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Abstract

Extreme value theory plays an important role in providing approximation results for
the extremes of a sequence of independent random variables when their distribution is
unknown. An important one is given by the generalised Pareto distribution Hγ (x) as
an approximation of the distribution Ft(s(t)x) of the excesses over a threshold t, where
s(t) is a suitable norming function. We study the rate of convergence of Ft(s(t) · ) to Hγ

in variational and Hellinger distances and translate it into that regarding the Kullback–
Leibler divergence between the respective densities.
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1. Introduction

Extreme value theory (EVT) develops probabilistic models and methods for describing the
random behaviour of extreme observations that occur rarely. These theoretical foundations
are very important for studying practical problems in environmental, climate, insurance, and
financial fields (e.g. [5, 6, 10]), to name a few.

In the univariate setting, the most popular approaches for statistical analysis are the so-
called block maxima (BM) and peaks over threshold (POT) (see, e.g., [3] for a review). Let
X1, . . . , Xn be independent and identically distributed (i.i.d.) random variables according to a
common distribution F. The first approach concerns the modelling of k sample maxima derived
over blocks of a certain size m, i.e. Mm,i =max(X(i−1)m+1, . . . , Xim), i ∈ {1, . . . , k}. In this
case, under some regularity conditions (e.g. [4, Chapter 1]), the weak limit theory establishes
that Fm(amx+ bm) converges pointwise to Gγ (x) as m→∞ for every continuity point x of
Gγ , where Gγ is the generalised extreme value (GEV) distribution, am > 0 and bm are suitable
norming constants for each m= 1, 2, . . ., and γ ∈R is the so-called tail index, which describes
the tail heaviness of F (e.g. [4, Chapter 1]). The second method concerns the modelling of k
random variables out of the n available that exceed a high threshold t, or, equivalently, of k
threshold excesses Yj, j= 1, . . . , k, which are i.i.d. copies of Y = X − t | X > t. In this context,
the generalised Pareto (GP) distribution, say Hγ , appears as the weak limit law of appropri-
ately normalised high threshold exceedances, i.e. Ft(s(t)x) converges pointwise to Hγ (x) as
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t→ x∗ for all the continuity points x of Hγ (x), where Ft(x)= P(Y ≤ x) and s(t) > 0 is a suit-
able scaling function for any t≤ x∗, with x∗ = sup (x : F(x) <∞). This result motivates the
POT approach, which was introduced decades ago by the seminal paper [1]. Since then, few
other convergence results have emerged. For instance, the uniform convergence of Ft(s(t) · )
to Hγ and the corresponding convergence rate have been derived by [11, 12], respectively.
Similar results but in Wasserstein distance have recently been established by [2]. As for the
GEV distribution, more results are available. In particular, there are sufficient conditions to
ensure, in addition to weak convergence, that Fm(am · +bm) converges to Gγ , for example,
uniformly and in variational distance, and the density of Fm(am · +bm) converges pointwise,
locally uniformly, and uniformly to that of Gγ (e.g. [7, Chapter 2]; [13, Chapter 2]).

The main contribution of this article is to provide new convergence results that can be useful
in practical problems for the POT approach. Motivated by the utility in the statistical field of
assessing the asymptotic accuracy of estimation procedures, we study stronger forms of con-
vergence than the pointwise one, as limt→x∗ D(Ft(s(t) · ); Hγ )= 0, where D( · ; · ) is either the
variational distance, the Hellinger distance, or the Kullback–Leibler divergence. In particular,
we provide upper bounds for the rate of convergence to zero of D(Ft(s(t) · ); Hγ ) in the case
that D( · ; · ) is the variational and Hellinger distance, and further translate them into bounds
on Kullback–Leibler divergence between the densities of Ft(s(t) · ) and Hγ , respectively. We
also pinpoint cases where recentering of exceedances is necessary to reach the optimum rate,
namely where Ft(s(t) · +c(t)) has to be considered in place of Ft(s(t) · ), for a suitable real
valued function c(t).

The article is organised as follows. Section 2 provides a brief summary of the probabilis-
tic context on which our results are based. Section 3 provides our new results on strong
convergence to a GP distribution. Section 4 provides the proofs of the main results.

