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THE VITALI INTEGRAL CONVERGENCE THEOREM 
AND UNIFORM ABSOLUTE CONTINUITY 

ELIZABETH M. BATOR, RUSSELL G. BILYEU AND PAUL W. LEWIS 

ABSTRACT. A geometric version of the Vitali integral convergence theorem is es­
tablished. Parameterized versions of results on uniform absolute continuity in spaces of 
measures suggested by the convergence theorem are studied. 

1. Introduction. In two papers in the 1970's, J. K. Brooks [3] and Brooks and Jew-
ett [4] established marked improvements of the Vitali-Hahn-Saks theorem and the Vitali 
integral convergence theorem as a consequence of the following fundamental theorem 
on uniform absolute continuity, a result which has an antecedent in the classical paper 
by Bartle, Dunford, and Schwartz [1]. 

THEOREM 1.1 [3]. Suppose that (Q,, X) is a measurable space and that H is a uni­
formly countably additive subset ofca(L). / / / i G ca(L) and v <C [i for all v G H, then 
v <C [i uniformly for i/ £ H. 

In Section 2 of this paper we establish a geometric version of the Vitali convergence 
theorem. Our version of the Vitali theorem raises numerous questions about parameter­
ized—or collectionwise—versions of Theorem 1.1. These questions are studied in some 
detail in Section 3. We also point out a parameterized version of the Vitali-Hahn-Saks 
theorem which follows immediately from deliberations in this section. We then conclude 
the paper by establishing a uniform differentiability result for arbitrary continuous con­
vex functions on Banach spaces which is motivated by the measure theoretic results of 
Section 3. 

All Banach spaces X in this paper are defined over the real field R. If x9y € X, then 
D(JC, y) will denote the Gateaux derivative of the norm at x in the direction y provided 
that this derivative exists, i.e., D(x,y) — linv_+o "x+ty"f "*". We refer the reader to Diestel 
[5] and Rockafellar [6], [7] for a discussion of Gateaux differentiability of convex func­
tions. We denote the one-sided Gateaux derivatives (which always exist) by D+(x, y) and 
D~(x,y). If Z is a a-algebra, then ca(L) is the Banach space (total variation norm) of all 
countably additive real valued measures defined on Z. If S C X, then the norm closure 
of S will be denoted by S and the weak closure will be denoted by Sw. 
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2. Vitali's Convergence Theorem. We begin with parameterized versions of two 
results in Bilyeu and Lewis [2]. We sketch the proofs. 

LEMMA 2.1. IfX is an abstract L-space and each of(fn) and (gn) is a sequence from 
X, then the following are equivalent: 

(i) D(fn, gn) exists uniformly in n, 
(ii) D(\fn\,\gn\) exists uniformly in n, 

(Hi) \kfn\ A | 8n\ —* \8n\ uniformly in n. 
k 

PROOF. We remark that because of the absolute values which appear in (iii) it clearly 
suffices to show that (i) & (iii). Now 

-Wn-gn\\+Wn\\ < D~ (fn, gn) < D+(fn, gn) < \\ kfn + gn\\ - || kfn\\ , * € N . 

Therefore D(fn, gn) exists uniformly in n iff 

\\¥n+gn\\+Wn-gn\\-2\\kfn\\^0 

uniformly in n. Thus by Lemma 2.3 of [2], D(fn, gn) exists uniformly in n iff 

Wn + gn\\+W«-gn\\-2Wn\\ 

= 2||#,| | + 2 | |g„| - (\kfn\ A |g„|)| - 2\\kfn\\ 

= 2\\\gn\ -iWn\ A | g„ | ) | | -»0 uniformly inn. > 
k 

DEFINITION. Let Z be a a -algebra and let each of (jxn) and (yn) be a sequence in 
caÇL). We say that vn <C [in uniformly in n provided that if e > 0 then there is a 6 > 0 
such that |i/w(A)| < e whenever A G Z, n G N, and |/x„|(A) < S. 

LEMMA 2.2. Suppose that Z is a a-algebra and each of(fin) and (i/n) is a sequence 
in ca(L). IfD(fj,n, vn) exists uniformly in n, then vn <C \in uniformly in n. Conversely, if 
(i/n) is bounded and vn <C [in uniformly in n, then D(/x„, i/n) exists uniformly in n. 

