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DIRECTIONALLY LIPSCHITZIAN MAPPINGS ON 
BAIRE SPACES 

J. M. BORWEIN AND H. M. STRÔJWAS 

0. Introduction. Studies of optimization problems have led in recent 
years to definitions of several types of generalized directional derivatives. 
Those derivatives of primary interest in this paper were introduced and 
investigated by F. M. Clarke ( [5], [6], [7], [8] ), J. B. Hiriart-Urruty ( [12] ), 
Lebourg ( [16], [17] ), R. T. Rockafellar ( [23], [24], [26], [27] ), Penot ( [21], 
[22] ) among others. 

In an attempt to explore in more detail relationships between various 
types of generalized directional derivatives we discovered some unex­
pected results which were not observed by the above mentioned authors. 
We are able to give simple conditions which characterize directionally 
Lipschitzian functions defined on a Baire metrizable locally convex 
topological vector space. 

In Section 1 of this paper we present a brief summary of the properties 
of generalized derivatives which have been described in the literature. 
Connections with some types of tangent cones are also explained. For 
more details and proofs the reader is referred to [23], [24], [25], [27]. 

The statement and proofs of the results for Baire metrizable spaces are 
given in Section 2. 

In Section 3 we furnish a variety of useful examples which show that in 
a general space we cannot expect similar properties to those met in finite 
dimensional spaces or in Baire metrizable spaces. 

Whenever possible we keep the same notation as in [23] and [24]. 

1. Generalized directional derivatives and subgradients. Let E be a real 
locally convex (Hausdorff) space with a continuous dual space E* and l e t / 
be an extended-real-valued function on E. For a point x at which the 
function / is finite and lower semicontinuous we consider the following 
generalized directional derivatives: 

(a) Lower one sided Hadamard derivative o f / a t x with respect to y 
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n n f i \ v • f / ( * + ty') - f(x) 
(1.1) /+Cx; j>): = liminf , 

v'-»v f 

(b) i//?/?er subderivative o f / a t x with respect to _y (Rockafellar [23] ) 

(1.2) P (*; y): = lim sup inf / (*' + ? / ) ~ / ("° 
x'—>fxy' ^y t 

: = sup mf sup inf — — J-^J-, 
Fen(v) X^n(x) re(0,X) v ' ^ y / 

S>0 x'^X 
A>0 / ( J C ' ) ^ / ( * ) + 5 

(We use the notation: 

x' ~^>fx <$=> x' —> x and/(je') —>/(x); 

n(x) and n(j>) denote bases of neighbourhoods at x and j respectively), 
(c) Clarke derivative off at x with respect to j ; (Rockafellar [23], Clarke 

[6], [7] for locally Lipschitzian functions on normed spaces) 

(1.3) / u ( x ; y): = lim sup . 

tie 
(d) Recall that the ordinary one-sided directional derivative o f / a t x with 

respect to y is defined as 

(1-4) />(*;,):= lim ft**»-™ 

if the limit above (finite or not) exists. 
For each type of the generalized derivative the corresponding set 

(possibly empty) of subgradients of the function f at the point x is defined 
by 

8+/(*): = {z e £*|<j>,z> =i /+(* ; >>) for all y e £ } , 

3°/(x): = {z G £*|(y, z> S / ° ( JC; ^) for all y e £ } , 

3Î/(JC): = {z G £*!(,,, z> ^ / Î (JC; y) for all ^ G £ } . 

It may be verified that the function f+(x\ •) is lower semicontinuous but 
generally not sublinear. The Clarke derivative/°(.x; •) is always sublinear 
( [7] ) with 
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f°(x; 0) = 0 

but is not necessarily lower semicontinuous. The upper subderivative 
P(x\ •) is sublinear and lower semicontinuous ( [24] ); therefore one of the 
following alternatives must hold 

{\) f\x\ 0) = 0 and / î (x ; •) is a proper function, 
(n) f\x\ 0) = — oo and/^(x; •) has no finite values. 

This implies the following result proven in [24]. 

PROPOSITION 1.1. The following are equivalent 
(a) 3Î/(JC) = 0, 

(b) / î (x ; 0) = - o o . 

Comparison of definitions (1.1), (1.2), (1.3) and (1.4) shows that for any 
y one has: 

(1.5) f+(x;y) ^f\x-y) ^ f°(x; y) 

and 

(1.6) f'(x;y) ^f°(x;y). 

In the case of a convex function much more can be said. 

PROPOSITION 1.2. ([24]). If f is convex, then the function f\x\ •) is 
sublinear {possibly with ± c o values) and for all y 

(1.7) f\x; y) = f+(x; y) = lim inff(x; / ) : = clf'(x; y), 

and 

(1.8) df(x) = d+f(x) = df(x) 

: = {z G E*\f(x') - f(x) ^ (jcr - x, z) for all x' e E). 

The function/is said to be subdifferentially regular at x ( [23] ) if/^(x; •) 
and/+(x; •) coincide. 

Thus it follows from Proposition 1.2 that a convex function finite at x is 
subdifferentially regular at x ( [23] ). 

A considerable simplification in the analysis of the subderivatives can 
be obtained in the case of a directionally Lipschitzian function. This 
concept generalizes Lipschitz continuity in a neighbourhood of a point. 

The function/is said to be directionally Lipschitzian at x with respect toy 
( [23] ) if 
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n m f*( ^ r /<*' + / / ) - f(x') (1.9) J (x\ y)\ = lim sup 
x'~*fx ^ 

is less than +00. 
It is assumed throughout this paper that / is finite and lower 

semicontinuous at x\ however, the latter assumption can be relaxed in 
many eases ( [23], [24] ) and is kept here only for the purpose of 
simplifying notation. 

The following assertions can be found in [24]. 

PROPOSITION 1.3. fis Lipschitzian around x if and only if it is directionally 
Lipschitzian at x with respect to y = 0. 

PROPOSITION 1.4. Suppose f is convex on E. Then f is directionally 
Lipschitzian at x with respect to y if and only if f is bounded above on a 
neighbourhood of x + Xy for some X > 0. 

The function/is said to be directionally Lipschitzian at x if dom^*(x; •) 
# 0. 

The following theorem explains why it is desirable for the function/to 
be directionally Lipschitzian at x. 

THEOREM 1.1 [24]. Let f be directionally Lipschitzian at x. Then 
(a) f\x\ y) = lim inf/°(jc; / ) for ally, 

(b) dom/*(x; •) = int dom/î(.x; •) = int dom/°(x ; •), 
(c) j°(x\ •) is continuous on dom/*(x; •) and 

f\x-y) =f°{x\y) =f*(x\y) for ally G dom/*(x; •), 

(d) 8Î/(*) = d°f(x). 

The proof of (a), (b), (c) can be found in [24], (d) follows from (a) and 
the corresponding definitions. 

As the simple consequence of this theorem and Proposition 1.3 we 
obtain the following result. 

COROLLARY 1.1. Iff is Lipschitzian around x then the function f°(x; •) is 
continuous ( [6], [7], [16] ) and 

/ î ( * ; - ) = / ° ( * ; - ) , 

(Rockafellar [24] ). 
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The next two results are implicit in [24]. The explicit functional proofs 
may be found in [2]. 

PROPOSITION 1.5. Let E be a locally convex vector space. Suppose that f 
and g are finite and lower semicontinuous at x. Then 

(1.10) ( / + g)\x; •) Si f\x; •) + g*(x;-). 

