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This study presents an approach to investigate the role of eddy viscosity in linearized
mean-field analysis of broadband turbulent flows. The procedure is based on spectral
proper orthogonal decomposition (SPOD), resolvent analysis and the energy budget of
coherent structures and is demonstrated using the example of a turbulent jet. The focus is
on the coherent component of the Reynolds stresses, the nonlinear interaction term of
the fluctuating velocity component in frequency space, which appears as an unknown
in the derivation of the linearized Navier–Stokes equations and which is the quantity
modelled by the Boussinesq approach. For the considered jet the coherent Reynolds
stresses are found to have a mostly dissipative effect on the energy budget of the dominant
coherent structures. Comparison of the energy budgets of SPOD and resolvent modes
demonstrates that dissipation caused by nonlinear energy transfer must be explicitly
considered within the linear operator to achieve satisfactory results with resolvent analysis.
Non-modelled dissipation distorts the energy balance of the resolvent modes and is not, as
often assumed, compensated for by the resolvent forcing vector. A comprehensive analysis,
considering different predictive and data-driven eddy viscosities, demonstrates that the
Boussinesq model is highly suitable for modelling the dissipation caused by nonlinear
energy transfer for the considered flow. Suitable eddy viscosities are analysed with regard
to their frequency, azimuthal wavenumber and spatial dependence. In conclusion, the
energetic considerations reveal that the role of eddy viscosity is to ensure that the energy
the structures receive from the mean-field is dissipated.
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1. Introduction

Resolvent analysis allows investigation of dominant coherent structures in time-invariant
flows (Trefethen et al. 1993; Schmid & Henningson 2001; McKeon & Sharma 2010).
The governing equations derived from linearizing the Navier–Stokes equations around
the temporal mean, however, include an unknown term, the coherent component of the
Reynolds-stress tensor. This unknown term generally occurs when considering linearized
equations of turbulent flows and can be interpreted as the effect of fine-scale turbulence on
the large-scale coherent structures resolved by the linear model (Reynolds & Hussain 1972;
del Álamo & Jiménez 2006; Wu & Zhuang 2016). By analogy with the Reynolds-averaged
Navier–Stokes (RANS) equations, the coherent component of Reynolds stresses is
typically modelled using a Boussinesq approach, which relates the term to the coherent
strain-rate tensor via an effective eddy viscosity (Reynolds & Hussain 1972; del Álamo &
Jiménez 2006). This leaves the eddy viscosity as the only modelling parameter. The use
of eddy viscosity for modelling the coherent part of the Reynolds-stress tensor in linear
analysis has evolved over the last decades. In the following we will briefly summarize a
few selected studies.

McKeon & Sharma (2010) include all nonlinear terms in the forcing vector in their pipe
flow resolvent analysis, which implies that the coherent component of Reynolds stresses
is not explicitly modelled. This approach is also followed for the resolvent analysis of
the turbulent flow around a NACA 0012 airfoil (Thomareis & Papadakis 2018). Wu &
Zhuang (2016) investigate the nonlinear interaction of large-scale coherent structures in
a free shear layer and model the influence of the coherent component of the Reynolds
stresses using a Boussinesq model with eddy viscosity. In their nonlinear model, which
treats the interaction of coherent structures as organized motion, the influence of eddy
viscosity (fine-scale turbulence) is found to be small. In linear stability analysis of
turbulent mean-fields, the coherent component of the Reynolds-stress tensor is also often
neglected (Iungo et al. 2013; Mettot, Sipp & Bézard 2014). However, the inclusion of
eddy viscosity in linear analysis has proven advantageous in recent years, as shown, for
example, in Crouch, Garbaruk & Magidov (2007), Moarref & Jovanović (2012), Viola
et al. (2014), Tammisola & Juniper (2016), Rukes, Paschereit Oliver & Oberleithner (2016),
Oberleithner, Paschereit & Wygnanski (2014) and Mantič-Lugo & Gallaire (2016).

This finding has recently also been adopted for resolvent analysis. Eddy viscosity
augmented resolvent analysis is based on the premise of considering the influence of
turbulence, which is represented by the coherent component of the Reynolds-stress tensor,
via the dissipative Boussinesq model so that the resolvent forcing vector is reduced
to the energetic non-dissipative component. For example, Schmidt et al. (2018) apply
resolvent analysis with an effective Reynolds number corresponding to a spatially constant
eddy viscosity to investigate coherent structures in jets in the subsonic, transonic and
supersonic regimes. Maia et al. (2024) investigate the effect of flight on coherent structures
in a turbulent jet based on eddy viscosity-augmented resolvent analysis. Morra et al.
(2019) and Symon, Illingworth & Marusic (2021) apply the Cess (1958) eddy viscosity
model to augment the resolvent operator and investigate coherent structures in turbulent
channel flows. Coherent structures in the far-field of a round turbulent jet are analysed
based on local stability and resolvent analyses with eddy viscosity in Kuhn, Soria &
Oberleithner (2021). These studies show that resolvent analysis enables modelling of
coherent structures with a high level of agreement with reference data when the dissipative
effects of turbulence are explicitly accounted for by the eddy viscosity.

Although the use of eddy viscosity in linear stability analysis and resolvent analysis is
now widespread, the modelling approaches used differ considerably. Schmidt et al. (2018)
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interpret the effective Reynolds number (spatially constant eddy viscosity) as a free
model parameter and select a value that leads to good results compared with an available
database. Another common approach is to calibrate an eddy viscosity based on the
turbulence statistics. This involves inversion of the Boussinesq model based on known
Reynolds stresses and the mean strain-rate tensor (Rukes et al. 2016; Tammisola &
Juniper 2016; Kuhn et al. 2021). By assimilating the RANS equations to large-eddy
simulation (LES) mean-fields, an eddy viscosity can be determined without knowledge of
the Reynolds stresses (von Saldern et al. 2022, 2023). Symon et al. (2023) and Viola et al.
(2014) calibrate constants in eddy viscosity models based on literature and measured data,
respectively. Mons, Vervynck & Marquet (2024) assimilate a RANS model including a
Spalart–Allmaras turbulence model to particle image velocimetry (PIV) measurements.
These approaches, which are based on a data-driven calibration of an eddy viscosity
(turbulence) model, additionally allow fluctuations in eddy viscosity to be taken into
account in the linear model (Crouch et al. 2007).

Towne, Schmidt & Colonius (2018) and Lesshafft et al. (2019) established a direct
link between spectral proper orthogonal decomposition (SPOD) and resolvent analysis.
In case of a spatially uncorrelated forcing, resolvent and SPOD modes are identical.
Inspired by this theoretical insight, Pickering et al. (2021) adjust the eddy viscosity through
data-driven optimization, using the alignment between resolvent and SPOD modes of a jet
flow as the cost function to be optimized. For the axisymmetric mode it is shown that with
this approach a very high degree of alignment with the SPOD modes can be achieved over
the considered frequency range.

The objective of the present work is not to achieve the highest possible alignment in
the largest possible parameter space, but rather to understand the role of eddy viscosity
in resolvent analysis of broadband turbulent flows. Without this understanding, it is
not possible to find suitable predictive eddy viscosity models that do not require prior
knowledge of the coherent structures to be modelled. To this end, we take a data-driven
approach and consider the SPOD modes of a fully turbulent jet at Re = 50 000 and a Mach
number of 0.4 as ground truth for the resolvent model. Moreover, we identify the coherent
component of the Reynolds-stress tensor for modes with high-gain separation based on
an extended SPOD (eSPOD) approach. The further procedure is largely inspired by the
work of Cho, Hwang & Choi (2018), Symon et al. (2023) and Kuhn et al. (2022), who
analyse the energy budget of individual coherent structures, separated by frequency and
wavenumber. We follow this approach and use not only the global measure of alignment
for comparison between SPOD and resolvent modes, but rather take a deep look into the
physics of the structures by considering their local energy budget. This allows us to reveal
the role of eddy viscosity in resolvent analysis of turbulent jets from an energetic point of
view. In the resolvent analysis we consider different viscosities, pure molecular viscosity,
a mean-field-consistent eddy viscosity which is assimilated from the mean-field and the
RANS equations, and two data-driven eddy viscosities which are determined directly from
the identified coherent component of the Reynolds-stress tensor. In this study, we focus on
a turbulent jet flow, but the presented methods can be directly applied to other broadband
flows to investigate the role of eddy viscosity in their linear analysis.

The remainder of the study is structured as follows. First, we introduce the LES database
of the jet flow along with the SPOD and eSPOD methods in § 2. The methods are used
to extract coherent structures including the coherent component of Reynolds stresses
from the data. This is followed by a brief introduction to resolvent analysis in § 3, the
methodology to model the coherent structures in the broadband flow based on the temporal
mean state. We then present the energy equation for individual coherent structures in § 4.
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Figure 1. The time- and azimuthal-averaged jet flow velocity mean-field in the domain of interest. Mean
velocity streamlines are shown as black lines with arrows, the contour in the background shows the axial
velocity component ūx/U.

In § 5, we present different eddy viscosity modelling approaches. In § 6, the different eddy
viscosities are analysed in isolation with respect to their ability to represent the energy
term associated with the coherent component of the Reynolds stresses. This is followed by
§ 7, in which we compare the energy budget of resolvent and SPOD modes and discuss the
role of eddy viscosity. Finally, the results are summarized and key conclusions are drawn.

2. Data-driven analysis

We start with a short section on the LES database, followed by a section on the
data-analysis methods SPOD and eSPOD that are applied to extract the coherent structures
and correlated, coherent Reynolds stresses from the broadband data.

2.1. Large-eddy simulation database
The study is based on an LES data set of a jet flow at Reynolds number UD/ν = 50 000
and Mach number of U/a = 0.4, where U and a denote the centreline velocity and speed
of sound at the nozzle exit, D the nozzle diameter and ν the viscosity. The computational
domain is based on an experimental set-up and includes a converging nozzle and the jet
(Maia et al. 2021; Nekkanti et al. 2022). The boundary layer inside the nozzle is tripped
2.5 diameters upstream of the outlet. For the following analyses, the data is considered in
a cylindrical region extending from the nozzle outlet up to 30 diameters downstream and
6 diameters in the radial direction. A total of 10 000 snapshots with a non-dimensional time
step of �t = 8.336 × 10−2 are considered. The simulation was performed using the solver
CharLES. For numerical details we refer the interested reader to Brès et al. (2017, 2018).
In the following, all quantities are non-dimensionalized with U and D. Consequently,
frequencies f are given as Strouhal numbers St = fD/U. Figure 1 shows the time- and
azimuthal-averaged mean velocity field in the domain of interest. Streamlines and the
contour of the mean axial velocity component are shown.

