lemma is clear.

LEMMA 2.1. If S is a finite set in a uniquely arcwise connected continuum X, then [S]

is a tree.

Example 2.2. In Example 1.1, [S−] = S− is not compact; if S is the finite set consisting of

points (−1, 1), (1, 1), and (0, 0), then [S] = L ∪ B ∪ R ∪M , which is a tree.

2.2. Dendrites. Let X be a dendrite and let x ∈ X. We use ord(x, X) to denote the

cardinality of the set of all components of X − {x}, which is called the order of x in X.

The point x is a cut point if ord(x, X) = 2; is a branch point if ord(x, X) ≥ 3; and is an

end point if ord(x, X) = 1. For a non-degenerate dendrite X, there are at most countably

many branch points, there are uncountably many cut points, and there always exist end

points. One may consult [7] for more properties of dendrites.

PROPOSITION 2.3. Let f be a homeomorphism on a non-degenerate dendrite X. Suppose

that e is an end point of X such that f (e) = e. Then there is u ∈ X, u 6= e such that either

f ([e, u]) ⊂ [e, u] or f−1([e, u]) ⊂ [e, u]. Moreover, there is u′ ∈ (e, u] such that [e, u′] ∪

f ([e, u′]) ∪ f−1([e, u′]) ⊂ [e, u].

Proof. Fix a point v 6= e ∈ X. Since e is an end point and f (e) = e, there is w 6= e such

that [e, w] = [e, v] ∩ [e, f (v)]. Let u = f−1(w). If [e, u] ⊂ [e, w], then f−1([e, u]) ⊂

f−1([e, w]) = [e, u]; if [e, w] ⊂ [e, u], then f ([e, u]) = [e, w] ⊂ [e, u].

Moreover, if f ([e, u]) ⊂ [e, u], we choose u′ ∈ (e, u] with f−1(u′) = u and, if

f−1([e, u]) ⊂ [e, u], we choose u′ ∈ (e, u] such that f (u′) = u. Then u′ is the point

we want. �

The following two corollaries follow immediately from Proposition 2.3.

COROLLARY 2.4. Let f1, . . . , fn be homeomorphisms on a non-degenerate dendrite X.

Suppose that e is an end point of X such that fi(e) = e for all i = 1, . . . , n. Then there

are u, v 6= e ∈ X such that fi([e, v]) ∪ f−1
i ([e, v]) ⊂ [e, u] for all i = 1, . . . , n.

COROLLARY 2.5. Let f be a homeomorphism on a non-degenerate dendrite X. Suppose

that e is an end point of X such that f (e) = e. Then there is a sequence {ui}
∞
i=1 in X

satisfying the following two conditions simultaneously: (1) [u1, e] ) [u2, e] ) [u3, e] )

. . . and
⋂∞
i=1[ui , e] = {e}; (2) either f ([ui , e]) ⊂ [ui , e] for all i or f−1([ui , e]) ⊂ [ui , e]

for all i.

Let X and Y be metric spaces and let f : X → Y be continuous. If diam(f−1(f (x))) ≤

ǫ for some ǫ > 0 and for every x ∈ X, then f is called an ǫ-map. A continuum X is tree-like

provided that for every ǫ > 0 there is an ǫ-map fǫ from X onto some tree Yǫ .
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THEOREM 2.6. [7, Exercise 10.50] A locally connected continuum is tree-like if and only

if it is a dendrite.

THEOREM 2.7. [10, Theorem 1.1] Any action of a countable amenable group on a dendrite

has a periodic point of order ≤ 2.

