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THE VITALI INTEGRAL CONVERGENCE THEOREM
AND UNIFORM ABSOLUTE CONTINUITY

ELIZABETH M. BATOR, RUSSELL G. BILYEU AND PAUL W. LEWIS

ABSTRACT. A geometric version of the Vitali integral convergence theorem is es-
tablished. Parameterized versions of results on uniform absolute continuity in spaces of
measures suggested by the convergence theorem are studied.

1. Introduction. Intwo papersinthe 1970’s, J. K. Brooks [3] and Brooks and Jew-
ett [4] established marked improvements of the Vitali-Hahn-Saks theorem and the Vitali
integral convergence theorem as a consequence of the following fundamental theorem
on uniform absolute continuity, a result which has an antecedent in the classical paper
by Bartle, Dunford, and Schwartz [1].

THEOREM 1.1 [3]. Suppose that (2, X) is a measurable space and that H is a uni-
formly countably additive subset of ca(Z). If p € ca(X) andv <K u forallv € H, then
v < u uniformly forv € H.

In Section 2 of this paper we establish a geometric version of the Vitali convergence
theorem. Our version of the Vitali theorem raises numerous questions about parameter-
ized—or collectionwise—versions of Theorem 1.1. These questions are studied in some
detail in Section 3. We also point out a parameterized version of the Vitali-Hahn-Saks
theorem which follows immediately from deliberations in this section. We then conclude
the paper by establishing a uniform differentiability result for arbitrary continuous con-
vex functions on Banach spaces which is motivated by the measure theoretic results of
Section 3.

All Banach spaces X in this paper are defined over the real field R. If x,y € X, then
D(x,y) will denote the Gateaux derivative of the norm at x in the direction y provided
that this derivative exists, i.e., D(x, y) = lim,—g “ﬁﬂ,tlﬂ We refer the reader to Diestel
[5]1 and Rockafellar [6], [7] for a discussion of Gateaux differentiability of convex func-
tions. We denote the one-sided Gateaux derivatives (which always exist) by D*(x, y) and
D™ (x,y). If X is a o -algebra, then ca(Z) is the Banach space (total variation norm) of all
countably additive real valued measures defined on . If S C X, then the norm closure
of S will be denoted by S and the weak closure will be denoted by S”.
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2. Vitali’s Convergence Theorem. We begin with parameterized versions of two
results in Bilyeu and Lewis [2]. We sketch the proofs.

LEMMA 2.1. If X is an abstract L-space and each of (f,) and (g,) is a sequence from
X, then the following are equivalent:
(i) D(fp, gn) exists uniformly in n,
(ii) D(|f,|.|gn|) exists uniformly in n,
(iii) |kful N | gnl " | gn| uniformly in n.

PROOF. We remark that because of the absolute values which appear in (iii) it clearly
suffices to show that (i) < (iii). Now

—N\kfn = gull + |&fall < D™ (far 8n) < D*(frr8n) < ||Kfu+ &all — | Kfull, k€N

Therefore D(f,, g,) exists uniformly in n iff
| &fs + gull + || &fn — gall — 2||Kfull — O
uniformly in n. Thus by Lemma 2.3 of [2], D(f,, g) exists uniformly in n iff

| &f + gnll + | Kfn — gnll — 2| Kfall

= 2/l kfll + 2] 1 gal = ([KFal A 12aD)]| = 201682l
= 2|[[gal = (ful A [gaDIl — O uniformly in n. .

DEFINITION. Let X be a o-algebra and let each of (u,) and (v,) be a sequence in
ca(X). We say that v, < pu, uniformly in n provided that if ¢ > O then thereisad > 0
such that |v,(A)| < € whenever A € Z,n € N, and |p,|(A) < §.

LEMMA 2.2. Suppose that X is a o-algebra and each of (iu,) and (v,) is a sequence
in ca(X). If D(u,,vy) exists uniformly in n, then v, <K p, uniformly in n. Conversely, if
(vn) is bounded and v,, K p, uniformly in n, then D(u,,v,) exists uniformly in n.

