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Abstract

The constancy in time of the ratio of unidirectional tracer fluxes, passing in op-
posite directions through a membrane that has transport properties varying arbi-
trarily with the distance from a boundary face, has been established recently for
successively more sophisticated mathematical models of tracer transport within
the membrane. Such results are important in that, when constancy is not observed
experimentally, inferences can be drawn about the dimensionality of distributions
of transport properties of the membrane. The known theoretical results are shown
here to follow from much more general theorems, valid for a wide class of mod-
els based on linear-operator equations, including elliptic and hyperbolic partial
differential equations as well as the essentially parabolic equations of interest in
membrane transport problems. These theorems have the general character of
"reciprocity theorems" known for a long time in other areas, such as mechanics,
acoustics and elasticity. The general results obtained here clarify the conditions
on membrane properties under which constancy of a flux ratio can be expected.
In addition, flux ratio theorems of a new type are proved to hold under suitable
conditions, for the normal components of flux vectors at points on either side
of a membrane, as distinct from previously established theorems for total fluxes
through membrane faces. Possible new experiments are suggested by the analysis.

1. Introduction

Recent analyses of transport pathways through biological membranes have re-
lied on the use of certain theorems on parabolic partial differential equations-
theorems which do not seem to be widely known and which appear counterintu-
itive in the context of the model adopted for membrane transport. The utility
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[2] Flux ratios for biological membranes 279

of these theorems in this unusual interaction of membrane biology with mathe-
matics has arisen largely from the insight of the biologist H. H. Ussing [15] that,
in diffusion-migration processes through media having unknown distributions
of transport properties (such as diffusion coefficients and migration velocities
of tracers), significant information can be gained from ingenious experiments
involving the measurement of transient fluxes, rather than concentrations of
tracers. Of particular importance is the measurement of the "flux ratio": tracer
passes in one direction through a membrane which is initially tracer free, and the
outflux into a medium of zero tracer concentration is measured as a function of
elapsed time. The experiment is repeated with the tracer passing in the opposite
direction, and the ratio of the two transient outfluxes at corresponding times is
then calculated. It is this ratio that is the subject of the theorems mentioned
above.

Ussing [15] conjectured that, for suitably simple boundary conditions, this
ratio should be constant in time if the membrane is transversely homogeneous,
that is to say, if its transport properties depend only on distance from a mem-
brane wall, and not on transverse coordinates. With Sten-Knudsen [14], he gave
a proof of the corresponding theorem, using a model of the membrane as an infi-
nite slab between parallel planar walls, and composed of an arbitrary number of
laminae, in each of which the transport properties are constant. The transport
process was modelled in each lamina by a linear parabolic partial differential
equation with constant coefficients. A proof of a more general result, allowing
for a wider class of boundary conditions and a continuous variation of transport
properties through the slab, was then given by Bass and Bracken [3]. Bass and
McAnally [5] extended the result to the case of a membrane modelled as an an-
nular cylinder rather than a slab. Subsequently, Rogers and Bracken [12], in a
paper concerned mainly with obtaining ratio theorems for nonlinear equations,
showed that the results of [3] for a slab can be obtained as a consequence of a
symmetry of the Green's function for the associated parabolic equation, after
transformation to a form in which the spatial part of the differential operator
is self-adjoint. Such symmetries have been called "reciprocity relations", for
example by Sommerfeld [13, pp. 50-51], who remarked that they express "the
interchangeability of source point and action point", and they are known to lie
at the heart of "reciprocity theorems" for differential equations. Theorems of
this type have a long history, dating back at least to Rayleigh and Helmholtz:
an 1889 paper of Lamb [11] contains a nice summary of results of this kind in
dynamics, optics and acoustics.

In the more recent literature, reciprocity theorems have often been discussed
for hyperbolic and elliptic partial differential equations in acoustics [9] and [10]
and elastodynamics [1] and [8, p. 368]. Although parabolic equations have been
involved in the modelling of tracer transport through membranes, it seems clear
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that the flux ratio results have the character of reciprocity theorems. On the
other hand, they are not tied to a model in terms of partial differential equations:
in a more recent development, Bass, Bracken and Hilden [4] have shown that
the ratio theorems continue to hold in a more general model, which takes into
account the possibility of temporary trapping of tracer in its passage through the
membrane. This model is described in terms of an integro-differential equation.

The purpose of the present paper is two-fold: firstly to clarify the relationship
of existing flux ratio theorems to reciprocity theorems for partial differential
equations and more general operator equations; and secondly to derive new ratio
theorems that may be useful in membrane physiology.