PROOF. Suppose that D(nn,vn) exists uniformly in n. Therefore || |/c/in| A \i/n\ — 
\vn\ || —> 0 uniformly in n. Let e > 0, and choose ko G N so that || |&o/x„| A \i/n\ — 

k 

\i/n\ || < e for all n. If |fcoMn|(A) < e, then |i/n(A)| < 2e, and the uniform absolute 
continuity follows. 

Conversely, suppose that vn <C [in uniformly in n, and let ko G N so that ||i/n|| < ko 
for all n. Let e > 0, and choose è > 0 so that if n G N and |/i„|(A) < 6, then 
|i/n|(A) < e. Now choose k e N such that ko > ko. It follows that || \kfin\ A \i/n\ — 
\vn\ II < 2e for all n. Therefore 

II \k\in\ A \vn\ - \vn\\ —>0 
11 " k 

uniformly in n, and we obtain the desired conclusion by appealing to Lemma 2.1. • 
The following theorem and corollary constitute our geometric interpretation of the 

Vitali convergence theorem. 
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THEOREM 2.3. Suppose that (Q, X, \i ) is a finite measure space and (fn) is a sequence 

in Ll(fi). The sequence (fn) converges to an element f G Ll([i) if and only if 

(i) (fn) is Cauchy in measure, and 

(ii) there is a uniformly integrable sequence (gn) in Lx(n) so that D(gn,fn) exists 

uniformly in n. 

PROOF. Suppose that (i) and (ii) hold, and let e > 0. We have that 

/*({*: | /n(0-/m(0| > e } ) - + 0 

asn,m -^ oo. Since D(gn,fn) exists uniformly in n, i/fn <C vgn uniformly in n, where 
Vfn(A) = iAfn dji and vgn(A) = SA Snap, A G l . Since (gn) is uniformly integrable, i/gn <C 
[i uniformly in n. Choose 8 > 0 so that if /x(A) < 8, then |^/J(A) = SA \fn\ dp, < e 
for all n. Let N G N so that if n,m > N and Çlnm = {t : \fn(t) —/m(0l > e} , then 
/x(QWjm) < 6. Therefore 

/ Q If» " /ml ^M - / Q ^ | / , " /ml ^ + / ^ |/n ~ / m | ^ 

- A i u ! / * -fml d»+Lw dfA+Ll/ml J/i 

< e/i(Q\Qm ,„) + 2e. 

Thus (/*„) is Cauchy in Lx(p,) and must converge in Ll(p). 

Conversely, suppose that (fn) —• / in Ll(fi). Clearly then (/n) must be Cauchy in 
measure and uniformly integrable. Further, D(fn,fn) exists uniformly in n. m 

In the following corollary, Lp(p,,X) = LP (£1,1,, p,,X) denotes the Bochner space of 
X-valued /?-th power integrable functions. 

COROLLARY 2.4. Suppose that (£1, Z, /x) /s a finite measure space, X is a Banach 

space, and (fn) is a sequence in LP(p,X). The sequence (fn) converges to an elementf in 

LP(p,X) if and only if 
(i) (fn) is Cauchy in measure, and 

(ii) there is a uniformly integrable sequence (gn) in LP(ji,X) so that D(\\gn(-)\\
p, 

\\fn(')\\p) exists uniformly in n. 

We remark that if (fn) is an arbitrary sequence inLp(p,X), then obviously Z>(||/n(-) IK, 
||/n(')IK) exists uniformly in n. Therefore if (fn) and/ belong to LP(p,X), (fn) —>fa.e. 
[/x], and (fn) is uniformly integrable (i.e., (S(.)fn dp) is equicontinuous), then ||/w —/|| —+ 
0. Thus Theorem 3 of [3] follows from 2.3. We also note that the generalization of the 
Lebesgue convergence theorem which appears in Chapter 4 of Royden [8] follows im­
mediately from 2.3. 
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3. Uniform Absolute Continuity. In this section we study generalizations and in­

terpretations of Theorem 1.1 motivated by the considerations of the preceding section. In 

general, we are interested in questions of the following type. If / / , K C ca(L), P C Hx K, 

and v <C fj, for (V, /i) G P, then what conditions on H and/or K will ensure that i/ «C /i 

uniformly for (y, /i) G P? The following very elementary example shows that the most 

obvious bi-sequential interpretation of Theorem 1.1 (suggested by Lemma 2.2 and The­

orem 2.3) is false. 

