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Quantum interior point methods

The authors are grateful to Sander Gribling for reviewing this chapter.

Rough overview (in words)

Interior point methods (IPMs) are a type of efficient classical algorithm for

solving convex optimization problems such as linear programs (LPs), second-

order cone programs (SOCPs), and semidefinite programs (SDPs). IPMs are

the basis for effective optimization software tools (e.g., [355, 38]), which are

widely used for solving convex optimization problems that arise in industry.

They are called interior point methods because, in contrast to the simplex

method, they iteratively generate a sequence of points that lie in the interior

of the convex region; this sequence of points is guaranteed to rapidly approach

the optimal point (which, when it exists and the objective function is convex,

is guaranteed to lie at the boundary of the convex region). At each iteration,

the next point is produced by solving a system of linear equations. See, for

example, [1053, 1052, 797, 438] for context on how IPMs fit into the history

of methods for optimization.

Quantum interior point methods (QIPMs) are quantum algorithms that

leverage a similar approach as classical IPMs, but perform certain aspects of

the algorithm in a quantum manner. For example, QIPMs were first introduced

in [610], where the quantum algorithm is identical to classical IPMs, except

that it determines the next point using a quantum linear system solver (QLSS)

combined with quantum state tomography, rather than a classical linear system

solver. Subsequent work has explored other forms of quantizing classical

IPMs that do not rely on the QLSS [51, 69].

Classical IPMs are generally efficient in the sense that they can solve convex

optimization problems in time scaling as a polynomial in the number of vari-
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292 22. Quantum interior point methods

ables. The exact degree of the polynomial depends on which kind of convex

optimization problem is being solved, as well as certain choices about the IPM.

Since QIPMs often rely on state tomography, they are generally expected to

require time that scales at least linearly in the number of variables, and lower

bounds along these lines are known [48]; thus, the best one can hope for is

a polynomial speedup over classical IPMs. The exact runtime of the quantum

algorithm depends on instance-specific parameters, such as the condition num-

ber of matrices that appear during the course of the algorithm, which makes it

difficult to determine whether a speedup exists in practice.

Rough overview (in math)

For simplicity, we focus on LPs, the simplest kind of optimization problem

where QIPMs can be applied. An LP is specified by an m × n matrix A, an

n-dimensional vector c, and an m-dimensional vector b, and it is given by

min
x∈Rn
⟨c, x⟩

subject to Ax = b

xi ≥ 0 for i = 1, . . . , n

, (22.1)

where ⟨u, v⟩ denotes the standard dot product between vectors u and v.

The function ⟨c, x⟩ is called the objective function, and a point x is called

feasible if it satisfies Ax = b and xi ≥ 0 for all i. Inequality constraints of the

form Ax ≤ b can be handled by introducing slack variables. We denote the

feasible point that optimizes the objective function by x∗.

An important concept in mathematical optimization is duality, where given

one optimization problem, an equivalent “dual” optimization problem can be

generated through the method of Lagrange multipliers (see [180, Section 5]).

The dual of the LP in Eq. (22.1) is given by

max
y∈Rm
⟨b, y⟩

subject to A⊺y + s = c

si ≥ 0 for i = 1, . . . , n

. (22.2)

Alternatively, one can drop the s variable and constraints that si are positive,

and simply write A⊺y ≤ c. Denote the optimal feasible points for the dual by

(y∗, s∗).

It can be shown that the optimal point lies at the boundary of the feasible

region and satisfies the relationship xisi = 0 for all i. A key concept in IPMs

is the central path, a set of points parameterized by µ > 0. The central point

with parameter µ is the feasible point for which xisi = µ for all i. In general,
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22. Quantum interior point methods 293

this point will be in the interior of the feasible region, but as µ→ 0, the central

path approaches the optimal point on the boundary.

The most effective classical IPMs are “primal-dual path-following

methods,” which generate a length-T sequence of primal-dual point pairs

(x(t), y(t), s(t)) ∈ Rn × Rm × Rn for t = 0, . . . ,T − 1 that approximately

follows the central path toward the optimum. Given (x(t), y(t), s(t)), the point

(x(t+1), y(t+1), s(t+1)) = (x(t) + ∆x, y(t) + ∆y, s(t) + ∆s) is formed by solving the

following linear system of equations, which is called the Newton system, as it

corresponds to one iteration of Newton’s method.