We begin by recalling the most general flux ratio theorems proved to date
[4]. Let a membrane be represented by a slab occupying the spatial interval
0 < x < ft, in which a tracer has diffusion coefficient D(x) and drift velocity
v(x). We shall suppose that D and v are continuous on [0, ft] and that D is
positive there; otherwise, D and v are arbitrary. [Note that v(x) may be the
drift velocity of a charged tracer in an electric field associated with a fixed or
mobile space-charge in the membrane, and can vary in magnitude and sign even
in one dimension in an incompressible medium, in contrast to the case of a
convective velocity.] At the positive time t, the tracer concentration c(x,t) and
flux j(x, t) within the slab are assumed to be related by

j(x, t) = -D(x)dc{x, i)/dx + v{x)c{x, t), (1.1)

and the equation of continuity for the tracer is assumed to have the form

dc{x, t)/dt + dj{x, t)/dx = q(x, t), (1.2)

where the source term q is given by

q{x, t) = -k{x)c{x, t) + k(x) I c{x, t - r)g{x, r) dr. (1.3)
Jo

Here g(x, t) is non-negative and continuous in x on [0, ft] for each t e [0, oo) and,
for each x € [0, ft], is continuous in t on [0, oo) and satisfies

g(x,t)dt = l. (1.4)
Jo10

Otherwise g is arbitrary; the function k is also arbitrary except that it is non-
negative and continuous on [0, ft]. The source term q models trapping of tracer
and its subsequent release, according to some very general rule. Initially, the
membrane is taken to be free of tracer:

c{x,t) = 0, 0<x<h,t<0. (1.5)

We now consider (1.1)—(1.5) under two sets of boundary conditions which,
when realised experimentally, bring about the two transient outfluxes whose ratio

https://doi.org/10.1017/S0334270000006238 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000006238


[4] Flux ratios for biological membranes 281

is measured. Corresponding variables in the resulting two cases are distinguished
by subscripts 1 and 2. The first set of boundary conditions is, for t > 0,

= / i ( 0 > 0 , c,(M) = 0, (1.6)

where f\ is a given bounded, piecewise continuous function on (0, oo), and the
resulting concentration and flux in the slab are c\{x, t),ji(x,t). The second set
of boundary conditions is, again for t > 0,

c 2 (0 ,0=0, c3(M) = / a ( 0 > 0 , (1-7)

with f-2 given, satisfying the same conditions as / i , and resulting in C2(x,t),
J2(x,t). In particular, the unidirectional outfluxes (into well-stirred bathing
solutions of zero tracer concentration) are, respectively, j\(h,t) and —J2(0,t).
We then have [4]:

THEOREM 1.

f f2(t-T)j1(h,r)dr = -exp( fk ^\dx)- f h(t-r)j2(0,r)dT (1.8)
o \Jo D(x) J Jo

for all t > 0.

As a special case, we have

THEOREM 2.
If fi{t) = rf2{t) for all t > 0, with r a positive constant, then

j\(h, t) = -r exp ( / -£±dx) j2(0, t) (1.9)

for all t > 0.

Theorem 2 brings out particularly clearly the surprising nature of these re-
sults: the flux ratio —ji{h,t)/J2(0,t) is constant in time from the very first ap-
pearance of tracer in the bathing solutions kept at zero concentration, no matter
what the forms of v(x),D(x), k{x) and g(x, t). To understand this result in the
presence of an arbitrary (possibly unidirectional) velocity field v(x), it may help
to recall that classical diffusion places no limit on the speed of propagation of
the diffusing substance.

2. Extensions to more than one spatial dimension

The usefulness of Theorems 1 and 2 in membrane biology rests on the possi-
bility of their disagreement with experiment. For example, if a time-dependence
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of the flux ratio is observed when the boundary conditions are as in Theorem 2,
the failure of the model is attributed to the assumption that transport proper-
ties of the membrane depend on x alone: a heterogeneity of transport pathways,
transverse to the flux, is inferred and then analysed by methods which do not
concern us here (see, for example, Ussing, Eskesen and Lim [16]). It is to be
noted that the converse inference is not valid: a constant flux ratio does not
exclude transverse heterogeneity. To indicate the presence of such heterogeneity,
the flux transients themselves (rather than the flux ratio) must be analysed [2].

In preparing to generalise Theorems 1 and 2, we consider a membrane which
is a slab of finite size, occupying a closed 3-dimensional region f2 of the general
form shown in Fig. 1, bounded by the surfaces S', S" and S'". The planar surface
S' lies in the YZ-p\ane at x = 0, and S" is its translate to x = h, so that S'"
is generated by lines parallel to the X-axis. We suppose that the surface S'" is
impermeable to tracer, and that the transport coefBcients D, v, k and g depend
only on x (and on t, in the case of g) in fi. We again consider two situations,
labelled 1 and 2, for each of which the membrane is initially tracer-free, and for
which the boundary conditions are

ci = /i on S',

c2 = 0 on S',

a = 0 on S"
c2 = / 2 on S" (2.1)