PROOF.  Suppose that D(,, v,) exists uniformly in n. Therefore || [kua| A |va| —
[val || " 0 uniformly in n. Let € > 0, and choose ky € N so that || |koun| A |va| —

|va| || < € for all n. If |koun|(A) < e, then |v,(A)| < 2e, and the uniform absolute
continuity follows.

Conversely, suppose that v, < u, uniformly in n, and let kg € N so that ||v,|| < ko
for all n. Let ¢ > 0, and choose § > 0 so that if n € N and |u,|(A) < §, then
[va|(A) < €. Now choose k € N such that k6 > k. It follows that || |ku,| A |v,] —
|[va| || < 2€ for all n. Therefore

| 1Kbaal A [val = vl

—0
k

uniformly in n, and we obtain the desired conclusion by appealing to Lemma 2.1. ]
The following theorem and corollary constitute our geometric interpretation of the
Vitali convergence theorem.
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THEOREM 2.3.  Suppose that (2, X, 1) is a finite measure space and (f,,) is a sequence
in L'(w). The sequence (f,) converges to an element f € L' (i) if and only if
(i) (fn) is Cauchy in measure, and
(ii) there is a uniformly integrable sequence (g,) in L'(u) so that D(g,.f,) exists
uniformlyin n.

PROOF. Suppose that (i) and (ii) hold, and let ¢ > 0. We have that

p{t: [fu® — fu®] > €})—0

as n,m — 00. Since D(gy,f,) exists uniformly in n, v;, < v,, uniformly in n, where
vi(A) = hfudpandrg (A) = f4 gadp,A € X. Since (g,) is uniformly integrable, v,, <
p uniformly in n. Choose § > 0 so that if p(A) < 8, then |vg,|(A) = f |fu] dp < €
for all n. Let N € N so thatif n,m > N and Q,,, = {1 : |fu(t) — fiu()] > €}, then
() < 6. Therefore

Vo=t di = [} o Vo= Faldn+ [, V= fol dn
< Joan, fn = fonl ds + /an fol dps + /QM fon| dpe
< €p(Q\ Qup) + 2.

Thus (f,) is Cauchy in L'(x) and must converge in L' (p).
Conversely, suppose that (f,) — f in L'(u). Clearly then (f,) must be Cauchy in
measure and uniformly integrable. Further, D(f,, f,,) exists uniformly in n. (]
In the following corollary, LP(u,X) = LP(Q, %, u,X) denotes the Bochner space of
X-valued p-th power integrable functions.

COROLLARY 2.4. Suppose that (Q,X, i) is a finite measure space, X is a Banach
space, and (f,) is a sequence in LP (i, X). The sequence (f,) converges to an element f in
LP(u, X) if and only if

(i) (fx) is Cauchy in measure, and
(ii) there is a uniformly integrable sequence (g,) in L’ (u,X) so that D(||g.(")||?,
lfn(OII7) exists uniformly in n.

We remark that if (f,,) is an arbitrary sequence in L”(u, X), then obviously D(||f,(-)||?,
[[/2()]|?) exists uniformly in n. Therefore if (f,) and f belong to L (u, X), (f,) — f a.e.
[1], and (f,) is uniformly integrable (i.e., ()., f» dp) is equicontinuous), then ||f, — f|| —
0. Thus Theorem 3 of [3] follows from 2.3. We also note that the generalization of the
Lebesgue convergence theorem which appears in Chapter 4 of Royden [8] follows im-
mediately from 2.3.
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3. Uniform Absolute Continuity. In this section we study generalizations and in-
terpretations of Theorem 1.1 motivated by the considerations of the preceding section. In
general, we are interested in questions of the following type. If H, K C ca(X),P C HXK,
and v < u for (v, u) € P, then what conditions on H and/or K will ensure that v <
uniformly for (v, u) € P? The following very elementary example shows that the most
obvious bi-sequential interpretation of Theorem 1.1 (suggested by Lemma 2.2 and The-
orem 2.3) is false.