2. Background

Let X be a random variable with a distribution function F that is in the domain of attrac-
tion of the GEV distribution Gγ , denoted as F ∈D(Gγ ). This means that there are norming
constants am > 0 and bm ∈R for m= 1, 2, . . . such that

lim
m→∞ Fm(amx+ bm)= exp(−(1+ γ x)−1/γ ) =: Gγ (x), (2.1)

for all x ∈R such that 1+ γ x > 0, where γ ∈R, and this is true if only if there is a scaling
function s(t) > 0 with t < x∗ such that

lim
t→x∗

Ft(s(t)x)= 1− (1+ γ x)−1/γ =: Hγ (x), (2.2)

(e.g. [4, Theorem 1.1.6]). The densities of Hγ and Gγ are hγ (x)= (1+ γ x)−(1/γ+1) and
gγ (x)=Gγ (x)hγ (x), respectively. Let U(v) := F←(1− 1/v) for v≥ 1, where F← is the left-
continuous inverse function of F and G←( exp(−1/x))= (xγ − 1)/γ . Then, we recall that the
first-order condition in (2.1) is equivalent to the limit result

lim
v→∞

U(vx)−U(v)

a(v)
= xγ − 1

γ
, (2.3)

for all x > 0, where a(v) > 0 is a suitable scaling function. In particular, we can set s(t)=
a(1/(1− F(t))); see [4, Chapter 1] for possible selections of the function a.
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A stronger convergence form than that in formula (2.2) is the uniform one, i.e.

sup
x∈[0,(x∗−t)/s(t))

|Ft(s(t)x)−Hγ (x)|→ 0, t→ x∗.

In the case of distributions F with finite end-point x∗, the following slightly more general form
of convergence is also of interest

sup
x∈[0,(x∗−t−c(t))/s(t))

|Ft(s(t)x+ c(t))−Hγ (x)|→ 0, t→ x∗,

for a centering function c(t) satisfying c(t)/s(t)→ 0 as t→ x∗. To establish the speed at which
Ft(s(t)x) or Ft(s(t)x+ c(t)) converges uniformly to Hγ (x), [12] relied on a specific formulation
of the well-known second-order condition. In its general form, the second-order condition
requires the existence of a positive function a and a positive or negative function A, named the
rate function, such that limv→∞ |A(v)| = 0 and

lim
v→∞

(U(vx)−U(v))/a(v)− (xγ − 1)/γ

A(v)
=D(x), x > 0,

where D is a non-null function which is not a multiple of (xγ − 1)/γ [4, Definition 2.3.1].
The rate function A is necessarily regularly varying at infinity with index ρ ≤ 0, named the
second-order parameter [4, Theorem 2.3.3]. In the following, we use the same specific form of
second-order condition of [12] to obtain decay rates for stronger metrics than uniform distance
between distribution functions.

3. Strong results for POT

In this section we discuss strong forms of convergence for the distribution of renormalised
exceedances over a threshold. First, in Section 3.1, we discuss convergence to a GP distri-
bution in variational and Hellinger distance, drawing a connection with known results for
density convergence of normalized maxima. In Section 3.2 we quantify the speed of conver-
gence in variational and Hellinger distance. Moreover, we show how these can be used to also
bound Kullback–Leibler divergences. Throughout, for a twice-differentiable function W(x) on
R, we denote by W ′(x)= (∂/∂x)W(x) and W ′′(x)= (∂2/∂x2)W(x) the first- and second-order
derivatives, respectively.

3.1. Strong convergence under classical assumptions

Let the distribution function F be twice differentiable. We write f = F′,
gm = (Fm(am · +bm))′, and ft = F′t. Under the classical von Mises-type conditions

lim
x→∞

xf (x)

1− F(x)
= 1

γ
, γ > 0,

lim
x→x∗

(x∗ − x)f (x)

1− F(x)
=− 1

γ
, γ < 0, (3.1)

lim
x→x∗

f (x)
∫ x∗

x (1− F(v)) dv

(1− F(x))2
= 0, γ = 0,

we know that the first-order condition in (2.3) is satisfied, and that

lim
v→∞ va(v)f (a(v)x+U(v))= (1+ γ x)−1/γ−1 (3.2)
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locally uniformly for (1+ γ x) > 0. Since the equality gm(x)= Fm−1(amx+ bm)hm(x) holds
with bm =U(m), am = a(m), and hm(x)=mamf (amx+ bm), and since Fm−1(amx+ bm) con-
verges to Gγ (x) locally uniformly as m→∞, the convergence result in (3.2) thus implies that
gm(x) converges to gγ (x) locally uniformly [13, Section 2.2].

