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Abstract

We develop techniques for computing the asymptotics of the first and second moments
of the number TN of coupons that a collector has to buy in order to find all N existing
different coupons as N → ∞. The probabilities (occurring frequencies) of the coupons
can be quite arbitrary. From these asymptotics we obtain the leading behavior of the
variance V [TN ] of TN (see Theorems 3.1 and 4.4). Then, we combine our results with the
general limit theorems of Neal in order to derive the limit distribution of TN (appropriately
normalized), which, for a large class of probabilities, turns out to be the standard Gumbel
distribution. We also give various illustrative examples.
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1. Introduction

1.1. Preliminaries

Consider a population whose members are of N different types (e.g. colors). For 1 ≤ j ≤ N ,
we denote by pj the probability that a member of the population is of type j . The members of
the population are sampled independently with replacement and their types are recorded. The
so-called coupon collector problem (CCP) deals with questions arising in the above procedure.
Some key quantities are the moments of the number TN of trials it takes until all N types are
detected (at least once). The coupon collector problem (in its simplest form) has appeared in
Feller’s classical work [8] and has attracted the attention of various researchers since it has
found many applications in several areas of science (computer science—search algorithms,
mathematical programming, optimization, learning processes, engineering, ecology, as well as
linguistics—see, e.g. [3] and [9]).

It is convenient to introduce the events Ak
j , 1 ≤ j ≤ N , that the type j is not detected until

trial k (included). Then

P{TN ≥ k} = P{Ak−1
1 ∪ · · · ∪ Ak−1

N }, k = 1, 2, . . . .

By invoking the inclusion–exclusion principle we obtain

P{TN ≥ k} =
∑

J⊂{1,...,N}
J �=∅

(−1)|J |−1
[

1 −
(∑

j∈J

pj

)]k−1

, k = 1, 2, . . . , (1.1)
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where the sum extends over the 2N − 1 nonempty subsets J of {1, . . . , N}, while |J | denotes
the cardinality of J . For z ∈ C, |z| ≥ 1, we set

G(z) := E[z−TN ] = 1 + (z−1 − 1)

∞∑
k=1

z−(k−1) P{TN ≥ k}

(the second equality follows by partial summation). Using (1.1), we obtain

G(z) = 1 + (z − 1)
∑

J⊂{1,...,N}
J �=∅

(−1)|J |

z − 1 + ∑
j∈J pj

.

Since E[TN ] = −limz→1+ G′(z) and E[TN(TN + 1)] = limz→1+ G′′(z), we arrive at the well-
known formulae (see, e.g. [13, p. 347])

E[TN ] =
∑

J⊂{1,...,N}
J �=∅

(−1)|J |−1∑
j∈J pj

=
N∑

m=1

(−1)m−1
∑

1≤j1<···<jm≤N

1

pj1 + · · · + pjm

(1.2)

and

E[TN ] =
∫ ∞

0

[
1 −

N∏
j=1

(1 − e−pj t )

]
dt =

∫ 1

0

[
1 −

N∏
j=1

(1 − xpj )

]
dx

x
, (1.3)

as well as the formulae

E[TN(TN + 1)] = 2
∑

J⊂{1,...,N}
J �=∅

(−1)|J |−1

(
∑

j∈J pj )2

= 2
N∑

m=1

(−1)m−1
∑

1≤j1<···<jm≤N

1

(pj1 + · · · + pjm)2 (1.4)

and

E[TN(TN + 1)] = 2
∫ ∞

0

[
1 −

N∏
j=1

(1 − e−pj t )

]
t dt

= −2
∫ 1

0

[
1 −

N∏
j=1

(1 − xpj )

]
ln x

x
dx. (1.5)

Of course,
V [TN ] = E[TN(TN + 1)] − E[TN ] − E[TN ]2. (1.6)

1.2. The case of equal probabilities

Naturally, the simplest case regarding the previous formulae occurs when we take

p1 = · · · = pN = 1

N
. (1.7)
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It is well known that, under (1.7), (1.2) becomes

E[TN ] = NHN, where HN =
N∑

m=1

1

m
. (1.8)

This case, apart from its simplicity, has the property that among all sequences, it is the one
with the smallest moments of TN (see, e.g. [10]). A nice computer simulation of the CCP in
the case of equal probabilities is available from http://www-stat.stanford.edu/∼susan/surpise/
Collector.html.

Conjecture 1.1. The variance V [TN ] takes its minimum value when all the pj s are equal.

The results of the present paper (see Theorems 3.1 and 4.4) confirm that, for a large class
of probabilities, V [TN ] is actually minimized in the case of equal probabilities, as N becomes
sufficiently large. Additional positive evidence for the conjecture comes from the asymptotic
formula for the variance given in [6].

Under (1.7), (1.4) and (1.5) become

E[TN(TN + 1)] = −2
∫ 1

0

[
1 − (1 − x1/N )N

]
ln x

x
dx = 2N2

N∑
m=1

(
N

m

)
(−1)m−1

m2 . (1.9)

Substituting u = 1 − x1/N in the integral of (1.9) and evaluating the resulting integral we also
obtain

E[TN(TN + 1)] = 2N2
N∑

m=1

Hm

m
= N2

(
H 2

N +
N∑

m=1

1

m2

)
.

From (1.8) and (1.4), we can easily obtain the full asymptotic expansions of E[TN ], E[TN(TN +
1)], and, hence, of V [TN ]. In particular, we have

E[TN ] = N ln N + γN + 1

2
+ O

(
1

N

)

(γ = 0.5772 . . . is Euler’s constant),

E[TN(TN + 1)] = N2
[
(ln N)2 + 2γ ln N + γ 2 + π2

6
+ O

(
ln N

N

)]
,

and

V [TN ] = π2

6
N2 − N ln N − (γ + 1)N + O

(
ln N

N

)
. (1.10)

Note that (1.10) is in accordance with the known results (see, e.g. [6]). The coefficient π2/6 in
the leading order of V [TN ] (refers to the Gumbel distribution and) persists in a large class of
cases (see Theorem 4.4 and (5.6)).

1.3. Large N asymptotics

When N is large, it is not clear what information we can obtain from (1.2)–(1.3) and (1.4)–
(1.5) for E[TN ], E[TN(TN +1)], and V [TN ]. For this reason, there is a need to develop efficient
ways for deriving asymptotics as N → ∞.
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As in [4], let α = {aj }∞j=1 be a sequence of strictly positive numbers. Then, for each integer
N > 0, we can create a probability measure πN = {p1, . . . , pN } on the set of types {1, . . . , N}
by taking

pj = aj

AN

, where AN =
N∑

j=1

aj . (1.11)

Note that pj depends on α and N ; thus, given α, it makes sense to consider the asymptotic
behavior of E[TN ], E[TN(TN + 1)], and V [TN ] as N → ∞.

Motivated by (1.2), we introduce the notation (as in [4])

EN(α) :=
∑

J⊂{1,...,N}
J �=∅

(−1)|J |−1∑
j∈J aj

=
N∑

k=1

(−1)k−1
∑

1≤j1<···<jk≤N

1

aj1 + · · · + ajk

. (1.12)

Then, as in (1.3), we have

EN(α) =
∫ ∞

0

[
1 −

N∏
j=1

(1 − e−aj t )

]
dt =

∫ 1

0

[
1 −

N∏
j=1

(1 − xaj )

]
dx

x
. (1.13)

If sα = {saj }∞j=1, (1.12) immediately gives EN(sα) = s−1EN(α) and, hence, in view of (1.2)
and (1.11),

E[TN ] = EN(A−1
N α) = ANEN(α). (1.14)

Likewise, motivated by (1.4), in order to analyze E[TN(TN + 1)], we introduce

QN(α) := 2
∑

J⊂{1,...,N}
J �=∅

(−1)|J |−1

(
∑

j∈J aj )2 = 2
N∑

m=1

(−1)m−1
∑

1≤j1<···<jm≤N

1

(aj1 + · · · + ajm)2 .

(1.15)
Then, as in (1.5), we have

QN(α) = 2
∫ ∞

0

[
1 −

N∏
j=1

(1 − e−aj t )

]
t dt = −2

∫ 1

0

[
1 −

N∏
j=1

(1 − xaj )

]
ln x

x
dx. (1.16)

From (1.15), it immediately follows that QN(sα) = s−2QN(α); hence,

E[TN(TN + 1)] = QN(A−1
N α) = A2

NQN(α). (1.17)

As noted in [4] for E[TN ], the problem of estimating E[TN(TN + 1)] as N → ∞ can be
treated as two separate problems, namely estimating A2

N (i.e. AN ) and estimating QN(α). Our
analysis focuses on estimating QN(α). The estimation of AN will be considered an external
matter which can be handled by existing powerful methods, such as the Euler–Maclaurin sum
formula, the Laplace method for sums (see, e.g. [2, Chapter 6]), or even summation by parts.