Let X be the a -algebra of Lebesgue measurable subsets of [0,1], and let À be Lebesgue 

measure on X. Let \in — ( 1 / n)X, and let i/n — A for all n. Obviously H = { vn : n G N } 

and K = {fj,n : n eN} are uniformly countably additive subsets of ca(L), and vn <C pm 

for all n and ra. However, it is plain that the absolute continuity is not uniform in n, i.e., 

if P = {(i/„, | i „ ) : « G N } , then it is not true that v <C /i uniformly for (V, /i) G P. We 

remark that it is not inconsequential that the set K in this example fails to be compact. 

The following notation will be useful. If / / , K C ca(L), then we write H <^ K if A G £ 

and inf{ |/x|(A) : /x G if} = 0 ensures that i/(A) = 0 for all i/ G / / . If / / < K, then 

certainly z/ <C /i for all (i/, /x) G i / x ^ . The remainder of this section will be concerned 

largely with studying the relative strengths of the following four conditions on H and K 

in the presence of various topological conditions: 

(a) v <C \i uniformly for (i/, \i) G H x K, 

(b) H<&K, 

(c) v < / i for(i/ , / i) eHx K, 

(d) i/ < /x for (i/, p)eHxK. 

It follows that (0) => (Z?) =» (c) =̂> (J). Examples at the end of the section will 

investigate the reverse implications. 

By modifying the sketch of the argument for Theorem 1 in [3], we are able to obtain 

the following bi-sequential version of Theorem 1.1. A simple corollary of this result 

shows that (d) => (a) if H is uniformly countably additive and K is compact. 

THEOREM 3.1. If(yn) is a uniformly countably additive sequence in ca(L) and (/iw) 

is a sequence in ca(L) so that 

(i) vn <C [in for each n, and 

(ii) (i/n(Ak)) —> 0 as (/i^(A^)) —• Ofor each ny then vn <C \in uniformly in n. 

Before we begin the proof of Theorem 3.1, we establish a technical lemma for uni­

formly countably additive sequences of measures. 

LEMMA 3.2. Suppose that (i/f) is a uniformly countably additive sequence from caÇL) 

and (Ai) is an arbitrary sequence of sets from X. If 6 > 0 and j G N, then there is 

a finite sequence (//)£= i of positive integers so that j < j \ < ji < • • • < j n and if 

Cn =Aj\ \Jl=xAj.,then 

h(cnnA;)| <s 

fori> j n . 
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PROOF. Deny the conclusion. Choosey'] > j and / > j \ so that \vt(C\ H A/)| > è, 
where C\ — Aj\ A;-,. Let72 be the smallest positive integer / which satisfies the require­
ments of the preceding sentence. Continuing, let 73 be the smallest positive integer so that 
73 > 72 and | i/J3 (C2 Pi A/3 )| > 8, where C2 = A/\ (Ajx U Aj2 ). Continue this process recur­
sively. Note that (Cf) is a decreasing sequence; therefore (C/\ C/+i ) is clearly a pairwise 
disjoint sequence in I . Further, note that d\ C,-+i = Cf\ Aji+]. Since | i/ji+l (C,nAy+1 )| > 8, 
we contradict the uniform countable additivity of (1//). • 

PROOF OF THEOREM 3.1. Deny the conclusion. Let c > 0 so that if 8 > 0, then there 
is a positive integer n and an element An G £ so that |//„|(A„) < <5 and |i/w(Aw)| > c. 
Therefore we may (and do) suppose that 

(*) \Hn\(A„) < l/n2 and \vn(An)\ > e , « G N . 