On the other hand, the density pertaining to Ft(s(t)x) is

lt(x) := ft(s(t)x)s(t)= s(t)f (s(t)x+ t)

1− F(t)

and, setting v= 1/(1− F(t)), we have a(v)= s(t) and v→∞ as t→ x∗. Therefore, a further
implication of the convergence result in (3.2) is that lt(x) converges to hγ (x) locally uniformly
for x > 0 if γ ≥ 0, or for x ∈ (0,−1/γ ) if γ < 0.

In turn, by Scheffe’s lemma we have limt→x∗ V (Pt, P)= 0, where V (Pt; P)=
supB∈B |Pt(B)−P(B)| is the total variation distance between the probability measures
Pt(B) := P((X − t)/s(t) ∈ B | X > t) and P(B) := P(Z ∈ B), and where Z is a random vari-
able with distribution Hγ and B is a set in the Borel σ -field of R, denoted by B. Let

H 2(lt; hγ ) := ∫ [√
lt(x)−√

hγ (x)
]2 dx be the square of the Hellinger distance. It is well

known that the Hellinger and total variation distances are related as

H 2(lt; hγ )≤ 2V (Pt; P)≤ 2H (lt; hγ ) (3.3)

(see, e.g., [9, Appendix B]). Therefore, the conditions in (3.1) ultimately entail that the
Hellinger distance between the density of rescaled peaks over a threshold lt and the GP density
hγ also converges to zero as t→ x∗. In the next subsection we introduce a stronger assumption,
allowing us to also quantify the speed of such convergence.

3.2. Convergence rates

As in [12] we rely on the following assumption, in order to derive the convergence rate for
the variational and Hellinger distances.

Condition 3.1. Assume that F is twice differentiable. Moreover, assume that there exists ρ ≤ 0
such that

A(v) := vU′′(v)

U′(v)
+ 1− γ

defines a function of constant sign near infinity, whose absolute value |A(v)| is regularly
varying as v→∞ with index of variation ρ.

When Condition 3.1 holds then the classical von Mises conditions in (3.1) are also satis-
fied for the cases where γ is positive, negative, or equal to zero, respectively. Furthermore,
Condition 3.1 implies that an appropriate scaling function for the exceedances of a high
threshold t < x∗, which complies with the equivalent first-order condition (2.2), is defined as
s(t)= (1− F(t))/f (t). With such a choice of the scaling function s, we establish the following
results.

Theorem 3.1. Assume Condition 3.1 is satisfied. Then, there exist constants c > 0, αj > 0 with
j= 1, 2, K > 0, and t0 < x∗, depending on γ , such that

H 2(l̃t; hγ )

K|A(v)|2 ≤ S(v)
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for all t≥ t0, where v= 1/(1− F(t)),

l̃t =
⎧⎨⎩lt, γ ≥ 0,

lt( · +(x∗ − t)/s(t)+ 1/γ ), γ < 0,

and S(v)= 1− |A(v)|α1 + 4 exp(c|A(v)|α2 ).

Note that l̃t is the density of Ft(s(t) · +c(t)), with centring function

c(t) :=
⎧⎨⎩0, γ ≥ 0,

x∗ − t+ γ−1s(t), γ < 0,
(3.4)

for t < x∗. Given the relationship between the total variation and Hellinger distances in (3.3),
with obvious adaptations when a non-null recentring is considered, the following result is a
direct consequence of Theorem 3.1.

Corollary 3.1. Under the assumptions of Theorem 3.1, for all t≥ t0, V (P̃t; P)≤
|A(v)|√KS(v), with P̃t the probability measure pertaining to l̃t.