The rest of the paper is organized as follows. In Section 2 we discuss a key feature, namely
that the sequence α which produces the pj s can be of two (mutually exclusive) kinds. Section 3
deals with the sequences of the first kind. In Section 4 we consider a large class of sequences
belonging to the second kind. Here the computations are much more involved. After presenting
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the detailed asymptotics of E[TN ] and E[TN(TN +1)] in Theorems 4.2 and 4.3, respectively, we
finally give the (leading) asymptotic behavior of V [TN ] in Theorem 4.4. In an earlier work [6]
of Brayton (doctoral thesis under N. Levinson) an asymptotic formula for V [TN ] was found
under very restrictive assumptions on α. In particular, the probabilities pj considered in [6]
must satisfy

λ(N) := max1≤j≤N {pj }
min1≤j≤N {pj } ≤ M < ∞, independently of N .

Our results complement the results of [6], since they concern quite general sequences for
which the above ratio λ(N) is not bounded. In particular, we cover some important families
of distributions (e.g. linear and Zipf). Then, in Section 5 we use our asymptotic formulae for
E[TN ] and V [TN ] in the limit theorems of Neal [12] and obtain limiting distributions concerning
TN (see formulae (5.6) and (5.7)). Section 6 contains various examples. Finally, the proofs of
certain technical theorems and lemmas are given in Appendix A.

2. The dichotomy

For convenience, we set

f α
N(x) :=

N∏
j=1

(1 − xaj ), 0 ≤ x ≤ 1.

Obviously, (i) f α
N(0) = 1 and f α

N(1) = 0; (ii) f α
N(x) is monotone decreasing in x; and

(iii) f α
N+1(x) ≤ f α

N(x). In particular,

lim
N

f α
N(x) =

∞∏
j=1

(1 − xaj ) exists.

Thus, applying the monotone convergence theorem to (1.13) and (1.16), we respectively obtain

L1(α) := lim
N

EN(α) =
∫ 1

0

[
1 −

∞∏
j=1

(1 − xaj )

]
dx

x
(2.1)

and

L2(α) := lim
N

QN(α) = −2
∫ 1

0

[
1 −

∞∏
j=1

(1 − xaj )

]
ln x

x
dx. (2.2)

Note that L1(α), L2(α) > 0 for any α (since, for every x ∈ (0, 1), f α
N(x) < 1 and decreases

with N ). However, we may have L1(α) = ∞ and/or L2(α) = ∞. In fact, as we will see (in
Remark 2.1 below), L1(α) = ∞ if and only if L2(α) = ∞.

Theorem 2.1. We have L2(α) < ∞ if and only if there exists a ξ ∈ (0, 1) such that

∞∑
j=1

ξaj < ∞. (2.3)
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Before proving the theorem we recall the following inequality which can be proved easily
by induction and limit.

Let {bj }∞j=1 be a sequence of real numbers such that 0 ≤ bj ≤ 1 for all j . If
∑∞

j=1 bj < ∞
then ∞∑

j=1

bj −
∑

1≤l<j

blbj ≤ 1 −
∞∏

j=1

(1 − bj ) ≤
∞∑

j=1

bj . (2.4)

Proof of Theorem 2.1. Assume that there exists a ξ ∈ (0, 1) such that (2.3) is true. Then,
by (2.2) and (2.4), we have

L2(α) ≤ −2
∫ ξ

0

[ ∞∑
j=1

xaj

]
ln x

dx

x
− 2

∫ 1

ξ

[
1 −

∞∏
j=1

(1 − xaj )

]
ln x

dx

x

≤ −2
∫ ξ

0

[ ∞∑
j=1

xaj −1
]

ln(x) dx + ln2 ξ

or

L2(α) ≤ −2
∞∑

j=1

(
1

aj

ξaj ln ξ − 1

a2
j

ξaj

)
+ ln2 ξ.

Now, (2.3) implies that ξaj → 0; hence, aj → ∞. Therefore, minj {aj } = aj0 > 0. Thus,

L2(α) ≤ 2
1

a2
j0

∞∑
j=1

ξaj − 2
ln ξ

aj0

∞∑
j=1

ξaj + ln2 ξ < ∞.

Conversely, if
∞∑

j=1

ξaj = ∞ for all ξ ∈ (0, 1)

then, by a well-known property of infinite products (see, e.g. [14, p. 300]),

∞∏
j=1

(1 − xaj ) = 0 for all x ∈ (0, 1),

and, hence, (2.2) yields L2(α) = −2
∫ 1

0 (ln x/x) dx = ∞.

Remark 2.1. It has been shown in [4] that L1(α) < ∞ if and only if there exists a ξ ∈ (0, 1)

such that
∑∞

j=1 ξaj < ∞. Thus, L2(α) < ∞ if and only if L1(α) < ∞.

To summarize, we have the following dichotomy:

0 < L1(α), L2(α) < ∞ or L1(α) = L2(α) = ∞.

Remark 2.2. Consider the error term defined by

�N := L2(α) − QN(α).

Then, by (1.16) and (2.2), we have

�N ≤ −2
∫ 1

0

( ∞∑
j=N+1

xaj

)
ln x

x
dx = 2

∞∑
j=N+1

1

a2
j

.
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3. Second moment and variance I: Li(α) < ∞
Let AN and Li(α) be as in (1.11), (2.1), and (2.2), respectively. We note that, by Theorem 2.1,

Li(α) < ∞ implies that limj aj = ∞ (hence, limN AN = ∞).

Theorem 3.1. If Li(α) < ∞, i ∈ {1, 2}, then, as N → ∞,

E[TN(TN + 1)] = A2
NL2(α)[1 + o(1)]

and
V [TN ] = A2

N [L2(α) − L1(α)2] + o(A2
N). (3.1)

Proof. We know (see [4]) that

E[TN ] = ANL1(α)[1 + o(1)] as N → ∞.

Thus, the formulae of the theorem follow immediately from (1.17), (2.1), (2.2), and (1.6).

Since V [TN ] > 0, (3.1) implies that

L2(α) − L1(α)2 ≥ 0.

However, in order that (3.1) is exact, we need to exclude the possibility that L2(α) = L1(α)2.

Theorem 3.2. We have
L2(α) − L1(α)2 > 0.

Proof. Set F(x) = 1 − ∏∞
j=1(1 − xaj ), x ∈ [0, 1]. Then, clearly, F is increasing on [0, 1],

with F(0) = 0 and F(1) = 1; hence, F is a probability distribution function of some nontrivial
(since L1(α), L2(α) < ∞) random variable X taking values in [0, 1]. In view of (2.1) and
(2.2), we need to prove that

−2
∫ 1

0

ln x

x
F(x) dx >

[∫ 1

0

F(x)

x
dx

]2

. (3.2)

Integration by parts leave us only to validate that

EF [ln(X)2] =
∫ 1

0
ln(x)2 dF(x) >

[∫ 1

0
ln(x) dF(x)

]2

= EF [ln X]2,

which is true by Jensen’s inequality; thus, (3.2) is established.

4. Second moment and variance II: Li(α) = ∞
As we will see, this case is much more challenging.

4.1. Leading behavior of the second moment

By Theorem 2.1, Li(α) = ∞, i ∈ {1, 2}, is equivalent to

∞∑
j=1

xaj = ∞ for all x ∈ (0, 1).

https://doi.org/10.1239/aap/1331216649 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1331216649


The coupon collector’s problem revisited 173

For our further analysis, we follow [4] and write aj in the form

aj = 1

f (j)
,

where
f (x) > 0 and f ′(x) > 0. (4.1)

In order to proceed, we assume that f (x) possesses three derivatives satisfying the following
conditions as x → ∞:

(C1) f (x) → ∞,

(C2) f ′(x)/f (x) → 0,

(C3) (f ′′(x)/f ′(x))/(f ′(x)/f (x)) = O(1),

(C4) f ′′′(x)f (x)2/f ′(x)3 = O(1)

(in [4] the conditions on f (x) were slightly weaker). These conditions are satisfied by a variety
of commonly used functions. For example,

f (x) = xp(ln x)q, p > 0, q ∈ R, f (x) = exp(xr), 0 < r < 1,

or various convex combinations of products of such functions.

Remark 4.1. (a) From condition (C2) we have

lim
x→∞

f (x + 1)

f (x)
= 1. (4.2)

This can be justified by considering the function g(x) = ln f (x) and applying the mean value
theorem.