2.3. Rays and lines.

Definition 2.8. Let X be a compact metric space. If φ : [0, +∞) → X is a continuous

injection, then φ or its image R ≡ φ([0, +∞)) is called a ray in X; R or φ is called

oscillatory (respectively non-oscillatory) if
⋂∞
n=0 φ([n, +∞)) contains at least two points

(respectively only one point). If ψ : (−∞, +∞) → X is a continuous injection, then ψ

or its image L ≡ ψ((−∞, +∞)) is called a line in X; L or ψ is called oscillatory if

either
⋂∞
n=0 ψ((−∞, −n]) or

⋂∞
n=0 ψ([n, +∞)) contains at least two points; is called

bi-sided oscillatory if both
⋂∞
n=0 ψ((−∞, −n]) and

⋂∞
n=0 ψ([n, +∞)) contain at least

two points; is called one-sided oscillatory if it is oscillatory but not bi-sided oscillatory;

and is called non-oscillatory if it is not oscillatory.

We should note that if φ1 and φ2 are two rays with φ1([0, +∞)) = φ2([0, +∞)), then

φ1 and φ2 have the same types of oscillation. The same conclusion is true for lines. One

may consult [3] for more information about rays (called ‘quasi-arcs’ in [3]).

Definition 2.9. Let X be a compact metric space. Let R be a ray in X and let L be a line in X.

We say that L is an extension of R if there is a continuous injection φ : (−∞, +∞) → X

such that L = φ((−∞, +∞)) and R = φ([0, +∞)).

The following lemma will be used in the proof of the main result.

LEMMA 2.10. Let X be a uniquely arcwise connected continuum. Let R be a ray in X and

let φ : [0, +∞) → X be a continuous injection such that R = φ([0, +∞)). If there is an

arc [a, b] in X such that φ(0) ∈ (a, b), then R can be extended to a line L in X. Moreover,

there is a maximal line extending R.

Proof. The first statement is clear. To show the second one, let

F = {L : L is a line which extends R}.

It is clear that F 6= ∅. F is a partially ordered set with respect to the inclusion of sets.

Assume that {Lλ}λ∈3 is a totally ordered subset of F . Set N =
⋃
λ∈3 Lλ. We claim

that N is a line which extends R.

In fact, for any x 6= y ∈ N , define x < y if and only if exactly one of the following items

holds: (1) x, y ∈ R and [φ(0), x]  [φ(0), y]; (2) x, y 6∈ R and [x, φ(0)] ) [y, φ(0)]; (3)

x 6∈ R and y ∈ R.

Then we can check that ‘<’ is a total ordering on N. By the compactness of X, for any

integer k > 0, there exists ak ∈ N \ R such that

N ⊂ B
(

[ak , φ(0)],
1

k

)
∪ R. (2.1)
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Since N contains no minimal element according to the ordering <, we may suppose that

· · · < a3 < a2 < a1 < 0.

Let ψ : (−∞, +∞) → N be a continuous injection such that

ψ([−n, 0]) = [an, φ(0)], for all n ∈ N, and ψ([0, +∞)) = R.

It remains to show that ψ((−∞, 0)) = N \ R.

Assume on the contrary that there exists z ∈ N \ ψ((−∞, +∞)). Then z < y for any

y ∈ ψ((−∞, +∞)). Take z′ ∈ N such that z′ < z (noting that N contains no minimal

element). Then we have d(z′, [z, φ(0)]) > 0. This contradicts (2.1). Thus, the claim is

proved.

Applying Zorn’s lemma, we have proved the existence of the maximal line. �

Example 2.11. In Example 1.1, S− and S+ are one-sided-oscillatory rays; S− ∪ S+ is a

bi-sided-oscillatory line; L− (−1, 1) is a non-oscillatory ray; L− {(−1, 1), (−1, −1)} is

a non-oscillatory line; and the line S− ∪ S+ is an extension of the ray S−.

2.4. Quasi-retractions. Let X be a uniquely arcwise connected continuum. Let Y be

a tree, or an oscillatory ray, or a bi-sided-oscillatory line contained in X. Then, by

the uniquely arcwise connectivity, for every x ∈ X, there is a unique y ∈ Y such that

[x, y] ∩ Y = {y}; we denote y = rY (x) and call the map rY : X → Y , x 7→ rY (x) the

quasi-retraction from X onto Y. We should note that rY is not continuous in general. The

idea of quasi-retraction comes from [6].