FIGURE 1. Finite membrane slab with parallel planar faces S',S" bathed by separate
well-stirred solutions. Points E,H lie on S' and F, G are corresponding points on S".
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where / i and Ji are given non-negative functions only of time t for t > 0, as
in (1.6), (1.7). (In order to realise such boundary conditions, we would have to
keep separate the solutions bathing S' and S"; we can, for example, imagine in
what follows that the part of the plane x = ^ h located outside Q is impermeable
to tracer.) Then the flux in the membrane for t > 0 can in each situation be
assumed parallel to the X-axis, and can be described by a scalar function j(x, t).
The tracer concentration in the membrane for t > 0 will then also depend only
on x and t, and we can in fact assume that (1.1) to (1.7) and the associated
conditions hold. Theorems 1 and 2 will then apply, just as in the case of the
infinite slab.

We now modify this model in two different ways that will enable us to indicate
as simply as possible the generalisations we have in mind.

(a) We imagine that the membrane is made up of two parts separated by an
impermeable layer occupying the part of the XZ-plane located inside U, and
allow the two parts to have different transport properties, leaving unchanged
the boundary conditions (2.1)-that is, the specification of the solutions bathing
the faces S' and S" of the membrane.

(b) We leave the membrane and its properties unchanged, but divide the
bathing solutions on S' and S" into two parts separated by an impermeable
layer occupying the part of the XZ-plane located outside fi, and allowing the
non-zero boundary concentrations to be different functions of time for z > 0 and
z < 0 .

In the case (a), we allow the functions v,D,k and g to depend on the sign
of z as well as on x (and on t, in the case of g), and denote their restrictions
to positive or negative z by v±,D± etc. Let the area of the part of S' (or S")
located above the XZ-plane be A+, and of the part below be A-, so that the
total area of S' (or 5") is A = A+ + A-. Each of Theorems 1 and 2 now holds
separately for z < 0 and z > 0, and we ask under what conditions they will hold
for the total undirectional outfluxes

- (j2+(0,t)A++ j2-(0,t)A_). (2.2)

For this it is evidently sufficient to have

Jo D+{x) Jo D_(i)

or, a fortiori, to have

If a disagreement with Theorem 1 or 2 were seen experimentally (for the total
outfluxes) under these conditions (a), it is the refutation of (2.3) and hence of
(2.4) that would be inferred and interpreted as heterogeneity of the membrane
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transverse to the flux. Note that agreement with Theorem 1 or 2 does not imply
equality of k+ and k-, nor of g+ and g- (not indeed of v+ and V- or D+ and D_),
and hence, as already observed, does not imply transverse homogeneity. Consider
now the closed, oriented, rectangular contour EFGH indicated in Figure 1,
where E and F are corresponding points of S', S", with the same positive z-
coordinate, and H and G are corresponding points of S',S" with the same
negative z coordinate. It follows from (2.3) that for this contour

- ^ = 0 (2.5)

where v now denotes the drift velocity vector and dx the vector line element
on the contour. (On FG and HE, v • dx = 0, because v is assumed normal
to 5 ' and S".) Furthermore, if (2.4) holds, then (2.5) will hold for any closed
contour within fi. These observations provide a clue that ratio theorems for
total unidirectional fluxes may hold for \,D,k and g dependent on x, y and z,
and for more general domains, provided in each case a scalar field (j> exists such
that

v/.D = grad<£ (2.6)

throughout that domain. It is essentially by assuming (2.6) that we shall make
contact with reciprocity theorems for partial differential equations, and more
general operator equations, in 3-dimensional space. We obtain in this way new
flux ratio theorems which we call global because they hold for the total fluxes
out of the relevant boundary surfaces.

In the case (b), the transport coefficients of the membrane remain dependent
on x alone (in the simplest situation), but the functions f\ and /a in (1.5),
(1.6) are now allowed to depend on the sign of z. More precisely, we suppose
that diffusion is isotropic at each point of the membrane, with a coefficient
dependent only on z; that the drift velocity is parallel or anti-parallel to the
X-axis at each point and depends only on x; and that trapping continues to be
described by a source term like (1.3), where now c and q will in general depend
on y and z as well as x and t, but k and g are dependent only on x. Tracer
entering the membrane at z > 0 will interdiffuse with tracer entering differently
at z < 0, before effluxing into the bathing solution at zero concentration, and
the flux vector within the membrane or at either of its faces S',S" will not be
everywhere parallel or anti-parallel to the X-axis. We shall see that even in the
presence of such interdiffusion and even though the outflux at any point on a
face of the membrane may now vary with y and z, Theorem 2 (but not Theorem
1) holds for the normal components of the flux vectors at corresponding points
on the two faces of the slab. It therefore holds for the total fluxes through
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corresponding sections of the two faces. We call such generalisations of Theorem
2, local theorems.