(Note that (| v\\ (An)) —> 0 for each k. ) Pass to a subsequence and obtain (z/;), (^;), and 
(A/) so that the following two inequalities hold: 

(1) \vi{Ai)\ > e 
oo 

(2) £ | ^ | (A / )<6 /2^ + 1 

/=*+i 

Now let 8 = c/4, and suppose that An, An ] , . . . , Ank satisfy the conclusions of 
Lemma 3.2 with respect to the sequence (i/n). Since n > 1 and 

k k 

J2 \vn(An H Ani)\ < Y, \"n\(Ani) < e/21+1, 

it follows that 
k k 

\vn(An\ \jAnt)\ = K(A„\ \jAnnAni)\ 
i=i /=i 

> k(A„)| -X>„ | (A„n An,)> 3c/4. 
i=i 

Put Hi = A„\ U*=1 A„., and recall that \i/p(Hi H Ap)\ < c /4 if p > n*. 
Next we start the process over as follows. Let/?i = n*, Ai,/ = APl+i\H\9 and z/j/ = 

i/pi+/, I ' G N . Apply Lemma 3.2 again and find positive integers n < n\ < • • • < nm 

so that if H2 = Ahn\ \JP=l AM/, then |i/i^(//2 H Ai^)| < e/8 for/7 > nm. Note that 
ki,i(Ai,,-)| = |i/p1+i(A^1+I-\HinAPl+/)| > 3c/4. Consequently, 

m 

ki,*(#2)| > ki,*(Ai,„)| -Eki , " l (Ai ,nnAi , n ; ) 
/=i 
m 

> ki,/i(Ai,„)| -^Cku-KAi^-) 
1=1 

> ki,n(Ai,J| - e / 2 ^ + " + 1 > c - c / 4 - c / 8 . 

Additionally, note that HiH H2 = 0. 
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If we continue the construction by putting p2 = nm, A2j = AP2+i \ H2, and i/2j = 
v\j,2+i, then we obtain #3, which misses Hi U H2, and a member v2^n of the sequence 
(i/n) so that 

K„(#3) | > e - e / 4 - e / 8 - e / 1 6 . 

Continuing inductively, we contradict the uniform countable additivity of (i/n). m 

COROLLARY 3.3. Suppose that Z is a a-algebra, H, K C ca(L), and H is uniformly 
countably additive. 

(i) Ifi/<^[i uniformly for fi G K whenever v G H, then v <C [i uniformly for 
(i/,H)EHxK. 

(ii) If K is compact and v <C p, for (i/,/i) G H x K, then v <C /1 uniformly for 
(y,p,)£HxK. 

PROOF, (i) Suppose that the uniform absolute continuity fails in H x K. Let e > 0, 
let (i/n) be a sequence in //, let (/i„) be a sequence in K, and let (A„) be a sequence in Z so 
that |i/n(Aw)| > e for all « and (|/xn|(A„)) —• 0. Certainly condition (ii) of Theorem 3.1 
must fail for the sequence (i/„, |//„|,A„) of triples. Therefore there exists p G N and a 
subsequence (n*) of positive integers and S > 0 so that 

|ï/p(An,)| > 5 

for each k. However, this contradicts the hypothesis since i/p <C /1 uniformly for /x G AT. 
(ii) In view of (i), it clearly suffices to say that if v G H, then 1/ <C /i uniformly for 

H e K. Suppose to the contrary that this uniformity does not hold. Let 1/ G //, let (/x„) be 
a sequence from AT, let e > 0, and let (An) be a sequence from Z so that (| /xn| (An)) —> 0 
and |ï/(An)| > e for each rc. Certainly (pn) must cluster at some point /1 in xY. Suppose 
|| /xn/ —/x || —-> 0. Therefore (p(Ani)) —* 0, and thus (I/(AWJ.)) —> 0, a clear contradiction. • 

Our next result shows that (b) and (c) are equivalent for arbitrary subsets H and rela­
tively compact subsets K of ca(L). 

THEOREM 3.4. Suppose that H,K C ca(Z) am/ that K is relatively compact. The 
following are equivalent: 

(i) H<^K 
(ii) v <^pfor(v,fi)eHx K. 

In addition, if H is uniformly countably additive, then each of(i) and (ii) is equivalent to 
(Hi) v <C [i uniformly for (y, p) G H x K. 

PROOF. Suppose that (i) holds and let /x G K. Let A G Z so that | /x | (A) = 0, and 
let (pn) be a sequence from K so that \\pn — p\\ —» 0. Certainly |/xn|(A) —> 0- Thus 
inf{ |£ |(A): £ G # } = 0, and i/(A) = 0 for all v G //. 