PROPOSITION 1.6. Let E be a locally convex vector space. Suppose that fis 
finite and lower semicontinuous at x. Then for any y\, y2, and 0 < À = 1 

(1.11) / * (* ; Ay! + (1 - X)y2) ^ \f*(x; y}) + (1 - \)p(x; y2). 

Remark. It may be noticed that from Proposition 1.6 the proof of 
Theorem 1.1 can be easily obtained. If vq e dom/*(x; •), letting X —> 0 in 
(1.11) we get for 72 = '-y 

(1.12) p(x; y) = cl f°(x;y) = cl/*(x; y). 

The following theorem stated and proven in [23] follows from 
Propositions 1.5 and 1.6 ( [2] ). 

THEOREM 1.2 (Rockafellar [23], Clarke [8] for locally Lipschitzian 
functions on normed spaces). Let E be a locally convex vector space and let f 
and g be finite and lower semicontinuous at x. Suppose that 

dom/î(jc; •) n dom g*(x; •) =£ 0, 

then 

(f + g)\x; •) ë p(x; •) + g\x; •) 

and 

aT(/+ g)(x) c dV(x) + dig(x). 
The next theorem generalizes the Br0ndsted-Rockafellar theorem about 

the density of subdifferentiability points of a convex function ( [4] ). It was 
observed and proven in [18] and independently in [2]. 

THEOREM 1.3 ( [18] ). Let f be a lower semicontinuous proper junction on a 
Banach space E. Then the set 

{x G E\p(x; 0) = 0} 

is dense in domf 

Example 3 in Section 3 shows that in this theorem the assumption that 
£ is a Banach space cannot be released. 
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It was observed ( [12], [24], [27] ) that the generalized directional 
derivatives which we consider in this paper are related to some types of 
tangent cones. 

(a) For any set C c E and any point x e C, the (Clarke) tangent cone to 
C at x (Rockafellar [23], Clarke [5] for E = R") is defined by 

(1.13) TC(X): = n u n [r\c - xr) + v\. 
^en(O) Xen(x) x'^CnX 

A > 0 /e(0,A) 

(b) The set 

(1.14) Kc(x): = n U [t~\C - x) + V\ 
Ken(O) re(0,X) 

A>0 

is called the contingent cone to C at x ( [3] ). 
(c) The hypertangent cone to C at x ( [24] ) is defined as 

(1.15) Hc(x): = {y G E\ there exist X G n(x) and A > 0 
with x' + (y G C for a l h ' e C n l j G (0, A) }. 

The more general definitions are given in [9] by Dolecki, who presents a 
unified approach to various types of tangent cones and generalized 
derivatives based on convergence theory. 

PROPOSITION 1.7 ( [24] ). If C is convex then 

(1.16) Tc(x) = Kc(x) 

and 

(1.17) Kc(x) = P(C - x). 

A set which satisfies (1.16) is called tangentially regular at x. The 
fundamental relationship between tangent cones and generalized direc­
tional derivatives is the following. 

PROPOSITION 1.8 ( [24], [27] ). (a) The tangent cone Tepif( (x,f(x) ) is the 
epigraph of the function f\x\ •)• 

(b) The contingent cone Kepif((x,f(x)) is the epigraph of the function 

/ + ( * ; •)• 
(c) /°(x; y) = inf {0 e R| (y, ft e / / e p i / (x,f(x) ) } . 

The following geometric property is related to the concept of a 
directionally Lipschitzian function. 
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A set C is said to be epi-Lipschitzian at x with respect toy ( [23] ), if there 
exist Y e n(y), X e n(x), A > 0 with x' + ty' G C for all x' Œ C n X,y' 
G Y and t e= (0, A). 

A set C is said to be epi-Lipschitzian at x if it is epi-Lipschitzian at x 
with respect to some y. 

PROPOSITION 1.9. {&)fis directionally Lipschitzian at x with respect to y if 
and only if epi f is epi-Lipschitzian at (x,f(x)) with respect to (y, fi) for 
some j8 G R. 

(b) C is epi-Lipschitzian at x with respect to y if and only if the indicator 
function of C, denoted ^c, is directionally Lipschitzian at x with respect 
to y. 

(c) For any set C one has: 

(1 .18) (*c)\x;y) = ^Tc(x){y) for ally, 

and 

(1.19) (* c)°(x; y) = *HcM(y)for ally. 

Parts (a), (b) and the first equality in (c) can be found in [27]. Equality 
(1.19) can be proved by simple calculations. 

Using Theorem 1.1 and Proposition 1.8 we get: 

THEOREM 1.4 ( [24] ). If C is epi-Lipschitzian at x with respect to some y, 
then the vectors y with this property are those belonging to int Hc(x) and 

int Tc(x) = int Hc{x). 

For the case of a finite dimensional space the following result was 
established. 

THEOREM 1.5. ( [25] ). Suppose E is finite dimensional and C is closed 
relative to some neighbourhood of x. Then C is epi-Lipschitzian at x with 
respect to y if and only if y G int Tc(x). 

From this theorem the following corollary can be obtained. 

COROLLARY 1.2. If E is finite dimensional and C is closed relative to some 
neighbourhood of x G C then 

int Tc(x) = int Hc(x). 

In order to use Theorem 1.5 and Corollary 1.2 for a given function/and 
a point x at which / is finite, we assume that / is strictly lower 
semicontinuous at x. 
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A function/is said to be strictly lower semi continuous at x if its epigraph 
is closed relative to some neighbourhood (in E X R) of the point (x,f(x) ). 
This condition while stronger than lower semicontinuity at the point x is 
still weaker than the requirement for the function / to be lower 
semicontinuous on some neighbourhood of x (in E). 

COROLLARY 1.3. If E is finite dimensional and f is finite and strictly lower 
semicontinuous at x then 

(1.20) int d o m / V , •) = int dom/° (x ; •) 

= dom/*(x; •). 

THEOREM 1.6. ( [27] ). Suppose E is finite dimensional and f is finite and 
strictly lower semicontinuous at x. Then the following are equivalent: 

(a) y e int dom/^(x; •), 
(b) / is directionally Lipschitzian at x with respect to y (y e dom 

/ * ( * ; •) ), 
(c)f*(x; •) is continuous at y. 

Corollary 1.3 and Theorem 1.6 can be recovered from [27]. 
Now the question arises: could the same equivalencies be stated in the 

case of a general space? The answer is negative. The theorem is not true 
even for (infinite dimensional) Banach spaces. This is explained by 
Example 1 in Section 3. 

It follows from Proposition 1.8 and Corollary 1.2 that in a finite 
dimensional space the upper subderivative of the function/being strictly 
lower semicontinuous at x can never be identically equal to — oo. By 
Theorem 1.1 this statement is true in an infinite dimensional space under 
the assumption that the function / is directionally Lipschitzian at x. 
Without this assumption even an example of a convex function / i n a 
Banach space with/^(x; •) = — oo can be furnished. To observe this see 
Example 2 in Section 3. 

While considering the conditions (a), (b), and (c) of Theorem 1.6 for an 
infinite dimensional space the question arises of substituting f°(x; •) for 

f\x\ •). This leads to the interesting results for the Baire metrizable spaces 
described in the next section. To observe that in an arbitrary space the 
condition (a), (b), (c) of Theorem 1.6 with/^(x; •) replaced by / ° (x ; • ) are 
not equivalent see Examples 4, 5, 6, 7, 8, 9, 10, 11, and 12 in Section 3. 