3. Generalised global ratio theorems

In this section we shall prove some generalisations of Theorems 1 and 2, along
lines suggested by the discussion of case (a) in the previous section. We deal
with a time-dependent scalar field c and vector field j = {ji,J2,33)T, generalising
concentration and flux in the preceding discussions. They are functions of (x, t),
where t € R and x = (xi,X2,Xz)T belongs to an open, connected and bounded
set f2 in R3, with piecewise smooth boundary dU, and they are assumed to
satisfy a system of linear equations, generalizing (1.1) and (1.2), of the form

Vkc = Lkl(x)\jl]+ak(x)c (3.1)

Vfcj* = Lo(x)[c] + 6jfc(x)jfc (3.2)

for x € fi, t > 0, and

c(x,0 = 0, j(x,*) = O (3.3)

for x e fi, t < 0. Here V = (Vfc) = (d/dxk), while L0{x) and Lkl{x)[= ijk(x)]
are linear operators, acting (for each fixed x) on c(x, •) and j;(x, •) respectively.
We use the summation convention for repeated subscripts.

Concerning the form of Lo(x) we make the following assumptions. Suppose
that c is in the domain of LQ, satisfies c(x, t) = 0 for x € fi, t < 0, and has
a Laplace transform C(x, s) for x e fi, s € (0, oo), where s is the transform
variable conjugate to t. Suppose also that, for such c, Lo(x)[c(x,t)\ = 0 for
x e fi, t < 0. Then Z/o(x)[c] has a Laplace-transform of the form >to(x, s)C(x., s),
for x e fi, s e (0, oo). This allows [7] L0(x)[c(x, t)] to be a linear combination of
c(x, t), derivatives dc{x,t)/dt, 92c(x, t)/dt2,..., delays c(x, t — ti) for various
positive t\, convolutions / 0 g(x, t — T)C(X., T) dr, etc., with coefficients dependent
on x; we suppose that such coefficients are continuous on fi = fi U <9fi.

Similar assumptions are made concerning the form of Lki(x)[ji]: if ji is in the
domain of Lki,l = 1,2,3, has Laplace transform Jj, and both ji and Lki(x.)\ji]
vanish for ( < 0, we suppose that Lki(x)\ji] has Laplace transform of the form
Afc,(x, s)7j(x, s) where Akl = Alk.

We assume also that the initial- and boundary-value problems considered
below are meaningful, with sufficiently regular solutions; in particular we assume
that the equations involved can be Laplace-transformed. This implies further
restrictions on the form of LQ and Lk\ which we shall not try to make precise.
Suffice it to say that many examples are easily found, where all these conditions
are satisfied.
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Bearing (2.6) in mind, we now suppose that there exist functions <f> and rp,
continuous on fi, such that a = V<f> and b = V̂ > in fi. Define

/zrre-*, v = <T*. (3.4)

If (3.1) is multiplied by // and (3.2) by v we get, since V/i = —fj,V(f> and Vi/ =

(3.1')

Vfc(i/jfc) = i/L0(x)[c]. (3.2')

Let us Laplace-transform (3.1') and (3.2'), taking (3.3) into account. Accord-
ing to the basic assumptions described above, we then obtain

(3.5)

Vk{uJk) = uA0C. (3.6)

Now consider two pairs of solutions (Ci, J i) , (C2, J2) of (3.5) and (3.6). We
find that

(pCl)(i/A0C2) -

= tw[(AkiJu)J2k - {AkiJ2i)J\k\

= 0,
(3-7)

because Aki = Aik. If (3.7) is integrated over Q, we get from the Divergence
Theorem,

/ / fii/Cih-ndS= if fii/C2Ji-ndS, (3.8)
JJan • JJdn

where n = n(x) denotes the outward unit normal at the point x e dfi.
Equation (3.8) is similar in form to a "reciprocity theorem" in elastodynamics

[1, 8]. While its derivation from (3.5) and (3.6) is fairly standard, we shall use
(3.8) as a source of ratio theorems which are certainly new in the diffusion-
migration context.

Suppose that dQ consists of three parts 5', S" and S'", and let (c i j i ) , (C2, J2)
be solutions of (3.1'), (3.2') and (3.3) satisfying the following boundary conditions
for t > 0, in generalisation of (1.6), (1.7):

ci(x,t) = /i(x,f) on 5', c i = 0 on 5" 1
c2 = 0 on S", c2(x,«) = /2(x,t) on 5" \ (3.9)
ci = c2 = 0 or j i • n = j 2 • n = 0 on 5'" J

where f\ and f2 are given functions. After Laplace-transformation, we get from
(3.8)

/ / / / (3.10)

https://doi.org/10.1017/S0334270000006238 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000006238


110) Flux ratios for biological membranes 287

where F\, F2 are the transforms of / i , / 2 , and so we can conclude that [7]

/i(x)i/(x)[/" / i (x , r ) j 2 (x , t - r )dr | -n(x)dS
V L ° t

 J , (3-H)
/u(x)i/(x) / /2(x,r)J!(x,( - r)dr -n(x)dS.