The Reynolds decomposition is applied to separate the velocity fields u = [ux, ur, uθ ]
into a temporal mean (denoted with bar) and a fluctuating (denoted with prime) component
such that u = ū + u′. The fluctuating Reynolds-stress tensor is given as R′ = u′ ⊗ u′ −
u′ ⊗ u′, with the outer product denoted with the ⊗-symbol.

2.2. Spectral proper orthogonal decomposition
In order to extract coherent structures from the broadband turbulent flow we apply
SPOD (Picard & Delville 2000; Schmidt et al. 2018); SPOD is similar to space-only
POD (Lumley 1970; Berkooz, Holmes & Lumley 1993), but extends the methodology
to frequency space. For the analysis of the jet flow snapshots the fluctuating velocity
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component as well as the fluctuating Reynolds stresses are first decomposed into a Fourier
series in the periodic azimuthal direction

û′
m(x, r, t) = F(u′(x, r, θ, t)), (2.1a)

R̂′
m(x, r, t) = F(R′(x, r, θ, t)), (2.1b)

where F denotes the discrete Fourier transform operator and m the real valued azimuthal
wavenumber. Due to the periodicity, m is an integer. This yields two-dimensional Fourier
modes for each time step, û′

m and R̂′
m, respectively. Large-scale dominant coherent

structures can only be observed for broadband jet flows at low wave numbers. Since
modelling large-scale coherent structures is the objective of this study, we limit our
analysis to the m = 0 (axis symmetric) and m = 1 mode.

The 10 000 snapshots of the velocity Fourier modes û′
m are divided into Nb blocks of

256 snapshots each, where the blocks overlap with 50 %. Each block is transformed into
Fourier space. For a given azimuthal wavenumber and temporal frequency the matrix

Ûm,ω = [û(1)
m,ω, û(2)

m,ω, û(3)
m,ω, . . . , û(Nb)

m,ω ] (2.2)

is constructed where û(n)
m,ω denotes the Fourier velocity mode at azimuthal order m,

temporal frequency ω and block n. From Ûm,ω the sample cross-spectral density matrix
can be computed, whose eigenvectors are the SPOD modes. However, we consider here
the entire domain extending 6 diameters in the radial direction and 30 diameters in the
axial direction, discretized with 138 and 656 points, respectively. The total number of
degrees of freedom is therefore much larger than the number of blocks Nb, which makes
the computation of the SPOD modes via the method of snapshots much less expensive.
This involves first solving the eigenvalue problem

ÛH
m,ωW Ûm,ωΨ = ΨΛ, (2.3)

where the superscript H denotes the complex conjugate transpose and W is a weight
matrix that takes the volume of each cell into account. The jth SPOD velocity mode υ̂( j)

m,ω

follows from expanding the Fourier modes with the jth eigenvector

υ̂( j)
m,ω = Ûm,ωψ

( j), (2.4)

where ψ ( j) denotes the jth column (eigenvector) of Ψ . In total, the decomposition provides
Nb SPOD modes for each azimuthal order and frequency, which can be ranked according
to modal energy content which is represented by the magnitude of the corresponding
eigenvalue λ( j). Applied to velocity data, the eigenvalue is a measure of the kinetic energy
of the mode. Low-rank dynamics, also known as high-gain separation, are present when
one mode has a particularly high energy in a given frequency range compared with the
others. The dynamics of the flow is then dominated by one coherent structure in the
corresponding frequency range. For more information we refer to the guide to SPOD by
Schmidt & Colonius (2020).

Figure 2 shows the SPOD spectrum of the jet flow velocity data for m = 0 (figure 2a)
and m = 1 (figure 2b). A high gain separation can be observed for m = 0 at intermediate
frequencies and for m = 1 at low frequencies. For a more detailed investigation on the
energy content of the leading SPOD mode, we show the energy share of each mode in
figure 3. It can be observed, that around St = 0.5 the flow is dominated by a m = 0 mode
and between St = 0.2–0.4 by a m = 1 mode, both containing approximately 20 % of the
total kinetic energy at the corresponding wavenumber.
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Figure 2. The SPOD spectrum of the broadband jet flow for m = 0 (a) and m = 1 (b). The eigenvalue of the
first (leading) mode is shown in black, eigenvalues of subleading modes are shown in graduating shades of
grey.
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Figure 3. Energy share of the SPOD modes for m = 0 (a) and m = 1 (b). The energy share of the leading
mode is shown in black, for subleading modes in graduating shades of grey.

2.3. Identification of the coherent component of Reynolds stresses based on eSPOD
In regions of high-gain separation, we hypothesize that the coherent structure has sufficient
amplitude to extract information on the higher-order statistics, and in particular the
coherent Reynolds stresses. Specifically, we are interested in the part of the Reynolds-stress
fluctuation that interacts with the dominant coherent structure. We refer to this as the
coherent component of the Reynolds-stress tensor. For a broadband flow, it is difficult to
extract this quantity from the data as it is of comparatively low amplitude compared with
the coherent structure. We thus identify the coherent Reynolds-stress component by using
the same eigenvectors as in (2.4) to also expand Fourier-blocks of the Reynolds-stress
fluctuations. This method is also known as eSPOD (Boree 2003).

For this purpose, the 10 000 snapshots of Reynolds-stress Fourier modes R̂′
m(x, r, t)

analogue to the velocity modes are first divided into Nb blocks, transformed into frequency
space and stacked into a matrix for each frequency and azimuthal order

Ôm,ω = [R̂(1)
m,ω, R̂(2)

m,ω, R̂(3)
m,ω, . . . , R̂(Nb)

m,ω ], (2.5)

where R̂(n)
m,ω denotes the blockwise Fourier mode of the fluctuating Reynolds-stress

component. In the second step, the Fourier modes are expanded with the same eigenvectors
ψ ( j) as in (2.4),

Γ̂ ( j)
m,ω = Ôm,ωψ

( j). (2.6)

Since the eigenvectors were calculated on the basis of velocity data, the approach
guarantees extraction of only the part of the Reynolds-stress tensor that is correlated with
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Figure 4. The SPOD and eSPOD mode for m = 0 and St = 0.56. (a) Real part of the SPOD axial velocity
mode (2.4). (b) Real part of the eSPOD axial-radial component of the coherent Reynolds-stress tensor (2.6).
Both modes are normalized with their respective maximum absolute value.

the corresponding coherent structure (mode j, m, ω). The following analysis will focus
on frequencies between St = 0.1 and 1. However, following our reasoning above, caution
should be taken when considering results that are based on eSPOD outside of the low-rank
region, see figure 3.

In the context of this study, we want to investigate the dominant coherent structures and
are therefore only interested in the most energetic mode (j = 1). For the sake of clarity,
we drop the superscripts and subscripts and only refer to the velocity SPOD mode as ûS

and the corresponding coherent Reynolds-stress component as R̂S in the following. The
frequency and wavenumber are always given in context.

As an example, figure 4 shows the real part of the axial velocity SPOD mode (figure 4a)
and the corresponding real part of the eSPOD axial-radial component of the coherent
Reynolds-stress tensor (figure 4b) for m = 0 and St = 0.56. The axial velocity mode
corresponds to the well known Kelvin–Helmholtz mode, which dominates the dynamics
of the jet in this frequency range (Pickering et al. 2020). The axial-radial component of
the coherent Reynolds-stress tensor computed based on eSPOD shows a higher noise level,
however, a clear mode shape can be observed, especially in the region where the velocity
mode has a high amplitude.

3. Resolvent analysis

We here introduce resolvent analysis, which will be used as a model for the dominant
coherent structures. For this purpose, we consider the transport equation of the fluctuating
velocity component that is derived by inserting the Reynolds decomposition into the
Navier–Stokes equations and subtracting the temporal mean

∂u′

∂t
= −(ū · ∇)u′ − (u′ · ∇)ū − 1

ρ
∇p′ + ν∇2u′ − ∇ · (u′ ⊗ u′ − u′ ⊗ u′)︸ ︷︷ ︸

R′

. (3.1)

Since the Mach number of 0.4 is relatively low, we assume incompressibility. The last term
in (3.1) contains the fluctuating Reynolds-stress tensor R′. In the next step, a normal mode
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ansatz is introduced for all fluctuating quantities,

z′(x, r, θ, t) = ẑ(x, r) exp (imθ − iωt), (3.2)

where i denotes the imaginary unit and ẑ is the complex amplitude in frequency space.
Substituting this ansatz in (3.1) yields

− iωû + (ū · ∇)û + (û · ∇)ū + ∇q̂ − ν∇2û + ∇ · D̂ = 0, (3.3)

where the complex amplitude of the fluctuating Reynolds-stress tensor, that is referred to
as the coherent component of Reynolds stresses, is divided into its deviatoric and spherical
parts, R̂ = D̂ + 2

3 k̂I . The latter contains the coherent kinetic energy k̂ = 0.5(û′
xu′

x +
û′

ru′
r + û′

θu′
θ ) and represents a normal stress. Thus, the spherical part can be absorbed

by the pressure forming the modified pressure q̂ = p̂/ρ + 2/3k̂. The deviatoric part of
the coherent component of Reynolds stresses is typically modelled using the Boussinesq
model

D̂ ≈ −Θ[∇ + ∇T]û = −ΘŜ. (3.4)

The model relates the deviatoric part of the coherent component of Reynolds-stress tensor
via an effective viscosity Θ to the fluctuating strain-rate tensor Ŝ. We have dedicated a
separate section to the various modelling approaches for Θ below. However, it should be
mentioned here that these modelling choices are motivated by the idea that the energetic
dissipation of a coherent structure in terms of its energy transfer to other scales can be
described by an eddy viscosity. An energetic consideration of this modelling approach
follows in § 4. Substituting the Boussinesq ansatz into (3.3) yields

− iωû + (ū · ∇)û + (û · ∇)ū + ∇q̂ − ∇ ·
[
(ν + Θ)Ŝ

]
= f̂ , (3.5)

where terms that result from the remaining part of the coherent Reynolds-stress tensor,
which is not considered in the Boussinesq model, are represented by the forcing
vector f̂ . Equation (3.5) is supplemented by the continuity condition ∇·û = 0. Using a
discretization scheme the equations can be rearranged in the form

[
û, q̂

]T = Rf̂ , (3.6)

where R denotes the resolvent operator for a given azimuthal wavenumber and frequency.
Equation (3.6) can be interpreted in different ways. For a given forcing in the momentum

balance f̂ , the corresponding linear response of the flow can be determined in the form of
velocity and pressure response modes. However, we are interested here in the structures
that are naturally most excited in the flow in order to establish comparability with the
data-driven dominant SPOD modes. For this purpose, a singular-value decomposition of
the resolvent operator is performed

R = VΣF H, (3.7)

that leads to a set of forcing F and response modes V , the latter are referred to as the
resolvent modes in the following. Here Σ is a diagonal matrix that contains the singular
values. The resolvent mode of the largest singular value σ (1) corresponds to the coherent
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structure, i.e. the structure most strongly amplified by linear mechanisms. This is best
illustrated by considering (3.7) for one resolvent mode only

σ ( j) [ŵ( j), ĝ( j)]T︸ ︷︷ ︸
r̂( j)

= Rf̂ ( j), (3.8)

where f̂ ( j) and r̂( j) are the resolvent forcing and response modes (columns of F and V )
that correspond to the singular value σ ( j). With ŵ( j) and ĝ( j) we distinguish between the
velocity and pressure response mode. Equation (3.8) illustrates that large singular values
correspond to strongly amplified structures. A comparison of (3.8) with (3.6) shows that
the set of forcing f̂ ( j) and scaled response modes σ ( j)r̂( j) are also a solution to the transport
equation of coherent structures, (3.5). In the context of this work we are only interested
in the leading resolvent-forcing mode pair. For the sake of clarity we refer to the scaled
leading resolvent velocity response mode as ûR = σ (1)ŵ(1) and to the corresponding
forcing mode as f̂ R.