2. The Baire metrizable case. In addition to the assumptions made in 
the first paragraph in Section 1, let us assume that E is a metrizable space. 
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Suppose that {Un\n G N) is a base of neighbourhoods at zero in E and 
Un + \ c Un for n e N. Then clearly for any^ 

(2.1) ju{X\y)= inf sup 
« e N 0 < / < 2 " " * 

f(x')^f(x) + 2-" 

and 

/(*' + */) -/(*') (2.2) / * (* ; j ) = inf sup 
«£N 0<r<2~ ' ! * 

x'^x+U„ 
f(x')1kf{x) + 2-n 

In this section the theory presented in Section 1 is developed for Baire 
metrizable spaces (the Baire category theorem holds in these spaces). Let 
us recall that all Banach and Fréchet spaces are of this type. However the 
class of Baire metrizable spaces is wider. Indeed, it is easy to show that a 
linear space E is Baire if and only if E is second category in itself ( [28] ) 
and that incomplete dense subspaces of a Banach space exist with this 
property ( [28], p. 29). It is an open question as to whether every finite 
codimension subspace of a Banach space is Baire. 

THEOREM 2.1. Let E be a Baire metrizable locally convex space. Suppose/ 
is finite and strictly lower semicontinuous at x. Then the following are 
equivalent: 

(a) y e cor dom/°(x ; •), 
(b)fis directionally Lipschitzian at x with respect to y, 
(c)f°(x\ •) is continuous at y. 

Proof Condition (b) always implies (regardless of the assumption about 
the Baire metrizable setting) that f°(x; •) is bounded above on some 
neighbourhood of y as a comparison of (1.3) and (1.9) shows. Hence, being 
convex, it is continuous at^. Since (c) obviously implies (a), it is enough to 
show that (a) implies (b). 

Let us pick a closed neighbourhood X of x and € > 0 such that ep i / i s 
closed relative to 

* X [/"(*) - € , / (*) + €]. 

For n in N, let 

(2.3) mn(y')\ = sup , 
0<r<2 n t 
Jc'Gx+[/„ 
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and let 

(2.4) Mn\ = {/ G E\x + Un + / / d f o r O < / < 2~" and 

mn(y') ^ 1}. 

Then by the definitions (2.3), (2.4), and (2.1) and by simple calculations 
we get: 

(2.5) dom/° (x ; •) = U U kMn = U U kMm 
" e N k<=N n>n A e N 

where n is any natural number. S ince / i s lower semicontinuous at x we 
may assume that X was chosen such that the condition 

(2.6) f(x) - € < / ( * ' ) for all x' e X 

is satisfied. Let us pick n such that e > 2 l ~n. We claim that all sets Mn for 
n > n are closed. Indeed let y' e cl Mn, where n > n. Take any x' and r 
such that: 

(2.7) xr <= x + Um 

(2.8) 0 < / < 2~\ 

(2.9) / ( * ' ) < / ( * ) + 2 - " . 

Let £/be an arbitrary neighbourhood of zero. Since y' e cl Mn there exists 
y" such that 

(2.10) y" e ( / + (l / /)£/) n M„. 

Hence 

(2.11) y + ty" e= *' + / / + I/, and x' + ty" <= X 

By definitions (2.3) and (2.4) it follows from (2.7), (2.8), (2.9) that 

(2.12) f{x! + 0"') S / ( * ' ) 4- f. 

Using now (2.6), (2.12), (2.9), and (2.8) we get: 

f(x) ~ £ < / ( * ' + / / ' ) S / ( x ' ) + / 

< / ( * ) + 2x~n<f(x) + £. 
Hence 

(*' + (y",/(x') + /) G e p i / n (X X [/(x) - £ , / (x) + £] ). 
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Since Uis arbitrary, Xis closed and epi / is closed relative to X X [f(x) — 
e,f(x) + e] we get that for all x' satisfying (2.7) and (2.9) and for all t 
satisfying (2.8) 

(2.13) xf + ty' e X 

and 

(2.14) (*' + * / , / (* ' ) + 0 e epi/ . 

(2.13) together with (2.14) means that y e M„. This establishes our claim 
above. 

Let us assume that condition (a) is satisfied. Then 

0 e cor (dom/°(x; •) - y) 

and hence 

E = U z?(dom/°(i; •) - y). 

This together with 2.5 implies that E can be represented as the union of 
the sets 

p{kMn — y) p, k, n e N, n > n, 

which by closedness of the corresponding sets Mm are also closed. Since E 
is a Baire space, one of them has a nonempty interior. Hence also some Mr

n 

for n > n has a nonempty interior and clearly all Mn for n ^ n have 
nonempty interiors. Take n ^ n and j) such that y + Un a Mn, then 

(2.15) sup ^ 1. 
0<r<2 " * 

f(x')*kf{x) + 2 ~n 

X'ŒX+ U„ 

y'^y+Un 

Comparison of (2.15) with (2.2) gives 
f*(x;y) ^ 1. 

Hence dom/*(x; •) is not empty and it follows from Theorem 1.1 that: 

int dom/°(x ; •) = dom/*(x; •)• 

This implies that / is directionally Lipschitzian at x with respect to y, 
which completes the proof of the theorem. 

Next some consequences of Theorem 2.1 are presented. 
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COROLLARY 2.1. Let E be a Baire metrizable locally convex space. 
Suppose that f is lower semicontinuous at x and g is strictly lower 
semicontinuous at x. Let us suppose also that 

dom/^(x; •) n cor dom g°(x; •) ¥= 0. 

Then 

(i) ( / + g)\x; •) â f\x; •) + g\x\ •), 
(n)d\f+ g)(x) c dW) + 3f*(*). 

Proof. The result follows from Theorem 1.2 via Theorem 2.1. 

COROLLARY 2.2. Let E be a Baire metrizable locally convex vector space 
and let a set C be closed relative to some neighbourhood of x e C. 

Suppose that y e cor Hc(x). Then C is epi-Lipschitzian at x with respect 
to y and 

cor Hc(x) = int Hc(x) = int Tc(x). 

In particular LIc(x) = E if and only if x lies interior to C. 

Proof. The conclusion is obtained by applying Theorem 2.1 to the 
indicator function of C and using Proposition 1.8 and Proposition 1.9. 

COROLLARY 2.3. Let E be a Baire metrizable locally convex vector space. 
Let x e C\ H C2. Suppose C2 is closed relative to some neighbourhood of x 
and 

TC](x) n cor HCl(x) ¥= 0. 

Then 

TC]nc2(x) ^ TCl(x) O TCl{x). 

Proof. The result follows by using indicators/: = <if
C]

 a n d g- = ^c2
 m 

Corollary 2.1. 

From Theorem 2.1 the conditions which characterize a function which is 
Lipschitzian around x can be obtained. First let us observe that in a finite 
dimensional space the following implications are valid. 

PROPOSITION 2.1. ( [27] ). Suppose E is finite dimensional and f is finite 
and strictly lower semicontinuous at x. Then the following are equivalent: 

(a) / is Lipschitzian around x\ 
(b) /° (x ; •) < +00; 
(c)f\x; •) is finite; 
(d) 3 7 (x) is bounded and nonempty. 
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Examples in Section 3 show that in an infinite dimensional space the 
above conditions are not equivalent. However, in a general space the 
following assertions can be easily proved. 