IS" l/o J
If at each time t, j \ and / 2 are uniform on 5' and 5", respectively, and if, for

all t > 0
J1{t) = rf2(t) (3.12)

with a constant r, then
F1{s) = rF2{s) (3.13)

for all s, and (3.10) gives

r / / fii/32 • ndS = / / fivJi hdS. (314)
/S' ^JS

Then

ryy j/i(x)i/(x)Ja(xl0 -n(x)d5 = yy ^(x)i/(x)j1(x,t)-ii(i)dS (3.15)

for all £ > 0.
If we assume also that the vector fields a and b in (3.1) and (3.2) are both

parallel to n at each point on S' and S", and if each of S',S" is a connected
surface, then /i and v are constant on 5 ' and S". To see this, let xx and x2

belong to 5'. Then

a(x) • dx, (3.16)= f
where the contour of integration can be a curve in 5' . But since a(x) • dx = 0
on such a contour, it follows that < (̂x2) — <£(xi) = 0, so that <f>, and hence //, is
constant on S'. The other cases are proved similarly. Then (3.11) becomes

(^)ls' If \f /i(x,r)j2(x,<-T)drl n(x)d5
(3 17)

= 1jiu)\s» fj [J /a(x, r)jx(x, i - r) dr] • n(
and if (3.12) holds, we get from (3.15)

i • ndS = r (^)|s- jj j 3 • ndS. (3.18)

Formulae (3.11), (3.15), (3.17) and (3.18) are different versions of the desired
theorems generalising Theorems 1 and 2. We refer to them as generalised global
ratio theorems, and write (3.18), for example, in the form

l J
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with the understanding that, when one or both of the denominators vanishes in
this equation, the form (3.18) should be used.

REMARK 3.1. If fi is simply connected and a is sufficiently smooth, a function
(j> such that a = V<j> exists if and only if V x a = 0 in f). The same applies to ij>
and b.

REMARK 3.2. The results obtained above also hold, with obvious minor modifi-
cations, in two- or one-dimensional regions H. The results (1.8) and (1.9) of [4]
are recovered in the one-dimensional case for the equations (1.1) and (1.2) with
Q = (0,h). In this case a(x) = v(x)/D(x),b(x) = 0, and consequently 4>{x) =
JQ[V(S)I'D(s)]ds,u = 1. The cylindrical membrane model considered in [5] is
essentially two-dimensional, with (in polar coordinates) Q — {x: TQ < r < r i} .
The relevant equations are

Vc = - ( / ) j ( / )

V j = - ^ (3.19)
at

with D = D(r),v = v(r)r,c — c(r,t) and j = j(r, t)f. In this case our as-
sumptions are satisfied with <j)(r) — f* [v(p)/D(p)]dp,v = 1. If ci(ro,t) —
/ i(0,Ci(ri , t) = 0,c2(r0,() =O,c2{ri,t) = J2{t) for t > 0, then (3.18') gives the
result of [5], that

IlllhA. pKLJrp.dr] (3.20)
-r0j2{r0,t) [Jro D{r) J

if
h{t)/h{t)=p (const.). (3.21)

APPLICATION 3.1: Consider a membrane which occupies a closed 3-dimensional
region Q of a general form similar to that shown in Fig. 1, but possibly somewhat
distorted. The surfaces 5 ' and S" need not be exactly the same shape and they
need not be planar or parallel; we require only that it be meaningful to talk of
two disjoint faces S' and 5" of the membrane, each consisting of a connected
surface. The surface 5'", now no longer necessarily generated by straight lines,
should also be connected and should either be impermeable to tracer, or be
maintained at zero tracer concentration. Transport of tracer in the membrane
is modelled by the equations

Vc(x,«) = - £ £ ) J ( x , 0 + ^ | v ( x ) (3.22a)

V • j(x,0 = _ ^ i l _ *(x)c(x,0 + fc(x) f c(x,« - T)g(x,r)dT
m Jo (3.22b)

which generalise (1.1), (1.2), (1.3). The non-negative functions k and g are
continuous in x on Q (for each t € [0, oo), in the case of g) and g is continuous

https://doi.org/10.1017/S0334270000006238 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000006238


[12] Flux ratios for biological membranes 289

in t and normalised to unity on [0, oo), for each x e ft. We suppose that -D(x) is
positive on ft; that at each point x on S' or S", v(x) is directed normal to that
surface:

v(x) = v(x)n(x), x e S ' o r 5"; (3.23)

and that a function <£(x) exists, continuous on ft, such that

v(x) = £>(x)V<£(x), x € ft. (3.24)