Let X be the o -algebra of Lebesgue measurable subsets of [0,1], and let A be Lebesgue
measure on 2. Let u, = (l/n))\, and letv, = X for all n. Obviously H = {v, : n € N}
and K = {p, : n € N} are uniformly countably additive subsets of ca(Z), and v, <
for all n and m. However, it is plain that the absolute continuity is not uniformin n, i.e.,
if P = {(vn, tn) : n € N}, then it is not true that v < g uniformly for (v, u) € P. We
remark that it is not inconsequential that the set K in this example fails to be compact.

The following notation will be useful. If H, K C ca(X),then we write H < K ifA €
and inf{|u|(A) : p € K} = 0 ensures that v(A) = Oforallv € H. If H < K, then
certainly v < pu forall (v, u) € H X K. The remainder of this section will be concerned
largely with studying the relative strengths of the following four conditions on H and K
in the presence of various topological conditions:

(a) v < p uniformly for (v,u) € H X K,

(b) HKK,

(¢) v < pfor(v,pu) € Hx K,

(d) v < pfor(v,u) € HxXK.

It follows that (@) = (b) = (¢) = (d). Examples at the end of the section will
investigate the reverse implications.

By modifying the sketch of the argument for Theorem 1 in [3], we are able to obtain
the following bi-sequential version of Theorem 1.1. A simple corollary of this result
shows that (d) = (a) if H is uniformly countably additive and K is compact.

THEOREM 3.1. If (v,) is a uniformly countably additive sequence in ca(X) and (u,)
is a sequence in ca(X) so that
(i) vo K wp for each n, and
(ii) (V,,(Ak)) 7 0as (uk(Ak)) —I-: 0 for each n, then v, <K |, uniformly in n.

Before we begin the proof of Theorem 3.1, we establish a technical lemma for uni-
formly countably additive sequences of measures.

LEMMA3.2. Suppose that (v;) is a uniformly countably additive sequence from ca(X)
and (A;) is an arbitrary sequence of sets from Z. If 6 > 0 and j € N, then there is
a finite sequence (j;);_, of positive integers so that j < j; < j, < -+ < j, and if
Cn = Aj\ U, A}, then

[vi(C,N A <6

fori> j,.
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PROOF. Deny the conclusion. Choose j; > jand i > j; so that [v(C, N A;)| > 6,
where C; = A;\ 4;,. Let j, be the smallest positive integer i which satisfies the require-
ments of the preceding sentence. Continuing, let j3 be the smallest positive integer so that
J3 > jpand |v;,(C2NA),)| > 6, where C; = A;\ (A4, U A;,). Continue this process recur-
sively. Note that (C;) is a decreasing sequence; therefore (C;\ Ci,) is clearly a pairwise
disjoint sequence in . Further, note that C;\ Ciy; = CNA;,,. Since |v;, (CNA;,)| > 6,
we contradict the uniform countable additivity of (v;). ]

PROOF OF THEOREM 3.1.  Deny the conclusion. Lete > 0 so thatifé > 0, then there
is a positive integer n and an element A, € X so that |u,|(A,) < § and |v,(A,)| > €.
Therefore we may (and do) suppose that

(*) [pnl (An) < l/n2 and |v,(A,)| > €, n €N.