PROPOSITION 2.2. Let E be a locally convex vector space and let f be finite 
and lower semicontinuous at x. Then 

(a) Iff is Lipschitzian around x then f°(x; •) is continuous', 
(b) If f°(x; •) is continuous then P (x; •) = —oo or p (x; •) is also a 

continuous function; 
(c) If p{x\ •) is continuous on E then d^f(x) is nonempty and weak* 

compact; 
(d) d^f(x) is nonempty and weak* bounded if and only ifp{x; •) is finite 

everywhere; 
(e) If E is a barreled space, then the following are equivalent: 
(i) the set d^f(x) is nonempty and weak* compact, 

(n)p(x; •) is finite. 

Proof (a) is the part of Corollary 1.1. 
Let us assume that /°(x; •) is continuous. Then 

(2.16) f(x; •) ^f°(x; •) < +oo. 

From (2.16) and from convexity of f\x; •) follows that either it is 
identically equal to — oo or it must be everywhere finite. In the latter case 
by the inequality (2.16) the convex finite function f\x; •) is majorized by 
the continuous funct ion/0 (x; •). Therefore f\x; •) is also continuous. 
This finishes the proof of (b). 

To observe that (c) is true let us notice that iff\x; •) is continuous then 
by Proposition 1.1 d^f(x) is not empty and furthermore: 

dV(x) c V° = {z G £* |sup <v,z>| ^ 1}, 

where 

V = {v G E\f(x; v ) | ^ 1} 

is closed, convex neighbourhood of zero. Therefore the polar V° is weak* 
compact and so is d^f(x) being a weak* closed subset in V°. 

Part (d) follows from the formula ( [24] ) 

f\x; y) = sup (y, z>. 
ze9î / ( jc) 
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Equivalence in (e) is justified by (c) and the fact that in any barreled space 
every finite and lower semicontinuous convex function is continuous. This 
finishes the proof. 

Remark. From Example 5(A) in Section 3 it follows that without the 
assumption that E is a barreled space part (e) in Proposition 2.2 does not 
hold. This shows that hypothesis that E is barreled must be added in the 
first paragraph on p. 275 and in Corollary 2 of [24] below it. 

For a Baire metrizable space we are able to establish much stronger 
conditions than those from Proposition 2.2. 

THEOREM 2.2. Eet E be a Baire metrizable locally convex space and 
suppose that f is finite and strictly lower semicontinuous at x. Then the 
following are equivalent: 

(a) /° (x ; •) is finite, 
(b) f is Lipschitzian around x, 
(c)f\x; •) = f°(x; •) andp(x\ •) is continuous, 
(d)f\x\ •) = f°(x; •) and 9 VC*) ^ nonempty and weak* compact (weak* 

bounded), 
(e) f°(x; •) is lower semicontinuous and d°f(x) is nonempty and weak* 

compact (weak* bounded), 
(î) f°(x\ •) is lower semicontinuous and finite, 
(g) /°(x; •) is continuous. 

Proof. It follows from (a) that dom/° (x ; •) = E, hence 0 <E int dom 
f°(x', •). Using Theorem 2.1 and Proposition 1.3 we get (b). By Corollary 
1.1 (b) implies (c). From Proposition 2.2 (c) we obtain implication (c) =̂> 
(d). Since f\x\ •) is lower semicontinuous we have (d) => (e) => (f). 
Implication (f) => (g) is valid in any barreled space, (g) obviously implies 
(a), and the proof is complete. 

Using Theorem 2.1 and the concept of polarity we can get the other 
formulation of conditions which characterize directionally Lipschitzian 
functions defined on a Baire metrizable space. 

First let us recall that for any convex cone K its polar cone K° is defined 
as 

K°: = {z G E*\(k, z) ^ 0 for all k €= K). 

Let us also state the known fact that 

(2.17) (Ky = c\K. 
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COROLLARY 2.4. Let E be a Baire metrizable locally convex vector space 
and let f be finite and strictly lower semicontinuous at x. Then the following 
are equivalent: 

(a) / is directionally Lipschitzian at x with respect to y, 
(b) (i) for all y' from some neighbourhood Y G n(y) one has 

</ , z) ^ Ofor all z e (domf°(x; •) )° 

(ii) int cl domf°(x; •) = int dom/°(x; •)• 

Proof From (i) and (2.17) applied for dom/°(x ; •) it follows that 

Y c cl dom/° (x ; •), 

hence by (ii) 

y G int domf°(x\ •). 

Now from Theorem 2.1 we get that / is directionally Lipschitzian at x 
with respect to y. On the other hand if fis directionally Lipschitzian at x 
with respect to y, then 

y e int dom/°(jc; •) 

and conditions (i) and (ii) are satisfied. This completes the proof. 

COROLLARY 2.5. Let E be a Baire metrizable locally convex space. Then 
the following are equivalent: 

(a) / is Lipschitzian around x, 
(b) (i) f is finite and lower semicontinuous at x, 
(ii) int cl dom/°(jc; •) = int dom/°(x ; •), 
(iii) (dom/°(x; •) )° = 0. 

Proof Apply Corollary 2.4 and Proposition 1.3. 

Remark. If E is a finite dimensional space dom/°(x; •) in Corollary 2.4 
and Corollary 2.5 can be replaced by dom/^(x; •) ( [26] ). In this case condi­
tion (ii), being always satisfied, can be omitted. To observe that it cannot be 
omitted when E is infinite dimensional see Example 1 in Section 3. 

3. Examples. Our goal is to find limiting examples for the theory 
developed in Sections 1 and 2. Whenever possible we require them to be 
convex. As Propositions 1.2 and 1.4 show this assumption makes our 
results stronger. 

Example 1. We use the function given by Rockafellar in [25]. 
(A) Let E: = I2. For x: = (xn) G I2 let 

oo 

f(x): = 2 nxn. 
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For x: = 0 we get: 
(a) E is a Banach space, fis convex, lower semicontinuous, finite at x, 
(b ) / î (x ; •) is continuous, d^f(x) consists of a single element, 3°/(.x) = 

(c ) (dom/°(x ; 0)° = 0, 
( d ) / i s not directionally Lipschitzian at x. 

Compare. Corollary 1.3, Theorem 1.6, Proposition 2.1, Corollary 2.5. 

Proof. Let us observe that for any y 

(3.1) f°(0;y) =f'(0;y) 
0 if 2 nyn < +oo, 

« = i 

+ oo otherwise. 

Using (3.1) one gets 

/ î ( 0 ; •) = c l / ' (0 ; •) = c l / ° (0 ; -) = 0. 

Hence 

3°/(0) = aV(o> = {0}. 

This proves (b). It can be easily noticed that 

cl dom/° (0 ; •) = E, 

which implies (c). Since/is not bounded on any neighbourhood, it follows 
from Proposition 1.4 t h a t / i s not directionally Lipschitzian at zero. 

(B) Let E: = I2 X R, C: = epi / , x: = (0, 0). 
By Proposition 1.8(a) and 1.9(a) we get: 
(a) E is a Banach space, C is closed, and convex, 
(b) int Tc(x) ¥= 0, int Hc(x) = 0 
(c) C is not epi-Lipschitzian at x. 

Compare. Theorem 1.5, Corollary 1.2. 

Example 2. Let E be any infinite dimensional separable Banach space. 
Let K be a symmetric compact convex set whose core is empty but whose 
span (sp K) is dense ( [1] ). 

(A) Let x £ Sp x. Consider the function 

(3.2) f(x): = min {X G R\X + Xx G K}, 

where the minimum is taken to be H-oo when no such X exists. 
Let us notice that by the definition (3.2) one has 
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(3.3) f(sx) = — s for any s e R, 

(3.4) f(x) = 0 for any x e K, 

c\ <\\ P((\- — I ~s ^ y = a^ ~^~ s* ^or s o m e k ^ K, a, s ^ R, 
V • ) / V , 7) - I + O Q otherwise. 