(b) Condition (C3) together with (C1) and (C2) implies that

ln f ′(x)

ln f (x)
= O(1). (4.3)

For typographical convenience, we set

F(x) := −f (x) ln

(
f ′(x)

f (x)

)
(4.4)

(note that (4.1) and (C2) imply that F(x) > 0 for sufficiently large x).

Theorem 4.1. If α = {1/f (j)}∞j=1, where f satisfies (4.1) and (C1)–(C4), then

QN(α) ∼ f (N)2 ln

(
f (N)

f ′(N)

)2

= F(N)2 as N → ∞ (4.5)

(where γN ∼ δN means, as usual, γN/δN → 1).
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The proof is an adaptation of the proof given in [4] for the leading asymptotics of EN(α).
See Appendix A.

Using Theorem 3.1 in (1.17), we obtain

E[TN(TN + 1)] ∼ A2
Nf (N)2 ln

(
f (N)

f ′(N)

)2

as N → ∞. (4.6)

Note that

ANf (N) = 1

pN

= 1

min1≤j≤N {pj } .

4.2. More terms in the asymptotic behavior of E[TN ]
It was shown in [4] that

E[TN ] ∼ ANf (N) ln

(
f (N)

f ′(N)

)
as N → ∞. (4.7)

If we substitute (4.6) and (4.7) into (1.6), it is clear that we do not have enough information to
find the leading asymptotics of V [TN ]. Thus, we need more terms in the expansions of E[TN ]
and E[TN(TN + 1)]. Starting from (1.13), we rewrite EN(α) as

EN(α) = F(N)

(
1 −

∫ 1

0
exp

[ N∑
j=1

ln(1 − e−F(N)s/f (j))

]
ds

+
∫ ∞

1

{
1 − exp

[ N∑
j=1

ln(1 − e−F(N)s/f (j))

]}
ds

)
. (4.8)

Set

I1(N) =
∫ 1

0
exp

[ N∑
j=1

ln(1 − e−F(N)s/f (j))

]
ds (4.9)

and

I2(N) =
∫ ∞

1

{
1 − exp

[ N∑
j=1

ln(1 − e−F(N)s/f (j))

]}
ds. (4.10)

We know (see [4]) that
I1(N) = o(1) and I2(N) = o(1). (4.11)

In order to analyze the above integrals more deeply, we need the following lemma.

Lemma 4.1. Set

Jm(N) :=
∫ N

1
f (x)me−F(N)s/f (x) dx, m ≥ 0.

Then, under (C1)–(C4) and (4.4), we have

Jm(N) = f (N)m+2

sF (N)f ′(N)
e−F(N)s/f (N)

[
1 + O

(
f (N)

F (N)

)]
as N → ∞,

uniformly in s ∈ [s0, ∞) for any s0 > 0.

Proof. See Appendix A.
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We will also need the second term in the asymptotics of the integral Jm(N).

Corollary 4.1. If Jm(N) is as in Lemma 4.1 then, as N → ∞,

Jm(N) = f (N)m+2

sF (N)f ′(N)
e−F(N)s/f (N)

+ ω(N)
f (N)m+3

s2F(N)2f ′(N)
e−F(N)s/f (N)

[
1 + O

(
f (N)

F (N)

)]
,

where

ω(N) := −2 + f ′′(N)/f ′(N)

f ′(N)/f (N)
. (4.12)

Again, the asymptotics are uniform in s ∈ [s0, ∞) for any s0 > 0.

Proof. See Appendix A.

4.2.1. The Integral I1(N). Regarding the integral in (4.9), given any ε ∈ (0, 1), we have

I1(N) =
∫ 1−ε

0
exp

[ N∑
j=1

ln(1 − e−F(N)s/f (j))

]
ds

+
∫ 1

1−ε

exp

[ N∑
j=1

ln(1 − e−F(N)s/f (j))

]
ds. (4.13)

For the first integral in (4.13), we have

I11(N) :=
∫ 1−ε

0
exp

[ N∑
j=1

ln(1 − e−F(N)s/f (j))

]
ds

< (1 − ε) exp

[ N∑
j=1

ln(1 − e−F(N)(1−ε)/f (j))

]

< exp

[ N∑
j=1

ln(1 − e−F(N)(1−ε)f (j))

]

< exp

(
−

N∑
j=1

e−F(N)(1−ε)/f (j)

)
,

since ln(1 − x) < −x for 0 < x < 1. Thus, from (A.6) in Appendix A we obtain

I11(N) < exp

[
−

∫ N

1
e−F(N)(1−ε)/f (x) dx

]
. (4.14)

Applying Lemma 4.1 for m = 0 we arrive at

I11(N) < exp

[
− f (N)2

(1 − ε)F (N)f ′(N)
e−F(N)(1−ε)/f (N)

(
1 + M1

f (N)

F (N)

)]
, (4.15)
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where M1 is a positive constant. Using (4.4), i.e. the definition of F , we have

I11(N) < exp

[
− 1

1 − ε

(f (N)/f ′(N))ε

ln(f (N)/f ′(N))

(
1 + M1

1

ln(f (N)/f ′(N))

)]
. (4.16)

Since f ′(x)/f (x) → 0 and ε ∈ (0, 1), we have

I11(N) <

[
1

ln(f (N)/f ′(N))

]3

(4.17)

for sufficiently large N .
Our next task is to compute a few terms of the asymptotic expansion of the second integral

in (4.13). For convenience, we set

B(N; s) :=
N∑

j=1

ln(1 − e−F(N)s/f (j)). (4.18)

Since
F(N)

f (j)
→ ∞ as N → ∞

and ln(1 − x) = −x + O(x2) as x → 0, we have (as long as s ≥ s0 > 0)

B(N; s) =
N∑

j=1

[−e−F(N)s/f (j) + O(e−2F(N)s/f (j))]. (4.19)

From the comparison of sums and integrals, i.e. (A.6), (4.19) yields

B(N; s) = −
[∫ N

1
e−F(N)s/f (x) dx + O(e−F(N)s/f (N+1))

]
+

N∑
j=1

O(e−2F(N)s/f (j)).

The above formula, together with Corollary 4.1 for m = 0, gives

B(N; s) = − f (N)2

sF (N)f ′(N)
e−F(N)s/f (N)

− ω(N)
f (N)3

s2F(N)2f ′(N)
e−F(N)s/f (N)

[
1 + O

(
f (N)

F (N)

)]
+ O(e−F(N)s/f (N+1) + Ne−2F(N)s/f (N)).

Using (4.2) the above yields

B(N; s) = − f (N)2

sF (N)f ′(N)
e−F(N)s/f (N)

− ω(N)
f (N)3

s2F(N)2f ′(N)
e−F(N)s/f (N)

[
1 + O

(
f (N)

F (N)

)]
.
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Hence,

I12(N) :=
∫ 1

1−ε

eB(N;s) ds

=
∫ 1

1−ε

exp

[
− f (N)2

sF (N)f ′(N)
e−F(N)s/f (N)

− ω(N)
f (N)3

s2F(N)2f ′(N)
e−F(N)s/f (N)

[
1 + O

(
f (N)

F (N)

)]]
ds

as N → ∞. Using the definition of F and substituting s = 1− t , the above expression becomes

I12(N) =
∫ ε

0
exp

[
− 1

1 − t

(f (N)/f ′(N))t

ln(f (N)/f ′(N))

− ω(N)
1

(1 − t)2

(f (N)/f ′(N))t

ln(f (N)/f ′(N))2

[
1 + O

(
1

ln(f (N)/f ′(N))

)]]
dt.

For typographical convenience, we set

A := f (N)

f ′(N)
(4.20)

(note that A → ∞ as N → ∞). Thus,

I12(N) =
∫ ε

0
exp

[
− At

ln A

( ∞∑
n=0

tn
)

− ω(N)
At

ln2 A

( ∞∑
n=1

ntn−1
)[

1 + O

(
1

ln A

)]]
dt. (4.21)

Substituting u = At/ln A into the above integral, (4.21) yields

I12(N) =
∫ Aε/ln A

1/ln A

exp

[
− u

1 − ln u/ln A − ln(ln A)/ln A

− ω(N)

ln A

u

(1 − ln u/ln A − ln(ln A)/ln A)2

×
[

1 + O

(
1

ln A

)]]
du

u ln A
.

If

δ := 1

ln A
= 1

ln(f (N)/f ′(N))
= f (N)

F (N)
(4.22)

(hence, A → ∞ implies that δ → 0+), the above integral becomes

I12 = δ

∫ δ exp(ε/δ)

δ

exp

(
− u

1 − δ ln u + δ ln δ
− ω(N)uδ

(1 − δ ln u + δ ln δ)2 (1 + O(δ))

)
du

u
.