Here we remark that the quasi-retraction rY cannot be defined for any arcwise connected

subset Y of X unless Y satisfies the requirement that for every x ∈ X, there is a unique

y ∈ Y with [x, y] ∩ Y = {y}; this is why we need to assume Y being of some special form

as above.

LEMMA 2.12. Let X be a uniquely arcwise connected continuum. Let Y be a tree, or an

oscillatory ray, or a bi-sided-oscillatory line contained in X. If Z is an arcwise connected

subset of Y, then r−1
Y (Z) is an arcwise connected Borel measurable subset of X.

Proof. From the definition of rY , we see that if x ∈ r−1
Y (Z), then [x, rY (x)] ⊂ r−1

Y (Z),

that is, every point in r−1
Y (Z) is connected to a point in Z by an arc in r−1

Y (Z). Since

Z ⊂ r−1
Y (Z) and Z is arcwise connected, we know that r−1

Y (Z) is arcwise connected. For

the measurability of r−1
Y (Z), one may consult [6]. �

Example 2.13. In Example 1.1, if Y is the tree L ∪ B ∪ R ∪M , then r−1
Y ((0, 0)) = S− ∪

S+; if Y is the line S− ∪ S+, then r−1
Y ((0, 0)) = L ∪ B ∪ R ∪M; and if Y is the ray S−,

then r−1
Y ((0, 0)) = L ∪ B ∪ R ∪M ∪ S+.

3. Induced actions on dendrites

In this section we will introduce the notions of the convex metrics and their completions;

and the induced actions.
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3.1. Convex metrics and their completions. Let X be a uniquely arcwise connected

space (it need not be compact). A metric d on X is convex if, for any u, v, x, y ∈ X

with [u, v] ⊂ [x, y], we have d(u, v) ≤ d(x, y). Suppose that T1 ( T2 ( T3 ( . . . is a

strictly increasing sequence of trees contained in X. Let T =
⋃∞
i=1 Ti . Then T is an

arcwise connected subset of X. Clearly, T is also the union of infinitely many arcs

Ii (i = 1, 2, 3, . . .) with Ii ∩ Ij being a point or empty for any i 6= j . Without loss of

generality, we may suppose that

Tn =

n⋃

i=1

Ii

for each n ∈ N. Fix a homeomorphism hi : Ii → [0, 1] for each i. If [a, b] ⊂ [0, 1], we

denote by l([a, b]) the length of the interval [a, b] under the Euclidean metric on [0, 1],

i.e. l([a, b]) = |a − b|. For x, y ∈ T , define

d(x, y) =

∞∑

i=1

1

2i
l(hi([x, y] ∩ Ii)). (3.1)

It is direct to check that d is a convex metric on T. Let T̃ be the completion of T with

respect to the metric d. We still use d to denote the naturally induced metric on T̃ .

PROPOSITION 3.1. (T̃ , d) is a dendrite.

Proof. For every ǫ > 0, there is n ∈ N such that

∞∑

i=n+1

1

2i
<
ǫ

5
. (3.2)

Note that for every ǫ′ > 0, by the convexity of d, we always have

d(rTn(x), rTn(y)) ≤ d(x, y) < ǫ′

whenever x, y ∈ T with d(x, y) < ǫ′. This shows that rTn : (T , d) → (Tn, d) is uniformly

continuous. So, rTn can be extended to a continuous map

rǫ : (T̃ , d) → (Tn, d). (3.3)

We claim that rǫ is an ǫ-map. Otherwise, there are x, y ∈ T̃ with d(x, y) > ǫ and rǫ(x) =

rǫ(y). Then, by the continuity of rǫ and the density of T in T̃ , there are x′, y′ ∈ T such

that d(x, x′) < ǫ/5, d(y, y′) < ǫ/5, and d(rǫ(x
′), rǫ(y

′)) < ǫ/5. So, by (3.2), we have

d(x, y) ≤ d(x, x′)+ d(x′, rǫ(x
′))+ d(rǫ(x

′), rǫ(y
′))+ d(rǫ(y

′), y′)+ d(y, y′) < ǫ,

which is a contradiction. By the arbitrariness of ǫ, we get simultaneously that (T̃ , d)

is totally bounded and hence compact; is locally connected since rǫ is monotone by