For x: = Owe get: 
(a) E is an infinite dimensional Banach space, / is convex, lower 

semicontinuous, finite at x, 
(b) /T (x; •) = - oo on £, 
( c ) / i s not directionally Lipschitzian at x. 

Compare. Theorem 1.6. 

Proof. Let y e K. By (1.7) and (3.5) we obtain 

f(0; y) ^ f(0; y) = 0 

and since /^(0; •) is sublinear and K is symmetric we have 

f\0;y) ë Ofor all j ; (= sp # . 

Lower semicontinuity of the function /^(0; •) implies now that 

(3.6) f\0; y) ^ 0 for all y <= ^ T K : = £. 

Furthermore: 91/*(0) = 0. Indeed, suppose to the contrary that z e 3 V(0) 
for some z G £*. Using (1.8) we get 

(3.7) (x, z> ë / ( * ) for all x G £. 

Hence by (3.4) 

(x, z) ^ 0 for all x e sp AT = E. 

Thus z = 0. But this is impossible, because for x: = sx with s > 0 we have 
by (3.3) and (3.7) 

(x, z) tk — s. 

Now Proposition 1.1 yields:/^(0; 0) = - c o and since/^(0; •) is a convex 
function which by (3.6) is nowhere +oo, it must be identically equal to 
- c o . 

Let us also observe that it follows from (3.5) that 

/ ° ( 0 ; y) = +oo for any y £ sp (K, x). 

Hence int dom/° (0 ; •) = 0 and by Theorem 2.1 the function / is not 
directionally Lipschitzian. The proof is finished. 
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(B) Let C: = epi/ , x: = (0, 0). Then in a similar way as in Example 1 
we get: 

(a) E is an infinite dimensional Banach space, C is convex, closed. 
(b) Tc(x) = E, but x does not lie in int C and Hc(x) ^ E. 

Compare. Theorem 1.5, Corollary 2.2. 

Remark. If E is finite dimensional it follows from Theorem 1.5 that 

Tc(x) = £ ^ i G int C. 

Hence the situation described in the example cannot happen in a finite 
dimensional space. 

Before the next example, let us observe the following general 
equivalence. 

PROPOSITION 3.1. Let E be a locally convex topological vector space and 
let f be a convex function which is finite and lower semicontinuous at x. Then 
the following are equivalent: 

(a) Tdomf(x) = E and 3T/(x) = 0, 

(b)Tmf(x,f(x)) = E X R 

Proof It follows from Proposition 1.7 that 

(3-8) T d o m / (x) = P ( d o m / - x), 

(3.9) r e p i / ( x , / ( x ) ) = P ( e p i / - ( * , / ( * ) ) ) . 

Assume that (a) is satisfied but (b) does not hold. Then by the 
separation theorem there exists a convex functional (z, a) e E* X R such 
that 

(3.10) (y z) + ay ^ 0 for all (y, y) G TmJ(xJ(x) ). 

Combining (3.9) and (3.10) we get 

(3.11) (x' - x, z) + a(f(x') - f(x) ) ^ 0 for all x' G dom/ . 

Notice that a cannot be zero, otherwise 

(xr — x, z) ^ 0 for all x' G dom/ , 

which together with (3.8) and the first equality in (a) implies that z = 0. 
But this is impossible, therefore it follows from (3.11) that — z/a e 
3^/(x), which contradicts (a). This proves that (a) implies (b). 

Let us assume that (b) holds. Then by Proposition 1.1 d^f(x) = 0. By 
(b), (3.8) and (3.9) we get the first part of (a) and the proof is finished. 
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Example 3. Let E be a Fréchet space which contains nonempty bounded 
closed convex set K with no support points ( [20] ). Following an example 
given in [13] we choose any nonzero x e E and define a convex function 
by 

/Ox): = min {X e R|X + Xx <E K). 

Similar functions were investigated in [4] for some other supportless 
closed convex sets: one of them constructed in some incomplete inner 
product space ( [15] ), the other one (not bounded) in some Fréchet space 
( [14] ). Using any of the described functions we obtain: 

(a ) / i s lower semicontinuous, proper, convex on some Fréchet space (or 
some incomplete inner product space) E, 

(b)fî(x, •) = — oo for all x e domf. 

Compare. Theorem 1.3. 

Proof, (a) easily follows from the properties of the set K ( [13], [4] ). 
Furthermore, much as in [4] it may be proved that 

(3.12) d^f(x) = 0 for all x e domf. 

We give the proof of (b). First, observe that by the definition off 

f(x) ^ 0 for all x <= K\ 

x + f(x) x ^ K ÎOT all x <= domf. 

Hence 

(3.13) d o m / = K + Rx 

and 

(3.14) f(x + sx) = f(x) - s for all x e E and s G R. 

Furthermore 

TK(x) = E for all x ^ K. 

Indeed, if for some x <= K TK(x) ¥= E, by a separation argument and 
Proposition 1.7 we would obtain the existence of some nonzero z <E E* 
such that 

(x' - x, z> ^ 0 for all x' e K. 

But this is impossible since K is supportless. Hence by (3.13) also 

Tdomfix) = E. 
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Therefore, taking into account (3.12), we see that for all x e K condition 
(a) of Proposition 3.1 holds, which implies that 

(3.15) f\x; •) = - o o i f x e K. 

Take now any x e d o m / By (3.13) 

(3.16) x = x + ax for some 3c e K and some a e R. 

Using (3.16) and (3.14) we get for any y 

(3.17) / ' ( * ; / ) = lim 
40 t 

= lim - f'(x\ / ) . 

Since/ is convex it follows from (1.7), (3.17), and (3.15) that for any y 

f\x\ y) = lim inf f(x\ yr) = lim inf/(3c; y') 
y'^y y'^y 

= f\x;y) = -oo. 

Hence/^(x; •) = — oo for all x <E d o m / and the proof is complete. 

Remark. Note that Example 3 shows that not only (3.12) holds, which 
was observed in [4], but also what is more, that/^(;c; •) = — oo for all x <E 
dom/ . 

Example 4. (A) Let 

E: = {x e /°°| support of x is finite} 

and for x: = (xn) e E let 

/ ( JC) : = max {2nxn\n e N}. 

Taking x: = e°: = (1, 0, 0 . . . ) we get: 
(a) E is a non-Baire normed space, / is convex, lower semicontinuous, 

finite, 
(b ) / ° (x ; •) is continuous, 
(c)/T(x; •) is continuous, 
(d)f°(x; •) # / t ( x ; •); 0 * 3V(x) Ç 3°/(x), 
( e ) / i s not directionally Lipschitzian at JC. 

Compare. Corollary 1.3, Theorem 1.6, Theorem 2.1, Theorem 2.2, 
Proposition 2.1. 
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Proof. Let y = (yn) e E and suppose 

supp y c (0, 1, . . . m). 

Pick € > 0 such that for all x' = (x'n) and t satisfying: 

\\x' - eQ\\ < c, 0 < / < €, 

the following condition holds 

(3.18) 2n(x'n + /yw) = (x'0 + (y0)
 f ° r all « g m. 

Then the ratio 

(3.19) / ( * ' + » ) - / ( * ' ) 

is not greater than zero, if 

max {2n(x'n + ryw)|« e N} 

is attained for n > m, or it is not greater than 

max {2n(x'n + (y„)|w ë w} - max {2"x,> e N } 
t 

otherwise. Applying now (3.18) we get that the ratio (3.19) is not greater 
than max {0, y0}. This implies that 

(3.20) f°(e°;y) ë max {0, y0}. 

