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FINITE-SAMPLE SIZE CONTROL
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In predictive regressions with variables of unknown persistence, the use of extended

IV (IVX) instruments leads to asymptotically valid inference. Under highly per-

sistent regressors, the standard normal or chi-squared limiting distributions for the

usual t and Wald statistics may, however, differ markedly from the actual finite-

sample distributions which exhibit in particular noncentrality. Convergence to the

limiting distributions is shown to occur at a rate depending on the choice of the IVX

tuning parameters and can be very slow in practice. A characterization of the leading

higher-order terms of the t statistic is provided for the simple regression case, which

motivates finite-sample corrections. Monte Carlo simulations confirm the usefulness

of the proposed methods.

1. INTRODUCTION

A common inferential task of practical relevance is to decide whether a potential

predictor variable does indeed forecast another variable of interest. In the simplest

setup, practitioners thus test the null hypothesis of no predictability in the model

yt = µ+βxt−1 +ut, t = 2, . . . ,T , (1)

where the regressor is usually assumed to have an autoregressive structure,

xt = ρxt−1 + vt , (2)

with initial condition bounded in probability, x1 = Op(1). With financial data,

predictors such as dividend yields or earnings-price ratios are often quite persistent,

even if still mean-reverting (typically captured by a value of ρ close to unity), and

its shocks are contemporaneously correlated with the variable to be predicted (see

Phillips, 2015, for a recent review). This biases the OLS estimator of the slope
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parameter and induces heavy non-normality of t statistics (Elliott and Stock, 1994;

Stambaugh, 1999) such that tests for predictability are size-distorted.

Near to unity asymptotics, obtained by letting ρ = 1 − c/T , offer a better

approximation of the actual distribution of the OLS t statistic than the standard

normal in this situation; cf. Elliott and Stock (1994). The limiting distribution of

the OLS estimator and test is explicitly non-normal under near integration and

depends on the mean-reversion parameter c and the correlation between ut and

vt. Since consistent estimation of c is not possible in such highly persistent cases

(Phillips, 1987), the literature suggested several different ways of circumventing

the lack of knowledge on ρ. See, among others, Campbell and Yogo (2006),

Jansson and Moreira (2006), Maynard and Shimotsu (2009), Camponovo (2015),

Phillips (2015), and Breitung and Demetrescu (2015).

Building on the work of Phillips and Magdalinos (2007) and Magdalinos and

Phillips (2009), the extended IV (IVX) estimation and testing approach introduced

by Phillips and Magdalinos (2009) is gaining momentum for predictive regres-

sions; see, for example, Gonzalo and Pitarakis (2012), Phillips and Lee (2013),

Kostakis, Magdalinos, and Stamatogiannis (2015), Demetrescu and Rodrigues

(2016), Demetrescu et al. (2020), or Yang et al. (2020). In the IVX framework,

xt−1 is instrumented by the specifically constructed instrumental variable zt−1 =
(1−̺L)−1

+ 1xt−1 =
∑t−2

j=0 ̺
j1xt−1−j with initial condition z1 = 0 and ̺= 1−a/Tη,

where a > 0 and η ∈ (0,1). This “endogenous instrumentation” method has

convenient properties: the persistence of zt is under control, and is below that of

the near-integrated xt−1. Regularity conditions assumed, the resulting IV estimator

follows amixed Gaussian distribution in the limit, and the limiting null distribution

of the corresponding t ratio is standard normal.

Should the regressor xt be highly persistent with localization parameter c close

to zero, the IVX-based test of no predictability may still be seriously distorted in

finite samples, even if less so than the OLS-based test. This is clearly the case

when choosing η too close to unity or a too close to zero, and the difference

in terms of persistence between the instrument zt and the regressor xt becomes

small: for example, the rule of thumb proposed by Kostakis et al. (2015), which

sets ̺ = 1− 1/T0.95, is actually equivalent to a near unit root with localizing

coefficient c̃ between 1 and 2 for sample sizes between T = 100 and T = 10,000.

Kostakis et al. (2015), therefore, recommend the use of a finite-sample correction

leading to reliable size control for two-sided tests.1 We find, however, that the

correction is not equally effective for tests against one-sided alternatives. This is

relevant in practice, as economic theory often predicts a certain sign of the slope

coefficient β.

1In the more general context of IVX predictive regressions with serially correlated errors, Yang et al. (2020) employ

autoregressive prewhitening to eliminate the second-order bias of the IVX estimator induced by correlated regression

errors, whereas Phillips and Magdalinos (2009) use nonparametric estimates of one-sided long-run covariance

matrices to correct for this bias.
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We, therefore, examine in Section 2 the behavior of components of the t statistic

that vanish in the limit, but still have an effect in finite samples. We do so in a setup

allowing for deterministically varying variances and correlations of the errors ut
and vt. Since the main source of distortions in finite samples appears to be the

fact that the finite-sample distribution is not centered at zero (see also Stambaugh,

1999), we focus on correcting for the noncentrality of the t ratio. One way of

doing so is to resort to backward and forward demeaning of the involved variables.

In time series analysis, backward (or recursive, or adaptive) demeaning can be

traced back to at least the work of So and Shin (1999) where recursive demeaning

is shown to reduce bias in estimators of large autoregressive roots. Specifically

for (panel) predictive regressions, Westerlund, Karabiyik, and Narayan (2017)

resorts to forward and backward demeaning to reduce endogeneity bias. While

this is shown to stabilize size, we also find that it has the side effect of reducing

power in a nontrivial manner. This is a specific effect of forward demeaning in

the context of persistent predictors, and not of IVX. Therefore, we discuss the

use of direct approximations of the higher-order terms affecting the finite-sample

behavior of the t statistic. Some depend on the localizing coefficient c, which

cannot be consistently estimated, so we provide a method of side-stepping this

issue. In extensive Monte Carlo experiments (see Section 3), we find it to work

reasonably well under various patterns of changing error variances.

The technical details of the proofs can be found in the Appendix and in an

Online Supplement, which also contains additional simulation results pertaining

to conditional heteroskedasticity.

2. IMPROVED IVX INFERENCE

2.1. Preliminaries

Let us first specify the details of the predictive regression model we work with.

Assumption 1. The data {yt, xt}, t = 2, . . . ,T, are generated from (1) and (2)

with x1 = Op(1).

To keep a realistic setup, we allow for error heterogeneity in the form of time-

varying variances and correlations, as well as short-run dynamics. Specifically, we

work under the following assumptions.

Assumption 2. Let vt = 9 (L)νt, where νt is heteroskedastic white noise

as specified below and 9 (L) is a lag polynomial, 9 (L) =
∑

j≥0 bjL
j with∑

j≥0 j
∣∣bj
∣∣<∞ and ψ =9 (1) 6= 0.

Assumption 3. Let (ut,νt)
′ = H

(
t
T

)
(ξ1t, ξ2t)

′, with (ξ1t,ξ2t)
′ ∼ iid (0,I2),

Lr-bounded for some r > 4, where H(·) := {hij}i,j=1,2 is a matrix of piecewise

Lipschitz-continuous bounded functions on (−∞,1], which is of full rank at all

but a finite number of points.
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This would be a typical structure in predictive regressions for stock returns,

where the disturbance ut is not predictable using the past of vt. We do not assume a

particular distribution for the errors but only require finite fourth-order moments.