We set
c(x,t) = 0, t<0, x e f t , (3.25)

and (3.22) then implies that

j (x , t )=O, t<0, x € f t . (3.26)

Equations (3.22), (3.25) and (3.26) are of the form (3.1), (3.2), (3.3), with

a(x) = v(x)/£>(x), b(x) = 0. (3.27)

From the second of these equations, we can set •0 = 0 and v = 1 in (3.4); <j> there
is as in (3.24). Adopting boundary conditions in situations 1 and 2 as in (3.9),
we arrive at (3.17) in the form

ff 17 h (x, r)j2(x, t - r) drl • n(x) dS
JJs> Uo J ( 3 2 8 )

= <t>s» - <Ps> (3.29)

where <j>s',(f>s" are the (constant) values of <f> on S',S" respectively. In the
special case that (3.12) holds, we obtain (3.18') in the form

SJs,.ii-ndS _ A<j>
-ff : r-j^- — re .

Thus the ratio of the total fluxes, through S" in case 1, and through S' in case
2, is constant.

This represents a significant generalisation of the previously established result
(1.9). In particular, it shows that the constancy of the flux ratio allows a con-
siderable degree of variability in v, D, k and g, and even in the membrane shape
and thickness. What are critical are the conditions (3.23) and (3.24). Of the
second of these conditions, we can say that <j> may have a direct physical inter-
pretation as the potential of an electric field in which a charged tracer migrates
(and diffuses). Note that, in regard to our preliminary discussion of this type of
situation, as case (a) in Section 2, it is now clear that the assumed presence of
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the impermeable plane y = 0 within the membrane in that case, is unnecessary
for the constancy of the ratio of total outfluxes.

4. A local ratio theorem

As indicated in the discussion of case (b) in Section 2, it is possible in special
circumstances to obtain a local or "pointwise" ratio theorem. Consider again
equations (3.1)-(3.4) for a 3-dimensional region as in Figure 1 and, in the nota-
tion of Section 3, suppose that

where A\ is a scalar function, everywhere positive or everywhere negative, and
A2 is a 2 x 2 matrix of functions, with an inverse of the form

A^=E(x,s)B{y,z,s), (4.2)

B being a symmetr ic , positive- or negative-definite 2 x 2 matr ix , and E a

posit ive scalar. Suppose also t h a t A0(x, s) has the form A0(x,s), and t ha t

//(x) = (i1(x)fj,2(y,z),i/(x) = ui(x)vi(y,z), where m,H2,vi and 2̂ are larger
than some positive constant for all x G fi.

Let

t/(x,s)=//(x)C(x,s)

K1(X) = I/1(X)/H1{X), K2(y,z) = v2{y,z)/ii<2(y,z). (4.3)

Then (3.5) and (3.6) give

Vfc r^-^wVjtfl = ^A0U, (4.4)

which reduces to

£& (TM) + ^ M V W | _ MU (4.5)
and hence, from (4.2),

The boundary condition on 5'" becomes either U — 0 or nfc(A~1)fc(V/C/ = 0. In
(4.5) and (4.6) [and in (4.7) below], p and q run over the values 2 and 3 only.

Consider the eigenvalue problem

f Vp(/c25p<,V,X) = A/c2x in 5

= 0 or npBpqVqx = 0 on dS,
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where S is the 2-dimensional region defined by any cross-section of fi perpen-
dicular to the X-axis, coordinatised by (y,z), and having boundary dS. The
corresponding eigenfunctions {Xn}£Li form a complete orthonormal system in
Z/2(S), with respect to the weight K2 [6, Chapters V, VI]; we denote the corre-
sponding eigenvalues by Xn. Then we consider solutions of (4.6) in the form

oo

«7(x, s) = ̂ 2 Un{x, s)Xn{y, z, s), (4.8)
n=l

and obtain from (4.6) that

and hence
r) ^ n = l,2,3,.... (4.10)

i ox J E

Let Wn = A^^dUn/dx, so that we get for each n = 1,2... the system

- hXn)Un

We now consider two solutions U^ and U^ of (4.6) with boundary condi-
tions

oo

, y, z, s) = /i(0, y, z)F1 (y, z,s)=J2 dm(«)Xn(l/,«, a)
n=l

,*.-) = o (412)
)O

f/(2)(ft, y, z, s) = p(h, y, z)F2{y,«, a) = ^ d2n(s)Xn(y,«, a)
n=l

for (y, z) e 5, a e (0, oo), corresponding to the first two of (3.9). Then we get

two corresponding solutions {Ui1],wi1]), {u£\ W^) of (4.11) satisfying

)0

UW(0,a)=0, U^{h,s) = d2n{s).