For k e N let 

k 

ek\ = (0, 0 , . . . 0 , 1, 0, 0, . . . ) and 

xk: = e° + 2~V. 

Then for k > m and / > 0 sufficiently small 

/ ( * * + ty) -f(xk) _ max{l + typ, 1 } - 1 
f / 

= max {0, j^o}-

Since JĈ  -> 0,f(e°) = 1 and/(x*) = 1 for all k, we get 
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This and (3.20) imply 

f°(<P; y) = mux {0, y0). 

Hence/°(e°; •) is a continuous function. However/is convex and it is not 
bounded on any neighbourhood. By Proposition 1.4, fis not directionally 
Lipschitzian at e°. 

To prove (c) let us notice that for any y <E E and / > 0 sufficiently 
small 

f(e° + ty) = 1 + ty0. 

Furthermore 

P(e°; y) = lim i n f / V ; / ) = lim inf y'() = y0. 
y'^y y'^y 

Obviously f\e°\ •) is a continuous (linear) function and 

/V;-)*/V;-). 
This finishes the proof. 

(B) Let us consider C: = e p i / a n d x: = (e°, 1). We get: 
(a) E is a non-Baire normed space, C is convex, closed, 
(b) int Hc(x) ¥= 0, 
(c) int Tc(x) ^ 0, 
(d) int Hc(x) ¥= int Tc(x), 
(e) C is not epi-Lipschitzian at x. 
Compare. Theorem 1.5, Corollary 1.2, Corollary 2.2. 

Example 5. (A) Let E be any non-barreled space (hence a non-Baire 
space). We can find a set C c E such that C is convex and symmetric, 
weak*-closed and bounded, but not equicontinuous ( [28] ). Consider the 
function / defined on E as 

f(x): = sup (x, z). 
z(=C 

Let x: = 0, we get: 
(a) E is any non-barreled space, fis convex, lower semicontinuous and 

finite, 
(b)/V; •) =/+(*; •) =/(*; •) = f°(x; •) =/ , 

(hence also/°(x; •) is lower semicontinuous and finite), 
(c)f\x; •) is finite, d^f(x) is non-empty but not weak* compact, 
( d ) / i s not directionally Lipschitzian at x. 

Compare. Proposition 2.2(e), Theorem 2.2. 
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Proof. Obviously/is sublinear and as the "sup" of continuous functions 
it is lower semicontinuous. Since/(0) = 0 , /mus t be a proper function. 
But C is weak* bounded, hence / is also nowhere +00. Now by 
Proposition 1.2 and lower semicontinuity o f / w e have for any y 

(3.21) /T(0; y) = /+(0; y) = lim in f / (0 ; / ) 

= l i m i n f / ( / ) = f(y). 
y'^y 

From sublinearity o f / i t follows that 

(3.22) f°(0;y) ^ f(y) for any y. 

(3.21) and (3.22) imply (b). Since/T(0; •) is finite, 3T/(0) is not empty 
and 

(3.23) f\0;y) sup (y, z>. 
ZG8T/ (0 ) 

(3.21) and (3.23) and definition of/ imply 

3Î/(0) = C. 

But C is not equicontinuous, hence 3^/(0) is not weak* compact a n d / i s 
nowhere continuous. By Proposition 1.4 it is not directionally Lipschitzian 
at x. 

(B) Let us consider C: = e p i / a n d x: = (0, 0). We get: 
(a) E is any non-barreled space, C is a closed convex subset of £ X 

(b) Kc(x) = Tc(x) = Hc(x) = C, 
(c) C is not epi-Lipschitzian at x. 

A large variety of interesting examples can be obtained by considering 
an infinite dimensional Banach space and exploring properties of a 
function such as the norm considered in the weak (or weak*) topology. 

Let E be an infinite dimensional Banach space and let E denote E 
considered in its weak topology. L e t / b e defined on E as 

f(x): = \\x\\. 

Then for any x and any y we have 

(3.24) f\x; y) = f'(x; y) S f°(x; y) S \\y\\. 

The first equality is due to Proposition of 1.2 and to the fact that/^(x; •) is 
convex and continuous on E, hence it is weakly lower semicontinuous on 
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E. The final inequality is a consequence of a sublinearity off (3.24) also 
shows tha t / and /° ( ; t ; •) are finite and lower semicontinuous on E (weakly 
lower semicontinuous on E). However/is nowhere continuous on E and 
therefore it is not directionally Lipschitzian at any x. 

One interesting thing about this function is that while f\x\ •) and 
f°(x; •) may be not continuous, the sets d^f(x) and d°f(x) are always 
non-empty and weak* compact. To see this let us observe that since 
f°(x; •) is a lower semicontinuous, proper, sublinear function we have that 
8°/(x) ¥= 0 and 

f°(x; y) = sup (y, z>. 

Clearly the similar formula fovf\x\ •) also holds, because by Proposition 
1.1 and the first equality in (3.24) 3T/(x) ¥= 0. By (3.24) and "sup" 
formulas forf°(x; •) and/^(x; •), d^f(x) and d°f(x) are bounded in norm 
topology of E* (which is the same as E*). Since d^f(x) and d°f(x) are 
weak* closed and norm bounded they are also weak* compact. 

Example 6. Let E, E a n d / b e as described above. Then 

/ î ( 0 ; - ) = / ' ( 0 ; - ) = / ° ( 0 ; - ) = / 

and 

3°/(0) = 3T/(0) = {z e E\ \\z\\ S 1}. 

Thus for x: = 0 we get: 
(a) E is any infinite dimensional Banach space viewed in its weak 

topology, / is convex lower semicontinuous, finite, 
(b ) / î (* ; •) = f°(x; •) and / ° (x ; •) is finite, 0 ^ d°f(x) = df(x) and 

d^f(x) is weak* compact, 
(c)f\x; •) =f(x; •) = / ° ( x ; •) and/° (x ; •) is lower semicontinuous but 

nowhere continuous, 
( d ) / i s not directionally Lipschitzian at x. 

Compare. Theorem 2.2. 

Example 7. (A) Consider E, E a n d / a s above. Suppose that E has a 
locally uniformly convex (LUC) norm (as any Lp space for 1 < p < oo 
( [10] ), ( [11] ) ) or more generally Kadec-norm as in /. Then for any net 
(xy) c E the following Kadec condition is satisfied ( [10], [11] ). 

(3.25) If Xy —> x weakly and ||xy|| —» ||x|| then \\xy — x\\ —> 0. 

With this assumption we have for all x e E 
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(3.26) f°(x; •) = f'(x; •). 

This follows from (3.25) and the fact that / is norm-Lipschitzian ( [23], 
Corollary p. 339). 

Combining (3.24) and (3.26) we get 

f°{x\ •) = f(x; •) = f\x\ •) for all x e E. 

Let x be any smooth point in E. Then f\x\ •) is linear and weakly 
continuous on E because it is equal to the gradient o f /a t x (considered in 
E). The gradient being continuous is weakly continuous. Therefore 
f\x\ -\f\x\ ') a n d/° ( .x ; •) are all equal and continuous on E. 

Recall that a Banach space is weakly compactly generated (WCG) if it 
contains a weakly compact set K whose closed span is the space ( [10], 
[11] ). Each reflexive or separable space is WCG. It is a consequence of 
Trojanski's renorming Theorem and the Asplund averaging theorem ( [10] 
or [11], Corollary 2, p. 167) that every WCG space has an equivalent norm 
which is both smooth and LUC. 