Although daily returns may exhibit fat tails, standard predictive regression models

are used in conjunction with monthly, quarterly, or even annual data, where infinite

kurtosis is not an issue. For the same reason, the serial independence assumption

we make on the innovations is justifiable. The 1-summability condition placed on

the coefficients of the filter9 is standard in the literature involving integrated and

near-integrated variables. Let

6t = H(t/T)H′(t/T)=
(
σ 2
u (t/T) σuν(t/T)

σuν(t/T) σ 2
ν (t/T)

)

and notice that we have time varying variances, covariances, and correlations of

the errors, as Cov((ut,νt)
′) = 6t is not restricted beyond piecewise smoothness.

The off-diagonal elements of 6t are not required to be zero, thereby allowing

for predictive regression endogeneity. The assumption on H(s) allows for a wide

range of covariance matrices of the innovations, including, for example, single

or multiple (co-) variance shifts, smooth transition (co-) variance shifts, or even

trending variances.

With W a vector of two independent standard Wiener processes and “⇒”

denoting weak convergence of probability measures on the space of càdlàg real

functions on [0,1] equipped with the Skorokhod topology, we have (see Cavaliere,

Rahbek, and Taylor, 2010)

1√
T

[sT]∑

t=1

(
ut
νt

)
⇒
∫ s

0

H(r)dW(r)=:

(
UH(s)

VH(s)

)
;

the normalized levels of xt converge weakly to a heteroskedastic Ornstein–

Uhlenbeck type process,

T−1/2x[sT] ⇒ ψ

(
VH(s)− c

∫ s

0

e−c(s−r)VH(r)dr

)
:= ψJc,H(s) .

IVX estimation relies on using the instrument zt−1 = (1−̺L)−1
+ 1xt−1 =∑t−2

j=01xt−1−j, where ̺ = 1− a
Tη

with a > 0 and η ∈ (0,1). The IVX t statistic

for the null β = 0 is

tvx =
∑T

t=2 (zt−1 − z̄)yt√∑T
t=2 (zt−1 − z̄)2 û2t

, (3)

with Eicker–White standard errors to account for the heteroskedasticity. The

residuals ût are computed using the OLS estimator of β, as is common in the

predictive IVX regression literature.2

2The IVX estimator has convergence rate T
1/2+η/2 so IVX residuals, although still consistent for η > 0, are typically

less precise; see Kostakis et al. (2015).
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Figure 1. Finite sample null distribution of tvx for a = 1; η = 0.95 versus N (0,1); DGP: (1) with

(2), ρ = 1, (ut,vt)∼ iidN (0, ((1,δ);(δ,1))), 25,000 replications, different correlations δ, and sample

sizes.

What makes the IVX approach interesting for practitioners is that the terms

involving c vanish as T → ∞ and pivotal inference on β can be obtained

asymptotically. See Kostakis et al. (2015) for details on IVX-based predictive

regression under strict stationarity of errors, and Demetrescu and Rodrigues (2016)

for a case with time-varying variances with some (nontrivial) restrictions on the

correlations. In finite samples, however, the actual distribution is not centered at

zero because numerator and denominator correlate, and has a variance somewhat

smaller than 1, as can be seen in Figure 1. Notice also the slow convergence to the

standard normal.

2.2. Higher-Order Terms

We, therefore, study corrections that make IVX-based inference in predictive

regressions even more reliable. To this end, we first characterize the leading terms

of the IVX t statistic.

Proposition 1. Under Assumptions 1–3 and any η ∈ (1/2,1), it holds as T → ∞
that

tvx = ZT +BT +CT +op
(
T
η/2−1/2

)
,

where

ZT
d→ N (0,1) with E(ZT)= 0,
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BT → 0 with T
1/2−η/2 E(BT)→ − 1√

2a

∫ 1

0
σuν (s)σ

2
u (s)σ

2
ν (s)ds√(∫ 1

0
σ 2
u (s)σ

2
ν (s)ds

)3 ,

and

T
1/2−η/2CT ⇒ −

√
2

a

UH (1)Jc,H (1)√∫ 1

0
σ 2
u (s)σ

2
ν (s)ds

.

Proof: See Appendix B.

Proposition 1 provides an explanation for the finite sample behavior of tvx as

observed in Figure 1 for c = 0. For instance, the direction and magnitude of the

noncentrality depend on the average sign andmagnitude of the correlation between

the errors ut and νt via the two terms BT and CT . It can be seen from the discussion

below that, under constant correlation δ, the magnitude of the noncentrality is in

fact proportional to δ. Moreover, the slow convergence of tvx to the standard normal

seen in Figure 1 can also be explained by the behavior of the two terms BT and CT :

although they do vanish, they do so at rate Tη/2−1/2, which is low whenever η close

to unity.

The noncentrality is mainly driven by the two termsBT andCT . The first depends

on the user-chosen parameters a and η (with the additional restriction η > 1/2

required for the calculation of E(BT)), as well as on a particular form of average

correlation. In fact, under homoskedasticity (H = const.), the expectation of

T1/2−η/2BT is asymptotically equivalent to −δ/
√
2a with δ the constant correlation

of ut and νt. If σuν(s)= 0∀s ∈ [0,1], BT does not affect the centering of tvx.

The same holds for the second component, CT : if σuν(s)= 0∀s ∈ [0,1], then UH

and Bc,H are independent; therefore, the expectation of the limit of the normalized

CT is zero as well. Should there, however, be contemporaneous correlation, the

behavior of CT—in particular its expectation—does depend on c. Moreover, the

dependence is nonlinear, since it is easily shown that

E
(
UH (1)Jc,H (1)

)
=
∫ 1

0

e−c(1−s)σuν(s)ds.

As expected, the expectation decreases in magnitude as c increases. This expres-

sion simplifies too under homoskedasticity, where T1/2−η/2CT has an asymptotic

expectation depending on the (constant) correlation δ, namely −δ
√

2
a
1−e−c
c

. For

c = 0, the case with the largest distortions, we see this expectation to be twice as

large as that of the normalized BT , with the relative importance of CT diminishing

as c increases. This component depends, however, on the localizing coefficient c

which cannot be consistently estimated, unlike the expectation of BT .

Figure 2 plots the contribution of both BT and CT to the noncentrality of the

t statistic tvx. We note that heteroskedasticity only has a secondary influence
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Figure 2. Finite sample average of T
1/2−η/2 (BT +CT ) under the null of β = 0 as a function of c. DGP:

(1) with (2) where T = 250, a= 1, η= 0.95, ρ = 1−c/T , (ut,vt)∼ iidN (0,6t), 10,000 replications,

breaks in variances or in the correlation. Left panel: 6t =
(
(σ 2
u (t/T),δ);(δ,σ 2

v (t/T))
)
, δ = −0.95 (see

the Section 3 for more details); right panel:6t = ((1,δ(t/T));(δ(t/T),1)), δ(·) switching between−0.5

and −0.95.

compared to the localizing coefficient c, and that most (but not all) of the finite-

sample noncentrality seen in Figure 1 for c = 0 is accounted for by the two

terms.