A 0 0

0 A⊺ I

S 0 X





∆x

∆y

∆s

 =



b − Ax(t)

c − A⊺y(t) − s(t)

σ x(t)⊺ s(t)

n
1 − Xs(t)

 , (22.3)

where σ < 1, 1 denotes the all 1s vector, and S = diag(s(t)), X = diag(x(t))

are diagonal n × n matrices formed from the entries of s(t) and x(t). Note that

there are alternative ways to formulate the Newton system (see, e.g., [70, 68]).

To understand Eq. (22.3), note that if the point (x(t), y(t), s(t)) is feasible, then

the first two entries on the right-hand side are zero. Furthermore, if it is on

the central path, then Xs(t) = x(t)⊺ s(t)

n
1, so if we were to choose σ = 1, then

the entire right-hand side would be zero, and the solution to the system would

be ∆x = ∆y = ∆s = 0. If instead we set σ = 1 − δ for sufficiently small δ,

the solution will correspond to taking a small step along the central path in

the direction of decreasing µ. Technically, we do not exactly follow the central

path, but it can be guaranteed that the sequence of points stays within a small

neighborhood of it. As µ → 0, the central path approaches the optimal point

(x∗, y∗, s∗), so by following the path toward µ = 0, a classical or quantum IPM

can guarantee success.

The classical IPM can solve the Newton system exactly using Gaussian

elimination in O(n3) operations, or it can solve the system approximately using

a variety of iterative solvers such as the conjugate gradient method. In contrast,

the standard approach for a QIPM is to solve the Newton system by using a

QLSS to repeatedly prepare the O(log(n))-qubit state |∆x,∆y,∆s⟩ whose am-

plitudes encode the solution to the Newton system. By preparing many copies,

the algorithm can perform (pure state) quantum state tomography to yield an

estimate (∆x,∆y,∆s) for the amplitudes (∆x,∆y,∆s) to some desired precision

ξ (in 2-norm), that is,

∥(∆x,∆y,∆s) − (∆x,∆y,∆s)∥ ≤ ξ∥(∆x,∆y,∆s)∥ .

Due to the tomography step, the QIPM is only able to generate solutions to

the Newton system that are inexact. There has been some question in the liter-
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294 22. Quantum interior point methods

ature whether the (classical or quantum) IPMs with the fastest guaranteed con-

vergence rate (i.e., the number of iterations needed to reduce µ to ϵ) are appli-

cable even when inexact solutions are used, as this causes intermediate points

to be (slightly) infeasible [70]. However, if ξ is sufficiently small, the method

appears to work empirically even using the inexact solutions that would be out-

put by a quantum solver [328]. Alternatively, there exist workarounds [70] that

ensure feasibility is maintained even when linear systems are solved inexactly,

at the expense of some additional classical cost.

The IPMs and QIPMs for SOCPs [612, 68] are quite similar to those for LPs

described above: the main difference is that the matrices X and S are no longer

strictly diagonal matrices. QIPMs have also been proposed for SDPs [610, 70,

537], which are more complex but have more expressive power; here, addi-

tional considerations must be taken to guarantee that the intermediate solutions

continue to be symmetric even after experiencing errors due to tomography.

The above exposition represents the original approach to quantizing the clas-

sical IPM, which has so far garnered the most study. An alternative to this ap-

proach was proposed in [51], which focuses on the case that the LP constraint

matrix A is “tall,” that is, m ≫ n. As above, they follow the central path to the

optimal point; however, they adopt a primal-only approach, where the Newton

linear system takes on the form (B⊺B)g = h, with g and h length-n vectors and

B an m × n matrix. Rather than using the QLSS and quantum state tomogra-

phy, their quantum algorithm performs a Grover search–like step to identify

the “important” rows of B and thus produce an O(n) × n matrix B̃ for which

B̃⊺B̃ ≈ B⊺B. This enables a quadratic speedup in the large parameter m. To

obtain the right-hand side vector h, which is the gradient of the objective func-

tion, they require the multivariate mean-estimation algorithm of [310], which is

related to the quantum gradient estimation primitive developed in [587, 430]—

this is key for avoiding a dependence on the condition number of B⊺B. Matrix

inversion is then performed classically at cost polynomial in n, independent of

m and not depending on the condition number of any matrix.