Using the theoretical connection with the leading SPOD mode (Towne et al. 2018;
Lesshafft et al. 2019), which identifies the dominant coherent structure in a natural flow
in a data-driven way, the modes modelled with the resolvent analysis are compared with
SPOD modes in § 7. Resolvent modes are identical to SPOD modes if the true forcings
that result in the SPOD modes as resolvent response modes (called expansion coefficients
βj in Towne et al. (2018)) are uncorrelated. The idea behind the use of eddy viscosity is
to include nonlinear energy transfer into the resolvent operator, leaving less interaction to
be modelled by the resolvent optimal forcing vectors. This is based on the expectation that
in this way the true forcings (resolvent expansion coefficients) are less strongly correlated
and the resolvent response modes therefore show a higher degree of agreement with the
SPOD modes. To calculate the resolvent modes, we use our in-house software FELiCS
(Kaiser et al. 2023), a finite-element solver based on FEniCSx (Baratta et al. 2023).

4. Energy budget of coherent structures

The Boussinesq eddy viscosity model in the RANS equations was formulated to model the
energy dissipation of the mean flow due to interaction with turbulence. Resolvent analysis
models coherent structures at discrete frequencies and wavenumbers based on the temporal
mean state. To better understand the role of eddy viscosity for modelling the coherent
Reynolds-stress tensor in this framework, we consider the energy balance of individual
coherent structures in the following. In order to investigate the energy transfer of individual
structures, consideration of the energy balance is a common method, which has recently
been considered especially for channel flows (Cho et al. 2018; Muralidhar et al. 2019;
Symon et al. 2021) but also for the far-field region of a jet flow (Kuhn et al. 2022). A more
detailed derivation of the equation can be found in the corresponding references, here we
only describe an abbreviated derivation. Equation (3.3) is first multiplied by û∗, and the
resulting equation then integrated over a control volume∫

−iω|û|2 dΩ = −
∫

û∗ · (ū · ∇)û dΩ −
∫

û∗ · (û · ∇)ū dΩ −
∫

û∗ · ∇q̂ dΩ

+
∫

û∗ · ν∇2û dΩ +
∫

∇û∗ · D̂ dΩ, (4.1)

where ∗ denotes the complex conjugate and |û|2 = û∗·û is the kinetic energy of a coherent
structure. Here Ω denotes the two-dimensional axial-radial spatial domain. In the last
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term we exploited the divergence theorem. The boundary integral vanishes assuming all
fluctuations to be zero at the domain boundaries. If the real part of (4.1) is considered, the
term on the left-hand side vanishes which means that the integrated energy of the coherent
structure neither increases nor decreases in time. This yields a balance of the various
energy terms (Muralidhar et al. 2019; Symon et al. 2023) for each coherent structure
separated by frequency ω and azimuthal wavenumber m,∫

Ĉ + P̂ + Q̂ + D̂ν + N̂ dΩ = 0 (4.2)

with

Ĉ = −Re
(
û∗ · (ū · ∇)û

)
, (4.3a)

P̂ = −Re
(
û∗ · (û · ∇)ū

)
, (4.3b)

Q̂ = −Re
(
û∗ · ∇q̂

)
, (4.3c)

D̂ν = +Re
(

û∗ · ν∇2û
)

, (4.3d)

N̂ = +Re
(
∇û∗ · D̂

)
. (4.3e)

The remaining terms in the energy balance of the individual coherent structures, (4.2) and
(4.3), are the following: a convection term Ĉ, that represents the energy transfer due to
mean-field convection. The quantity P̂ represents an energetic interaction term with the
temporal mean state. As coherent structures mostly receive energy from the mean-field,
this term is referred to the production term in the following. The term Q̂ is the pressure
term, D̂ν the molecular dissipation term and N̂ is the nonlinear energy transfer term
that contains the coherent component of Reynolds stresses. The convection and pressure
terms are conservative and thus vanish when integrating over a large control volume.
Since this study deals with large-scale coherent structures, molecular energy dissipation
is considered small compared with the nonlinear energy transfer/dissipation through the
coherent component of the Reynolds stresses. Applying these assumptions yields∫

P̂ dΩ︸ ︷︷ ︸
P̂Ω

+
∫

N̂ dΩ︸ ︷︷ ︸
N̂Ω

≈ 0, (4.4)

where P̂Ω and N̂Ω denote the spatially integrated production and nonlinear energy transfer
term, respectively. Expressed in words, (4.4) states that under the assumptions used, the
energy production term must be balanced by the energy transfer term of the coherent
component of the Reynolds-stress tensor. Applying the Boussinesq model, the latter reads

N̂ = N̂Θ + N̂f = −Re
(
∇û∗ · ΘŜ

)
+ N̂f , (4.5)

where N̂Θ denotes the modelled share and N̂f includes the share of the nonlinear energy
transfer that is not captured with the Boussinesq model, i.e. the residual between the true
and modelled nonlinear energy transfer term. In resolvent analysis the residual term is
represented by the energy term of the optimal forcing. However, since the resolvent forcing
is not an input parameter but a result of the resolvent analysis, it is not given that this is a
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good approximation. It certainly also depends on the nature of the modelled term, i.e. how
the Boussinesq eddy viscosity is chosen.

As û is divergence-free the N̂Θ term simplifies to −Θ∇û∗·∇û = −Θ||∇û||F when
assuming a spatially constant eddy viscosity field, with ||·||F denoting the Frobenius
norm. This is best understood by inserting the Boussinesq model before applying the
divergence theorem. As a direct consequence, N̂Θ , represents an energy sink if Θ is
positive. If Θ is not a constant in space, energy can also be produced locally via the
interaction with the coherent component of Reynolds stresses. However, as discussed in
detail elsewhere (Symon et al. 2021, 2023), the model remains predominantly dissipative
in nature. Considering (4.4), a dissipative ansatz to model the interaction with the coherent
component of the Reynolds-stress tensor is also intuitive. In this way, the energy that enters
the coherent structure through the mean-field (P̂) is transferred to other scales and thus
acts as a dissipation term in the energy balance of the considered coherent structure. It can
therefore be concluded that the Boussinesq model converts the nonlinear energy transfer
term into a dissipation term.

4.1. Applying the energy budget to SPOD and resolvent modes
In this study, we make use of the energy budget to gain a deeper insight into the coherent
structures. For this purpose, the individual energy terms are analysed in the following
sections for both SPOD and resolvent modes. Assuming that the leading SPOD mode
approximates the Fourier mode at the respective frequency, which is justified in regions of
high-gain separation, the energy terms can be determined as shown in (4.3). This means
that (4.3) is evaluated based on the leading SPOD mode ûS and the deviatoric component
of the coherent Reynolds-stress tensor D̂ is computed from the eSPOD mode R̂S.

When considering the leading resolvent modes, the energy budget is evaluated using the
same equations, with the exception of the energy transfer term N̂, which is modelled in
the resolvent analysis based on the Boussinesq model with eddy viscosity. Consequently,
the corresponding modelled term N̂Θ is considered, (4.5). As the resolvent modes are a
solution to (3.5), the energy terms can be evaluated based on the leading resolvent velocity
mode ûR. Strictly speaking, the energy budget (4.2) of the leading resolvent mode contains
an additional term related to the optimal forcing vector f̂ R, see (4.5). The term reads

N̂f = Re
(

û∗
R · f̂ R

)
. (4.6)

Since the leading resolvent mode can also be interpreted as the maximum response at
minimum forcing, it is intuitive to assume that the energy term associated with the forcing
term is small. This is to be expected in particular for the jet flow, which system operator
has a high degree of non-normality due to the strong shear and mean flow advection,
resulting in a high sensitivity to forcing (Chomaz 2005; Symon et al. 2018). On the other
hand, resolvent analysis without eddy viscosity is based on the premise that the coherent
component of the Reynolds stresses is contained in the forcing vector, see (4.5). As will
be shown in the remainder of this study, the resolvent forcing vector does not compensate
for non-modelled dissipation caused by the coherent component of the Reynolds stresses.
In fact, its contribution to the global energy budget equation (4.4) is negligible for the
considered dominant coherent structures.

Finally, we would like to point out that the data-driven SPOD/eSPOD modes only
approximate a solution of the energy budget. How good this approximation is depends
on how well the SPOD mode approximates the Fourier mode and how well the coherent
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Figure 5. Ratio of coherent Reynolds-stress energy term and mean-field production energy term for m = 0,
m = 1 and frequencies between St = 0.1 and 1. The marker transparency indicates the energy share of the
respective SPOD mode, see figure 3.

component of the Reynolds-stress tensor can be determined with the eSPOD method,
which is addressed in the next section. In § 7.2 it is validated a posteriori that the dominant
SPOD/eSPOD modes satisfy the energy equation. The resolvent forcing-response mode
pairs, on the other hand, result from the discretized, linearized equations and thus fulfil
the energy budget by definition, regardless of the use of eddy viscosity (Symon et al.
2021).