2.3. Corrections

The term CT from Proposition 1 appears because of the full-sample demeaning of

the dependent variable (see the proof of Proposition 1 for details). To deal with

this, we first discuss recursive demeaning as a possible correction. In particular,

we use backward recursive demeaning for the regressor and forward demeaning

for the dependent variable, in that we write

trecvx =
∑T

t=2 (zt−1 − z̄t−1)(yt − ÿt)√∑T
t=2 (zt−1 − z̄t−1)

2 û2t

, with ÿt =
1

T− t+1

T∑

j=t
yj and z̄t =

1

t

t∑

j=1

zj.

The motivation for such demeaning schemes is that the recursively demeaned

regressor and the forward demeaned disturbance are now orthogonal irrespective

of the correlation between ut and νt, which is not the case with usual demeaning.

Such orthogonal schemes of mean adjustment have been used before in predictive

regressions: for example, Westerlund et al. (2017) uses such a scheme to develop

a predictability test in panel predictive regression.3 In fact, in the panel literature,

forward and backward demeaning have a much longer history in dealing with the

Nickell bias (Nickell, 1981); see Everaert (2013) for a recent contribution.

3Moreover, recursive adjustment schemes are popular in the related unit root testing literature as a means for reducing

noncentrality and improving local power; see, for example, Shin and So (2001).
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This effect of recursive adjustment is very much in the spirit of the proposal of

Kostakis et al. (2015), who point out that not demeaning the instrument zt−1 (while

still demeaning the dependent variable and the predictor itself to account for a

nonzero intercept in the predictive regression) reduces the finite-sample correlation

between the numerator and the denominator of the IVX t statistic. We shall closer

examine the corrections of Kostakis et al. (2015) after analyzing the effect of the

orthogonal mean adjustment scheme in:

Proposition 2. Under the assumptions of Proposition 1, it holds as T → ∞ that

trecvx = ZT +BT +op
(
T
η/2−1/2

)
with ZT and BT from Proposition 1.

Proof: See Section I of the Online Supplement.

Proposition 2 shows that dependence on c of the leading higher-order terms

may in fact be eliminated. Our Monte Carlo study (see Section 3) shows that trecvx
performs quite well in terms of size in spite of the remaining term BT , so the first

correction we suggest is orthogonal mean adjustment.

TheMonte Carlo study also shows that the local power of trecvx is low. To see why,

examine

yt − ÿt = β (xt−1 − ẍt−1)+ut − üt,

with ·̈t denoting forward demeaned quantities. Under the alternative β 6= 0, power

is driven by the cross-product (zt−1 − z̄t−1)(xt−1 − ẍt−1). But the forward demeaned

xt−1 may be rewritten as

xt−1 − 1

T− t+1

T∑

j=t
xj−1 = − 1

T− t+1

T∑

j=t

j−t−1∑

k=0

1xj+k,

so, in the extreme case of xt being a random walk, 1xt = νt and (xt−1 − ẍt−1) is

uncorrelated with zt−1 − z̄t−1. The effect on t
rec
vx under the alternative is similar to

that of a weak instrument. This phenomenon is caused by the correction itself and

not by the IVX instrumentation.

Turning our attention to the corrections proposed by Kostakis et al. (2015), they

result in

tWvx =
∑T

t=2 zt−1 (yt − ȳ)√∑T
t=2 z

2
t−1û

2
t −Tz̄2ω̂2

u|v

,

where ω̂2
u|v = ω̂2

u − λ̂2uvω̂−2
v with ω̂2

u and ω̂
2
v estimators of the long-run variances of

ut and vt, and λ̂uv an estimator of the long-run covariance of ut and vt. The behavior

of tWvx is discussed in

Proposition 3. Under the assumptions of Proposition 1, it holds as T → ∞ that

tWvx = ZT +BT +CT +op
(
T
η/2−1/2

)
with ZT,BT, and CT from Proposition 1.
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Proof: See Appendix B.

Although tWvx has the same leading terms as tvx, we give in Section II of the Online

Supplement some of the higher-order terms of tvx which are of order Op(T
η−1)

and missing from tWvx . Since they contribute to the noncentrality (cf. Kostakis

et al., 2015, p. 1516 and also the differences seen by comparing Figures 1 and 2),

their absence likely improves the finite-sample behavior of tWvx and thus explains

our findings in the Monte Carlo section that the two-sided tWvx statistic performs

remarkably well. The impact of the terms BT and in particular CT on the one-sided

versions of tWvx is, however, not negligible and we, therefore, move on to propose

explicit corrections for BT and CT .

The quantities involved in the expectation of BT may for instance be estimated

using smoothed residuals, delivering an estimate of

−Tη/2−1/2

√
2a

∫ 1

0
σ̂uν(s)σ̂

2
u (s)σ̂

2
ν (s)ds√(∫ 1

0
σ̂ 2
u (s)σ̂

2
ν (s)ds

)3 .

In dealing with CT , it may be tempting to proceed analogously. Yet, with c

unknown and no consistent estimator available, this approach seems of limited

applicability in general.

Alternatively, one may try to match the functional
∫ 1

0
e−c(1−s)σuν(s)ds using the

expectation of another functional depending on c. We illustrate this idea for the

case of homoskedasticity, where we have

E(UH (1)Jc (1))= δσuσv(1− e−c)/c.

Recall that 1

ψ
√
T
x[sT] ⇒ Jc,H (s), where it is easily seen that Var

(
Jc,H (s)

)
=

1−e−2sc

2c
under homoskedasticity. Therefore, 2Var

(
Jc,H (1/2)

)
= 1−e−c

c
, which

suggests employing a quantity with this expectation to accommodate the

noncentrality induced by CT .

While it is likely possible to modify this approach in certain particular cases (say

for breaks in variances and covariances at suitable times), the general case seems

out of reach.We, therefore, propose the use of the correction for the homoskedastic

case (and also point to Figure 2 as additional motivation for this proposal). In fact,

our simulations in Section 3 and in Section III of the Online Supplement show this

to work reasonably well under heteroskedasticity too.

The resulting correction term for the expectation of BT is then

bT = −δ/
√
2T (1−̺),

where δ may be estimated as the correlation of νt and ut based on ût and ν̂t from an

AR(p) approximation of xt with p selected via an information criterion (we resort

to the Akaike IC).
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For CT , the natural choice following from the property of the Ornstein–

Uhlenbeck process discussed above is then 1/(ψ2σ 2
ν )T

−1x2[T/2], leading to

cT = − δ
√
2√

T (1−̺)
·
2x2[T/2]

ω2T
= 2bT

2x2[T/2]

ω2T
,

since ω2 = ψ2σ 2
ν is simply the (stationary) long-run variance of vt (which may

be estimated either based on 1xt, or—as we proceed in our simulations—on the

residuals of a first-order autoregression of xt).

It should be noted, however, that this delivers a noisy proxy for the mean of CT :

while it will remove the noncentrality due to CT (at least under homoskedasticity),

it will at the same time marginally inflate the variance of the corrected t statistic.

The presence of the estimator ω̂2 in the denominator further inflates the variance:

since we employ a nonparametric estimator, its variability in finite samples is large

enough to affect the positive effect of the correction. Concretely, it induces outliers

in the distribution of the correction and inflates the variance of the corrected

statistic. To deal with these issues, we add finite-sample modifications which do

not affect the asymptotics.