Conversely, suppose (ii) holds, A G Z, and inf{|/x|(A) : /x G AT} = 0 . Let (/x„) 
be a sequence from K so that (/xn) converges in norm to an element \x G caÇL) and 
(| pn\ (A)) —* 0. Therefore | p | (A) = 0, and the absolute continuity in (ii) forces z/(A) = 0 
for all v £H. 
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Now suppose that the set H is uniformly countably additive. If (ii) holds, then we 
immediately obtain (iii) by an application of Corollary 3.3(ii). 

Conversely, suppose (iii) holds, \i G K, v G //, A G X, and | /i | (A) — 0. Let e > 0, 
and let 6 > 0 so that if B G 1, £ G À:, and | £ \ (B)< 6, then 11/(#)| < e. Let (/x„) be a 
sequence from^T so that \\pn — /x|| —• 0. Thus (|/iw|(A)) —* 0; hence |i/(A)| < e. Since 
e was arbitrary, i/(A) = 0. • 

If the set K is relatively weakly compact, then condition (b) is implied by 

(</) v < \i for all (i/, /z) G # x Kw. 

For suppose that A G X and inf { | /i | (A) : /i G ^ } = 0 . Let (//„) be a sequence in A' so 
that |/i„|(A) < \/n,n G N, and let \x be a weak cluster point of (/!„). I f5 G I D A , 
then fi(B) = 0. Therefore | /z | (A) = 0, and i/(A) = 0 for all i/ e H, i.e., (c') => (6). As a 
consequence of these observations and the preceding theorems, we immediately obtain 

PROPOSITION 3.5. Suppose that H, K c ca(L). 
(A) If K is relatively weakly compact and convex, then H<^Kiffv <C \i for all 

(B) IfK is weakly compact, then H <C K iffv <C /i for all {y, /i) G H x K. 

Before turning to the examples mentioned at the beginning of this section, we briefly 
discuss parameterized versions of the Vitali-Hahn-Saks theorem. We begin by noting that 
if rn denotes the n-th Rademacher function, vn(A) = JA rn dX for each measurable subset 
A of [0,1], and /x„ = (1 / n)X for each n, then i/n <C \im for each n and m, (i/w(A)) —• 0 for 
each A, and i/n is not absolutely continuous with respect to \in uniformly in n. However, 
we do have the following corollary of 3.3 and 3.4. 

PROPOSITION 3.6. (i) If H = {vn : n G N } C caÇL), K C ca(l), i/n < /i for each 
(n,n) G N x ^ , and (yn(A)} converges for each A G X, then vn <C \i uniformly for 
(n,/x) GN X Ï 

(7/) //*// an J A' are as above and K is compact, then vn <C /i uniformly for (n, /i) G 
N x AT. 

To apply 3.3 and 3.4, note that the convergence of (i/n(A)) for each A implies that 
0„) is uniformly countably additive, e.g., see the proof of Theorem 3.5 in [2]. 

The elementary example at the beginning of this section shows that (d) ^> (c). More 
substantial examples are required to show that none of the other reverse implications 
hold. 

EXAMPLE 3.7. Let (rn) be the sequence of Rademacher functions, let /xn(A) = 
iA \{rn + l)d\, and let A„ = /x„ + (l/n)A, n G N. Let H = {A}, and let K = 
{ Xn : n G N }. Certainly both H and K are uniformly countably additive ((rn) is uni­
formly bounded). Now let Bn = {t : r„(f) = — 1}, n G M. Therefore fin(Bn) = 0 and 
Xn(Bn) — l/2n for each n. Clearly we do not have uniform absolute continuity for HxK, 
i.e., (a) does not hold. 
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Now suppose that A is a measurable set and that inf{ | An|(A)} = 0. Since 0 < 
(l//i)A(A) < Xn(A) for all n and (An(A)) -» (1/2)A (A), it follows that A (A) = 0, 
Thus (b) holds, i.e., (b) ^ (a). 

We remark that Example 3.7 also allows us to distinguish between condition (ii) of 
Theorem3.1 and condition (b). Specifically, if//, K C ca(L), then we say that the ordered 
pair (//, K) satisfies (e) if 

(i/(Ak)) —* 0 whenever (/x )̂ is any sequence from K and (A*) 

is any sequence from X so that (| nk\ (A*)) —• 0. 