4.2. Validation of the coherent component of the Reynolds-stress tensor
We determine the coherent part of the Reynolds-stress tensor using an eSPOD, which
extracts the part of the R̂′

m tensor that correlates with the first velocity mode ûS, see (2.6)
in § 2.3. As mentioned in the discussion above, this assumes that the modes are dominant,
i.e. have sufficient energy such that the second-order statistics can be identified. In order
to assess how well the coherent part of the Reynolds-stress tensor can be identified in
this way, the global energy budget, (4.4), of the SPOD modes is considered. Figure 5
shows the ratio of spatially integrated coherent Reynolds-stress term (nonlinear energy
transfer term) and coherent production term |N̂Ω/P̂Ω | computed based on the SPOD
and eSPOD results for m = 0, m = 1 and frequencies between St = 0.1 and St = 1.
According to the global energy budget, (4.4), the value should be approximately 1. As
expected, the energy balance is well respected in regions of high-gain separation. Since
the production term is based on first- (SPOD) and zero-order (mean-field) statistics, it
is reasonable to assume that the deviation results from the N̂Ω term, or more precisely
from the identification of the coherent part of the Reynolds-stress tensor required to
determine this term. The fact that the energy balance is met by approximately 80 %
in high-gain separation regions (St ≈ 0.5 for m = 0 and St < 0.6 for m = 1) gives us
confidence in our approach. In regions without high-gain separation, especially at low
frequencies and m = 0, the deviation is much higher, indicating that based on eSPOD
only a part of the coherent component of the Reynolds-stress tensor has been identified.
At low frequencies and m = 0 the dynamics are governed by the strongly non-modal Orr
mechanism (Pickering et al. 2020). Corresponding coherent structures are of high-rank,
which is likely the reason why the coherent component of the Reynolds-stress tensor
cannot be identified well in this frequency range.

We conclude this section by discussing the implications of the energetic considerations
for resolvent analysis. The dissipative Boussinesq approach with eddy viscosity enables
the energy entering the modes via the mean-field to be dissipated. In resolvent analysis
without eddy viscosity, the energy entering the coherent structure from the mean-field
must be dissipated either via molecular dissipation or via the resolvent forcing energy term,
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which then represents the coherent Reynolds-stress term. The difference in considering
eddy viscosity is that dissipation is explicitly taken into account. Since both forcing and
response modes are part of the resolvent modelling, it can be assumed that better results
can be achieved if more information is included in the model and the dissipative part is
modelled explicitly. This will be validated a posteriori in § 7.

5. Eddy viscosity model

The aim of the resolvent analysis is to model the coherent structures observed with SPOD
based on the mean-field. To model the coherent part of the Reynolds-stress tensor in
the resolvent framework, we use the Boussinesq-like model, (3.4), which connects the
coherent Reynolds-stress tensor to the coherent strain-rate tensor via an effective viscosity.
In the following, we first present a predictive model and then two data-driven modelling
approaches for the eddy viscosity. We focus on a detailed presentation of the approaches,
including model assumptions. The validation of the various eddy viscosities then takes
place in §§ 6 and 7.

5.1. Predictive mean-field-consistent eddy viscosity
If a resolvent analysis is to be performed with high-fidelity data, such as PIV measurements
or LES data, the question arises as to how the eddy viscosity should be determined.
A common method is to calibrate the field using available Reynolds stresses and the
mean strain-rate tensor, or to assume a constant eddy viscosity and adjust the magnitude
until the resolvent mode is close to the validation data (usually SPOD modes) in
the frequency range of interest. Here, we propose an alternative approach that does
not require validation data and is therefore referred to as predictive. Furthermore,
the approach does not require Reynolds stresses, which are often not available or
only available with poor quality, as higher-order statistics require long time-series to
converge.

For the predictive approach, the effective viscosity Θ for modelling the coherent
component of the Reynolds stresses is set to the eddy viscosity consistent with
the mean-field, i.e. Θ = Θmean in (3.4). To find the corresponding field, we take
the time-averaged LES snapshots (ū and q̄) and assimilate the eddy viscosity under the
constraint that the mean-fields together with the eddy viscosity correspond to a solution
of the RANS equations. In other words, we formulate the optimization problem: find
Θmean such that Θmean, ū and q̄ together approximate a solution of the RANS equations.
There are various techniques for solving this optimization problem, such as adjoint-based
optimization (Foures et al. 2014; Symon et al. 2017; Mons et al. 2024). Here we use the
results from a previous study in which the formulated problem was solved for the same
data set with a physics-informed neural network (PINN) (von Saldern et al. 2023). As the
focus of the study is not on this model, we refer the interested reader to the referenced study
and the Appendix (A) in which the PINN method is briefly outlined. Further information
on mean-field assimilation in fluid mechanics with PINNs can be found in von Saldern
et al. (2022), Eivazi et al. (2022) and Patel et al. (2024).

Figure 6 shows the normalized assimilated eddy viscosity field. The red lines mark the
locations at which the normalized mean axial velocity ūx/U is 0.95 and 0.5. The eddy
viscosity field is typical for a jet flow, with low values in the potential core region and
increased values along the shear layer. For validation of the assimilated field, we consider
the Reynolds-stress term in the energy equation of the mean-field, which is to be modelled
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Figure 6. (a) Physics-informed neural network assimilated mean-field-consistent eddy viscosity field (Θmean).
Red dotted lines indicate the locations at which ūx/U is 0.95 and 0.5. (b) Radially integrated Reynolds-stress
term ((5.1a) and (5.1b)) in mean-field energy equation.

with the Boussinesq approach. For a turbulent jet, the term can be approximated as

N̄(x, r) = −u′
xu′

r
∂ ūx

∂r
(5.1a)

≈ Θmean

(
∂ ūx

∂r

)2

, (5.1b)

where in (5.1b) the Boussinesq model replaces the Reynolds-stress term. Figure 6(b)
shows the axial profile of the radially integrated term calculated from the LES data,
(equation (5.1a)) (solid) and based on the assimilated eddy viscosity, (equation (5.1b))
(dashed). Apart from small deviations, both curves show good agreement, which means
that the assimilated eddy viscosity can sufficiently approximate the energy transfer from
the mean-field to the turbulence. Downstream in the flow (x/D > 15) the eddy viscosity
slightly underestimates the transfer but still follows the general trend well. The deviation
shortly after the nozzle is due to a jump in the assimilated eddy viscosity. Shortly after
the nozzle outlet, the gradients of the velocity field are extremely large, which leads to
problems when assimilating the eddy viscosity using the PINN method. However, as will
be shown below, the coherent fluctuations are still very small so close to the nozzle exit and
therefore the assimilation error visible in the eddy viscosity field does not cause any further
problems in the resolvent analysis and can be ignored. The velocity mean-fields, however,
are very important in this region as they affect the coherent production determined by
the resolvent analysis and are therefore taken directly from time averaging the LES
snapshots.

Finally, we note that an eddy viscosity was also determined via calibration of the
Boussinesq model to the turbulence statistics using the LES Reynolds stresses and the
mean strain-rate tensor, as is common in many linearized analyses (Viola et al. 2014; Rukes
et al. 2016; Kuhn et al. 2021). Since the resulting field is similar to the field assimilated
by PINN, apart from noise resulting from the calibration method, and there are hardly
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any differences in the resolvent modelling (not shown), this approach is not considered
further in the context of this study. Instead, we also consider the naïve approach Θ = 0
as a baseline configuration. As is clear from the findings in the previous section, this
approach implies that any coherent energy is either dissipated by molecular viscosity,
by the resolvent forcing or goes back to the mean-field. Taking into account the energy
cascade and the high turbulence intensity of the flow, this should be directly ruled out.
However, since the approach is frequently used, it is also pursued and discussed in further
detail in this study.

5.2. Data-driven eddy viscosity modelling
The Boussinesq model relates the coherent component of Reynolds stresses to the
coherent strain-rate tensor via the eddy viscosity. Since the coherent strain-rate tensor
can be approximated based on the SPOD modes and the coherent Reynolds-stress
tensor via the eSPOD modes, two data-driven models for Θ are presented in the
following.

5.2.1. Spatially resolved eddy viscosity field
The first approach is inspired by the eddy viscosity calibration method commonly applied
to extract an eddy viscosity from turbulence statistics. However, instead of applying it
to the mean statistics, we consider the corresponding coherent components and invert
the Boussinesq-like model, (3.4) in frequency space. More specifically we solve the
optimization problem

Θ̂local(x, r) = argmin||D̂S + ΘŜS||F (5.2)

for individual frequencies ω and mode numbers m, where ||·||F denotes the Frobenius
norm. As introduced above, the index S indicates that the deviatoric part of the coherent
Reynolds-stress tensor as well as the coherent strain-rate tensor are computed based on
the eSPOD and SPOD modes. For this least-squares problem the closed-form solution is
given by

Θ̂local(x, r) = 〈−D̂S, ŜS〉F

〈ŜS, ŜS〉F
, (5.3)

where 〈·〉F denotes the Frobenius scalar product, 〈A, B〉F = ∑
l,b A∗

lbBlb. Equation (5.3)
is solved on a pixel-by-pixel basis resulting in a spatially resolved eddy viscosity field at
each frequency and azimuthal wavenumber. It should be noted at this point that the fields
determined in this way are complex-valued. However, as discussed in § 4, the nonlinear
energy transfer term is primarily determined by the real part of the term −Θ||∇û||F when
approximated with the Boussinesq model. Consequently, it is also the real part of the
complex eddy viscosity fields that is decisive.

Figure 7 shows the real part of the Θ̂local fields for m = 0 (figure 7a) and m = 1
(figure 7b) and frequencies within the respective high-gain separation region. Black dashed
lines indicate locations at which ūx/U is 0.95 and 0.5 and black dotted lines mark locations
at which the magnitude of the respective SPOD velocity mode |ûS| reaches 20 % and 80 %
of its maximum value. To highlight the relevant regions, the transparency outside the 20 %
magnitude line is set to 50 %. The shown fields are smoothed with a moving-average filter
in order to eliminate high-frequency noise. Nevertheless, a high level of noise can be
observed in regions where the magnitude of the SPOD mode is low. The reason for this
is that the signal-to-noise ratio is low in regions in which the velocity mode has a low
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Figure 7. Real part of spatially varying frequency dependent eddy viscosity field Θ̂local(x, r) retrieved by
inverting the Boussinesq-like model in frequency space, (5.3). Fields are shown for the respective frequency
range of high-gain separation for m = 0 (a) and m = 1 (b). The black dashed lines show the positions where
ūx/U is 0.95 and 0.5. Black dotted lines show the positions at which the magnitude of the respective SPOD
velocity mode |ûS| reaches 20 % and 80 % of its maximum value. Outside the 20 % line the transparency is set
to 50 % to highlight the relevant region.

magnitude. In addition, (5.3) is based on gradients of statistical quantities, which poses a
further challenge. However, as the a posteriori validation in § 7.2 will show, the noise has
only a minor influence on the results of the resolvent analysis. For this reason, no further
noise reduction measures were taken.