First, we use the fact that the term to be corrected is bounded to [0,1], so we

censor 2x2[T/2]/(ω̂
2T) on [0,1]. While this reduces the variability of the term, it

changes its expectation, so we re-normalize it. The limit of 2x2[T/2]/(ω̂
2T) is χ2(1)

under the worst-case scenario of c= 0, which, upon censoring on [0,1], loses the

unity expectation, and has an expectation of

̟ = 1−
√
2/(πe)≈ 0.5161,

and a variance of

ς = 4(8(1)−8(0))−2/(πe)−2
√
2/(πe)≈ 0.1633.

Second, we standardize the t statistic to take the variance of the correction cT into

account.

Finally, should xt be stationary instead of near-integrated, this bias correction

may overcorrect, since, for ρ away from unity, the standard normal asymptotics do

relatively well even when ̺ is close to unity; see Kostakis et al. (2015). A practical

adjustment of the correction is to restrict ̺ in t∗vx to be smaller than an estimate of

ρ. In particular, we suggest ̺=min{̺,ρ̂}, where ρ̂ is the OLS estimator in a first-

order autoregression of xt. Asymptotically, this restriction makes no difference

under near-integration, but prevents the bias correction to “overshoot.”

To sum up, we suggest to use, with b̂T = −δ̂/
√
2T
(
1−min{̺,ρ̂}

)
, the statistic

t∗vx =
tvx − b̂T

(
1+ 2

̟
min

{
1,

2x2
[T/2]

ω̂2T

})

√
1+2 δ̂

3

√
ς

̟
b̂T + ς

̟ 2 b̂
2
T

,
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where δ̂/3 is intended to capture finite-sample correlation of ĉT and tvx, and is tuned

to homoskedasticity. Our Monte Carlo study in Section 3 and in Section III of the

Online Supplement shows that t∗vx works well under heteroskedasticity too.

3. FINITE SAMPLE EVIDENCE

In this section, we provide finite sample evidence on the merits of the remedies

proposed in this paper. We use a data generating process (DGP) as outlined under

equations (1) and (2) with independent innovation process governed by a bi-variate

normal distribution with a correlation coefficient of δ = −0.95 (which is typical

for predictive regressions with stock returns; see, e.g., Phillips, 2015), as well as

time-varying volatility. Concretely,
(
ut
νt

)
∼ iidN

((
0

0

)
,6t

)
,

6t =
(
σu(t/T) 0

0 σν(t/T)

)(
1 δ

δ 1

)(
σu(t/T) 0

0 σν(t/T)

)
;

furthermore, vt = φvt−1 + νt for φ = 0.5. The variance of the innovations is taken

to vary in time according to the following scenarios:

1. Homoskedasticity [cst.]: σ 2
u (s)= σ 2

ν (s)= 1, s ∈ [0,1],

2. Early upward break [e.u.]: σ 2
u (s)= σ 2

ν (s)= 1 · I(s< 0.3)+4 · I(s≥ 0.3),

3. Late upward break [l.u.]: σ 2
u (s)= σ 2

ν (s)= 1 · I(s< 0.7)+4 · I(s≥ 0.7),

4. Early downward break [e.d.]: σ 2
u (s) = σ 2

ν (s) = 4 · I(s< 0.3) +
1 · I(s≥ 0.3),

5. Late downward break [l.d.]: σ 2
u (s) = σ 2

ν (s) = 4 · I(s< 0.7) +
1 · I(s≥ 0.7).

The size study results are generated using 10,000 replications and considering c ∈
{0,1,5,10,30,50} together withβ = 0 for T = 250 and 500. To analyze the behavior

of the corrected tests under the alternative, we consider a sequence of local alter-

natives characterized by β = b
T

√
1− δ2, for b ∈ {−26,− 24, . . . ,−2,0,2, . . . ,26}.

Note under b = 0, the size properties of the test will be recovered. Since the

sign of β might be known in practice (as is often the case when the choice of

the predictor is motivated by economic theory4), we consider local alternatives

covering both situations, β < 0 and β > 0, alongside with cases where two-sided

testing is of interest. All through this section, we fix a= 1 and η= 0.95 following

the recommendation of Kostakis et al. (2015).

We compare four versions of the IVX statistic testing the null β = 0: the original

IVX t statistic (tvx), the finite-sample adjusted version of Kostakis et al. (2015)

4For example, the effect of dividend yields on excess returns can be expected to be positive, while increasing risk-free

rates could have a negative effect on excess returns (see, e.g., Ang and Bekaert, 2007).
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(tWvx),
5 the IVX t statistic computed with orthogonal mean adjustment (trecvx ), as well

as our bias-corrected proposal (t∗vx).
Table 1 shows the finite-sample rejection frequencies at the 5% nominal level

for strong negative contemporaneous correlation δ = −0.95.6 The finite-sample

noncentrality of the standard IVX t statistic, tvx, leads as expected to huge size

distortions that only drop to reasonable levels for c = 10 if not c = 30. The time

variation of the variance influences these distortions, but not by much. Also, they

do not drop with increasing T, as predicted by the small rates in Proposition 1. The

statistic tWvx on the other hand shows that the finite-sample corrections introduced

in Kostakis et al. (2015) work excellently in the two-sided case. Only for c= 50,

can one observe a very slight tendency to overreject (with rejection frequencies

closer to 6% than to 5% for T = 250). However, the tWvx statistic does not behave

too well in each tail taken alone, as it tends to overreject to the right (one sees large

rejection frequencies for small c, and even for c= 50 we note rejection frequencies

above 8%) and to underreject to the left (this is most visible for small c, where the

rejection frequencies are below 1%). This also does not significantly improve for

larger T = 500, and exhibits little variation across the different variance patterns.

The statistic with backward and forward recursive demeaning, trecvx , has very good

size control (with some exceptions for c = 0, where rejection frequencies of 7%

may be observed for the test against right-sided alternatives, and some cases of

under-rejections: for left-sided testing under downward breaks and c = 0,1 we

observe rejection frequencies of 2 or 3%). Finally, the t∗vx statistic has the best size
control of all four tests: while it sometimes underrejects for left-sided testing (in the

same situations where the trecvx statistic was undersized), most rejection frequencies

lie between 4% and 6%, with only a handful of cases where the 6% threshold is

exceeded, and no rejection frequency above 7%.

Summing up, all three modified statistics may be used in a two-sided testing

situation in what concerns size control. For one-sided testing situations, the use of

tWvx is not recommended as it overrejects to the right and severely underrejects to the

left, which has a dampening effect on rejection frequencies under the alternative;

see below. The simulations will also confirm the power-reducing effect of the

orthogonal mean adjustment scheme mentioned after Proposition 2.

We present in Figures 3–5 plots of rejection frequencies of the four statistics

compared for c= 0,10,30 and all variance patterns and test variants (left-, right-,

and two-sided).

For left-sided testing, it is t∗vx that has best rejection rates in all cases. Compared

to tvx and t
W
vx , this is because t

∗
vx is centered correctly and therefore not undersized.

Here, tvx seems to perform a bit better than tWvx . The test based on backward and

forward adjustment has poor rejection properties under the alternative; the gap

5Kostakis et al. (2015) consider a Wald statistic W for which
(
tWvx
)2 =W.

