
Appendix B

Center of mass (C-M) motion

The center-of-mass (C-M) motion can, in fact, be handled correctly in
the usual non-relativistic many-body problem. We follow the approach of
[Fo69]. Introduce the usual C-M and internal coordinates as indicated in
Fig. B.1.

X ≡ 1

A

A∑
i=1

xi

x′
i ≡ xi − X ; i = 1, 2, . . . , A (B.1)

It follows that [Fo69]

A∑
i=1

x′
i = 0 (B.2)

d3x1 d
3x2 · · · d3xA = d3(AX) d3x′

1 d3x′
2 · · · d3x′

A δ
(3)

(
A∑
i=1

x′
i

)

Fig. B.1. C-M and internal coordinates; i = 1, 2, . . . , A labels the particles.
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The rewriting of the volume element in the second equation is particularly
useful. The target wave function can be written quite generally as

Ψi(x1, . . . , xA) =
1√
A3Ω

eip·X ψi(x
′
1, . . . , x

′
A) (B.3)

Now the nuclear charge density operator, for example, is given as

ρ̂(x) =
Z∑
i=1

δ(3)(x − xi) (B.4)

Its Fourier transform is written in terms of C-M and internal coordinates
as

∫
e−iq·x ρ̂(x) d3x = e−iq·X

(
Z∑
i=1

e−iq·x′
i

)
(B.5)

The integral over the C-M coordinate can be done in the big box of
volume Ω with p.b.c., and the result is

〈f|
∫

e−iq·x ρ̂(x) d3x|i〉 = δp,p′+q〈ψf |
∫

e−iq·x ρ̂(x) d3x|ψi〉 (B.6)

The remaining matrix element is now written in internal coordinates in
the C-M system.

〈ψf |
∫

e−iq·x ρ̂(x)d3x|ψi〉 =

∫
d3x′

1 · · · d3x′
A δ

(3)

(
A∑
i=1

x′
i

)

×ψ�
f(x

′
1, . . . , x

′
A)

(
Z∑
i=1

e−iq·x′
i

)
ψi(x

′
1, . . . , x

′
A) (B.7)

Now use

δ2
p,p′+q = δp,p′+q∑

f

δp,p′+q =
∑
f

′ ∑
p′

δp,p′+q =
∑
f

′
(B.8)

Here
∑

f
′ goes over all internal quantum numbers. This allows one to

write the sum over final states of the square of the matrix element as

∑
f

|〈f|
∫

e−iq·x ρ̂(x) d3x|i〉|2 =
∑
f

′|〈ψf |
∫

e−iq·x ρ̂(x)d3x|ψi〉|2 (B.9)

Now the analysis proceeds as in the text.
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In summary, assume the current density has the form

Ĵν(x) =
A∑
i=1

[jν(xi)δ
(3)(x − xi)] (B.10)

Its Fourier transform can then be written∫
e−iq·xĴν(x) d3x =

A∑
i=1

[jν(xi)e
−iq·xi] (B.11)

Assume further that this expression can be written in terms of C-M
and internal coordinates as∫

e−iq·xĴν(x) d3x = e−iq·X
A∑
i=1

[jν(x
′
i)e

−iq·x′
i] (B.12)

This holds true in the following cases:

• It is true for the charge density operator [see Eq. (B.5)];

• It is true for the spin current density [see Eq. (9.17)];

• It is true for the transverse part of the convection current density.

We give a proof of this third case. Consider the transverse part of the
current defined by (here λ = ±1)

Ĵ(x) · e
†
qλ =

Z∑
i=1

[
p(i)

m
, δ(3)(x − xi)

]
sym

· e
†
qλ (B.13)

Since mẋi = mẊ + mẋ′
i, it follows that

p(i) =
1

A
p + p′(i) (B.14)

Now note that the transverse part of the convection current from the
C-M, when the target is initially at rest, satisfies

1

2A
(p + p′) · e

†
qλ = − 1

2A
q · e

†
qλ = 0 (B.15)

Hence the C-M momentum does not contribute, and one can rewrite Eq.
(B.13) as

Ĵ(x) · e
†
qλ =

Z∑
i=1

[
p′(i)

m
, δ(3)(x − xi)

]
sym

· e
†
qλ (B.16)

Thus the stated result is established.
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In conclusion, it follows that∑
i