Figure 7 shows clear eddy viscosity structures in the regions in which the respective
SPOD velocity modes are located (dotted lines). These structures differ between m = 0
and m = 1. For m = 0, the Θ̂local fields show a small negative region close to the centre
of the mode and a larger, elongated positive structure located at the outer upper- and
downstream end of the mode. With increasing frequency, both the mode shapes and the
eddy viscosity fields hardly show any changes. For m = 1, a positive structure with large
radial and axial expansion can be recognized, which expands over the entire range of the
mode. With increasing frequency the mode as well as the structure of increased eddy
viscosity move upstream. The intensity of the eddy viscosity structure slightly decreases
with increasing frequency.
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Eddy viscosity in resolvent analysis of turbulent jets

We recall that a negative value of the eddy viscosity means that energy is transferred
into the coherent structure via the coherent component of the Reynolds stresses, see § 4.
This cannot be taken into account in the gradient-type Boussinesq model in resolvent
analysis as it leads to numerical instability. Therefore, the eddy viscosities are clipped to
positive values when used in the resolvent model. However, the data-driven determined
eddy viscosity fields in figure 7 show predominantly positive structures – regions in which
energy is dissipated (transferred to other scales) by the coherent component of Reynolds
stresses. For modelling dissipation, the Boussinesq approach is well suited.

The differences in the various Θ̂local fields observed in figure 7 indicate that the eddy
viscosity is wavenumber and for m = 1 also frequency dependent. In comparison with
the mean-field-consistent eddy viscosity Θmean, see figure 6(a), it can be observed that,
apart from very different shapes, the fields are all of the same order of magnitude with a
maximum value of the order of 10−2.

5.2.2. Spatially constant global eddy viscosity
In the second approach, we follow a more robust methodology that takes into account
the fact that the SPOD and eSPOD modes are statistical quantities that, as seen above,
contain noise when calculating a spatially resolved eddy viscosity. The second data-driven
approach is therefore based on an energetic consideration and the identification of an eddy
viscosity that is constant in space. The use of spatially constant eddy viscosities is common
in resolvent analysis and can lead to results comparable with those obtained using spatially
resolved fields (Oberleithner et al. 2014; Schmidt et al. 2018; Pickering et al. 2021; Kuhn
et al. 2022). Here we follow this approach to understand more about the role of eddy
viscosity in modelling coherent structures.

Inspired by consideration of the energy budget of coherent structures, the objective is to
find a global eddy viscosity that best represents the nonlinear energy transfer term, (4.3e)
and (4.5), at frequency ω and mode number m which can be formulated as

Θ̂global = argmin||N̂ − N̂Θ ||L2 = argmin||∇û∗
S · D̂S + Θ∇û∗

S · ŜS||L2 . (5.4)

In other words, the eddy viscosity is determined which, multiplied by the coherent
strain-rate tensor, best approximates the energy transfer to other structures (dissipation
caused by the coherent component of Reynolds stresses). To ensure that only the
dissipative part is approximated by the eddy viscosity, the real part of N̂ = Re(∇û∗

S·D̂S)
is clipped to be purely negative before solving the problem.

Note that the summands in (5.4) are scalar fields such that an eddy viscosity field could
be computed by a simple division of the two fields at every location (pixel). However, we
are interested in determining a global quantity that minimizes the least-squares problem
which follows from

Θ̂global = 〈−∇û∗
S · D̂S, ∇û∗

S · ŜS〉L2

〈∇û∗
S · ŜS, ∇û∗

S · ŜS〉L2

, (5.5)

where 〈·〉L2 denotes the inner product, 〈A, B〉L2 = ∑
l,b A(xl, rb)

∗B(xl, rb).
Figure 8 shows the real and imaginary part of the identified eddy viscosities for m = 0

and m = 1 in the frequency range between St = 0.1 and St = 1. The transparency of the
markers indicates the energy content of the corresponding SPOD mode, see figure 3.
For modes with high energy content, we have great confidence in the results, as the
determination of the coherent part of the Reynolds-stress tensor works particularly well for
these, see figure 5. The imaginary parts show a very similar behaviour for both azimuthal
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Figure 8. Real (a) and imaginary (b) part of data-driven global eddy viscosity. The values are determined
by calibrating the modelled nonlinear energy transfer term (dissipation), see (5.4). The marker transparency
indicates the energy share of the respective SPOD mode, see figure 3.

wavenumbers, they are close to 0 over the entire frequency range. This observation is
consistent with the fact that the energy transfer/dissipation is primarily determined by the
real part of the eddy viscosity, as already discussed above. Considering the real parts,
clear differences can be observed: for m = 1, the values are significantly higher than for
m = 0 especially for frequencies below St = 0.6. A result that was perhaps to be expected
considering that the data-driven eddy viscosity fields in figure 7 show significantly larger
areas with increased values for m = 1 compared with m = 0. For wavenumber m = 1, a
decrease in eddy viscosity can be observed for increasing frequency, whereby the values
for m = 0 are largely constant.

Consistent with the spatially resolved data-driven eddy viscosities Θ̂local in figure 7, the
real parts of the global data-driven eddy viscosities Θ̂global in figure 8 are all positive,
which means that the nonlinear energy transfer term has a dissipative effect on the
energy balance. In the following section, the ability of the different eddy viscosities to
approximate the nonlinear energy transfer term is investigated in more detail.

6. A priori evaluation of the Boussinesq eddy viscosity model

The presented data-driven eddy viscosities show a wavenumber and frequency dependence
(figures 7 and 8). Although the spatially distributed Θ̂local fields are of the same order of
magnitude as the eddy viscosity assimilated from the mean-field Θmean, the eddy viscosity
fields are very different (compare figures 6(a) and 7). The ability of the different eddy
viscosities to approximate the coherent part of the Reynolds-stress tensor is therefore
further investigated in this section using an a priori analysis. The idea of the a priori
analysis is to evaluate the Boussinesq eddy viscosity model in isolation without any
further modelling influence. Therefore, the following investigation focuses exclusively on
the nonlinear energy transfer term and the corresponding modelled term based on the
Boussinesq eddy viscosity model.

We first consider the local distribution of the true scalar nonlinear energy transfer term
of the coherent part of the Reynolds-stress tensor, N̂ = Re(∇û∗

S·D̂S), (4.3e). The term
represents the local energetic exchange with other coherent structures. Figures 9(a i) and
9(b i) show the corresponding scalar field evaluated based on the SPOD velocity mode and
the eSPOD-based coherent component of the Reynolds stresses for m = 0, St = 0.56 and
m = 1, St = 0.28, respectively. As this is a purely data-based determination, the fields are

1000 A51-18

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

92
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.922


Eddy viscosity in resolvent analysis of turbulent jets

1

0 5 10 15

1

0 5 10 15

1

0 5 10 15

1
(i)

(ii)

(iii)

(iv)

(i)

(ii)

(iii)

(iv)

0 5 10

0 1–1

15

1

0 5 10 15

1

0 5 10 15

1

0 5 10 15

1

0 5 10 15

Θ̂local

Θ̂global

Θmean

Θ̂local

Θ̂global

Θmean

x/D

r/
D

r/
D

r/
D

r/
D

r/
D

r/
D

r/
D

r/
D

(a)

(b)

Figure 9. Real part of the nonlinear energy transfer (dissipation) term in the energy balance of coherent
structures for m = 0, St = 0.56 (a) and m = 1, St = 0.28 (b). Panels (a i) and (b i) show the data based
validation term N̂ (4.3e). Panels (a ii,iii,iv) and (b ii,iii,iv) show the corresponding a priori modelled term N̂Θ

(4.5) based on Θ̂local, Θ̂global and Θmean, respectively. All fields are normalized with the maximum absolute
value of the respective data-driven validation term (i). The black dashed lines show the positions where ūx/U
is 0.95 and 0.5. Black dotted lines show the positions at which the magnitude of the respective SPOD velocity
mode |ûS| reaches 20 % and 80 % of its maximum value.

considered ground truth and thus validation data for the eddy viscosity models. It can be
observed that the energy transfer term is localized to the region of the respective mode
(dotted lines). The modes are located around the shear layer and the end of the potential
core region. The m = 1 mode is located further downstream and is spread over a larger
region compared with the m = 0 mode. Note that we consider two modes at different
frequency.

Except for a small region for m = 0 the transfer term is negative, which means that
energy is transferred to other structures; the coherent part of the Reynolds-stress tensor
therefore has a dissipative effect on the energy budget of the respective structure, an
observation already made when analysing the data-driven eddy viscosities in the previous
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section. This in turn demonstrates that a dissipative model like the Boussinesq ansatz is
generally well suited to approximating the terms. A positive value, on the other hand,
means that energy is transferred into the coherent structure by nonlinear energy transfer.
In order to model this transport with the Boussinesq approach, the eddy viscosity would
have to take on negative values in the corresponding region. However, this is practically not
feasible in resolvent analysis modelling, as the gradient-transport-type Boussinesq model
becomes numerically unstable for negative eddy viscosities.

In figures 9(a ii–a iv) and 9(b ii–b iv) the respective nonlinear term is compared with
the corresponding modelled term using the eddy viscosity based Boussinesq model,
N̂Θ = −Re(∇û∗

S·ΘŜS), (4.5). It is very important to note that both the gradient of the
velocity fluctuation and the fluctuating strain-rate tensor are determined based on the
SPOD velocity modes, leaving only the eddy viscosity as an isolated model parameter
to be analysed. This procedure corresponds to the principle of a priori analysis: to assess
the Boussinesq eddy viscosity model in isolation.

Figures 9(a ii) and 9(b ii) show the modelled energy transfer term for the spatially
dependent eddy viscosity Θ = Θ̂local. An almost perfect match with the validation data
in figures 9(a i) and 9(b i) can be observed. However, the high agreement is also to be
expected, since the eddy viscosity is determined at the corresponding frequency and mode
order from the coherent component of the Reynolds stresses and contains many degrees
of freedom due to its spatial distribution. The reason why the small region with a positive
value for m = 0 cannot be modelled is that the eddy viscosity is clipped to positive values
for the resolvent analysis. Without clipping, this area is also approximated very well (not
shown).