6The findings are symmetric in the sign of δ; moreover, size behavior improves uniformly for decreasing magnitude

of δ so we do not include the exact figures to save space.
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Table 1. Size properties of different tests under short-run dynamics and strong contemporaneous shock correlation

T = 250 T = 500

Two-sided Left-sided Right-sided Two-sided Left-sided Right-sided

c Var tvx trecvx tWvx t∗vx tvx trecvx tWvx t∗vx tvx trecvx tWvx t∗vx tvx trecvx tWvx t∗vx tvx trecvx tWvx t∗vx tvx trecvx tWvx t∗vx

cst. 20.90 4.90 4.69 4.48 0.11 2.91 0.08 4.08 33.01 6.83 8.82 5.42 20.65 5.09 4.39 4.42 0.09 2.82 0.05 4.50 33.51 7.27 9.00 5.19

e.u. 16.18 4.97 4.66 4.91 0.20 3.11 0.12 6.28 26.30 6.87 9.38 4.72 14.56 4.80 3.88 4.75 0.16 3.07 0.08 6.16 25.15 6.62 8.35 4.18

0 l.u. 16.01 5.73 4.93 5.87 0.76 3.71 0.50 6.38 25.51 7.64 9.07 5.22 15.49 5.93 4.69 5.49 0.75 3.70 0.48 6.54 24.62 7.43 9.06 4.59

e.d. 23.55 4.91 4.62 3.52 0.02 2.70 0.02 1.82 37.00 7.14 9.46 5.54 21.79 4.64 4.37 3.28 0.00 2.33 0.01 2.00 35.27 6.99 9.20 5.18

l.d. 22.38 3.81 4.94 3.35 0.01 1.94 0.00 2.64 35.38 6.15 9.51 5.44 21.45 4.02 4.13 3.22 0.01 1.94 0.00 2.77 34.86 6.34 8.64 4.99

cst. 15.94 4.48 4.87 6.28 0.24 2.58 0.18 6.42 25.58 6.85 9.22 5.82 15.54 5.01 4.46 6.27 0.23 3.24 0.15 6.59 25.03 7.06 9.22 5.56

e.u. 12.56 4.73 5.10 5.95 0.33 3.08 0.21 7.04 21.40 6.99 9.55 5.40 12.87 4.94 4.78 6.08 0.32 3.10 0.20 7.44 20.90 7.02 9.19 5.03

1 l.u. 13.14 5.30 5.44 5.73 1.07 3.52 0.70 6.12 21.19 7.29 10.13 5.41 12.42 5.12 4.93 5.47 0.63 3.44 0.46 5.43 19.91 7.28 9.35 5.15

e.d. 15.76 4.50 4.84 5.50 0.06 2.76 0.04 5.39 25.28 6.70 10.15 5.65 14.54 4.55 4.53 5.24 0.11 2.52 0.01 6.01 23.80 6.78 9.07 5.07

l.d. 16.47 4.61 4.95 5.44 0.04 2.16 0.03 5.90 26.98 7.20 10.01 5.98 15.24 4.22 4.72 4.96 0.04 2.10 0.04 5.80 24.72 6.30 9.19 5.44

cst. 9.96 5.10 5.69 6.03 1.15 3.33 0.89 5.47 16.01 6.91 10.12 5.89 9.39 4.70 5.18 5.67 1.24 3.36 1.02 5.41 15.10 6.46 9.65 5.56

e.u. 8.42 5.29 5.20 6.43 1.04 3.13 0.73 6.47 14.24 6.85 9.54 4.94 8.95 5.16 5.13 5.95 0.91 3.24 0.54 5.67 14.76 7.02 9.95 5.18

5 l.u. 9.18 5.22 5.81 4.00 1.35 3.34 0.94 2.31 15.20 7.10 10.51 5.39 9.06 5.39 5.46 3.75 1.35 3.49 0.91 2.36 14.63 7.05 10.45 5.48

e.d. 8.65 4.95 5.60 4.65 1.07 3.02 0.77 3.99 14.18 6.61 10.49 5.48 8.07 4.85 4.86 4.66 1.22 3.12 0.89 4.09 13.62 6.36 9.74 4.92

l.d. 9.19 4.81 5.52 6.82 0.86 2.31 0.54 6.41 14.97 6.80 10.40 5.57 8.14 4.14 4.62 5.92 0.78 2.41 0.57 6.29 14.14 6.31 9.24 4.86

(Continued)
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Table 1. (Continued)

T = 250 T = 500

Two-sided Left-sided Right-sided Two-sided Left-sided Right-sided

c Var tvx trecvx tWvx t∗vx tvx trecvx tWvx t∗vx tvx trecvx tWvx t∗vx tvx trecvx tWvx t∗vx tvx trecvx tWvx t∗vx tvx trecvx tWvx t∗vx

cst. 7.70 4.84 5.81 4.34 1.68 3.39 1.47 3.15 12.18 6.12 9.80 5.37 7.71 4.92 5.74 4.15 1.78 2.95 1.53 3.23 11.95 6.43 9.60 5.31

e.u. 7.69 5.17 5.59 4.87 1.61 3.37 1.24 4.01 12.24 6.56 9.57 5.27 7.29 5.28 5.51 4.83 1.70 3.46 1.33 3.94 11.83 6.66 9.18 5.11

10 l.u. 7.88 5.29 6.00 3.65 1.84 3.46 1.24 1.89 12.11 6.82 10.07 5.76 7.44 5.34 5.58 3.26 1.70 3.31 1.14 1.68 11.56 6.96 9.78 5.45

e.d. 7.50 4.94 5.94 3.47 1.85 3.15 1.53 2.18 11.60 6.70 9.98 5.22 7.04 4.78 5.67 3.29 1.82 3.13 1.56 2.06 11.05 6.62 9.42 5.04

l.d. 7.85 4.44 6.10 4.86 1.97 2.89 1.68 4.27 11.62 6.11 9.49 5.33 6.31 4.31 4.70 4.20 1.67 2.72 1.33 4.07 10.61 5.87 8.81 4.42

cst. 6.72 5.17 6.14 4.07 2.82 4.07 2.74 3.13 9.72 6.57 9.18 5.57 6.07 4.81 5.52 3.78 2.90 3.74 2.82 3.11 8.40 6.03 7.84 4.91

e.u. 6.95 5.31 6.21 4.44 3.47 4.11 3.18 3.78 9.22 6.40 8.63 5.50 6.02 4.86 5.51 3.83 2.83 3.78 2.65 3.26 9.00 6.36 8.29 5.10

30 l.u. 6.68 5.10 5.97 4.29 2.95 3.37 2.52 2.90 9.56 6.61 8.88 5.58 5.99 5.06 5.26 3.64 2.45 3.73 2.06 2.42 8.87 6.41 8.16 5.20

e.d. 6.28 5.16 5.90 3.65 3.09 4.02 2.86 3.09 8.76 6.38 8.38 5.11 5.77 5.16 5.45 3.43 3.03 3.50 2.85 2.98 8.43 6.30 7.93 4.86

l.d. 6.00 4.80 5.56 3.97 2.99 3.59 2.76 3.44 8.94 6.16 8.34 5.00 6.03 4.74 5.65 3.84 2.86 3.48 2.73 3.16 8.51 6.22 8.03 4.87

cst. 6.14 5.06 5.91 4.22 3.26 4.10 3.09 3.37 8.41 5.99 8.11 5.48 5.44 4.82 5.11 3.59 3.12 3.90 3.04 3.16 7.14 5.63 6.84 4.65

e.u. 6.50 5.26 6.17 4.58 3.33 4.28 3.21 3.61 8.84 6.23 8.40 5.59 5.97 5.18 5.62 4.22 2.96 4.13 2.84 3.15 7.85 6.28 7.65 5.33