∑
f

|〈f|
∫

e−iq·x ρ̂(x) d3x|i〉|2 = (B.17)

∑
i

∑
f

′|〈ψf |
∫

e−iq·x ρ̂(x)d3x|ψi〉|2

∑
i

∑
f

∑
λ=±1

|〈f|
∫

e−iq·x Ĵ(x) · e
†
qλ d

3x|i〉|2 =

∑
i

∑
f

′ ∑
λ=±1

|〈ψf |
∫

e−iq·x Ĵ(x) · e
†
qλ d

3x|ψi〉|2

All of the subsequent analysis proceeds exactly as in the text.
A few comments are relevant. These are exact relations within non-

relativistic quantum mechanics. The matrix elements are computed in
the internal space according to Eq. (B.7); however, there is an A-body
constraint δ(3)(

∑A
i=1 x′

i) in them. One usually does not deal correctly with
this A-body constraint in calculations involving one or more valence
particles, but there are models, such as the harmonic oscillator model,
where it is possible to do so.

Within the framework of many particles in a harmonic oscillator po-
tential, the center-of-mass motion can be taken into account by writing
[El55, Ta58]

f(κ) = fCM(κ)FSM(κ) (B.18)

Here FSM(κ) is calculated with A independent nucleons in a harmonic
oscillator shell-model potential, and f(κ) is the transition form factor
calculated with an intrinsic wave function with coordinates measured
with respect to the center-of-mass; this is clearly what one is after. The
C-M correction factor is

fCM(κ) = exp (
y

A
)

y ≡
(
κbosc

2

)2

h̄ωosc =
h̄2

mb2
osc

(B.19)

Note that the correction factor goes as 1/A where A is the number of
nucleons. In calculations, this additional factor can always be conveniently
lumped, together with the single-nucleon form factor of chapter 19, into
an effective Mott cross section

σ̄M ≡ f2
SN(κ)f2

CM(κ) σMott (B.20)
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Unless stated otherwise, this expression is used in all the traditional nuclear
physics calculations carried out in this text.

We proceed to demonstrate the result in Eq. (B.19) in the case of
four nucleons in the 1s state of the three-dimensional simple harmonic
oscillator.1 The independent-particle wave function in this case is

ΨSM ∼ exp

(
− 1

2b2
osc

A∑
i=1

r2i

)
(B.21)

The norm is discussed below. Introduce C-M and relative coordinates
according to

R ≡ 1

A

A∑
i=1

ri

r′
i ≡ ri − R (B.22)

Use the simple, crucial identity

A∑
i=1

r2i =
A∑
i=1

r′2
i + AR2 (B.23)

Hence

ΨSM ∼ exp

(
− AR2

2 b2
osc

)
ψint(r

′
i) (B.24)

Now compute the charge form factor

FSM(κ) ≡ 1

Z
〈ΨSM|

Z∑
i=1

e−iq·ri |ΨSM〉 (B.25)

∼ 1

Z

∫
d3R e−iq·R exp

(
−AR2

b2
osc

)
〈ψint|

Z∑
i=1

e−iq·r′
i |ψint〉

The Fourier transform of the gaussian is immediately performed to give

FSM(κ) = exp

(
−b2

oscq
2

4A

)
1

Z
〈ψint|

Z∑
i=1

e−iq·r′
i |ψint〉 (B.26)

One can now check the normalization. Set κ ≡ |q| = 0, and since both the
shell-model and internal wave function are normalized, the overall factor
is correct. This result is now solved for the true internal form factor

FSM(κ) = exp

(
− y

A

)
fint(κ)

fint(κ) = fCM(κ)FSM(κ) (B.27)

1 For the extension, see [de66].
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This is the stated result. Note that fint(κ) is now calculated with true
internal wave functions, the true internal volume element (see above dis-
cussion), and with the constraint

∑A
i=1 r′

i = 0 thereby incorporated. The
physics of this result is the following. The independent-particle model
includes motion of the center-of-mass. This smears out the charge (prob-
ability) density. The true internal density is more compact, and hence its
form factor falls off more slowly with κ. With many nucleons, the C-M
motion does not smear out the density as much. Of course, this discussion
is still all within the framework of the harmonic oscillator shell model.
The extension to other forms of the potential, and especially to the fully
relativistic case, is still an open problem.
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