Then

[K1WUP KWPU] = 0 (4.14)

and hence

-Kl(h)WW(h,s)d2n(s) = Ki(0)WW(0,a)rflri(a). (4.15)
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If we now assume that in (3.9)

fi{y,z,t)=rf2(y,z,t), (y,z)€S,t>0 (4.16)

with r constant, so that, in (4.12),

F1(y,z,s)=rF2(y,z,s), {y,z)eS,s>0, (4.17)

then

din(s) = r—Tjrrd2n{s) (4-18)

and (4.15) gives

W^1)(h,s) = -r^^-W^2)(0,s), (4.19)

provided d2n(s) (and hence din(s)) does not vanish. However, if (4.10), (4.13)
have unique solutions Un1\x,s),UJ?\x,s), then evidently dln{s) — d2n(s) = 0
implies Uil)(x,s) = ui2)(x,s) = 0. Then (4.11) implies that w i ^ z . s ) =
Wn (x, s) = 0, and (4.19) holds in this case also. Uniqueness of the solutions of
(4.10), (4.13) can be guaranteed by requiring, for example, that AQ and Ai are
both negative and B is negative-definite; such conditions hold in Application 4.1
below. The z-component of J(x, s) is

l H f > " x ~ (420)
From this and (4.19) we obtain

jW (h, y, z, a) = —-±— f ; W^ {h, s)Xn(v,z,
inyizi n = 1

1/1 (0) (2)

i^J (

Taking inverse Laplace transforms, we get

( 1 ) i (Q)
=

which is the desired "local" ratio theorem in this case. We can of course obtain
directly from (4.22) a ratio theorem for total fluxes through S' and S":

We emphasise that this global result does not follow as a special case of (3.18),
because of the more general form (4.16) for fi,h in (39), allowed by the bound-
ary conditions (4.12).
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APPLICATION 4.1: Consider a membrane as in Application 3.1, but now occu-
pying a region of the general form shown in Figure 1 (without distortion).

Equation (3.22b) is retained, with A; and g dependent only on x in Q (and on
t, in the case of g), but (3.22a) is replaced by

jfc(x,t) = -£>w(x)V,c(x,«) + c(x,*)i/fc(x) (4.24)

where [DM) is a symmetric "diffusion tensor" matrix, with the special form

Here D\ (x) and d(x) are positive functions on [0, h] and D2 is a positive-definite
symmetric 2 x 2 matrix of functions on S = S U dS. Equations (3.23) and
(3.24) are retained [with D in (3.24) replaced by the matrix (DM)} but it is now
necessary to assume that <p can be found in the form

)- (4-26)

This requires in particular of the components of the convective velocity v, that
v\ depends only on x and each of t>a, «3 depends only on y and z. For example,
we might suppose that <fo = v2 — V3 = 0 in fi, and could then satisfy (3.24) by
setting

CW!- (4-27)
The analysis of this section now applies, and we deduce that, with boundary
conditions defined by (3.9) and (4.16), the result (4.22) and hence (4.23) holds,
with

(4.29)

The case (b) discussed in Section 2 is seen to be a special case, with
v(x) = (t>i(x),0,0)T, and with the matrix (Djti) in (4-25) being a multiple of
the 3 x 3 unit matrix by a positive function D\{x). This result again represents
a significant generalisation of the previously established result, throwing further
light on the possible structure of transport coefficients consistent with the ob-
servation of a constant (total) flux ratio, perhaps under more general boundary
conditions as in (3.9) and (4.16).

5. Limitations of local theorems

The condition (4.26) in the general discussion above appears rather special and
restrictive, even though we might well expect transport properties in a membrane
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to differ markedly between longitudinal and transverse directions. In order to
clarify the necessity of such a condition if a local theorem is to hold, we consider
a special, simplified case of the equations considered in Application 4.1, with
k = 0 in (3.22b), and (DM) in (4.25) equal to a positive, constant multiple Do
of the 3 x 3 unit matrix, so that we have

V(//c) = -{n/Do)] (5.1)

V-J = -dc/dt , (5.2)

where n = e~* as before, and v = DoV<j>. After taking Laplace transforms we
get

A)V • f-V(/iC)l = sC. (5.3)

In order to simplify the analysis further, we take f2 = {(x, y,z): 0 < x < 1,
0 < y < 1, 0 < z < 1}, we set DQ = 1, and we suppose that there is no z-
dependence in any of the dependent variables or boundary conditions. Letting
U(x,y,s) = fj,(x,y)C(x,y,s) we get from (5.3)

UXX + Uyy + 4>XUX + <t>yUy = SU (5.4)

where
Ux(x, y, s) = dU(x, y, s)/dx (5.5)

etc.
From Application 4.1, we know that if

4>{x,y) = <t>i{x) + My) (5-6)

and if the functions / i and fi appearing in the boundary conditions (3.9) satisfy
fi{y,t)/h(y,t) = r (constant), then j ^ (l,y, t)/j[2) (O,y,t) is constant. Weshall
now show by a counterexample that when (5.6) does not hold, the constancy of
this flux-ratio is not guaranteed.