50 l.u. 6.60 5.25 6.05 4.70 3.62 4.15 3.31 3.62 8.76 6.13 8.36 5.69 5.43 5.00 5.03 3.70 2.68 3.72 2.37 2.69 7.87 5.93 7.46 5.02

e.d. 5.97 5.12 5.72 4.17 3.39 3.97 3.28 3.44 7.71 6.58 7.56 5.02 5.78 4.87 5.60 3.88 3.27 3.83 3.18 3.26 8.08 6.21 7.89 5.25

l.d. 6.35 5.18 6.11 4.71 3.68 4.03 3.63 3.88 7.87 6.30 7.62 5.22 5.65 5.09 5.40 3.75 3.45 4.15 3.35 3.59 7.39 5.87 6.99 4.88

Note: Data generated with (1) and (2) with vt = φvt +νt for φ = 0.5, where (ut,νt)∼ iiN(0,6t) and 6t exhibits constant correlation δ = −0.95 and time-varying
variances. We set ρ = 1− c/T for various c and ̺ = 1− 1/T0.95 and use standard normal critical values. See the text for details.

https://doi.org/10.1017/S0266466620000298 Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0266466620000298


FINITE-SAMPLE SIZE CONTROL OF IVX-BASED TESTS 783

-0.03 -0.02 -0.01

0

0.5

1

-0.03 -0.02 -0.01

0

0.5

1

-0.03 -0.02 -0.01

0

0.5

1

-0.03 -0.02 -0.01

0

0.5

1

-0.03 -0.02 -0.01

0

0.5

1

-0.03 -0.02 -0.01

0

0.5

1

-0.03 -0.02 -0.01

0

0.5

1

-0.03 -0.02 -0.01

0

0.5

1

-0.03 -0.02 -0.01

0

0.5

1

-0.03 -0.02 -0.01

0

0.5

1

-0.03 -0.02 -0.01

0

0.5

1

-0.03 -0.02 -0.01

0

0.5

1

-0.03 -0.02 -0.01

0

0.5

1

-0.03 -0.02 -0.01

0

0.5

1

-0.03 -0.02 -0.01

0

0.5

1

Figure 3. Power properties of different test statistics when T = 250 for H0 : β = 0 versus H1 : β < 0

with β = b
T

√
1− δ2 for b ∈ {−26,−24, . . . ,−2,0}. Data generated with (1) and (2) with vt = φvt+νt

forφ= 0.5, where (ut,νt)∼ iiN(0,6t) and6t exhibits constant correlation δ= −0.95 and time-varying

variances. We set ρ = 1− c/T for various c and ̺ = 1− 1/T0.95 and use standard normal critical values.

See the text for details.
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Figure 4. Power properties of different test statistics when T = 250 for H0 : β = 0 versus H1 : β > 0

with β = b
T

√
1− δ2 for b ∈ {0,2,4, . . . ,26}. Data generated with (1) and (2) with vt = φvt + νt for

φ = 0.5, where (ut,νt)∼ iiN(0,6t) and 6t exhibits constant correlation δ = −0.95 and time-varying

variances. We set ρ = 1− c/T for various c and ̺ = 1− 1/T0.95 and use standard normal critical values.

See the text for details.
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Figure 5. Power properties of different test statistics when T = 250 for H0 : β = 0 versus H1 : β 6= 0

with β = b
T

√
1− δ2 for b ∈ {−26, − 24, . . . , − 2,0,2, . . . ,26}. Data generated with (1) and (2) with

vt = φvt + νt for φ = 0.5, where (ut,νt) ∼ iiN(0,6t) and 6t exhibits constant correlation δ = −0.95

and time-varying variances. We set ρ = 1−c/T for various c and ̺= 1−1/T0.95 and use standard normal

critical values. See the text for details.
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to the other tests decreases as c increases, but rejection rates drop anyway with

increasing c.

For right-sided testing, tvx rejects very often, but this is of course due to the

extreme liberality compared to the other tests. The test based on trecvx performs, like

before, worst (again, with differences decreasing as c increases). To the right, tWvx
typically rejects more often than t∗vx, but keep in mind that it is also quite oversized,

even if not as oversized as the uncorrected tvx.

Finally, examining the two-sided tests, we observe as expected a combination

of the findings for the left- and right-sided tests, with the difference that the tWvx test

is now correctly sized and the corresponding test decisions are now reliable. The

test based on t∗vx is also correctly sized, and the power ranking of the two depends

on the sign of β under the alternative. While tWvx is more powerful against right-

sided alternatives, but less powerful against left-sided ones, t∗vx exhibits a more

balanced behavior. Again, the larger c, the closer the rejection frequencies of the

three corrected tests.

Summing up, when the theory provides clear justifications about using a one-

sided test, we could safely recommend the use of t∗vx. For two-sided testing, one

has the choice between tWvx and t
∗
vx, with the symmetry of the rejection frequencies

under the alternative being an argument in favor of t∗vx, and the higher power against
right-sided alternatives (or left-sided, should the correlation δ be positive) being

an argument in favor of tWvx . Altogether, as our Monte Carlo results show, we would

like to stress that tWvx has a very good size control for two-sided testing. Allowing

for conditional heteroskedasticity does not alter this general recommendation (see

Section III of the Online Supplement for further Monte Carlo simulation results

supporting this claim).

4. CONCLUDING REMARKS

A convenient approach in the context of predictive regressions where the per-

sistence of the endogenous forecasting variable is unknown, is to turn to IV

regressions where a so-called extended instrumental variable with a controlled

level of persistence is constructed. The resulting IVX estimator is asymptotically

mixed Gaussian and makes for standard asymptotic inference. Finite-sample

deviations from the asymptotic limit can, however, be quite serious. Typically

manifested in the form of noncentrality, they depend heavily on how the IV

estimator is constructed.

In this paper, we provide a structured approach to control the small sample

noncentrality of the IVX t statistic for a given instrumental variable, and as a

result control the size distortions. First, we develop a higher-order expansion of

the corresponding IVX t statistic and as such provide a theoretical understanding

of the small sample deviations of the t statistic from its limit. This in turn suggests

ways to center the t statistic at the origin under the null. Combining forward and

recursive demeaning does account for most leading terms of the bias at the cost of

some loss of power. An explicit correction for the noncentrality achieves similar
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size control but without the power reduction. These proposals do not assume any

parametric restriction on the persistence of the extended instrumental variable, and

rather provide, for any given parameterization thereof, a corresponding way of

reducing noncentrality.

Our recommendations do not concern Wald tests of the null of no predictability

inmultiple regressions, themain reason being that the corrections already proposed

by Kostakis et al. (2015) are quite effective for the Wald statistic. We leave a full

analysis of higher-order terms of the involved quadratic forms to future work.

Our Monte Carlo study shows that all of these proposals provide substantial

remedies to small sample size distortions to the IVX t statistic while maintaining

relatively good properties under the alternative. Further, when the effect of a

forecasting variable is negative, we suggest using a left-sided t statistic with one

of the corrections we provided in this paper, since our Monte Carlo study provides

evidence that such a strategy is associated with a better statistical power compared

to using a two-sided test. For two-sided alternatives, theWald test of Kostakis et al.