Figure 9(a iii,b iii) show the modelled energy transfer terms using the data-driven global
eddy viscosities Θ = Θ̂global. These eddy viscosities are also determined directly from the
coherent part of the Reynolds-stress tensor, but are limited to one degree of freedom.
This implies that the global eddy viscosity has no influence on the spatial distribution of
N̂Θ and only serves as a global scaling parameter. Figures 9(a iii) and 9(b iii) show that
the region with high energetic dissipation is qualitatively modelled very well. As for the
validation term, the area with high dissipation is localized to the location of the mode. For
m = 1 (figure 9b iii), the total dissipation is slightly underestimated, apart from that only
very small differences to the validation term can be recognized. For m = 0 (figure 9a iii),
the dissipation in the outer region of the mode is not well represented, while the area of
dissipation near the axis is more pronounced. Despite these quantitative differences, it is
an astonishing result that the region of high dissipation can be approximated so well with
the global eddy viscosity fields. This implies that the energetic transfer term based on the
coherent component of Reynolds stresses N̂ agrees well with the corresponding modelled
term based on the coherent strain-rate tensor N̂Θ . The eddy viscosity is only needed to
scale the term to the correct amplitude. From this it can be concluded that the Boussinesq
model is not only a good choice as it is dissipative, but also that the approach based on the
coherent strain-rate tensor is a particularly good choice, leading to a high spatial agreement
between the actual and the modelled energy transfer term.

Figure 9(a iv,b iv) show the corresponding modelled terms based on the mean-field
assimilated eddy viscosity Θ = Θmean. Qualitatively, the energy term can also be
modelled very well with this eddy viscosity. Quantitatively, the amplitude is predicted
too high, especially for m = 0 (figure 9a iv). In contrast to the previous cases, where
data-driven eddy viscosities at the respective frequency and mode number were used,
the results in figure 9(a iv,b iv) are based on the same eddy viscosity field derived from
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the mean-field and can thus be considered predictive. Taking these aspects into account,
the results are very satisfactory. The fact that the mean-field-consistent eddy viscosity is
somewhat too dissipative is consistent with the observations of Pickering et al. (2021). In
their study, an additional factor of 0.2 was necessary, to achieve a high agreement between
the resolvent and SPOD modes over a wide range of frequency, azimuthal orders and
jet Mach numbers when using a mean-field-consistent eddy viscosity. For the structures
considered here, however, a factor of 0.2 appears to be rather too low.

In conclusion, it can be noted that the initially very different eddy viscosities, including a
global constant, can approximate the true energy transfer term reasonably well. The reason
for this is the pertinence of the Boussinesq model and the high spatial similarity between
the energy transfer term based on the coherent part of the Reynolds-stress tensor N̂ and the
corresponding modelled term based on the coherent strain-rate tensor N̂Θ . This results in
the eddy viscosity only having an effective impact in regions where the coherent strain-rate
tensor has a significant amplitude, which in turn means that different eddy viscosities can
lead to similar or even identical results, i.e. the eddy viscosity is not unique.

6.1. Wavenumber, frequency and spatial dependence of eddy viscosity
The results from the a priori analysis in the previous section will be briefly discussed in
this section with respect to the wavenumber and frequency dependence of the data-driven
eddy viscosities. In figure 8 it was observed that the data-driven global eddy viscosity
Θ̂global changes with wavenumber and for m = 1 also with frequency. However, the a
priori analysis, figure 9, demonstrated that the energy transport term for two considered
modes with different azimuthal order and frequency can be approximated well not only
for the data-driven, mode-specific eddy viscosities (figure 9a ii,iii,b ii,iii), but a good
approximation is also achieved when the spatially varying eddy viscosity Θmean is used
for both modes (figure 9a iv,b iv). The reason for this is the structure of the Boussinesq
model, in which the eddy viscosity appears as a factor in the product with the coherent
strain-rate tensor. This results in the eddy viscosity only being effective in the regions
where the coherent strain-rate tensor has a significant amplitude. In simple terms, the
multiplication limits the region in which the eddy viscosity is effective to the region of
the mode. Consequently, if modes are located in different regions, a spatially varying
eddy viscosity has a mode-specific effect. For the modes considered in figure 9, the
m = 1 mode is located further downstream compared with the m = 0 mode. Due to its
spatial distribution, the mean-field-consistent eddy viscosity Θmean therefore affects the
corresponding energy transfer terms differently.

We conclude that an eddy viscosity field can exhibit a certain frequency/mode number
dependence via spatial distribution if the corresponding coherent structures are located in
different regions. How well a frequency and mode number dependence can be represented
depends on how far the modes are spatially separated, how large the modes are and how
much the eddy viscosity field changes in space.

7. A posteriori comparison between SPOD and resolvent modes

After the various eddy viscosity models have been presented and assessed in isolation, they
are validated a posteriori and discussed in this section. To this end, the SPOD and resolvent
velocity modes are compared qualitatively and quantitatively, first for the predictive eddy
viscosity models and then for the data-driven approaches.

For an in-depth analysis of the results, we compare the axial distribution of the
corresponding main energy terms, production, the energy transfer/dissipation term that
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includes the coherent part of the Reynolds-stress tensor and the convective transport term.
Although the globally integrated convection term is zero, it has a comparatively large local
contribution to the energy budget and is thus also shown. The axially resolved terms are
computed by performing the radial integration in (4.3),

convection Ĉx(x) =
∫

Ĉ(x, r)r dr, (7.1a)

production P̂x(x) =
∫

P̂(x, r)r dr, (7.1b)

dissipation N̂x(x) =
∫

N̂(x, r)r dr (7.1c)

≈
∫

N̂Θ(x, r)r dr, (7.1d)

where Ĉx(x), P̂x(x) and N̂x(x) are the radially integrated convection, production and
nonlinear transfer term. When evaluating the energy terms of the resolvent modes, the
latter must be evaluated on the basis of the Boussinesq eddy viscosity model, N̂Θ (4.5).
Since this is a dissipative model, this term is referred to as the dissipation term in the
following, both when considering the energy budget of the SPOD and of the resolvent
mode. For the purely molecular case without eddy viscosity, (7.1d) is evaluated based
on molecular dissipation (Θ = ν), which is equivalent to considering the molecular
dissipation term, (4.3d). For the considered cases the energy terms of the resolvent
forcing vector N̂f are two orders of magnitude smaller compared with the production and
dissipation term and are therefore initially neglected in (7.1d) (compare with (4.5)). The
corresponding terms are considered separately in § 7.3.

The consideration of the radially integrated terms enables a detailed quantitative, but
at the same time compact, comparison of all dominant energy terms. The corresponding
global terms in (4.2) would be obtained by additionally integrating (7.1) over the axial
coordinate.

7.1. Mean-field-consistent eddy viscosity and molecular viscosity
We begin with a qualitative comparison of the axial velocity mode shape between SPOD
and resolvent mode based on mean-field-consistent eddy viscosity and pure molecular
viscosity. Figure 10 shows the real part of the two dominant axial velocity modes for m = 0
and St = 0.56 (figure 10a) and m = 1 and St = 0.28 (figure 10b). Figure 10(a i,b i) show
the SPOD modes. Figures 10(a ii,b ii) and 10(a iii,b iii) show the resolvent modes based
solely on molecular dissipation and the mean-field-consistent eddy viscosity, respectively.

It can be observed that neglecting the modelling of the coherent part of the
Reynolds-stress tensor and thus considering only molecular dissipation gives less
satisfactory results than modelling the term with a mean-field-consistent eddy viscosity.
If only molecular viscosity is considered, the resolvent modes agree fairly well in the
upstream region, but show strong qualitative deviations for x/D > 5 and both modes
considered. With mean-field-consistent eddy viscosity, a high degree of agreement
between the resolvent mode and the SPOD mode can be observed throughout the domain,
both for the m = 0 and for the m = 1 mode. Slight differences are only observed in the
radial expansion and in the range x/D > 6 where the SPOD mode is more pronounced,
which could indicate that the mean-field-consistent eddy viscosity leads to too much
dissipation.
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Figure 10. Real part of axial velocity mode for m = 0, St = 0.56 (a) and m = 1, St = 0.28 (b). Panels (a i) and
(b i) show the SPOD modes. Panels (a ii,b ii) and (a iii,b iii) show the resolvent modes for the purely molecular
ν and mean-field-consistent Θmean eddy viscosity, respectively. The black dashed lines indicate the location at
which ūx/U = 0.95 and 0.5.

Figure 11 shows how the radially integrated energy terms (7.1) evolve with x/D, in
figure 11(a) for the m = 0 mode and in figure 11(b) for the m=1 mode. The curves are
smoothed with a moving average filter to eliminate unphysical high-frequency noise. The
solid lines show the energy terms for the SPOD mode (7.1), the dotted lines for the
resolvent modes with only molecular dissipation (Θ = ν in (7.1d)) and the dashed lines
for the resolvent modes with mean-field-consistent eddy viscosity (Θ = Θmean in (7.1d)).
Since the scaling of the SPOD and resolvent modes is arbitrary, all terms belonging to
one mode are normalized with the respective maximum absolute value of all considered
energy terms.

The energy terms of the m = 0, St = 0.56 SPOD mode (figure 11a; solid) show the
following behaviour. Shortly after the nozzle outlet, the mode begins to receive energy
from the mean-field (production) and grows with the direction of the flow. At x/D ≈ 3, the
point of maximum energy input is reached, after which it decreases again. Interestingly,
the production term also becomes slightly negative at x/D ≈ 5 before it becomes zero,
which means that a small share of energy from the mode is returned to the mean-field.
The turbulent dissipation term grows with a slight offset. It reaches less high values
(negative), but is active over a larger axial range. The convection term transfers energy
in the axial direction and is negative in regions from which energy is transported away and
positive in regions to which energy is transported. As discussed above, the convection term
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Figure 11. Radially integrated production (green, P̂x), dissipation (red, N̂x) and convection (blue, Ĉx) energy
terms (7.1) for m = 0, St = 0.56 (a) and m = 1, St = 0.28 (b). The solid lines show the terms for the SPOD
modes. The dashed and dotted lines show the terms for the modes of the resolvent analysis (RA) with
mean-field-consistent eddy viscosity and molecular viscosity, respectively. Terms belonging to one mode are
normalized with the respective maximum absolute value of all considered energy terms.

is of conservative from – it can be observed that the corresponding axially integrated term
is equal to zero. The m = 1, St = 0.28 SPOD mode (figure 11b; solid) shows a similar
behaviour. The mode is located slightly further downstream and the dissipation term has
a smaller axial offset with respect to the production term in comparison with the m = 0
mode, which also leads to a less pronounced convection term. Moreover, the production
term does not become negative, thus all energy, except for a very small portion related to
molecular dissipation, is dissipated through the coherent component of Reynolds stresses.

A comparison of the distribution of the energy terms between the SPOD and resolvent
modes clearly shows that the consideration of molecular dissipation alone leads to very
poor modelling results. As was to be expected, SPOD and the corresponding resolvent
modes show a completely different energy budget. For the m = 0 resolvent mode the
dissipation term is negligibly small, and all the energy that enters the mode from the
mean-field also returns to the mean-field. In contrast, for m = 1, the energy is mainly
dissipated by molecular dissipation in the downstream region. Thereby, the small value
of the molecular viscosity is compensated by a correspondingly large coherent strain-rate
tensor, which leads to the clear differences in mode shape, see figure 10(b ii). We note
that figure 10(b ii) does not directly show the coherent strain-rate tensor, but high spatial
gradients are visible, especially in the range x/D = 10–15 and r/D ≈ 0.5.