Thus,

I12 = δ

∫ 1/
√

δ

δ

exp

[
− u

1 − δ ln u + δ ln δ
− ω(N)uδ

(1 − δ ln u + δ ln δ)2 (1 + O(δ))

]
du

u

+ δ

∫ δ exp(ε/δ)

1/
√

δ

exp

[
− u

1 − δ ln u + δ ln δ
− ω(N)uδ

(1 − δ ln u + δ ln δ)2 (1 + O(δ))

]
du

u
.

(4.23)
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First we deal with the second integral in (4.23) and obtain an upper bound as follows:

∫ δ exp(ε/δ)

1/
√

δ

exp

[
− u

1 − δ ln u + δ ln δ
− ω(N)uδ

(1 − δ ln u + δ ln δ)2 (1 + O(δ))

]
du

u

=
∫ δ exp(ε/δ)

1/
√

δ

exp

[
− u

1 − δ ln u + δ ln δ

[
1 + ω(N)

1 − δ ln u + δ ln δ
δ(1 + O(δ))

]]
du

u

≤
∫ δ exp(ε/δ)

1/
√

δ

exp

[
− u(1 + O(δ))

1 − δ ln(1/
√

δ) + δ ln δ

]
du

1/
√

δ

= O(
√

δe−1/
√

δ). (4.24)

Denote the first integral in (4.23) as

K1(δ) :=
∫ 1/

√
δ

δ

exp

[
− u

1 − δ ln u + δ ln δ
− u ω(N)δ

(1 − δ ln u + δ ln δ)2 (1 + O(δ))

]
du

u
.

Since, for |x| < 1, (1 − x)−2 = ∑∞
n=1 nxn−1,

K1(δ) =
∫ 1/

√
δ

δ

exp

[
−u

∞∑
n=0

(
δ ln

u

δ

)n

− uω(N)δ(1 + O(δ))

∞∑
n=1

n

(
δ ln

u

δ

)n−1]du

u

=
∫ 1/

√
δ

δ

e−u

u
exp

[
−u

∞∑
n=1

(
δ ln

u

δ

)n]

× exp

[
−uω(N)δ(1 + O(δ))

∞∑
n=1

n

(
δ ln

u

δ

)n−1]
du.

Next we expand the exponentials and obtain

K1(δ) =
∫ 1/

√
δ

δ

e−u

u

{
1 − u

∞∑
n=1

(
δ ln

u

δ

)n

+ O

(
u

∞∑
n=1

(
δ ln

u

δ

)n)2}

×
{

1 − ω(N)uδ(1 + O(δ))

∞∑
n=1

(
δ ln

u

δ

)n−1

+ O

(
ω(N)uδ(1 + O(δ))

∞∑
n=1

(
δ ln

u

δ

)n−1)2}
du

(since ex = 1 + x + O(x2) as x → 0). Hence,

K1(δ) =
∫ 1/

√
δ

δ

e−u

u

[
1 − u

(
δ ln

u

δ
+ ω(N)δ(1 + O(δ))

)
+ u2O

(
δ2 ln2 u

δ

)]
du

=
∫ ∞

δ

e−u

u

[
1 − u

(
δ ln

u

δ
+ ω(N)δ(1 + O(δ))

)
+ u2O

(
δ2 ln2 u

δ

)]
du

−
∫ ∞

1/
√

δ

e−u

u

[
1 − u

(
δ ln

u

δ
+ ω(N)δ(1 + O(δ))

)
+ u2O

(
δ2 ln2 u

δ

)]
du.
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However, ∫ ∞

1/
√

δ

e−u

u

[
1 − u

(
δ ln

u

δ
+ ω(N)δ(1 + O(δ))

)
+ u2O

(
δ2 ln2 u

δ

)]
du

≤
∫ ∞

1/
√

δ

e−u

1/
√

δ

(
1 − 1√

δ
δ ln

(
1/

√
δ

δ

)
− ω(N)δ(1 + O(δ))

)
du

+
∫ ∞

1/
√

δ

ue−uO

(
δ2 ln2 u

δ

)
du

= O(
√

δe−1/
√

δ) as δ → 0+. (4.25)

It follows that in the expression for K1(δ) we can replace the upper limit of the integral by ∞
and, therefore,

I12(N) = δ

∫ ∞

δ

e−u

u

[
1 − u

(
δ ln

u

δ
+ ω(N)δ(1 + O(δ))

)
+ u2O

(
δ2 ln2 u

δ

)]
du (4.26)

as δ → 0+. To continue, we need the following lemmas.

Lemma 4.2. For the exponential integral,

E(x) :=
∫ ∞

x

e−t

t
dt,

we have the asymptotic expansion

E(x) ∼ −ln x − γ + x − 1
4x2 + 1

18x3 − · · ·
as x → 0+. Here γ = 0.5772 . . . is Euler’s constant.

Proof. See [2, p. 252].

Lemma 4.3. For the integral

G(x) :=
∫ ∞

x

ln te−t dt,

we have the asymptotic expansion, as x → 0+,

G(x) ∼ −γ − x ln x + x + 1
2x2 ln x − 1

2x2 − 1
6x3 ln x + 1

6x3 + 1
24x4 ln x − 1

24x4 + · · · .

Proof. See Appendix A.

Applying Lemmas 4.2 and 4.3 to (4.26) we obtain

I12 = −δ ln δ − γ δ + δ2 ln δe−δ + (1 + γ )δ2 − δ2ω(N)e−δ + O(δ3 ln2 δ). (4.27)

Since e−δ = 1 + O(δ) as δ → 0+, (4.27) yields

I12 = −δ ln δ − γ δ + δ2 ln δ + [1 + γ − ω(N)]δ2 + O(δ3 ln2 δ). (4.28)

Note that the error term in (4.28) dominates the terms of (4.24) and (4.25).

https://doi.org/10.1239/aap/1331216649 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1331216649


180 A. V. DOUMAS AND V. G. PAPANICOLAOU

4.2.2. The Integral I2(N). Our next goal is to compute the asymptotic behavior of I2(N). Here
we will follow a different approach.

Given ϑ ∈ (0, 1), there exists an η = η(ϑ) such that, for 0 < x < η, we have

−(1 + ϑ)x < ln(1 − x) < −(1 − ϑ)x (4.29)

and
(1 − ϑ)x < 1 − e−x < (1 + ϑ)x. (4.30)

For j = 1, . . . , N and s ≥ 1, we use the definition of F and the fact that f is increasing to
obtain

0 < x = e−F(N)s/f (j) ≤ e−F(N)s/f (N) ≤ e−F(N)/f (N) = f ′(N)

f (N)
→ 0 as N → ∞.

Hence, for a given ϑ ∈ (0, 1), there is N0 = N0(ϑ) such that, for N ≥ N0, (4.29) yields

−(1 + ϑ)e−F(N)s/f (j) < ln(1 − e−F(N)s/f (j)) < −(1 − ϑ)e−F(N)s/f (j), j = 1, . . . , N.

By summing over j and using (4.18) we get

−(1 + ϑ)

N∑
j=1

e−F(N)s/f (j) < B(s; N) < −(1 − ϑ)

N∑
j=1

e−F(N)s/f (j).

From (A.6) in Appendix A (i.e. the comparison of sums and integrals), we arrive at

−(1 + ϑ)

[
e−F(N)s/f (N+1) +

∫ N

1
e−F(N)s/f (x) dx

]
< B(s; N)

< −(1 − ϑ)

[
e−F(N)s/f (N+1) +

∫ N

1
e−F(N)s/f (x) dx

]
. (4.31)

Now, from (4.11) we have B(s; N) → 0 as N → ∞, uniformly in s ∈ [1, ∞). Thus, for given
ϑ > 0, there exists N1 = N1(ϑ) such that, for N ≥ N1, (4.30) gives

−(1 − ϑ)B(s; N) < 1 − eB(s;N) < −(1 + ϑ)B(s; N).