Lemma 2.12 (see [7, 8.4]); and is tree-like. It follows from Theorem 2.6 that (T̃ , d) is

a dendrite. �

Remark 3.2. Though the inclusion i : (T , d) → X is a continuous injection, it is not

necessarily an embedding. The topology on (T , d) is the weak topology on {Tn}. That

is, A ⊂ T is d-closed if A ∩ Tn is closed for every n.
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Example 3.3. In Example 1.1, if we let Tn = B ∪M
⋃n
i=1(Ii ∪ I−i ∪ Ji ∪ J−i) and let

T =
⋃∞
n=1 Tn, then the completion of T with respect to the metric d defined above is

homeomorphic to the tree ‘H’.

3.2. Induced actions. Let X be a uniquely arcwise connected continuum. Let G be a

countable group acting on X. Suppose thatG = {gi : i = 1, 2, 3, . . .}. Take a point p ∈ X.

For each positive integer n, let Sn = {gi(p) : i = 1, . . . , n} and let Tn = [Sn]. Then we get

an increasing sequence of trees:

T1 ⊂ T2 ⊂ T3 ⊂ · · · . (3.4)

Set T =
⋃∞
n=1 Tn (= [Gp]). Then T is a G-invariant uniquely arcwise connected subset

of X. We assume that T is not a tree. Then, by deleting some Ti in (3.4) and renumbering

the remaining Ti , we can assume that the sequence in (3.4) is strictly increasing. It follows

from Proposition 3.1 that the completion (T̃ , d) of T with respect to the metric d defined

in (3.1) is a dendrite.

PROPOSITION 3.4. For each g ∈ G, the homeomorphism g on (T , d) is uniformly

continuous with respect to the metric d.

Proof. Let g ∈ G. For every ǫ > 0, there is m such that

∞∑

i=m+1

1

2i
<
ǫ

3
. (3.5)

Take a sufficiently large n so that Sn ⊃ Sm ∪ g−1Sm. Then g(Sn) ∩ Sn ⊃ Sm and

g(Tn) ∩ Tn ⊃ Tm. (3.6)

By the compactness of Tn, there is δ > 0 such that

d(g(x), g(y)) <
ǫ

3
(3.7)

whenever x, y ∈ Tn with d(x, y) < δ.

For any u, v ∈ T , let u′ = rTn(u) and v′ = rTn(v). Then, by the convexity of d,

d(u′, v′) < δ whenever d(u, v) < δ. Then, by (3.5)–(3.7), we have

d(g(u), g(v)) ≤ d(g(u), g(u′))+ d(g(u′), g(v′))+ d(g(v′), g(v)) < ǫ

provided that d(u, v) < δ. This completes the proof. �

From Proposition 3.4, we know that every g ∈ G can be uniquely extended to a

continuous map g : (T̃ , d) → (T̃ , d). It follows that such an extension of g−1 is an inverse

to g, whence we have the following proposition.

PROPOSITION 3.5. For each g ∈ G, g : (T̃ , d) → (T̃ , d) is a homeomorphism.

From Propositions 3.4 and 3.5, we obtain an action of G on the dendrite (T̃ , d) by

homeomorphisms, which is called the induced action from the G-action on T.
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4. Proof of the main theorem

In this section we start to prove the main result of the paper, namely Theorem 1.2. Let X

be a uniquely arcwise connected continuum and let G be a countable amenable group. We

want to show that every G-action on X has a periodic point of order ≤ 2.