The fact that the resolvent mode shape for m = 0 and molecular dissipation agrees
qualitatively well with the SPOD mode in the upstream region, as observed in
figure 10(a ii), can be explained well by the distribution of the energy terms. The m = 0
SPOD mode shows a small region in which energy is returned from the mode to the
mean-field. If in the resolvent analysis the dissipation through the coherent part of the
Reynolds-stress tensor is underestimated and only molecular dissipation is considered, the
energy feedback to the mean-field is inflated and used as energy sink instead. Although
this leads to qualitatively similar mode shapes, the physics of the mode is misrepresented.

On the other hand, if we consider the resolvent modes with mean-field-consistent
eddy viscosity (figure 11, dashed), a completely different picture emerges. The modelled
energy terms for both m = 0 and m = 1 qualitatively follow those of the SPOD modes.
Although an axial offset of approximately two diameters can be observed, the physics of
the dominant structures seems to be well represented by the resolvent mode when using
the mean-field-consistent eddy viscosity to represent the coherent component of Reynolds
stresses. The axial offset is caused by the mean-field-consistent eddy viscosity Θmean,
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which, as shown in figure 9(a iv,b iv), overestimates the dissipation effect of the energy
transfer term.

To summarize, the following conclusions can be drawn from these results. The energetic
dissipation through the coherent part of the Reynolds-stress tensor must be modelled
in order to model the dominant coherent structures with resolvent analysis – a simple
consideration of the molecular dissipation is not sufficient, as also shown in previous
studies (Pickering et al. 2021; Kuhn et al. 2022). If the mean-field-consistent eddy
viscosity is used, the dominant structures can be modelled qualitatively very well. This
result is particularly remarkable as the same eddy viscosity field was used for both
structures with different frequencies and wavenumbers.

7.2. Data-driven eddy viscosities
Figures 12(a) and 12(b) compare the real part of the same axial velocity SPOD modes with
the corresponding resolvent modes for the two data-driven approaches. Figure 12(a ii,b ii)
show the resolvent result for Θ̂local, the spatially resolved and frequency and wavenumber
dependent eddy viscosity field (see figure 7) and the figure 12(a iii,b iii) for the global,
space-independent, frequency and wavenumber dependent eddy viscosity Θ̂global (see
figure 8). We recall that the eddy viscosities used were determined from the SPOD data
at the respective frequency and wavenumber, meaning that they differ for the shown
m = 0 and m = 1 modes. The qualitative comparison of the axial velocity mode shapes in
figure 12 shows an almost perfect match for both wavenumbers and both eddy viscosities.
The two resolvent results show hardly any differences. For m = 0 and Θ̂local (figure 12a ii),
a small amount of noise can be detected near the axis at x/D = 10 and just above the
ūx/U = 0.95 line, which results from the noisy Θ̂local field used in the analysis (see
figure 7). Apart from small local deviations, however, the strong noise of the eddy viscosity
field observed in figure 7 does not appear to have a major influence on the resolvent modes.
For a more in-depth analysis, the corresponding distributions of the dominant energy terms
(7.1) are compared in figure 13, as in the previous section for the predictive eddy viscosity
models. Especially for m = 0 (figure 13a) but also for m = 1 (figure 13b) a very high
qualitative and quantitative agreement of the axial profiles of the radially integrated energy
terms can be observed for both resolvent results.

For m = 0 (figure 13a) and the spatially resolved Θ̂local field (dashed), the modelled
energy terms closely follow those of the SPOD terms (solid). If the modelling of the
coherent component of the Reynolds-stress tensor is based on the global eddy viscosity
Θ̂global (dotted), slight differences can be observed in the axial profiles. With Θ̂global, the
turbulent dissipation seems to be slightly underestimated, which leads to the modelled
mode dissipating slightly too much energy via the production term (negative production).
This behaviour is similar to that observed above for purely molecular dissipation, but
to a much lesser extent, since the energy dissipation due to the coherent part of the
Reynolds-stress tensor is largely accounted for. Apart from these small differences, the
overall distribution of energy terms is also very well represented by the resolvent mode
when using Θ̂global.

For m = 1 (figure 13b) and Θ̂local (dashed), the axial distribution of the radially
integrated energy terms between resolvent and SPOD (solid) mode agrees fairly well,
although a slight axial offset can still be observed. This offset is slightly higher when
using Θ̂global, but an improvement can still be observed compared with the result based on
the predictive mean-field-consistent eddy viscosity, compare with figure 11. These results
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Figure 12. Real part of axial velocity modes for m = 0, St = 0.56 (a) and m = 1, St = 0.28 (b). Panels
(a i) and (b i) show the SPOD modes. Panels (a ii,b ii) and (a iii,b iii) show the resolvent modes for the two
data-driven eddy viscosities Θ̂local and Θ̂global, respectively. The black dashed lines indicate the location at
which ūx/U = 0.95 and 0.5.
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Figure 13. Axially resolved production (green, P̂x), dissipation (red, N̂x) and convection (blue, Ĉx) energy
terms, (7.1) for m = 0, St = 0.56 (a) and m = 1, St = 0.28 (b). The solid lines show the terms for the SPOD
modes. The dashed and dotted lines show the terms for the modes of the resolvent analysis (RA) with
data-driven spatially varying and global constant eddy viscosity, respectively. Terms belonging to one mode
are normalized with the respective maximum absolute value of all considered energy terms.

are in perfect agreement with the results of the a priori analysis in § 6: the better the ability
of the eddy viscosity to represent the energy dissipation (figure 9), the better the overall
energy budget of the SPOD mode is modelled by the resolvent mode (figures 11 and 13).
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Since the eddy viscosities used for these results were determined from the data itself, it
was perhaps to be expected that the modelling would also work well. We would therefore
like to elaborate a little more on the relevance of the results at this point. The results
presented in the a priori and a posteriori validation clearly show that if the turbulent
dissipation is well approximated by a suitable choice of eddy viscosity, the corresponding
dominant coherent structure can be modelled almost perfectly with the resolvent analysis.
This leads to the following three main conclusions. First, the coherent component of
the Reynolds-stress tensor can be well represented by the eSPOD modes for dominant
large-scale coherent structures. Second, the high agreement between the energy budget of
the data-driven SPOD with the physics-based resolvent modes validates that the dominant
SPOD modes approximate a solution of the energy equation. Third, the results show that
the coherent part of the Reynolds-stress tensor indeed acts as a dissipative term on the
energy budget, confirming the commonly used Boussinesq approach. Consequently, the
role of eddy viscosity in jet flow resolvent analysis is to ensure that all the energy entering
the mode through the mean-field is appropriately dissipated.

Moreover, the results show that the correct choice of eddy viscosity for the resolvent
analysis depends on the mode considered. However, a specific spatial distribution of the
eddy viscosity is not essential, as a comparison of the resolvent results for the spatially
resolved Θ̂local and the global Θ̂global eddy viscosity show. The reason for this is the
high spatial alignment between the true turbulent dissipation term and the corresponding
modelled term based on the coherent strain-rate tensor, as discussed in § 6.1. On the other
hand, this high alignment also results in the fact that a certain frequency or mode-number
dependence of the eddy viscosity can be represented via a spatially distributed eddy
viscosity, as here with Θmean.

7.3. Energetic consideration of the resolvent forcing vector
Up to this point, the contribution of the resolvent forcing vector to the energy budget was
neglected. This section briefly examines the corresponding energy term for the various
resolvent models with different eddy viscosities. For a compact comparison, we again
consider the radially integrated term, and label the term as the forcing term, reading

N̂f ,x(x) =
∫

N̂f (x, r)r dr. (7.2)

Figure 14 shows the forcing term for m = 0, St = 0.56 (figure 14a) and m = 1, St = 0.28
(figure 14b). The term is shown for the resolvent results based on pure molecular viscosity
ν (solid), mean-field-consistent eddy viscosity Θmean (dashed) and the two data-driven
local Θ̂local (dashed–dotted) and global Θ̂global (dotted) eddy viscosities. Each curve is
normalized with the same value as the corresponding energy terms in figures 11 and 13 in
order to establish direct comparability.

As already anticipated, figure 14 shows that the contribution of the forcing terms to
the overall energy balance is very small for all considered cases. For m = 0 and m = 1,
the terms for different eddy viscosities show a qualitatively similar trend over the axial
coordinate. Although the amplitude is generally small, it appears to depend strongly
on the underlying eddy viscosity. For m = 0 the forcing is strongest near the nozzle
exit. For m = 1 the forcing is also highest in the upstream region, but shows a less
pronounced decrease with increasing distance from the nozzle. Moreover, the forcing term
for molecular viscosity is the lowest for both m = 0 and m = 1.

It is striking that the forcing energy terms remain positive and represent a source of
energy and not a sink. This is particularly important for the case without eddy viscosity.
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Figure 14. Radially integrated resolvent forcing energy term for m = 0, St = 0.56 (a) and m = 1,
St = 0.28 (b) and various eddy viscosities. Same normalization as in figures 11 and 13.

In resolvent analysis without eddy viscosity, the entire nonlinear energy term is represented
by the forcing term, see (4.5). The analysis of the SPOD mode has shown that the true
nonlinear energy transfer term mainly has a dissipative effect on the energy budget of the
coherent structures under consideration, see figures 9, 11 and 13. However, the resolvent
model does not capture any dissipation with the forcing term, but a pure energy source,
albeit with low amplitude. This observation clarifies why dissipation due to the nonlinear
energy transfer must be explicitly modelled in resolvent analysis. The resolvent optimal
forcing vector does not compensate for the non-modelled nonlinear energy transfer.

7.4. Alignments
So far, our analysis has focused on two coherent structures (m = 0, St = 0.56 and m = 1,
St = 0.28) for which a large gain separation can be observed in the SPOD spectrum. In
this section, resolvent and SPOD modes for both azimuthal orders are compared over a
larger frequency range, St = 0.1 to St = 1. For this purpose, we consider the alignment
between the leading resolvent and SPOD velocity mode, defined as

A = |〈ûS, ûR〉L2 |√〈ûS, ûS〉L2〈ûR, ûR〉L2

, (7.3)

where the indices R and S denote leading resolvent or leading SPOD velocity mode,
respectively. Considering the alignment between the resolvent and SPOD modes is the
most common method for a qualitative comparison (Cavalieri et al. 2013; Pickering et al.
2021). A perfect match between the modes results in an alignment of A = 1, an alignment
of A = 0 means that the modes are orthogonal.