Therefore (see (4.10) and (4.18)),

−(1 − ϑ)

∫ ∞

1
B(s; N) ds < I2(N) < −(1 + ϑ)

∫ ∞

1
B(s; N) ds.

Using the bounds of B(s; N) given in (4.31) in the above formula, we find that, for all N ≥
N2 = max{N0, N1},

(1 − ϑ)2
∫ ∞

1

∫ N

1
e−F(N)s/f (x) dx ds − (1 − ϑ)2

∫ ∞

1
e−F(N)s/f (N+1) ds

< I2(N)

< (1 + ϑ)2
∫ ∞

1

∫ N

1
e−F(N)s/f (x) dx ds + (1 + ϑ)2

∫ ∞

1
e−F(N)s/f (N+1) ds. (4.32)

https://doi.org/10.1239/aap/1331216649 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1331216649


The coupon collector’s problem revisited 181

Now, ∫ ∞

1

∫ N

1
e−F(N)s/f (x) dx ds = 1

F(N)

∫ N

1
f (x)e−F(N)/f (x) dx

=
(

f (N)

F (N)

)2[
1 + O

(
f (N)

F (N)

)]
,

where the last equality follows by applying Lemma 4.1 for m = 1. Furthermore, by (C1)–(C4)
and (4.2), it is straightforward to see that∫ ∞

1
e−F(N)s/f (N+1) ds = f (N + 1)

F (N)
e−F(N)/f (N+1) = o

(
f (N)2

F(N)2

)
.

Since ϑ ∈ (0, 1) is arbitrary, (4.32) implies that

I2(N) =
(

f (N)

F (N)

)2[
1 + O

(
f (N)

F (N)

)]
as N → ∞.

Again, using the definition of F and (4.22), we obtain

I2(N) = δ2(1 + O(δ)) as δ → 0+. (4.33)

We are therefore ready to present the following result.

Theorem 4.2. Let δ be as defined in (4.22) (hence, δ → 0+ as N → ∞), and let ω(N) be as
given in (4.12). Then (γ is, as usual, Euler’s constant)

EN(α) = f (N)

[
1

δ
+ ln δ + γ − δ ln δ + (ω(N) − γ )δ + O(δ2 ln2 δ)

]
.

Proof. The result follows immediately by combining (4.17), (4.28), (4.33), (4.9), and (4.10)
with (4.8).

From (1.14) we have (as δ → 0+)

E[TN ] = ANf (N)

[
1

δ
+ ln δ + γ − δ ln δ + (ω(N) − γ )δ + O(δ2 ln2 δ)

]
. (4.34)

We mention again that in [4] the leading behavior of E[TN ] was given. Formula (4.34) is an
improvement.

4.3. More asymptotics for E[TN(TN + 1)]
Here we will follow a similar approach as in Subsection 4.2, in order to find the first few

terms in the asymptotic expansion of E[TN(TN + 1)], so that the leading behavior of V [TN ]
can be eventually calculated. Expand QN(α) as

QN(α) = 2F(N)2
[

1

2
−

∫ 1

0
exp

[ N∑
j=1

ln(1 − e−F(N)s/f (j))

]
s ds

]

+ 2F(N)2
∫ ∞

1

[
1 − exp

[ N∑
j=1

ln(1 − e−F(N)s/f (j))

]]
s ds. (4.35)
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Set

I3(N) =
∫ 1

0

[
exp

[ N∑
j=1

ln(1 − e−F(N)s/f (j))

]]
s ds (4.36)

and

I4(N) =
∫ ∞

1

[
1 − exp

[ N∑
j=1

ln(1 − e−F(N)s/f (j))

]]
s ds. (4.37)

From (A.4) and (A.8), we know that

I3(N) = o(1) and I4(N) = o(1).

4.3.1. The Integral I3(N). For ε ∈ (0, 1), we write the integral I3(N) given in (4.36) as

I3(N) = I31(N) + I32(N), (4.38)

where

I31(N) =
∫ 1−ε

0

[
exp

[ N∑
j=1

ln(1 − e−F(N)s/f (j))

]]
s ds (4.39)

and

I32(N) =
∫ 1

1−ε

[
exp

[ N∑
j=1

ln(1 − e−F(N)s/f (j))

]]
s ds.

For I31(N) given in (4.39), as in (4.14), we have

I31(N) < exp

[
−

∫ N

1
e−F(N)(1−ε)/f (x) dx

]
.

Applying Lemma 4.1 for m = 0 and using the definition of F (in the same manner as we did
for (4.15) and (4.16)), we arrive at

I31(N) <

(
1

ln(f (N)/f ′(N))

)3

(4.40)

for sufficiently large N .
Our next task is to compute the asymptotics of I32(N). We can treat I32(N) as we treated

I12(N) in Subsubsection 4.2.1. We obtain

I32 =
∫ ε

0
(1 − t) exp

[
− 1

1 − t

At

ln A
− ω(N)

1

(1 − t)2

At

ln2 A

[
1 + O

(
1

ln A

)]]
dt, (4.41)

where A is given in (4.20). Again, substituting u = At/ln A and invoking (4.21), (4.41) yields

I32 = I12 −
∫ Aε/ln A

1/ln A

ln u + ln(ln A)

ln A
exp

[
− u

1 − ln u/ln A − ln(ln A)/ln A

]

× exp

[
−ω(N)

ln A

u

(1 − ln u/ln A − ln(ln A)/ln A)2

×
[

1 + O

(
1

ln A

)]]
du

u ln A
. (4.42)
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Again, using the notation δ = 1/ln A, (4.42) yields

I32 = (1 + δ ln δ)I12

− δ2
∫ δ exp(ε/δ)

δ

ln u

u
exp

[
− u

1 − δ ln u + δ ln δ
− ω(N)uδ(1 + O(δ))

(1 − δ ln u + δ ln δ)2

]
du

= (1 + δ ln δ)I12

− δ2
∫ 1/

√
δ

δ

ln u

u
exp

[
− u

1 − δ ln u + δ ln δ
− ω(N)uδ(1 + O(δ))

(1 − δ ln u + δ ln δ)2

]
du

− δ2
∫ δ exp(ε/δ)

1/
√

δ

ln u

u
exp

[
− u

1 − δ ln u + δ ln δ
− ω(N)uδ(1 + O(δ))

(1 − δ ln u + δ ln δ)2

]
du. (4.43)

First we deal with the second integral in (4.43) and get an upper bound as follows:∫ δ exp(ε/δ)

1/
√

δ

ln u

u
exp

[
− u

1 − δ ln u + δ ln δ
− ω(N)uδ

(1 − δ ln u + δ ln δ)2 (1 + O(δ))

]
du

=
∫ δ exp(ε/δ)

1/
√

δ

ln u

u
exp

[
− u

1 − δ ln u + δ ln δ

×
(

1 + ω(N)

1 − δ ln u + δ ln δ
δ(1 + O(δ))

)]
du

≤
∫ δ exp(ε/δ)

1/
√

δ

exp

[
− u (1 + O(δ))

1 − δ ln(1/
√

δ) + δ ln δ

]
ln(1/

√
δ) du

1/
√

δ

= O(
√

δ ln δe−1/
√

δ). (4.44)

The first integral of (4.43) is

K2(δ) :=
∫ 1/

√
δ

δ

exp

[
− u

1 − δ ln u + δ ln δ
− ω(N)uδ

(1 − δ ln u + δ ln δ)2 (1 + O(δ))

]
ln u

u
du

=
∫ 1/

√
δ

δ

exp

[
−u

∞∑
n=0

(
δ ln

u

δ

)n

− ω(N)uδ(1 + O(δ))

∞∑
n=1

n

(
δ ln

u

δ

)n−1] ln u

u
du

=
∫ 1/

√
δ

δ

e−u exp

[
−u

∞∑
n=1

(
δ ln

u

δ

)n]

× exp

[
−ω(N)uδ(1 + O(δ))

∞∑
n=1

n

(
δ ln

u

δ

)n−1] ln u

u
du.

We expand the exponentials above and obtain

K2(δ) =
∫ 1/

√
δ

δ

e−u ln u

u

{
1 − u

∞∑
n=1

(
δ ln

u

δ

)n

+ O

(
u

∞∑
n=1

(
δ ln

u

δ

)n)2}

×
{

1 − ω(N)uδ(1 + O(δ))

∞∑
n=1

(
δ ln

u

δ

)n−1

+ O

(
ω(N)uδ(1 + O(δ))

∞∑
n=1

(
δ ln

u

δ

)n−1)2}
du
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=
∫ 1/

√
δ

δ

e−u ln u

u

[
1 − u

(
δ ln

u

δ
+ ω(N)δ(1 + O(δ))

)
+ u2O

(
δ2 ln2 u

δ

)]
du

=
∫ ∞

δ

e−u ln u

u

[
1 − u

(
δ ln

u

δ
+ ω(N)δ(1 + O(δ))

)
+ u2O

(
δ2 ln2 u

δ

)]
du

−
∫ ∞

1/
√

δ

e−u ln u

u

[
1 − u

(
δ ln

u

δ
+ ω(N)δ(1 + O(δ))

)
+ u2O

(
δ2 ln2 u

δ

)]
du.