Suppose that U satisfies the boundary conditions

U(x,0,s) = U{x,l,s)=0 (5.7)

and choose
<j>(x, y) = ex cos wy (5.8)

where e is a small parameter (0 < e < 1). Then (5.4) becomes

Uxx + Uyy + e cos •nyUx - enx sin nyUy = sU (5.9)

and we consider the solutions U^,U^ of this equation satisfying the boundary
conditions (5.4) and

(0ys) = F1(ys) U^(lys) = 0

)

https://doi.org/10.1017/S0334270000006238 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000006238


[18] Flux ratios for biological membranes 295

We choose j \ (y, i) = fa (y, t) = sin ny so that

Fi{y,s) = F2(y,s) = (l/s)sin(7n/). (5.11)

Consider U^\ For e = 0 we have

U^(x, y, s) = A(s) sinh[/?(s)(l - x)} sin(ny) (5.12)

where
p(s) = [s + TT2]1/2, A{s) = [ss inh^s)]-1 . (5.13)

For £ ^ 0, we try to find the solution in the form (suppressing the s-dependence)

UW{x,y) = As[nh[P(l - x)]sm{Try) +eV{x,y) + O(e2). (5.14)

By identifying coefficients of e we find that V must satisfy

Vxx + Vyy -sV = i^(/?cosh[/3(l - x)} + 7r2xsinh[/?(l - x)]) sin(27T2/)

= p(x)s'm(2iry), say,

and
V{0, y)=V(l,y) = V(x, 0) = V(x, 1) = 0. (5.16)

The solution of (5.15), (5.16) has the form V(x,y) = q(x)sm(2iry), where q
satisfies

(q"(x)-(s + 4^)q(x)=p(x)

I «(o) = ,(D - o. (5J7)

After some elementary calculations we find

0A. ( c o s h 7 - cosh/3 .r s h ' 7 ( i x)] ~sinh[7(1 -x
1

- a;)] - -
where

7 = [ s + 47r2]1/2. (5.19)

Then we get

^ ) [-/?/! sin(7Tj/) +e<7'(l)s

- - Jg^2 ^ ~ ( c o s h ^ ~ c o s h ^ sin(27ry) + 0{e2).

(5.20)
For t/(2' we find in the same way that

x, y) = A sinh(/?x) sin ny

eSin(2ny) | - ^ - [i^sinh-/J+ ^ (cosh 1 - cosh /3)J sinh(7x) (g_21)

1 1
cosh(7x) + ^ j cosh(/3x) - -/lxsinh(/?x)|
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and

Ji2){O,y) = - pAsimry - e-£^- [g sinh/? + ^ (cosh 7 - cosh 0)1 sm(2ny)

()
(5.22)

Since the coefficients of e in the expressions for j[ {1, y) and J\ (0, t/) differ
in their s-dependence, the ratio of these two functions cannot be independent of
s for all e sufficiently small. It follows that the ratio of j{[ (1, y, t) to jf' (0, y, t)
is not independent of t, and there is no local ratio theorem in this case.

6. Concluding remarks

Flux ratio theorems in their various forms are seen from our analysis to belong
to a wide class of "reciprocity theorems". In this connection, we emphasise that
our results in Section 3, based on (3.1)-(3.4), are not limited to equations of
the form (3.22), which are essentially parabolic in character, but include elliptic
and hyperbolic systems as well. For such systems the interpretation of boundary
conditions, and of the ratio theorems themselves, will of course differ in character
from the cases of primary interest to membrane physiology. We have made no
effort to explore the applications to such other systems, for which results are
already known of this general type, if not exact form [1], [8], [9] and [10].

Our results clarify the conditions on transport properties under which one
can expect to observe experimentally a constant (total) flux ratio for a real
membrane, in the kind of experiments that have been conducted to date [16].
Application 3.1 in particular shows that the result is more robust than might have
been expected from earlier analysis: for example, the shape of the membrane
sample is not as critical as one might have imagined. The key role played in the
analysis by the functions <j> puts the whole subject in a new perspective, leading
us to focus attention on the physical meaning of this "potential", rather than
the diffusion coefficients and drift velocity separately.

Our analysis also suggests new experiments that could further illuminate the
structure of the transport properties of a membrane. For example, it should be
possible to construct an experiment reflecting the theoretical discussion of case
(b) in Section 2. Although it may not be possible to test experimentally the
validity of a local ratio theorem in such a case, the constancy of a total flux ratio
could again be measured. The interdiffusion in the domain fi would make this
prediction highly nontrivial even in the steady state.
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