Fix a point p ∈ X. Let T = [Gp] be the convex hull of its orbit. Then T is an arcwise

connected G-invariant subset of X. If T is a tree, then G has a periodic point of order ≤ 2 in

T by Theorem 2.7. So, we may as well assume that T is not a tree. Thus, by the discussion

in §3, there is a metric d on T such that the completion (T̃ , d) is a dendrite and there is an

induced G-action on (T̃ , d) by homeomorphisms. It follows from Theorem 2.7 that there

is a periodic point q ∈ T̃ of order ≤ 2. If q ∈ T , then the conclusion of Theorem 1.2 holds,

since q ∈ X.

So, we may assume that q ∈ T̃ − T , that is, q is an end point of T̃ . If q is a 2-periodic

point of G, then H ≡ {g ∈ G : g(q) = q} is a subgroup of G with index two. Notice that

H is also amenable and q is a fixed point of H. In this case, if we can show that H has a

fixed point w ∈ X, then w is a periodic point of G with order ≤ 2 and the conclusion of

Theorem 1.2 holds. So, to show Theorem 1.2 it remains to prove the following theorem.

THEOREM 4.1. If the induced G-action on (T̃ , d) has a fixed point q ∈ T̃ − T , then G has

a fixed point in X.

Proof. We divide the proof into two steps.

Step 1: We assume first that G is finitely generated with a generator set {g1, . . . , gn} for

some n ∈ N.

Fix a point o ∈ T ; then [o, q) ⊂ T ⊂ X. Let φ : [0, +∞) → X be a continuous

injection with [o, q) = φ([0, +∞)). Then [o, q) becomes a ray.

Case 1. φ is non-oscillatory. Then there is z ∈ X such that z =
⋂∞
n=1 φ([n, +∞)).

Since q is fixed by every g ∈ G, we get from Corollary 2.5 a g or g−1-invariant decreasing

sequence [ui , q] with
⋂∞
i=1[ui , q] = {q}. So, [ui , q) is a sequence of semi-open intervals

in X, which is g or g−1 invariant. Thus, z as a limit point of ui in X is also g invariant.

Case 2. φ is oscillatory. By Corollary 2.4, there are c2 > c1 > 0 such that, for all i =

1, . . . , n,

gi(φ([c2, +∞))) ∪ g−1
i (φ([c2, +∞))) ⊂ φ([c1, +∞)). (4.1)

Let ≺ be an ordering on φ([0, +∞)) defined by φ(t) ≺ φ(s) if and only if t < s for any

t , s ∈ [0, +∞).

First we assume that z = sup≺{{g(φ(c2)) : g ∈ G} ∩ φ([c1, +∞))} ≺ +∞. We claim

that z is a fixed point of G. In fact, since e ∈ G, we have φ(c2) � z. By the definition of z,

we have g−1
i (z) � z for each 1 ≤ i ≤ n. As each gi preserves the ordering ≺ |φ([c2,+∞)),

the restriction of ≺ to φ([c2, +∞)), we have z � gi(z), which implies that for each 1 ≤

i ≤ n, gi(z) = z. That is, z is a fixed point of G and thus we get the conclusion. So, we

may assume that

sup≺{{g(φ(c2)) : g ∈ G} ∩ φ([c1, +∞))} = +∞. (4.2)
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Consider the setM =
⋃
g∈G g(φ([c2, +∞))). Then M is arcwise connected, since for any

h1 6= h2 ∈ G there is some c′ > 0 such that h1(φ([c2, +∞))) ∩ h2(φ([c2, +∞))) ⊃

φ([c′, +∞)) by Corollary 2.4. By Lemma 2.10, we can take a maximal line ψ :

(−∞, +∞) → M ⊂ X with respect to the inclusion relation of subsets such that

ψ([0, +∞)) = φ([c2, +∞)). Set L = ψ((−∞, +∞)).