(Note that (|1/k| (A,,))n — 0 for each k. ) Pass to a subsequence and obtain (v;), (1;), and
(A;) so that the following two inequalities hold:

() |viAn| > e
2 3 |wl@) < e/2

i=k+1

Now let § = ¢/4, and suppose that A,, A,,,..., Aysatisfy the conclusions of
Lemma 3.2 with respect to the sequence (v,). Since n > 1 and

k k
3 |vaAn N A <3 val(An) < €/ 2",
i=1 i=1
it follows that
k k
'Vn(An\ UAn,)' = |Vn(An\ UAnmAn,)I
i=1 i=1
k
> [vaAn)| = D va| (A N Ay) > 3€/ 4.
i=1

Put H, = A,\ UL, A, and recall that |v,(H; N A,)| < €/4if p > ny.

Next we start the process over as follows. Let p; = m, A1; = A,,,H-\ Hy,andv,; =
Vp+i» I € N. Apply Lemma 3.2 again and find positive integers n < ny < -+ < ny,
so that if H, = A;,\ U™, A1, then |v),(H, N Ayp)| < €/8 for p > n,. Note that
[V 1iA1L)| = |Vp+i(Ap i\ Hi N Apsi)| > 3€/ 4. Consequently,

IVl,n(H2)| Z lVI,n(Al,n)! - Z !Vl,nl(Al,n N Al,n,)
i=1

m

> via@Ar)] = 2 Vil (Are)
i=1

> |ViaArn)| — €/ 27 > e —e/4—€/8.

Additionally, note that H; N H, = .
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If we continue the construction by putting p» = np, A2; = Ap4i \ Hy, and v,; =
V1p,+i»> then we obtain H3, which misses H; U H», and a member v, of the sequence
(vn) so that

[von(H3)| > € —€/4—€/8—¢€/ 6.

Continuing inductively, we contradict the uniform countable additivity of (v,). n

COROLLARY 3.3.  Suppose that X is a 0-algebra, H,K C ca(X), and H is uniformly
countably additive.
(i) If v < p uniformly for u € K whenever v € H, then v < p uniformly for
(v,p) € HXK.
(ii) If K is compact and v < p for (v,u) € H X K, then v < p uniformly for
(v,u) € HxK.

PROOF. (i) Suppose that the uniform absolute continuity fails in H X K. Let e > 0,
let (v,,) be a sequence in H, let (i1,,) be a sequence in K, and let (A,) be a sequence in X so
that |v,(A,)| > € forall n and ([p,,|(A,,)) — 0. Certainly condition (ii) of Theorem 3.1
must fail for the sequence (v, | pn|,A,) of triples. Therefore there exists p € N and a
subsequence (n) of positive integers and § > 0 so that

[vp(An)| > 6

for each k. However, this contradicts the hypothesis since v, < p uniformly for 4 € K.

(i1) In view of (i), it clearly suffices to say that if v € H, then v < g uniformly for
1 € K. Suppose to the contrary that this uniformity does not hold. Let v € H, let (i,,) be
a sequence from K, let e > 0, and let (A,) be a sequence from X so that (| u,| (A,)) — 0
and |v(An)| > e for each n. Certainly (u,) must cluster at some point u in K. Suppose
|| e, — ]| — O. Therefore (11(A,,)) — 0, and thus (v(A,,)) — 0, aclear contradiction. m

Our next result shows that (b) and (c¢) are equivalent for arbitrary subsets H and rela-
tively compact subsets K of ca(X).

THEOREM 3.4. Suppose that H, K C ca(Z) and that K is relatively compact. The
following are equivalent:
(i) HLKK
(ii) v < p for (v, p) € Hx K.
In addition, if H is uniformly countably additive, then each of (i) and (ii) is equivalent to
(iii) v < p uniformly for v,pu) € H X K.

PROOF. Suppose that (i) holds and let u € K. Let A € X so that |u|(A) = 0, and
let (1) be a sequence from K so that ||u, — p|| — 0. Certainly |u,|(A) — 0. Thus
inf{|£|(A): € € K} =0,and v(A) = Oforallv € H.