Figure 15 shows the alignment of the velocity modes for m = 0 (figure 15a) and
m = 1 (figure 15b) in the frequency range St = 0.1–1 and the different eddy viscosities
indicated by the markers. The transparency of the markers indicates the energy content
of the respective SPOD mode, see figure 3. It can be observed that the alignment for the
axisymmetric m = 0 mode is high for all considered resolvent results in the frequency
range in which the leading SPOD mode has a high energy content. Due to the high
qualitative agreement of the velocity modes, the alignment takes fairly high values even
for purely molecular dissipation, although, as shown in the previous section, the physics
is not correctly represented. It can be concluded from this that the consideration of
alignment alone should be treated with caution and may also be misleading. For the
mean-field-consistent eddy viscosity, the alignment in this region reaches values between
0.8 and 0.9, for the data-driven fields even values of up to 0.95. Outside the region
of high-gain separation the alignment drops, although it can still be observed that the
data-driven eddy viscosity fields lead to acceptable results over large parts of the frequency
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Figure 15. Alignment of velocity modes for m = 0 (a), m = 1 (b) and different eddy viscosities indicated by
the markers. The marker transparency indicates the energy share of the respective SPOD mode, see figure 3.

range. The reason that the alignment for the data-driven fields is not even higher is that the
validity of the data-driven eddy viscosity based on eSPOD decreases as the gain separation
decreases, as explained above. The poor alignment for m = 0 and Θ̂local at low frequencies
is also due to noise and resulting convergence problems of the resolvent analysis.

For m = 1 (figure 15b), a similar picture can be observed with high alignments in the
region of high-gain separation. Here, in contrast to the m = 0 case, a poor alignment can
be observed for the case with pure molecular dissipation. This means that the qualitative
measure of alignment in this case correctly reflects the poor physical representation of
the mode in the case of pure molecular dissipation. For the mean-field-consistent and
the data-driven eddy viscosities, the differences in alignment are smaller than for m = 0,
but the slightly better representation of the mode for the data-driven viscosities can be
recognized. Outside the range of high-gain separation, the alignment decreases, but also
for m = 1, fairly good results are still achieved with data-driven eddy viscosities.

From the results shown, we can conclude that the mean-field-consistent eddy viscosity
is overall a good choice to predict the dominant coherent structures, i.e. modes that
are associated with much energy. A certain mode number and frequency dependence is
thereby modelled via the spatial distribution of the eddy viscosity, as described above.
Outside the high-gain separation region, the mean-field-consistent eddy viscosity cannot
compensate for the wavenumber and frequency dependency observed in the data-driven
eddy viscosities. This makes a predictive approach to modelling the coherent component
of the Reynolds stresses outside the high-gain separation region difficult overall. To find
the corresponding frequency- and mode-dependent eddy viscosities outside the high-gain
separation region, for example, a data-driven optimization within the resolvent model is
suitable (Pickering et al. 2021).

8. Discussion and conclusion

In the present study, we consider the dominant coherent structures in a turbulent jet at
a Reynolds number of 50 000 and a Mach number of 0.4, which are characterized by a
high-gain separation in the SPOD spectrum. We consider the energy balance of individual
coherent structures and resolvent analyses augmented with different eddy viscosities to
reveal the role of eddy viscosity in jet flow resolvent analysis.

1000 A51-29

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

92
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.922


J.G.R. von Saldern, O.T. Schmidt, P. Jordan and K. Oberleithner

Based on the energetic consideration of individual structures, we show that the coherent
component of the Reynolds-stress tensor is essential: the dominant coherent structures
receive their energy via the mean-field and dissipate it mainly via the nonlinear energy
transfer term, which is determined by the coherent component of the Reynolds-stress
tensor. We show that the modelling of coherent structures based on resolvent analysis
only works well if the energy dissipation caused by nonlinear energy transfer is explicitly
modelled in the linear operator. Non-modelled dissipation leads to a compensation via
other energy terms in the energy budget of the resolvent modes, which ultimately leads
to the modes deviating significantly from the validation SPOD modes. It is important
to note that the missing, non-modelled dissipation is not compensated by the resolvent
optimal forcing vector, which is implicitly assumed when the operator is based solely
on molecular viscosity, without eddy viscosity. Moreover, we find that in certain cases
significant deviations in the energy budget between resolvent and SPOD modes are not
well represented in the global measure of alignment. Therefore, caution should be taken
when using this measure especially for the jet flow axisymmetric m = 0 mode.

For linear modelling of the nonlinear energy transfer term the Boussinesq eddy viscosity
model is commonly applied. In an a priori analysis, we analyse the true nonlinear energy
transfer terms of two dominant coherent structures and investigate the ability of the
Boussinesq model to approximate the terms. The Boussinesq model proves to be a very
good choice for two reasons. First, the true nonlinear transfer terms predominantly have a
dissipative effect on the energy budget of the coherent structures, which agrees well with
the dissipative model structure. Secondly, we observe a particularly high spatial agreement
between the true nonlinear energy term based on the coherent component of the Reynolds
stresses and the corresponding modelled term based on the coherent strain-rate tensor. Due
to the high spatial agreement of these terms, the energy transfer term can be approximated
well even for global eddy viscosities that are constant in space. However, based on a
data-driven analysis, we find that appropriate eddy viscosities exhibit some frequency and
wavenumber dependence.

For a predictive modelling of dominant coherent structures with resolvent analysis,
the mean-field-consistent eddy viscosity is found to be suitable, which is defined by
approximating a solution of the RANS equations together with the other mean-field
quantities. Via its spatial distribution, it can approximate the frequency and wavenumber
dependence of the data-driven viscosity and thus leads to good modelling results. The
success of mean-field-consistent eddy viscosity is limited to coherent structures with a
high-gain separation, but these are certainly also the most important structures from an
engineering point of view.

Outside the high-gain separation region, mode specific eddy viscosities are required
for which several data-driven approaches are available. Two approaches that require
knowledge of the coherent component of the Reynolds-stress tensor are presented here.
Since the identification of this term is also limited to regions with high-gain separation, it
could be a particularly effective approach to calibrate an eddy viscosity based on the global
energy balance. Knowing that production equals dissipation P̂Ω + N̂Ω,Θ = 0 ((4.4) and
(4.5)), a global eddy viscosity can be calibrated by computing the coherent production
from SPOD. The advantage of this approach is that it does not rely on knowledge of
the coherent component of the Reynolds stresses, and is therefore not limited to regions
of high-gain separation. Future studies will have to show whether this approach is more
successful than convectional eddy viscosity models in predicting high-rank dynamics.

In conclusion, this study presents techniques to investigate the role of eddy viscosity
in linearized analysis of turbulent broadband flows. The methods that are based on the
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energy budget of coherent structures allow to examine the physical mechanisms of eddy
viscosity and its significance for modelling coherent structures with resolvent analysis. It
is found that if the energy dissipation caused by nonlinear energy transfer is well modelled
by a correct choice of eddy viscosity, the resolvent analysis can model the SPOD modes
with near perfect agreement. Consequently, the energetic consideration reveals the role
of eddy viscosity in turbulent jet flow resolvent analysis. The eddy viscosity must ensure
that all energy entering the coherent structure through the mean-field is dissipated, with
the exception of the negligible share that is dissipated by molecular dissipation. Since the
energy balance is valid regardless of the application under consideration, this finding likely
also applies to dominant coherent structures in other turbulent flows.
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Appendix A

Data assimilation using the method of PINN is based on the idea of approximating all
relevant variables with a neural network and taking both known data (training data)
and physical equations into account when training the network. For the present case the
objective is to assimilate an eddy viscosity field from the LES data. This is achieved
by using the time-averaged LES snapshots as training data and the RANS equations as
physical equations.

For the technical implementation, a neural network is first defined that maps the spatial
coordinates to the mean velocity, the mean modified pressure and the eddy viscosity[

uα, q̄α, Θmean
]T = Nα(x, r), (A1)

where Nα denotes the neural network. Here we use an architecture consisting of 10 hidden
layers with 30 neurons each. The hyperbolic tangent function serves as activation function,
except for the output layer in which linear functions are used. Next, a data loss is defined
as the distance between the time-averaged LES snapshots and the PINN approximation

Ldata = ||ū − ūα||L2 + ||q̄ − q̄α||L2, (A2)

where quantities with and without α index denote that the quantity is a PINN output and
LES reference field, respectively. For the evaluation of the data loss, all variables are
normalized with their respective maximum value such that all outputs are in the same order
of magnitude between 0 and 1, which is advantageous for the training of neural networks.
In order to incorporate physics into the training process, the PINN output quantities are
substituted into the RANS and time-averaged continuity equation

(ūα · ∇)ūα + ∇q̄α − ∇ · [
(ν + Θmean)[∇ + ∇T]ūα

] = e1, (A3a)

∇ · ūα = e2, (A3b)

where in (A3a) the Boussinesq eddy viscosity model is used to replace the Reynolds-stress
tensor. The residuals of the RANS and continuity equation are denoted e1 and e2,
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Figure 16. Mean axial velocity profiles of the LES and the PINN approximation. Profiles are shown at
three radial locations plotted over the axial coordinate (a) and at three axial locations plotted over the radial
coordinate (b).

respectively, and together form the physics loss term

Lphysics = ||r e1||L2 + ||r e2||L2, (A4)

where both residuals are locally weighted with the radial coordinate. The parameters of
the neural network α are then found by minimizing the composite loss function consisting
of the data and the physics loss term

α = argmin
(

1
Nd

Ldata + 1
Np

Lphysics

)
, (A5)

where Nd = 8230 and Np = 3000 are the number of points at which the respective
loss terms are evaluated in the domain. Since training data is available for both the
velocities and the pressure throughout the domain, no boundary conditions are required.
The minimization of the loss function is performed with 240 iterations of the ADAM
algorithm with minibatching followed by 60 000 iterations based on the limited-memory
Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) method – the same training procedure as
described in von Saldern et al. (2022). When training the PINN, the loss terms are
evaluated at discrete points. The partial derivatives at these points, which are required
to compute the residuals of the PDEs ((A3a) and (A3b)), are determined using automatic
differentiation. The method therefore does not require a numerical discretization scheme.
Once trained, the neural network can be evaluated at any point, as it is a continuous
function.

By using the composite loss function, the trained neural network approximates the LES
mean field and a solution of the RANS equations, which results in the assimilation of a
mean-field-consistent eddy viscosity. Figure 16 compares profiles of the axial velocity
component between the PINN approximation and the LES reference data at various
locations. It can be observed that the PINN approximates the LES data with near perfect
precision. The assimilated eddy viscosity is validated in figure 6 in § 5.1.
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