Meanwhile, another quantum algorithm inspired by IPMs was proposed in

[69]. Where the standard QIPM encodes the variable x into the amplitudes

of the quantum state, requiring readout with quantum state tomography, the

method of [70] encodes the components of x into separate binary registers,

truncated to some finite number of bits of precision. It constructs a Hamilto-

nian, parameterized by µ, whose ground state is a wavefunction localized near

the associated point on the central path. By slowly decreasing µ and invoking

the adiabatic theorem, the wavepacket follows the central path to µ = 0, where

the optimal point can be recovered by a measurement. Thus, the main primitive

required is time-dependent Hamiltonian simulation.
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Dominant resource cost (gates/qubits)

The outer loop of QLSS-based QIPMs is purely classical; at each iteration a

small step is taken to form the next point in the sequence. For LPs, SOCPs,

and SDPs, the number of iterations T required to yield a point for which the

objective function is within ϵ of optimal is O(
√

n log(1/ϵ)). The main cost of

each iteration is solving the Newton system. In the complexity statements that

follow, we assume the number of constraints m is on the order of the number

of degrees of freedom (i.e., m = O(n) in the case of LPs and SOCPs, and

m = O(n2) in the case of SDPs).

The QIPM solves the Newton system by preparing many copies of the state

corresponding to the solution to the linear system. This state can be prepared in

time polylog(n) ·ζκ, where κ is the condition number of the matrix in Eq. (22.3)

and ζ is the ratio ∥·∥F/∥·∥ of the Frobenius and spectral norms of the ma-

trix, assuming that one can perform a block-encoding of the Newton matrix

in polylog(n) time, a task that requires access to large-scale quantum random

access memory (QRAM).1 For LPs and SOCPs, the number of copies that must

be prepared scales as O(n/ξ2) when using the basic version (see [610, Section

4] and [328, Section IVD]) of pure state tomography that simply measures

each copy in the computational basis. A more recent and complex version of

tomography [49] can achieve this task using O(n/ξ) copies along with addi-

tional gates. For SDPs, since the variables are matrices rather than vectors, the

number of copies is O(n2/ξ2) or O(n2/ξ). Overall, using the more efficient ver-

sion of tomography and ignoring the additional gates, the runtime of the QIPM

is expected to scale as

LP, SOCP: Õ
(

n1.5ζκ

ξ
log(1/ϵ)

)

SDP: Õ
(

n2.5ζκ

ξ
log(1/ϵ)

)
,

(22.4)

where κ denotes the maximum condition number, ζ the maximum ratio of

Frobenius to spectral norm, and ξ the minimum tomographic precision re-

quired across all iterations. There may be an additional purely classical cost of

O(n2.5) for LPs/SOCPs and O(n4.5) for SDPs, deriving from classical matrix-

vector multiplications necessary for setting up the Newton system at each iter-

ation.

1 It is worth emphasizing that the origin of the dependence on the Frobenius norm of the
Newton matrix here is the normalization factor that arises when block-encoding a dense
classical matrix. If the matrix were sparse or had some compact representation, this
normalization factor could potentially be improved—but for Newton matrices in QIPMs we
do not expect this to be the case.
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296 22. Quantum interior point methods

In the worst case, it may be necessary to take ξ as small as O(1/κ), and ζ

can be as large as
√

n (SOCP/LP) or n (SDP)—complexity statements in the

literature, such as [70], often assume these worst-case values for those param-

eters, but we refrain from doing so as these worst-case values may be overly

pessimistic in practice. The hidden constant prefactors are dependent primarily

on the implementation of the QLSS and tomography. It is clear that the viabil-

ity of the QIPM is highly dependent on the value and scaling of the parameters

κ and ξ. Unfortunately, it is believed that for some LP/SOCP/SDP instances,

the value of κ will diverge as the target precision ϵ is made smaller, perhaps as

O(1/ϵ) [612, 70], although this may not be the case in every instance (see, e.g.,

the numerical results of [328]).

The QIPM only requires a register of O(log(n)) qubits to hold the solution of

the linear system; however, achieving the runtimes quoted requires queries to

QRAM. In this case, the explicit QRAM circuits that achieve shallow depths

of O(log(n)) necessarily require O(n2) total gates across O(n2) total qubits.

The alternative approach of [51] is best suited for the case where m ≫ n,

and requires
√

m · poly(n, log(1/ϵ)) queries to the entries of the matrix A,

where the
√

m-dependence fundamentally comes from Grover-like primitives

with quadratic speedup. Like the standard QIPM formulation, this approach re-

quires a QRAM to implement the queries in polylog(m) time. However, since

it does not use QLSS or tomography, it avoids polynomial dependence on the

instance-specific parameters κ and 1/ξ.