Conversely, suppose (ii) holds, A € X, and inf{|u|(A) : © € K} = 0. Let (y,)
be a sequence from K so that (u,) converges in norm to an element 1 € ca(X) and
( | ,u,,I(A)) — 0. Therefore [ [(A) = 0, and the absolute continuity in (ii) forces v(A) = 0
forallv € H.
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Now suppose that the set H is uniformly countably additive. If (ii) holds, then we
immediately obtain (iii) by an application of Corollary 3.3(ii).

Conversely, suppose (iii) holds, u € K, v € H,A € X, and |p|(A) = 0. Let e > 0,
andletd > Osothatif B € Z, £ € K, and |£|(B) < §, then [v(B)| < €. Let (u,) be a
sequence from K so that || g, — p|| — 0. Thus ([u,,l(A)) — 0; hence |v(A)| < e. Since
€ was arbitrary, v(A) = 0. [

If the set X is relatively weakly compact, then condition (b) is implied by

() v < pforall (v,p) € Hx K",

For suppose that A € X and inf{ |px|(A) : p € K} = 0. Let (i) be a sequence in K so
that |, (A) < 1/n,n € N, and let 1 be a weak cluster point of (u,). If B € £N A,
then pu(B) = 0. Therefore |1|(A) = 0, and v(A) = O for all v € H, i.e., (¢') = (b). Asa
consequence of these observations and the preceding theorems, we immediately obtain

PROPOSITION 3.5.  Suppose that H, K C ca(Z).

(A) If K is relatively weakly compact and convex, then H < K iff v < p for all
(v,u) € HxK.

(B) IfK is weakly compact, then H K K iff v < p forall (v,p) € H X K.

Before turning to the examples mentioned at the beginning of this section, we briefly
discuss parameterized versions of the Vitali-Hahn-Saks theorem. We begin by noting that
if r, denotes the n-th Rademacher function, v,(A) = [, r, d\ for each measurable subset
Aof[0,1],and u, = (1/ n)A foreach n, thenv, < u,, foreach n and m, (z/,,(A)) -— 0 for
each A, and v, is not absolutely continuous with respect to p, uniformly in n. However,
we do have the following corollary of 3.3 and 3.4.

PROPOSITION 3.6. (i) If H = {v,:n € N} C ca(X), K C ca(), v, < u for each
(n,p) € N x K, and (V,,(A)) converges for each A € X, then v, < p uniformly for
(n,p) EN XK.

(ii) If H and K are as above and K is compact, then v,, < p uniformly for (n,u) €

N X K.

To apply 3.3 and 3.4, note that the convergence of (V,,(A)) for each A implies that
(v,) 1s uniformly countably additive, e.g., see the proof of Theorem 3.5 in [2].

The elementary example at the beginning of this section shows that (d) 7 (c¢). More
substantial examples are required to show that none of the other reverse implications
hold.

EXAMPLE 3.7. Let (r,) be the sequence of Rademacher functions, let p,(A) =
Jat(ra+ Ddx, and let N, = p, +(1/m)A,n € N.Let H = {1}, and let K =
{Ax : n € N}. Certainly both H and K are uniformly countably additive ((r,) is uni-
formly bounded). Now let B, = {t : ry(f) = —1}, n € N. Therefore p,(B,) = 0 and
M(By) =1 / 2n for each n. Clearly we do not have uniform absolute continuity for H X K,
i.e., (a) does not hold.
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Now suppose that A is a measurable set and that inf{|),|(4)} = 0. Since 0
(1/mA(A) < \,(A) for all n and (/\,,(A)) — (1/2)X(A), it follows that A(A) =
Thus (b) holds, i.e., (b) # (a).

We remark that Example 3.7 also allows us to distinguish between condition (ii) of
Theorem 3.1 and condition (b). Specifically, if H, K C ca(X), then we say that the ordered
pair (H, K) satisfies (e) if

<
0,

(V(Ak)) — 0 whenever (uy) is any sequence from K and (Ay)
is any sequence from X so that (l il (Ak)) — 0.