Using exactly the same bounds as in Subsubsection 4.2.1 (see (4.25)), we obtain (as δ → 0+)∫ ∞

1/
√

δ

e−u ln u

u

[
1 − u

(
δ ln

u

δ
+ ω(N)δ(1 + O(δ))

)
+ u2O

(
δ2 ln2 u

δ

)]
du

= O(
√

δ ln δe−1/
√

δ). (4.45)

Hence, we can replace the upper limit of the integral K2(δ) by ∞. Thus,

I32 = (1 + δ ln δ)I12

− δ2
∫ ∞

δ

e−u ln u

u

[
1 − u

(
δ ln

u

δ
+ ω(N)δ(1 + O(δ))

)
+ u2O

(
δ2 ln2 u

δ

)]
du

(4.46)

as δ → 0+.
We now need two additional lemmas in the spirit of Lemmas 4.2 and 4.3. Their proofs are

omitted since they are similar to the proof of Lemma 4.3.

Lemma 4.4. For the integral

L(x) :=
∫ ∞

x

e−t

t
ln t dt,

we have the asymptotic expansion, as x → 0+,

L(x) ∼ −1

2
ln2 x + 1

2

(
γ 2 + π2

6

)
+ x ln x − x − 1

4
x2 ln x + 1

8
x2 + 1

18
x3 ln x − 1

54
x3 + · · · .

We mention that, in the proof of Lemma 4.4 we need to compute the quantity

C = lim
x→0+

(∫ ∞

x

ln t
e−t

t
dt + 1

2
ln2 x

)
.

Integration by parts yields (see [5, p. 213])

2C =
∫ ∞

0
e−t ln2 t dt = �′′(1) = γ 2 + π2

6
.

Lemma 4.5. For the integral

M(x) :=
∫ ∞

x

e−t ln2 t dt,

we have the asymptotic expansion, as x → 0+,

M(x) ∼
(

γ 2 + π2

6

)
− x ln2 x + 2x ln x − 2x − 1

2
x2 ln x + 1

4
x2 + 1

9
x3 ln x − 1

27
x3 + · · · .
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Applying Lemmas 4.2, 4.3, 4.4, and 4.5 and using (4.28), I32 of (4.46) becomes

I32 = (1 + δ ln δ)I12 − δ2
[
−1

2
ln2 δ + 1

2

(
γ 2 + π2

6

)
+ O(δ ln δ)

]
,

and by invoking (4.28) we arrive at

I32 = −δ ln δ − γ δ − 1

2
δ2 ln2 δ + (1 − γ )δ2 ln δ +

[
1 + γ − ω(N) − 1

2

(
γ 2 + π2

6

)]
δ2

+ O(δ3 ln2 δ). (4.47)

Note that the error term in (4.47) dominates the terms of (4.44) and (4.45).

4.3.2. The Integral I4(N). In a similar way as in Subsubsection 4.2.2 (compare with (4.32)),
for ϑ ∈ (0, 1), we have

(1 − ϑ)2
∫ ∞

1

(∫ N

1
e−F(N)s/f (x) dx

)
s ds − (1 − ϑ)2

∫ ∞

1
se−F(N)s/f (N+1) ds

< I4(N)

< (1 + ϑ)2
∫ ∞

1

(∫ N

1
e−F(N)s/f (x) dx

)
s ds + (1 + ϑ)2

∫ ∞

1
se−F(N)s/f (N+1) ds.

(4.48)

Invoking (4.4) and applying Lemma 4.1 for m = 1 and m = 2, we obtain∫ ∞

1

(∫ N

1
e−F(N)s/f (x) dx

)
s ds

= 1

F(N)

∫ N

1
f (x)e−F(N)/f (x) dx + 1

F(N)2

∫ N

1
f 2(x)e−F(N)/f (x) dx

=
{(

f (N)

F (N)

)2

+
(

f (N)

F (N)

)3}[
1 + O

(
f (N)

F (N)

)]
.

Furthermore, using (C1)–(C4), (4.2), the definition of F , and (4.22), we can easily check that

∫ ∞

1
se−F(N)s/f (N+1) ds = f (N + 1)

F (N)
e−F(N)/f (N+1) +

[
f (N + 1)

F (N)

]2

e−F(N)/f (N+1)

= o

(
f (N)2

F(N)2

)
.

Since ϑ ∈ (0, 1) is arbitrary, (4.48) implies that

I4(N) =
{(

f (N)

F (N)

)2

+
(

f (N)

F (N)

)3}[
1 + O

(
f (N)

F (N)

)]
as N → ∞.

Again, using the definition of F and (4.22), we obtain

I4(N) = δ2 + δ3 + O(δ4) as δ → 0+. (4.49)

We are now ready to present the following result.
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Theorem 4.3. Let δ be as defined in (4.22) (hence, δ → 0+ as N → ∞), and let ω(N) be as
given in (4.12). Then

QN(α) = f (N)2
{

1

δ2 + 2 ln δ

δ
+ 2γ

δ
+ ln2 δ + 2(γ − 1) ln δ

+
(

2ω(N) + γ 2 + π2

6
− 2γ

)
+ O(δ ln2 δ)

}
.

Proof. The result follows immediately upon combining (4.36), (4.37), (4.38), (4.40), (4.47),
and (4.49) with (4.35).

It follows (see (1.17)) that, as δ → 0+, we have

E[TN(TN + 1)] = A2
Nf (N)2

{
1

δ2 + 2 ln δ

δ
+ 2γ

δ
+ ln2 δ + 2(γ − 1) ln δ

+
(

2ω(N) + γ 2 + π2

6
− 2γ

)
+ O(δ ln2 δ)

}
. (4.50)

4.4. Conclusion: asymptotics of V [TN ]
We are now ready for our main result regarding the variance.

Theorem 4.4. Let α = {aj }∞j=1 = {1/f (j)}∞j=1, where f satisfies (4.1) and (C1)–(C4) (hence,
Li(α) = ∞). Then, as N → ∞, we have

V [TN ] ∼ π2

6
A2

N f (N)2 = π2

6

1

p2
N

= π2

6

1

min1≤j≤N {pj }2 ,

where AN = ∑N
j=1 aj (pj = aj /AN are the coupon probabilities).

Proof. From formulae (4.34) and (4.50) we obtain

E[TN(TN + 1)] − E[TN ]2 ∼ π2

6
A2

Nf (N)2 as N → ∞.

In view of (1.6), in order to complete the proof, it only remains to show that

E[TN ]
A2

Nf (N)2
→ 0 as N → ∞. (4.51)

From (4.34), (4.22), and (4.4), we have

E[TN ] ∼ ANf (N) ln

(
f (N)

f ′(N)

)
.

Owing to the above, (4.51) is equivalent to

ln f (N) − ln f ′(N)

ANf (N)
→ 0 as N → ∞. (4.52)

Using (C1) (namely, f (N) → ∞) and (4.3), we easily obtain the validity of (4.52), completing
the proof of the theorem.
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Remark 4.2. If Cf := ∑∞
n=1 1/f (n) < ∞ then

AN = Cf [1 + o(1)].

On the other hand, if Cf = ∞ then, as N → ∞, we have

AN ∼
∫ N

1

dx

f (x)
.

5. Limit distributions

Neal [12] established two general limit theorems regarding TN , where πN = {pN
1 , pN

2 ,

. . . , pN
N }, N = 1, 2, . . ., are arbitrary (sub)probability measures, not necessarily of the form

(1.11).

Theorem 5.1. ([12, Theorem 2.1].) Suppose that there exist sequences {bN } and {kN } such
that kN/bN → 0 as N → ∞ and that, for y ∈ R,

SN(y) :=
N∑

j=1

exp[−pN
j (bN + ykN)] → g(y) as N → ∞ (5.1)

for a nonincreasing function g(·) with g(y) → ∞ as y → −∞ and g(y) → 0 as y → ∞.
Then

TN − bN

kN

d−→ Y as N → ∞, (5.2)

where Y has distribution function F(y) = P{Y ≤ y} = e−g(y), y ∈ R.

Theorem 5.2. ([12, Theorem 2.2].) Suppose that there exists a sequence {kN } such that, for
y ∈ R

+,
N∑

j=1

exp[−pN
j ykN ] → ĝ(y) as N → ∞ (5.3)

for a nonincreasing function ĝ(·) with ĝ(y) → ∞ as y → 0 and ĝ(y) → 0 as y → ∞.
Furthermore, suppose that there exists a function h(·) such that, for all y ∈ R

+,

N∏
j=1

(1 − exp[−pN
j ykN ]) → h(y) as N → ∞.

Then (5.3) ensures that h(y) → 0 as y → 0 and h(y) → 1 as y → ∞, and

TN

kN

d−→ Ŷ as N → ∞,

where Ŷ has distribution function F̂ (y) = P{Ŷ ≤ y} = h(y), y ∈ R
+.