(2015) offers the better balance between size and power.

5.SUPPLEMENTARY MATERIAL

To view supplementary material for this article, please visit http://dx.doi.org/

10.1017/S0266466620000298
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APPENDIX

A. PRELIMINARIES

Note that, for large enough T,
∑t−1

j=0 ̺
kj = 1−̺kt

1−̺k = Tη

a

(
1−̺kt

1+̺+···+̺k−1

)
≤ 1

kaT
η for fixed

k and ̺ = 1− a
Tη with η ∈ (0,1) and a > 0. In fact, for t/T → s > 0, ̺kt =

(
1− a

Tη
)kt =

((
1− a

Tη
)− Tη

a

)−ka t
T T

1−η

→ 0 so
∑t−1

j=0 ̺
kj ∼ 1

kaT
η in such cases. Let further C denote a

generic constant whose value may change from occurrence to occurrence. Before moving

on to the proofs, we state three helpful lemmas.

Lemma A.1. Under the assumptions of Proposition 1, it holds that

sup
1≤t≤T

∥∥∥T−1/2xt

∥∥∥
4

≤ C and sup
1≤t≤T

∥∥∥T−η/2zt

∥∥∥
4

≤ C ∀T .

Proof. See Section I of the Online Supplement.
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Lemma A.2. Under the assumptions of Proposition 1, we have under the null β = 0 that

tvx =
1

T1/2+η/2
∑T

t=2

(
z̃t−1 − ¯̃z

)
(ut− ū)

√
1

T1+η
∑T

t=2

(
z̃t−1 − ¯̃z

)2
u2t

+Op

(
T−η/2

)
,

where z̃t−1 = (1−̺L)−1
+ 1x̃t−1 with x̃t =

∑t−2
j=0 ρ

jνt−1−j and ¯̃z the sample average of
z̃t−1.

Proof. See Appendix B.

Lemma A.3. Under the assumptions of Proposition 1, we have

T
1/2−η/2E(BT )→ − 1√

2a

∫ 1
0 σuν (s)σ

2
u (s)σ

2
ν (s)ds√(∫ 1

0 σ
2
u (s)σ

2
ν (s)ds

)3 .

Proof. See Section I of the Online Supplement.

B. PROOFS

Proof of Lemma A.2

With x̃t−1 =
∑t−2

j=0 ρ
jνt−1−j = (1−ρL)−1

+ νt−1 (i.e., the DGPwithout short run dynamics),

use the Phillips–Solo decomposition (see Phillips and Solo, 1992) of vt (see the proof of

Lemma A.1), to obtain that

xt−1 =
t−2∑

j=0

ρjvt−1−j = ψ

t−2∑

j=0

ρjνt−1−j+
t−2∑

j=0

ρj1ṽt−1−j

such that 1xt−1 = ψ1x̃t−1 +1qt−1 where

qt−1 =
t−2∑

j=0

ρj1ṽt−1−j = ṽt−1 −ρt−3ṽ1 + (ρ−1)

t−4∑

j=0

ρj−1ṽt−2−j.

Note that qt is uniformly L4-bounded. Now, Demetrescu et al. (2020, Lemma. A.1) show

under slightly stricter assumptions than ours that
∑T

t=2 zt−1 = Op

(
T
1/2+η

)
such that z̄ =

Op

(
Tη−1/2

)
and hence

T∑

t=2

(
z̃t−1 − z̄

)
ut =

T∑

t=2

zt−1 (ut− ū)=
T∑

t=2

zt−1ut− ū

T∑

t=2

zt−1 =2p

(
T
1/2+η/2

)
.

Moreover,

√∑T
t=2

(
zt−1 − z̄

)2
û2t has the same order: using the OLS residuals ût = ut− ū−

(xt−1 − x̄)
(
β̂−β

)
, we obtain

T∑

t=2

(
zt−1 − z̄

)2
û2t =

T∑

t=2

(
zt−1 − z̄

)2
u2t −2

(
β̂−β

) T∑

t=2

(
zt−1 − z̄

)2
(xt−1 − x̄)ut
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+
(
β̂−β

)2 T∑

t=2

(
zt−1 − z̄

)2 (
xt−1 − x̄

)
op

(
T1+η

)
,

and, using Lemma A.1, together with the superconsistency of the OLS estimator β̂,7 it

follows that

T∑

t=2

(
zt−1 − z̄

)2
û2t =

T∑

t=2

(
zt−1 − z̄

)2
u2t +Op

(
T
1/2+η

)
.

Therefore,

1

T1+η

T∑

t=2

(
zt−1 − z̄

)2
u2t = 1

T1+η

T∑

t=2

z2t−1u
2
t − 2z̄

T1+η

T∑

t=2

zt−1u
2
t + z̄2

T1+η

T∑

t=2

u2t

= 1

T1+η

T∑

t=2

z2t−1u
2
t +op (1),

since
∑T

t=2 zt−1u
2
t=
∑T

t=2 zt−1

(
u2t −σ 2u,t

)
+
∑T

t=2 σ
2
u,tzt−1=Op

(
max

{
T
1/2+η/2;T1/2+η

})
.

At the same time, it is easily shown using the exact same arguments as in the proof of

Lemma A.4 item 2 of Demetrescu and Rodrigues (2016) that

1

T1+η

T∑

t=2

z2t−1u
2
t

p→ ψ2

2a

∫ 1

0
σ 2u (s)σ

2
ν (s)ds> 0, (B.1)

so it follows that
∑T

t=2

(
zt−1 − z̄

)
ut√∑T

t=2

(
zt−1 − z̄

)2
û2t

=
∑T

t=2

(
zt−1 − z̄

)
ut√∑T

t=2

(
zt−1 − z̄

)2
u2t

+Op

(
T−1/2

)
. (B.2)

Note now that zt−1 = ψ z̃t−1 +
∑t−3

j=0 ̺
j1qt−1−j = ψ z̃t−1 + rt−1, where the sum

∑t−3
j=0 ̺

j1qt−1−j may be re-arranged to give

rt−1 = qt−1 −̺t−3q1 + (̺−1)

t−4∑

j=0

̺j−1qt−1−j;

since qt is uniformly L4-bounded, it is easily seen that rt is itself uniformly L4-bounded.

We now show that

1

T1+η

T∑

t=2

(
zt−1 − z̄

)2
u2t = ψ2

T1+η

T∑

t=2

(
z̃t−1 − ¯̃z

)
u2t +Op

(
T−η/2

)
, (B.3)

and

1

T1/2+η/2

T∑

t=2

(
zt−1 − z̄

)
ut =

1

T1/2+η/2

T∑

t=2

zt−1 (ut− ū)

7Showing that T
(
β̂−β

)
⇒
(
ψ
∫ 1
0 J

2
c,H(s)ds

)−1 ∫ 1
0 Jc,H(s)dUH(s) is a standard exercise and we omit the details.

https://doi.org/10.1017/S0266466620000298 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466620000298


FINITE-SAMPLE SIZE CONTROL OF IVX-BASED TESTS 791

= ψ

T1/2+η/2

T∑

t=2

z̃t−1 (ut− ū)+Op

(
T−η/2

)
. (B.4)

For (B.3), the difference between the terms on the l.h.s. and r.h.s. is given by

2ψ

T1+η

T∑

t=2

z̃t−1rt−1u
2
t + 1

T1+η

T∑

t=2

r2t−1u
2
t = A1T +A2T .