We note that (e) = (b). For if inf{ | |(A) : p € K} = 0, thenlet Ay = A for each k, and
choose (u;) from K so that (|pk| (Ak)) — 0. Therefore v(A) = v(Ay) — 0. However, if
(b) implied (e), then we could apply Theorem 3.1 to the constant sequence () and the
sequence (\,) of 3.6 and conclude that A\ < A, uniformly in n.

In addition, we note that Example 3.7 allows us to see that the equivalences of The-
orem 3.4 do not hold if we merely assume that K is weakly compact. Specifically, let
Ko={A:neN}U{d/2)A},andlet H= { A }. It follows that K, is weakly com-
pact, H is uniformly countably additive, and H < K. However, since (/\,,(B,,)) — 0
and A\(B,) =1 / 2 for all n, A is not absolutely continuous with respect to A, uniformly
in n.

Our next example shows that (c) # (b).

EXAMPLE 3.8. As in the preceding example, let (r,) denote the sequence of Rade-
macher functions, let 0,(A) = fAm[o,l/zl(l/ 2)(rp+ 1)dX, letp, = o, +(1/n)X, let H =
{A\}, and let K = {p, : n € N}. Certainly A\ < p, for all n. Clearly
inf,{|pua|([1/2,1D} = inf,{1/2n} = 0, and A([1/2,1]) = 1/2. Therefore it is not
the case that H < K. Since |0, — || = 1/4 for all n, n # m, it follows that X is
closed, i.e., v < p for (v,p) € H x K.

4. Uniform Differentiability. In this section we establish a Gateaux differentiabil-
ity result for continuous convex functions which is motivated by [2] and Sections 2 and 3
of this paper. In fact, this theorem can be interpreted as generalizing 3.3 to the setting of
an arbitrary continuous convex function. If f: X — R is a continuous convex function,
then Df(x,y) is defined to be lim,_o(f(x + ty) — f(x)) / t, provided that this limit exists.
Let df (a) denote the subgradient of f at a, i.e.

df(a)={x* € X’ : x"(x) <f(a+x)—f(a), x € X}.

We note that of: X — X* is a multivalued mapping which is both monotone and maximal
[6], [7]. In the following theorem, we denote w*-convergence by —¥

THEOREM 4.1. Iff: X — R isa continuous convex function, M and N are non-empty
subsets of X, M is compact, and N is relatively compact, and Df (x,y) exists for x € M
andy € N, then Df (x,y) exists uniformly forx € M andy € N.

PROOF. Suppose that f, M, and N satisfy the hypotheses. Then N is compact. Note
that Df(x, y) exists for x € M and y € N. Suppose that the conclusion of the theorem is
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false. Let (a,) be a sequence from M, (b,,) be a sequence from N, € be a positive number,
and (#,) be a null sequence of positive numbers so that

f(an + tyby) —f(an — tyby) — 2f(an) > the
forn € N. Let x} € df (a + t,b,) and y: € f (a, — tyby,). Then
x:(_tnbn) < flan + tyby, — tyby) — f(an + tyby)

and
y;(tnbn) < flan — thbp + tyby) — f(an — thaby)

for each n. Combining these inequalities, we see that
—t,,(x; - y;’ bn> < 2f(an) — f(@n + tabp) — f(an — taby) < —tye;

thus (x} — y% b,) > € for all n. Now since df is locally bounded and M and N are
compact, we may (and do) suppose without loss of generality that (a,) — a € M,
(b,) — b € N, and (x,,) and (y, ) are subnets (respectively) of (x;) and (y;) which
are w*-convergent. Let x*, y* € X* so that x —"" x* and y; —"" y*. The maximal
monotonicity of df ensures that x*,y* € df(a). But then x*(b) = y*(b) since Df(a, b)
exists. However, (x* —y*,b) = limy(x}_ —y; ,bs,) > €. This contradition guarantees
that the desired uniformity does hold. n
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