Hence we get: 
(a) E is any WCG Banach space viewed in its weak topology, / is 

convex, lower semicontinuous, finite, 
(tyf\x; •) = f(x\ •) = f°(x; •) and/°(jc; •) is continuous and linear, 
( c ) / i s not directionally Lipschitzian at x. 

Compare. Corollary 1.3, Theorem 1.6, Theorem 2.1, Theorem 2.2. 

(B) Let C: - epi / , x: = (0, 0). We get: 
(a) E is any WCG Banach space viewed in its weak topology, C is 

closed, convex subset of E X R, 
(b) int Tc(x) = int Hc{x) ¥= 0, 
(c) C is not epi-Lipschitzian at x. 

Compare. Theorem 1.5, Corollary 2.2. 

Example 8. Let E: = c (the space of all convergent sequences in the 
supremum norm) and let E a n d / b e defined as previously. Consider x: = 
(xn) such that 

(3.27) xn ^ 0 for n G N and lim xn = 1 = \\x\\. 
n—*oo 

Then for anyy: = (yn) 

(3.28) / ° ( x ; y) ^ lim \yn\ i= 0. 
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To see (3.28) let us observe that the sequence (JC"J„GN defined as 

*\ • .A- Â* -A/ M C 

tends weakly to x. Furthermore 

||x"|| = 1 for n e N. 

Let 

lim \yn\ = : a. 

Then 

(3.29) lim yn = —a or lim yn = a. 

Assume that first equality in (3.29) holds. Then 

(3.30) y (x; j ) ^ lim lim . 

Let € > 0 be arbitrary. Then for n sufficiently large and t > 0 sufficiently 
small 

||JC - 2xne" + ty\\ ^ xw + /(a - c). 

Using this inequality in (3.30) we get 

(3.31) / ° ( J C ; 7 ) ^ a - € if lim j „ = - a . 
«—>oo 

Suppose now that the second equality in (3.29) holds. Then 

(3.32) / ° ( * ; y) * lim "* + ^ " "*" 

and for sufficiently small / > Owe have by (3.27) 

sup|x„ + tyn\ ^ sup (xn + t(a — e))= \ + t(a — c). 

This together with (3.32) implies 

(3.33) / ° ( JC; y) ^ a - € if lim j w = a 
«—»oo 

and since € can be arbitrarily small (3.31) and (3.33) justify (3.28). 
Let us observe that (3.28) says that 0 e 9 ° / ( X ) , while 0 £ 3T /(JC) 

because ||x|| = 1. 
Suppose that JC is such that in addition to (3.27) also 
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(3.34) xn < 1 for all n e N. 

Then/°(x; •) is continuous and 

(3.35) f°(x;y) = Urn \yn\ for all y. 

Indeed, take any k e N. Pick 17 > 0 satisfying 

(3.36) xn < 1 - 6TJ for all « ^ k. 

Let £/ be a neighbourhood of zero such that for all u = (un) e U 

(3.37) |MJ < 77 for n ^ k, and 

(3.38) |lim u„\ < TJ. 

Choose nk > k such that 

(3.39) 1 — 7] < x„k and lim un — 77 < un . 
n—>oo 

Furthermore, pick X < 0 satisfying 

(3.40) \tyn\ < i] for all 0 < / < X and all n €= N. 

Then using (3.35)-(3.40) we obtain 

(3.41) \x„ + ww + ty„\ ^ l-xj + K | + log < 1 — 677 -h 17 + 77 

= 1 - 4T] < 1 + lim ww - 3TJ < x„A + wWik + ty„k 

for all « ^ A:, w G £7, 0 < f < A. It follows from (3.41) that 

||JC + u + ty\\ = sup \xn + un + tyn\ for u e {/, 0 < / < X. 
«>A: 

Hence 

•O/... ... :_, „.._ I I * + W + ^11 - lU + «II f (x; y) = inf sup 

S>0 ||X + H | |^1+Ô 
X>0 0<t<\ 

sup \xn + ww + (y„| - sup |x,7 + wM| 
_, n>k n>k 

— SUR 
0<r<X 

= sup [yj. 
n>k 
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Since k was arbitrary and y = (yn) converges we get 

f°(x; y) S lim \y„\ 
n—>co 

which together with (3.28) implies (3.35) and tha t / ° (x ; •) is continuous 
(weakly continuous on c). 

One can check that any point x satisfying (3.27) and (3.34) is a smooth 
point in E at which 

/ T 0 ; y) = / ' ( * ; y) = lim y„ for any y. 

Summing up our considerations for x satisfying (3.27) and (3.34) we get: 
(a) E is some infinite dimensional Banach space viewed in its weak 

topology, fis convex, lower semicontinuous, finite, 
(b)f^(x; •) and / ° (x ; •) are both continuous but different, 
(c) d^f(x) and d°f(x) are both nonempty and weak* compact, 
(d) 8î/(x) ç a o / ( x ) > 

( e ) / i s not directionally Lipschitzian at x. 

Compare. Corollary 1.3, Theorem 1.6, Theorem 2.1, Theorem 2.2, 
Proposition 2.1. 

If the same example is considered for E: = l°° then (3.28) holds with 
"lim sup" replacing "lim". Note that en —> 0 weakly in /°°. 

Example 9. Let E: = C( [0, 1] ) (the space of real continuous functions 
on [0, 1] ) and let E a n d / b e defined as previously. Denote by e a function 
constantly equal to 1 on [0, 1]. 

For x: = e we obtain: 
(a) E is a Banach space viewed in its weak topology, fis convex, lower 

semicontinuous, finite, 
(b)f\x; •) is finite, 
(c)/°(;c; •) = / (hence f°(x; •) is lower semicontinuous and finite but 

nowhere continuous), 

(d)A*;-)*/°(*;0, 
(e) dV(x) a n d d°f(x) are both nonempty and weak* compact but 

different, 
( f ) / i s not directionally Lipschitzian at x. 

Compare. Corollary 1.3, Theorem 1.6, Theorem 2.1, Theorem 2.2. 

Proof Let us observe that for any y 

f'(e\ y) = max y(s). 
S €=[0,1] 

https://doi.org/10.4153/CJM-1984-008-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1984-008-7


BAIRE SPACES 123 

Hence function/ '^; •) is lower semicontinuous on E (since it is continuous 
and convex on E). Therefore 

f\e\y) =f(e\y) = max y(s). 
•se[0,l] 

This proves (b). By the formula obtained for f'(e\ •) to prove (c) it is 
enough to show that for any y 

f°(e; y) ^ max - y(s). 
s e [ 0 , l ] 

So let y be arbitrary and choose s satisfying 

y(s) = min y(s). 
5G[0,1] 

For each n <= N pick x" e C( [0, 1] ) such that - 2 ^ x„(0 ^ 0 for / e 
[0, 1], XW(J) - - 2 and xn(t) = 0 if |f - s\ ^ 1/2". Then x" -> 0 weakly in 
C( [0, 1] ), hence xn —» 0 in is. Furthermore 

Ik + JĈ H = 1 f o r « G N 

and for small / 

\\e + s" + p,|| - \\e + sw|| ^ I ~ 1 + ty(s)\ - 1 

= — y(s) = max — y(s). 
ve[0,l] 

Thus we proved that for any 7 

f°(e; y) = \\y\V 

Since £* = £* = NBV ( [0, 1] ) (the space of real normalized functions of 
bounded variation on [0, 1] ) we get that 

d°f(e) = {* G NBV([0, l ] ) | | W | ë 1} 

and hence d°f(e) is nonempty and weak* compact. To complete the proof 
of (e) let us observe that 

3Î/(e) = {* e NBV ( [0, 1] ) I fQy(s)d*(s) 

ë max >,(*), >, G C([0,1])} 
^ [ 0 , 1 ] 
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= {* e NBV([0, 1] ) | j0<W(s) 

= 1 and ^ is nondecreasing}. 