Theorems 5.1 and 5.2 do not indicate how to choose the sequences {bN } and {kN }. Here our
asymptotic formulae can help.
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Case 5.1. Conclusion (5.2) of Theorem 5.1 suggests that, as N → ∞,

bN ∼ E[TN ] and kN ∼ c
√

V [TN ] for some c �= 0.

We remind the reader that in the present work the coupon probabilities pN
j , 1 ≤ j ≤ N , N =

1, 2, . . . , are taken as

pN
j = aj

AN

with AN =
N∑

j=1

aj .

If aj = 1/f (j), where f (x) satisfies (C1)–(C4), then, in view of (C1)–(C4), the asymptotic
formula (4.34), together with Theorem 4.4, leads to the choices

bN = ANf (N)[ρ(N) − ln ρ(N)] and kN = ANf (N), (5.4)

where

ρ(N) := 1

δ
= ln

(
f (N)

f ′(N)

)
(note that, as N → ∞, ρ(N) → ∞, and, hence, kN/bN → 0 as required). Then, SN(y) in
(5.1) becomes

SN(y) :=
N∑

j=1

exp

[
−f (N)

f (j)
[ρ(N) − ln ρ(N) + y]

]
.

Since SN(y) − SN−1(y) = exp[ρ(N) − ln ρ(N) + y] → 0 and f is increasing, we have

SN(y) ∼ IN(y) :=
∫ N

1
exp

[
−f (N)

f (x)
[ρ(N) − ln ρ(N) + y]

]
dx as N → ∞.

Integration by parts gives

IN(y) =
[

1

M

f (N)2

f ′(N)
exp

[
− M

f (x)

]]N

x=1
− 1

M

∫ N

1

[
f (x)2

f ′(x)

]′
exp

[
− M

f (x)

]
dx, (5.5)

where, for typographical convenience, we have set

M := f (N)[ρ(N) − ln ρ(N) + y].
The integral on the right-hand side of (5.5) is o(IN(y)). Hence,

IN(y) ∼ f (N)

f ′(N)

exp[−ρ(N) + ln ρ(N) − y]
ρ(N) − ln ρ(N) + y

∼ e−y.

It follows that SN(y) → e−y . Therefore, Theorem 5.1 implies that, for all y ∈ R,

P

{
TN − bN

kN

≤ y

}
→ exp(e−y) as N → ∞, (5.6)

where {bN } and {kN } are given by (5.4). Note that the limiting distribution in (5.6) is the so-
called standard Gumbel, independently of the choice of f (x). In fact, the same limit distribution
also arises for various other choices of coupon probabilities, including the case of equal pN

j s
(see, e.g. [3], [7, p. 142], or [11]).
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Case 5.2. Regarding Theorem 5.2, we can see that the suggestions here are that, as N → ∞,

E[TN ]√
V [TN ] → c1 ∈ R and kN ∼ c2

√
V [TN ] for some c2 > 0.

For pN
j = aj /AN , with {aj } satisfying (2.3) for some ξ ∈ (0, 1), Theorem 3.1 indicates that

the right choice for kN is
kN = AN.

Then, Theorem 5.2 easily implies that, as N → ∞,

P

{
TN

AN

≤ y

}
→

∞∏
j=1

(1 − e−aj y). (5.7)

Note that here the limiting distribution depends on the choice of the sequence {aj }.
Finally, let us mention that the dichotomy is, again, observed here: Case 5.1 versus Case 5.2.

Note that in the first case we have E[TN ]/√V [TN ] → ∞, while in the second case we have
E[TN ]/√V [TN ] → c1 ∈ R.

6. Examples

In this section we give several examples that illustrate the results of the previous sections.

Example 6.1. Let aj = jp, where p > 0. In this case (see Theorem 2.1)

L1(α) =
∫ 1

0

[
1 −

∞∏
j=1

(1 − xjp

)

]
dx

x
< ∞

and

L2(α) = (−2)

∫ 1

0

[
1 −

∞∏
j=1

(1 − xjp

)

]
ln x

x
dx < ∞.

Hence, Theorem 3.1 gives

V [TN ] = N2(p+1)

(p + 1)2 (L2,p − L2
1,p)[1 + o(1)].

The case p = 1 is known as the linear case, and it is of particular interest. From the celebrated
pentagonal-number formula of Euler (see, e.g. [1, p. 312]),

∞∏
j=1

(1 − xj ) = 1 +
∞∑

k=1

(−1)k[xω(k) + xω(−k)], ω(k) = 3k2 − k

2
, k = 0, ±1, ±2, . . . ,

we can compute

L1(α) =
∞∑

k=1

12(−1)k+1

9k2 − 1
= 4π

√
3

3
−6, L2(α) =

∑
k∈Z∗

2(−1)k+1

ω(k)2 = 4(54−8π
√

3−π2),

https://doi.org/10.1239/aap/1331216649 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1331216649


190 A. V. DOUMAS AND V. G. PAPANICOLAOU

where Z
∗ = Z \ {0}. Finally,

V [TN ] =
(

45 − 4π
√

3 − 7π2

3

)
N2(N + 1)2[1 + O(N−λ)] for any λ ∈ (0, 1),

where the error estimate can be found by exploiting the fact (see the proof of Theorem 14.3
of [1]) that ∣∣∣∣

N∏
j=1

(1 − xj ) − 1 −
N∑

k=1

(−1)k[xω(k) + xω(−k)]
∣∣∣∣ ≤ NxN+1.

Example 6.2. Let aj = epj and bj = e−pj , p > 0. For the sequence α = {aj }∞j=0, we have
Li(α) < ∞, i ∈ {1, 2}. It follows that

V [TN ] =
(

ep(N+1)

ep − 1

)2

(L2(α) − L1(α)2) + O(epN). (6.1)

The special case aj = 2j (i.e. p = ln 2) is of particular interest. We have

φ(x) :=
∞∏

j=0

(1 − x2j

) =
∞∑

k=0

(−1)δ(k)xk = 1 −
∞∑

n=0

(1 − x)nx2n

,

where δ(k) is the number of 1s in the binary expansion of k (the last equality follows from the
observation that φ(x) = (1 − x)φ(x2)). Then (2.1) and (2.2) give

L1(α) =
∞∑

k=1

(−1)δ(k)−1

k
=

∞∑
n=0

n! (2n − 1)!
(n + 2n)!

(the second series converges extremely rapidly) and

L2(α) = 2
∞∑

k=1

(−1)δ(k)−1

k2

= 2
∞∑

n=0

n∑
k=0

(
n

k

)
(−1)k

(k + 2n)2

= 2
∞∑

n=0

n! (2n − 1)!
(n + 2n)! (Hn+2n − H2n−1),

where, as usual, Hm = ∑m
k=1 1/k. The last two series above converge extremely rapidly.

Let us now discuss the sequence β = {bj }∞j=0. Here we have Li(β) = ∞. Furthermore,
f (x) = epx does not satisfy (C2); thus, Theorems 4.1–4.4 cannot be applied. However, the
sequences α and β produce the same coupon probabilities. This follows from the fact that,
for each N , if we let cN = epN then {aj : 0 ≤ j ≤ N} = {cNbj : 0 ≤ j ≤ N}, i.e. the
elements of the two truncated sequences are proportional to each other. Hence, regarding β,
the asymptotics of V [TN ] are also given by (6.1). Note that Theorem 4.4 catches the order of
magnitude of V [TN ] modulo a constant factor.
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Example 6.3. Let aj = 1/jp, p > 0 (note that p = 1 corresponds to the so-called Zipf
distribution—see [4] and [9] for results regarding E[TN ]). Here L1(α) = L2(α) = ∞, and,
furthermore, f (x) = xp satisfies the (C1)–(C4); hence, we can apply Theorem 4.4 to obtain

V [TN ] ∼ π2

6

N2

(1 − p)2 if 0 < p < 1, V [TN ] ∼ π2

6
ζ(p)2N2p if p > 1,

where ζ(·) is the zeta function. As for p = 1 (the Zipf case),

V [TN ] ∼ π2

6
N2 ln2 N.

Example 6.4. Let aj = j !. Here L1(α), L2(α) < ∞. Also, Stirling’s formula implies that
AN ∼ N !. Hence, Theorem 3.1 yields

V [TN ] ∼ (L2(α) − L1(α)2)(N !)2 as N → ∞.

Appendix A

Here we give the proofs of certain technical theorems and lemmas appearing in Section 4.