We note that (e) => (b). For if inf { | p | (A) : p £ K} = 0, then let A k = A for each k, and 
choose (fik) from K so that (|/i*|(AjO) —•» 0. Therefore i/(A) = I/(AJ0 —> 0. However, if 
(fr) implied (e), then we could apply Theorem 3.1 to the constant sequence (A) and the 
sequence (A„) of 3.6 and conclude that À < A „ uniformly in n. 

In addition, we note that Example 3.7 allows us to see that the equivalences of The­
orem 3.4 do not hold if we merely assume that K is weakly compact. Specifically, let 
K0 = { An : n £ N } U { (1 / 2)A }, and let H = { A }. It follows that K0 is weakly com­
pact, H is uniformly countably additive, and H <C Ko. However, since (An(#n)) —> 0 
and A (Bn) = 1/ 2 for all n, A is not absolutely continuous with respect to Xn uniformly 
inn. 

Our next example shows that (c) ^ (b). 

EXAMPLE 3.8. As in the preceding example, let (rn) denote the sequence of Rade-
macher functions, let an{A) = SAH[0,\/2](^/ 2)(rn + 1) dX, let \in — crn + (1 / n)X, let H = 
{A}, and let K = {/xn : n e N}. Certainly A <C \in for all n. Clearly 
inf r t{|/in |([l/2,l])} = infn{l/2rc} = 0, and A([l/2,1]) = 1 / 2 . Therefore it is not 
the case that H <C K. Since \an — <7m|| = 1/4 for all n, n ^ m, it follows that K is 
closed, i.e., v <C /i for (i/, [i) G H x Â'. 

4. Uniform Differentiability. In this section we establish a Gateaux differentiabil­
ity result for continuous convex functions which is motivated by [2] and Sections 2 and 3 
of this paper. In fact, this theorem can be interpreted as generalizing 3.3 to the setting of 
an arbitrary continuous convex function. If/: X —* R is a continuous convex function, 
then Df(x,y) is defined to be \imt-^(f(x + ty) —f(x))/1, provided that this limit exists. 
Let df(a) denote the subgradient off at a, i.e. 

df(a) = {x* £ X* : x*(x) <f(a + x) -f{a), x £ X}. 

We note that df: X —• X* is a multivalued mapping which is both monotone and maximal 
[6], [7]. In the following theorem, we denote w*-convergence by —>w\ 

THEOREM 4.1. Iff: X —• R is a continuous convex function, M and N are non-empty 
subsets ofX, M is compact, and N is relatively compact, and Df(x,y) exists for x G M 
and y G N, then Df(x, y) exists uniformly for x £ M and y £ N. 

PROOF. Suppose that/, M, and N satisfy the hypotheses. Then N is compact. Note 
that Df(x, y) exists for JC £ M and y £ N. Suppose that the conclusion of the theorem is 
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false. Let (an) be a sequence from M, (bn) be a sequence from N, e be a positive number, 
and (tn) be a null sequence of positive numbers so that 

f(an + tnbn) -f(an - tnbn) - 2f(an) > tne 

for n G N. Let x* G 3/(a„ + *„£>„) and v* G d/(a„ - tnbn). Then 

x*n(-tnbn) <f(an + tnbn - tnbn) -f(an + tnbn) 

and 
yn(tnbn) <f(an - tnbn + /„£„) - / ( 0 n - tnbn) 

for each n. Combining these inequalities, we see that 

-tn(x*n - y*n,
 bn) < 2f(an) ~ f(an + tnbn) -f(an ~ tnbn) < -tnt\ 

thus (JC* — y*,bn) > e for all n. Now since df is locally bounded and M and V̂ are 
compact, we may (and do) suppose without loss of generality that (an) —> a G M, 
(bn) —> b G N, and (JC* ) and (j* ) are subnets (respectively) of (JC*) and (y*) which 
are w*-convergent. Let x*, y* G X* so that x*a -^w* x* and y*na -+

w* y*. The maximal 
monotonicity of df ensures that x*,y* G df(a). But then x*(b) — y*(b) since Df(a,b) 
exists. However, (JC* — y*,b) = lima(x*a — y* a ,^ a) > e. This contraditionguarantees 
that the desired uniformity does hold. • 
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