Obviously / is not directionally Lipschitzian since it is nowhere 
continuous. 

Example 10. Let Ë be a non-reflexive Banach space and let E be the 
continuous dual of E considered in weak* topology. We define a function 
/ o n E as 

(3.42) f(x): = \\x\\ 

where the norm above is the dual norm on E*. Notice that / is lower 
semicontinuous on E (because it is weak* lower semicontinuous on E*). 
However it is not continuous at any point, and hence also not directionally 
Lipschitzian at any point. As in our previous analysis it can be easily 
proved that /°(x; •) is everywhere finite for any x. Since Ë is non-reflexive, 
by the theorem of James there exists x e E which does not attain its norm 
on Ë. For this x 

(3.43) 3Î/0O = 0. 

Indeed, otherwise since d^f(x) c E, there would exist some z e E such 
that: 

HJC'H - ||JC|| ^ (x' - x, z> for all x' G E. 

But it follows from the above inequality that 

IWI = <JC, z> and ||z|| ^ 1, 

which is impossible. Hence (3.43) holds. 
Since (3.43) is equivalent to 

f\x\ 0) = - o o , 

and/^(x; •) is convex and nowhere +oo we obtain that 

f\x; •) EE - o o . 

So in this case we get: 
(a) E is dual to any non-reflexive Banach space considered in weak* 

topology, fis convex, lower semicontinuous, finite, 
(b)f°(x; •) is finite (but not continuous, see Proposition 3.2 below), 
(c) /T (x; •) EE - o o , 
( d ) / i s not directionally Lipschitzian at x. 
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Compare. Theorem 2.1, Proposition 2.3, Theorem 2.2. 

Let us observe that in the case of a Banach space considered in its weak 
topology the Clarke derivative of the norm was lower semicontinuous. For 
the function defined by (3.42) on the dual space considered in its weak* 
topology this assertion is not always true. This follows from the next 
example. 

Example 11. Let E: = cQ (the space of zero-convergent sequences in 
supremum norm) and let E: = Z1 considered in the weak* topology 
induced by c0. Now Z1 is "weak* Kadec" ( [19] ). This is to say that for any 
net (xy) 

(3.44) if xy —> x weak* and ||jcy|| —> ||x|| then 

\\xy - * | | - > 0 . 

It follows much as in Example 7 that 

(3.45) f°(x\ •) = / ' ( * ; 0 for any x. 

Let x: = (2~'?), then 

(3.46) 3/(jc) = 0-

Indeed, otherwise since df(x) c c0, we would get for some z <E C0 

HJC'H - |W| ^ (x' - x, z) for all x' e Z1 

which is only possible when z = (1, 1, 1 . . . ), but then z £ CQ. Hence 
(3.46) holds, and arguing as in the previous example shows that/^(x; •) = 
— oo. It follows now by Proposition 1.4 that f\x\ •) is not lower 
semicontinuous, hence by (3.45) f°(x\ •) is also not lower semicontin­
uous. 

By (3.45) we also obtain that 

f\x; •) = c l / V ; •) = c l / ° (x ; •) 

and this together with (3.46) gives 

a !/•(*) = d°f(x) = 0. 

Thus we get: 
(a) E is some dual to Banach space considered in weak* topology,/is 

convex, lower semicontinuous, finite, 
(b) f°(x; •) = / ' ( * ; •) and / ° ( x ; •) is finite but not lower 

semicontinuous, 
(c)f\x; •) ^ - o o , 3Î/(x) = 3°/(x) = 0, 
( d ) / i s not directionally Lipschitzian at x. 
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Compare. Theorem 2.1. 

Example 12. Much as in Example 10 consider E: = l\ E: = /°° in its 
weak* topology and/def ined by (3.42). Let x: = (1 — 2~n). Then the 
analogous argument to that in Example 8 shows that for any y 

\\y\\ ^f°(x;y) â lim sup \yn\ g 0, 
n—*oo 

while considerations as in Example 10 show that 

P(x; •) s - o o . 

Hence 3T/(x; •) = 0 but 3°/(x; •) ¥= 0, since 0 G 3°/(JC; •)• Furthermore 
/ ° ( x ; •) is finite, but by Proposition 3.2 given below not continuous. 

Thus we get: 
(a) E is dual to some Banach space considered in its weak* topology,/is 

convex, lower semicontinuous, finite, 
(b ) / î ( * ; •) ES -oo , 3Î/(x) = 0, 
(c) /°(x; •) is finite but not continuous, 
( d ) / i s not directionally Lipschitzian at x. 

Compare. Corollary 1.3, Theorem 1.6, Theorem 2.1, Theorem 2.2. 

Remark. Note that much of the theory developed in Examples 6-12 
works also for more general norm continuous homogeneous functions. 
Notice also that in our convex examples f\x\ •) is dependent only on the 
dual pair while f°(x; •) is topology dependent. 

In Proposition 2.1 we discovered that iff°(x; •) is continuous then one 
of the following alternatives must hold:/^(x; •) == — oo or/^(x; •) is also a 
continuous function. However i f / i s a convex function, the first situation 
can never happen. This is explained below. 

PROPOSITION 3.2. Let E be a real locally convex vector space and let f be a 
convex function on E, finite and lower semicontinuous at x. Suppose f°(x; •) 
is continuous on E. Then p(x\ •) is finite and continuous and fi(x\ •) = 
fix; •)• 

Proof Since f(x; •) ^ / ° ( JC ; •) < + ° ° it follows that 

f\x\ y) > - c o for all y, 

otherwise we would get that 

f(x; •) = - c o . 
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But this is impossible because f\x\ 0) = 0. Since f\x\ •) is finite, convex 
and majorized by continuous function it also must be continuous. 
Therefore for any y 

f\x- y) = lim inff(x; y') = f(x\ y) > -oo. 

This completes the proof. 

There is still an open question of deriving an example of a function for 
which, at some point x, the Clarke derivative is continuous on E but the 
upper subderivative is equal to — oo everywhere. As the above proposition 
and our previous consideration show, the function with this feature cannot 
be convex or directionally Lipschitzian at x. Can it be subdifferentially 
regular? 

4. Conclusions. We have shown that in a Baire metrizable setting 
relations between various generalized derivatives (and tangent cones) 
simplify considerably. We have also shown that outside this setting, even 
for convex functions all these simplifications vanish. In particular in the 
absence of directional Lipschitzness f°(x\ •) and f\x; •) may be 
continuous and agree or disagree. Similarly f°(x;-) can be finite but not 
lower semicontinuous or lower semicontinuous but not continuous. Even 
in the case of sublinear functions (norms) it may range between f'(x\ •) 
and/ . 

We were also able in certain cases to give explicit formulae ioxp{x\ •) 
and /° (x ; •) even when they diverged. As was apparent such estimates are 
quite delicate. 

Our limiting examples describing various relations between the 
generalized derivatives and subgradients are presented in the following 
table (P, T, C mean Proposition, Theorem and Corollary respectively). 
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