Then,

E(|A1T |)≤ C

T1+η

T∑

t=2

√
E
(∣∣∣z̃2t−1

∣∣∣
)
E
(∣∣∣r2t−1

∣∣∣
)
E
(∣∣∣u2t

∣∣∣
)

= O
(
T−η/2

)

and, using Lr-boundedness again (and again), A2T = Op
(
T−η) .

For (B.4), the vanishing term is given by

1

T1/2+η/2

T∑

t=2

rt−1 (ut− ū)= 1

T1/2+η/2

T∑

t=2

rt−1ut− ū
1

T1/2+η/2

T∑

t=2

rt−1 = Op

(
T−η/2

)
,

since the elements of the first sum have the md property and are uniformly L4-bounded,

while for the second summand we have

∥∥∥
∑T

t=2 rt−1

∥∥∥
4

= O(T) but ū = Op

(
T−1/2

)
as

required.

Proof of Proposition 1

Begin by applying Lemma A.2; since T−η/2 = o(T
η/2−1/2), we may focus on

1

T1/2+η/2
∑T

t=2 z̃t−1 (ut− ū)
√

1
T1+η

∑T
t=2

(
z̃t−1 − ¯̃z

)2
u2t

=
1

T1/2+η/2
∑T

t=2 z̃t−1ut
√

1
T1+η

∑T
t=2

(
z̃t−1 − ¯̃z

)2
u2t

− ū

1

T1/2+η/2
∑T

t=2 z̃t−1
√

1
T1+η

∑T
t=2

(
z̃t−1 − ¯̃z

)2
u2t

.

For the second term, we have (using the arguments in the proof of Lemma A.1 of

Demetrescu et al., 2020) that

1

T1/2+η

T∑

t=2

z̃t−1 = 1

T1/2a
x̃T−1 +op(1)⇒ 1

a
Jc,H (1),

such that

T
1/2−η/2 ū

T1/2+η/2

T∑

t=2

z̃t−1 ⇒ 1

a
UH (1)Jc,H (1)
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and the limit ofCT follows since 1
T1+η

∑T
t=2

(
z̃t−1 − ¯̃z

)2
u2t = 1

2a

∫ 1
0 σ

2
u (s)σ

2
ν (s)ds+op (1);

cf. equation (B.1).

For the first term, use a first-order Taylor series expansion with rest term in

differential form for the function a√
x

about x0 = 1
2a

∫ 1
0 σ

2
u (s)σ

2
ν (s)ds, where x =

1
T1+η

∑T
t=2

(
z̃t−1 − ¯̃z

)2
u2t and a= 1

T1/2+η/2
∑T

t=2 z̃t−1ut, such that

1

T1/2+η/2
∑T

t=2 z̃t−1ut
√

1
T1+η

∑T
t=2

(
z̃t−1 − ¯̃z

)2
u2t

= ZT +BT +RT,

where

ZT =
1

T1/2+η/2
∑T

t=2 z̃t−1ut
√

1
2a

∫ 1
0 σ

2
u (s)σ

2
ν (s)ds

, (B.5)

BT =− 1

2

1√(
1
2a

∫ 1
0 σ

2
u (s)σ

2
ν (s)ds

)3


 1

T1/2+η/2

T∑

t=2

z̃t−1ut




×


 1

T1+η

T∑

t=2

z̃2t−1u
2
t − 1

2a

∫ 1

0
σ 2u (s)σ

2
ν (s)ds


 (B.6)

and, with ξT between 1
2a

∫ 1
0 σ

2
u (s)σ

2
ν (s)ds and

1
T1+η

∑T
t=2

(
z̃t−1 − ¯̃z

)2
u2t ,

RT = 3

4

1√
ξ5T


 1

T1/2+η/2

T∑

t=2

z̃t−1ut




 1

T1+η

T∑

t=2

(
z̃t−1 − ¯̃z

)2
u2t − 1

2a

∫ 1

0
σ 2u (s)σ

2
ν (s)ds



2

− 1

2

1√(
1
2a

∫ 1
0 σ

2
u (s)σ

2
ν (s)ds

)3


 1

T1/2+η/2

T∑

t=2

z̃t−1ut




 −2

T1+η

T∑

t=2

z̃t−1
¯̃zu2t + 1

T1+η

T∑

t=2

¯̃z2u2t


.

Given that ξT = Op (1), the first term on the r.h.s. is seen to be op(BT ), and we

have from Lemma A.3 that BT is O
(
T
η/2−1/2

)
. Then,

¯̃z2
T1+η

∑T
t=2 u

2
t = Op

(
Tη−1

)
=

1
T1+η

∑T
t=2 z̃t−1

¯̃zu2t , such that the second term on the r.h.s. is also op

(
T
η/2−1/2

)
, and RT is

therefore dominated by BT and ZT .

Then, ZT has the required limiting standard normal (see Lemmata A.3 item (ii) and A.4

item 2 in Demetrescu and Rodrigues, 2016), and has zero mean for all T; the result follows

with Lemma A.3.

Proof of Proposition 3

Write under the null

tWvx =
1

T1/2+η/2
∑T

t=2 zt−1 (ut− ū)
√

1
T1+η

∑T
t=2 z

2
t−1û

2
t

+ 1

2

1

T1/2+η/2
∑T

t=2 zt−1 (ut− ū)
√
ζT

(
T−η z̄2ω̂2u|v

)
,
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where ζT = 1
T1+η

(∑T
t=2 z

2
t−1û

2
t −γTTz̄2ω̂2u|v

)
for γT ∈ [0,1] is obviously Op(1).

The second summand on the r.h.s. is seen to vanish at a sufficient rate: recall that

z̄ = Op

(
Tη−1/2

)
, such that, not surprisingly, 1

T1/2+η/2
∑T

t=2 zt−1 (ut− ū) = Op(1); also,

T−η z̄2ω̂2u|v = Op

(
Tη−1

)
.

For the first summand, we obtain after some straightforward algebra along the lines of

the proof of Lemma A.2 that

1

T1/2+η/2
∑T

t=2 zt−1 (ut− ū)
√

1
T1+η

∑T
t=2 z

2
t−1û

2
t

=
∑T

t=2 z̃t−1(ut− ū)√∑T
t=2 z̃

2
t−1u

2
t

+Op(T
−η/2)

= ZT +BT +CT +RWT +op(T
η/2−1/2),

where, with ξWT = Op(1) between
1
2a

∫ 1
0 σ

2
u (s)σ

2
ν (s)ds and

1
T1+η

∑T
t=2

(
z̃t−1 − ¯̃z

)2
u2t , it

follows that

RWT = 3

4

(
ξWT

)−5/2


 1

T1/2+η/2

T∑

t=2

z̃t−1(ut− ū)




 1

T1+η

T∑

t=2

z̃2t−1u
2
t − 1

2a

∫ 1

0
σ 2u (s)σ

2
ν (s)ds



2

.

Like RT from the proof of Proposition 1, RWT is easily shown to be op(T
η/2−1/2) and the

result follows.
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