Subcase 2.1. ψ is bi-sided oscillatory in X. For each integer n, let Ln = ψ((n, n+ 1])

and let Kn = {x ∈ X : rL(x) ∈ Ln}. By Lemma 2.12, each Kn is an arcwise connected

Borel measurable set in X. Clearly, these Kn form a partition of X. Since G is amenable,

there is a G-invariant probability Borel measure µ on X. Suppose thatµ(Km) > 0 for some

integer m. Since ψ(m) ∈ M , there is some g′ ∈ G such that g′(ψ(m)) ∈ φ([c2, +∞)),

which implies that rL(g
′(Km)) ⊂ φ((c2, +∞)). Set R = φ((c2, +∞)). Then

µ(r−1
L (R)) ≥ µ(g′(Km)) = µ(Km) > 0. (4.3)

However, by (4.2), we can take a sequence si ∈ G such that s1(φ(c2)) ≺ s2(φ(c2)) ≺

s3(φ(c2)) ≺ . . . ∈ R and si(φ(c2)) → +∞ as i → ∞ with respect to the ordering ≺.

Then we have

0 = µ(∅) = µ

(
∞⋂

i=1

si(r
−1
L R)

)
= lim
i→∞

µ(si(r
−1
L R)) = µ(r−1

L R). (4.4)

Since (4.3) and (4.4) contradict each other, this subcase does not occur.

Subcase 2.2. ψ is one-sided oscillatory in X. Since φ is oscillatory, there must exist

a point z ∈ X such that z =
⋂∞
n=1 ψ((−∞, −n]). If z is a fixed point of G, then the

conclusion holds; otherwise, there is some g̃ ∈ G with g̃(z) 6= z. Since ψ is maximal,

there is r ∈ (−∞, +∞) such that

ψ([r , +∞)) = ψ((−∞, +∞)) ∩ g̃(ψ((−∞, +∞))).

Denote w = ψ(r) ∈ M . Take a ∈ (z, w) with g̃(a) ∈ (g̃(z), w). Let t ∈ (−∞, +∞) be

such that ψ(t) = a. Set L′ = L ∪ {z} and set Pt = {x ∈ X : rL′(x) ∈ [z, a]} and Qt =

{x ∈ X : rL′(x) ∈ ψ((t , +∞))} (see Figure 2). Then, by Lemma 2.12, Pt and Qt are

arcwise connected and Borel measurable, and X = Pt ∪Qt (disjoint union). Since G is

amenable, there is a G-invariant Borel probability measure µ on X. Then 1 = µ(X) =

µ(Pt )+ µ(Qt ). Noting that g̃(Pt ) ⊂ Qt , we have

µ(Qt ) ≥ µ(g̃(Pt )) = µ(Pt ) > 0

provided that µ(Pt ) > 0. Thus, we always have µ(Qt ) > 0. Since a ∈ M , there is some

g ∈ G such that g(a) ∈ φ([c2, +∞)). Then, by an argument similar to that in Subcase 2.1,

we get a contradiction.

Altogether, we finish the proof of Theorem 4.1 under the assumption that G is finitely

generated.

Step 2: Now suppose that G is not finitely generated. For any finite subset F of G, let

〈F 〉 be the subgroup of G which is generated by F. Define

XF = {x ∈ X : x is a fixed point of 〈F 〉}.
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FIGURE 2. A maximal one-sided oscillatory line and its image.

Then XF is a non-empty closed subset of X. If F ′ is another finite subset of G, then

XF ∩XF ′ = XF∪F ′ 6= ∅. Thus, the family of compact sets {XF : F is a finite subset ofG}

has the finite intersection property. Hence,

⋂
{XF : F is finite in G} 6= ∅,

every point of which is a fixed point of G. Thus, we complete the proof of Theorem 4.1. �

We end this paper with a remark. For any countable group G, if p is a periodic point, then

[Gp] is a tree. It follows that if for some bound M every G-action on a tree has a periodic

point with period at most M, then the same is true of any G-action on a uniquely arcwise

continuum or else there exists an action of G on such a space with no periodic points.

Furthermore, our proof shows that if for some bound M every G-action on a dendrite has a

periodic point with period at most M, then the same is true of any G-action on a uniquely

arcwise continuum which happens to admit an invariant measure.
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