Proof of Theorem 4.1. We can write (1.16) as

QN(α) = F(N)2QN(F(N)α)

= 2F(N)2
∫ 1

0

[
1 − exp

[ N∑
j=1

ln(1 − e−F(N)s/f (j))

]]
s ds

+ 2F(N)2
∫ ∞

1

[
1 − exp

[ N∑
j=1

ln(1 − e−F(N)s/f (j))

]]
s ds, (A.1)

where F is defined by formula (4.4). It has been established in [4] that, under conditions
(C1)–(C4),

lim
N

N∑
j=1

ln(1 − e−F(N)s/f (j)) =
{

−∞ if s < 1,

0 if s ≥ 1,
(A.2)

and also that ∫ N

1
e−F(N)s/f (x) dx ∼ 1

s ln[f (N)/f ′(N)]
[

f (N)

f ′(N)

]1−s

. (A.3)

Applying the bounded convergence theorem to the first integral of (A.1) yields (in view of (A.2))

QN(α) = 2F(N)2
[

1

2
+o(1)

]
+2F(N)2

∫ ∞

1

[
1−exp

[ N∑
j=1

ln(1−e−F(N)s/f (j))

]]
s ds. (A.4)

Next, we want to estimate the integral appearing in the above formula. We begin by noting
that, by the dominated convergence theorem (since f (N)/f ′(N) → ∞),

lim
N

∫ ∞

1

[
1 − exp

[
− (f (N)/f ′(N))1−s

s ln(f (N)/f ′(N))

]]
s ds = 0.
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Using (A.3), this implies that

lim
N

∫ ∞

1

[
1 − exp

[
−

∫ N

1
e−F(N)s/f (x) dx

]]
s ds = 0. (A.5)

Since f is increasing, we have

∫ N

1
e−F(N)s/f (x) dx ≤

N∑
j=1

e−F(N)s/f (j)

≤
∫ N+1

1
e−F(N)s/f (x) dx

≤
∫ N

1
e−F(N)s/f (x) dx + e−F(N)s/f (N+1). (A.6)

From the above inequalities, it follows that

1 − exp

[
−

∫ N

1
e−F(N)s/f (x) dx

]
≤ 1 − exp

[
−

N∑
j=1

e−F(N)s/f (j)

]

≤ 1 − exp

[
−

∫ N

1
e−F(N)s/f (x) dx + e−F(N)s/f (N+1)

]
.

(A.7)

However, by (A.3),

lim
N

∫ N

1
e−F(N)s/f (x) dx =

{
∞ if s < 1,

0 if s ≥ 1.

Hence, by taking limits in (A.7) and using (4.2) and (A.5), we obtain

lim
N

∫ ∞

1

[
1 − exp

[ N∑
j=1

ln(1 − e−F(N)s/f (j))

]]
s ds = 0. (A.8)

Finally, by the definition of F(N) and the Taylor expansion of ln(1−x) as x → 0, (A.4) yields

QN(α) ∼ F(N)2 = f (N)2 ln

(
f (N)

f ′(N)

)2

as N → ∞,

completing the proof.

Proof of Lemma 4.1. Integration by parts gives

∫ N

1
f (x)me−F(N)s/f (x) dx =

[
f (x)m+2e−F(N)s/f (x)

sF (N)f ′(x)

]N

x=1

−
∫ N

1

e−F(N)s/f (x)

sF (N)

[
f (x)m+2

f ′(x)

]′
dx.
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Now,∫ N

1

e−F(N)s/f (x)

sF (N)

[
f (x)m+2

f ′(x)

]′
dx = m + 2

s

∫ N

1

f (x)m+1

F(N)
e−F(N)s/f (x) dx

− 1

s

∫ N

1

f ′′(x)/f ′(x)

f ′(x)/f (x)

f (x)m+1

F(N)
e−F(N)s/f (x) dx.

(A.9)

Since f is increasing, we have

∫ N

1

f (x)m+1

F(N)
e−F(N)s/f (x) dx ≤ f (N)

F (N)

∫ N

1
f (x)me−F(N)s/f (x) dx

= f (N)

F (N)
Jm(N)

= o(Jm(N)).

From (C1)–(C4) we also have

∫ N

1

f ′′(x)/f ′(x)

f ′(x)/f (x)

f (x)m+1

F(N)
e−F(N)s/f (x) dx =

[∫ N

1

f (x)m+1

F(N)
e−F(N)s/f (x) dx

]
O(1),

which completes the proof.

Proof of Corollary 4.1. Integration by parts in (A.9) gives

m + 2

s

∫ N

1

f (x)m+1

F(N)
e−F(N)s/f (x) dx − 1

s

∫ N

1

f ′′(x)/f ′(x)

f ′(x)/f (x)

f (x)m+1

F(N)
e−F(N)s/f (x) dx

= (m + 2)

[
f (x)m+3e−F(N)s/f (x)

s2F(N)2f ′(x)

]N

x=1
− (m + 2)

∫ N

1

e−F(N)s/f (x)

s2F(N)2

[
f (x)m+3

f ′(x)

]′
dx

−
[
f (x)m+3e−F(N)s/f (x)

s2F(N)2f ′(x)

f ′′(x)/f ′(x)

f ′(x)/f (x)

]N

x=1

+
∫ N

1

e−F(N)s/f (x)

s2F(N)2

[
f (x)m+3

f ′(x)

f ′′(x)/f ′(x)

f ′(x)/f (x)

]′
dx.

Now,

∫ N

1

e−F(N)s/f (x)

s2F(N)2

[
f (x)m+3

f ′(x)

]′
dx = (m + 3)

∫ N

1

f (x)m+2

s2F(N)2 e−F(N)s/f (x) dx

−
∫ N

1

f ′′(x)/f ′(x)

f ′(x)/f (x)

f (x)m+2

s2F(N)2 e−F(N)s/f (x) dx.

Using the assumption that f is increasing and applying (C3) we obtain

∫ N

1

e−F(N)s/f (x)

s2F(N)2

[
f (x)m+3

f ′(x)

]′
dx = O

(
f (N)2

F(N)2 Jm(N)

)
= o(Jm(N)).
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Also, ∫ N

1

e−F(N)s/f (x)

s2F(N)2

[
f (x)m+3

f ′(x)

f ′′(x)/f ′(x)

f ′(x)/f (x)

]′
dx

=
∫ N

1

e−F(N)s/f (x)

s2F(N)2

f ′′(x)/f ′(x)

f ′(x)/f (x)

[
f (x)m+3

f ′(x)

]′
dx

+
∫ N

1

e−F(N)s/f (x)

s2F(N)2

f (x)m+3

f ′(x)

[
f ′′(x)/f ′(x)

f ′(x)/f (x)

]′
dx,

and ∫ N

1

e−F(N)s/f (x)

s2F(N)2

f (x)m+3

f ′(x)

[
f ′′(x)/f ′(x)

f ′(x)/f (x)

]′
dx

=
∫ N

1

f (x)2f ′′′(x)

(f ′(x))3 f (x)m+2 e−F(N)s/f (x)

s2F(N)2 dx

+
∫ N

1

f ′′(x)/f ′(x)

f ′(x)/f (x)
f (x)m+2 e−F(N)s/f (x)

s2F(N)2 dx

− 2
∫ N

1

(
f ′′(x)/f ′(x)

f ′(x)/f (x)

)2

f (x)m+2 e−F(N)s/f (x)

s2F(N)2 dx.

Hence, from (C1)–(C4) we have

∫ N

1

e−F(N)s/f (x)

s2F(N)2

f (x)m+3

f ′(x)

[
f ′′(x)/f ′(x)

f ′(x)/f (x)

]′
dx = O

(
f (N)2

F(N)2 Jm(N)

)
= o(Jm(N)).

Thus,

Jm(N) = f (N)m+2

sF (N)f ′(N)
e−F(N)s/f (N)s + ω(N)

f (N)m+3

s2F(N)2f ′(N)
e−F(N)s/f (N) + o(Jm(N)),

and the proof is completed by invoking Lemma 4.1 (note that from (C1)–(C4) we immediately
obtain ω(N) = O(1) as N → ∞).

Proof of Lemma 4.3. Since

dG(x)

dx
= −ln xe−x = −ln x

(
1 − x + 1

2
x2 − 1

6
x3 + · · ·

)
,

we have

G(x) ∼ C1 −x ln x +x + 1
2x2 ln x − 1

2x2 − 1
6x3 ln x + 1

6x3 + 1
24x4 ln x − 1

24x4 +· · · , (A.10)

where C1 is a constant. Next we compute C1. From (A.10) we see that

C1 =
∫ ∞

0
ln(t)e−t dt = �′(1) = −γ

(see [5, p. 213]), and the proof is completed.
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