Caveats

There are several important caveats that must be considered when evaluating a

speedup claimed by QIPM.

• Even in a best case scenario, the quantum speedup is at most polynomial

(and even subquadratic). Since quantum computation requires significant

constant-factor overheads due to slower clock speeds and error correction,

the value of n for which a QIPM would be faster than a classical IPM on

actual hardware is likely to be large (see [328] for further discussion).

• Since n must be large for a quantum speedup to be obtained, a very large

QRAM, corresponding to millions or billions of (logical) qubits, would be

needed for any speedup to be realized.

• QIPMs are most effective when the matrices that need to be inverted over

the course of the algorithm are well conditioned, due to their reliance on

the QLSS. However, when the condition number κ is small, iterative clas-

sical methods may also be effective, limiting the advantage of the quantum

algorithm. In particular, a linear system with O(n) dense constraints on n
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variables can be solved to error ξ in time O(nζ2κ2 log(1/ξ)) using the ran-

domized Kaczmarz method [959]. In comparison, the QIPM utilizes QLSS

and tomography to solve the same task (once per iteration) in timeO(nζκ/ξ).

Even if ξ = Ω(1), this limits the magnitude of the quantum speedup to a

factor of O(ζκ). Thus, for the quantum speedup to be maximized, κ can be

neither too small nor too large. While we are not aware of any IPM imple-

mentations based on the Kaczmarz method, its complexity allows for clean

comparison with quantum algorithms involving the QLSS for dense matri-

ces, since both depend directly on the quantity ζκ. Here it is also worth men-

tioning that there exist other approximate classical linear system solvers for

which the complexity depends on κ, but not on ζ. One example is the conju-

gate gradient method [713]. Another straightforward example is to solve the

system Gu = v by finding a degree-O(κ log(1/ξ)) polynomial approxima-

tion p(x) ≈ 1/x, and then computing p(G)v ≈ G−1v = u via a sequence of

O(κ log(1/ξ)) matrix-vector products—this is a classical analog of the quan-

tum approach based on the quantum singular value transformation [431].

Classically, each matrix-vector product costs O(n2) when G is dense and

O(ns) for when G is s-sparse.

• If the matrices that define the convex problem have a certain structure

(e.g., sparsity), this could be exploited to potentially reduce the overhead

from block-encoding—in particular, the value of ζ and the size of the

QRAM required. However, this can help the quantum algorithm only to a

limited extent, as the vectors (∆x,∆y,∆s) will still be dense and reading

out estimates for all O(n) amplitudes with quantum tomography will be

necessary.

Example use cases

• Portfolio optimization, the canonical optimization problem that appears in

finance, can be formulated as an SOCP and solved with a QIPM; a study

of the condition number of the matrices that appear in this application was

consistent with a small quantum speedup [611]; however, a follow-up study

did not replicate this finding [328] and also pointed out that in any case

large constant-factor overheads would make achieving practical advantage

challenging.

• Support vector machines, a common task in machine learning, can be re-

duced to SOCPs and solved with a QIPM; a study of the condition number

of the matrices that appear in this application was consistent with a small

quantum speedup [612].

• Sample-efficient protocols for mixed-state tomography reduce the problem

of reconstructing an estimate of the quantum state to solving an SDP. This
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298 22. Quantum interior point methods

SDP could be solved with a QIPM (note that the tomography needed within

the QIPM is always on pure states and does not require solving an SDP, thus

avoiding an issue of circular logic).

• Nonconvex optimization is often solved approximately by relaxing the

problem into a convex problem like an SDP. For example, the MAX-CUT

problem is a combinatorial optimization problem over the nonconvex space

{+1,−1}n, but by solving the associated SDP relaxation and rounding, an

approximate solution can be obtained.

Further reading

• See Boyd and Vandenberghe [180] for an accessible book on convex opti-

mization including (classical) IPMs.

• QIPMs are an active area of research. A QIPM for LPs and SDPs was orig-

inally proposed by Kerenidis and Prakash in [610]. This was followed up

by a QIPM for SOCPs in [612], along with numerical simulations for spe-

cific applications [612, 611]. Later, [70] pointed out a potential error in the

convergence analysis of previous works, and they presented two possible

workarounds called the “inexact-infeasible” and “inexact-feasible” IPMs.

Note also the work in [537] for another way to avoid this issue, giving a

QIPM for SDP.

• See [51, 69] for quantum methods related to IPMs that do not rely on the

QLSS.
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