Theorem 3.1 implies that when γ ≥ 0 the Hellinger and variational distances of the prob-
ability density and measure of rescaled exceedances from their GP distribution counterparts
are bounded from above by C1|A(v)|, for a positive constant C1, as the threshold t approaches
the end-point x∗. Since, for a fixed x ∈ ∩t≥t0 (0, (x∗ − t)/s(t)), |Ft(s(t)x)−Hγ (x)| ≤ V (Pt; P),
and since [12, Theorem 2(i)] implies that |Ft(s(t)x)−Hγ (x)|/|A(v)| converges to a positive
constant, there also exists C0 > 0 such that, for all large t, C0|A(v)| is a lower bound for the vari-
ational and Hellinger distances. Therefore, since C0|A(v)| ≤ V (Pt; P)≤H (lt; hγ )≤C1|A(v)|,
the decay rate of the variational and Hellinger distances is precisely |A(v)| as t→ x∗. When
γ < 0, analogous considerations apply to l̃t and P̃t. With the following results, we give precise
indications of when a recentred version of lt is necessary to achieve the optimal rate.

Proposition 3.1. Under the assumptions of Theorem 3.1, when γ < 0 there are constants cj,
j= 1, 2, and t1 < x∗, depending on γ , such that, for all t > t1,

c1|A(v)|−1/2γ < H (hγ ; hγ ( · −μt)) < c2|A(v)|min (1,−1/2γ ),

where μt := c(t)/s(t) and c(t) is as in the second line of (3.4).

Corollary 3.2. Under the assumptions of Theorem 3.1:

(i) when −1/2≤ γ < 0, there are constants c3 > 0 and t2 < x∗, depending on γ , such that,
for all t > t2, H (lt; hγ )≤ c3|A(v)|;

(ii) when γ <−1/2, there are constants c4 > 0 and t3 < x∗, depending on γ , such that, for
all t > t3, H (lt; hγ )≥ c4|A(v)|−1/2γ .

According to Corollary 3.2(ii), the density lt of rescaled exceedances Y/s(t) does not
achieve the optimal convergence rate |A(V)| whenever γ <−1/2, in which case the rate is
only of order |A(v)|−1/2γ . In simple terms, this is due to the fact that, when γ is nega-
tive, the supports of lt and hγ can be different and the approximation error is affected by
the amount of probability mass in the unshared region of points. Indeed, we recall that the
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end-point (x∗ − t)/s(t) of lt converges to −1/γ as t approaches x∗ at rate A(v) (see, e.g.,
[4, Lemma 4.5.4]). Nevertheless, for t < x∗ it can be that (x∗ − t)/s(t) >−1/γ or (x∗ −
t)/s(t) <−1/γ . In turn, when γ is smaller than −1/2, the approximation error due to support
mismatch has a dominant effect. However, if scaled exceedances are shifted by subtracting the
quantity μt, in this case the upper end-point of the density l̃t is the same of that of hγ , hence no
support mismatch occurs and the optimal convergence rate is also achieved in the case where
γ <−1/2.

A further implication of Theorem 3.1 concerns the speed of convergence to zero of the
Kullback–Leibler divergence K (l̃t; hγ ) := ∫

ln{l̃t(x)/hγ (x)}l̃t(x) dx, and the divergences of
higher order p≥ 2, Dp(l̃t; hγ ) := ∫ | ln{l̃t(x)/hγ (x)}|pl̃t(x) dx. Using the uniform bound on
density ratio provided in Lemma 4.7 we are able to translate the upper bounds on the
squared Hellinger distance H 2(l̃t; hγ ) into upper bounds on the Kullback–Leibler divergence
K (l̃t; hγ ) and higher-order divergences Dp(l̃t; hγ ).

Corollary 3.3. Under the assumptions of Theorem 3.1, in particular with ρ < 0 and γ �= 0,
there exist constants M > 0 and t4 < x∗, depending on γ , such that, for all t≥ t4,

(i) K (l̃t; hγ )≤ 2MKS(v)|A(v)|2;

(ii) Dp(l̃t; hγ )≤ 2p!KS(v)|A(v)|2, with p≥ 2.

To extend the general results in Lemma 4.7 and Corollary 3.3 to the case of γ = 0 seems to
be technically over-complicated. Nevertheless, there are specific examples where the properties
listed in such lemmas are satisfied, such as the following.

Example 3.1. Let F(x)= exp(−exp(−x)), x ∈R, be the Gumbel distribution function. In this
case, Condition 3.1 is satisfied with γ = 0 and ρ =−1, so that Theorem 3.1 applies to this
example, and, for an arbitrarily small ε > 0, we have lt(x)/h0(x)≤ exp(exp(−t)) < 1+ ε for all
x > 0 and suitably large t. Hence, the bounded density ratio property is satisfied and it is still
possible to conclude that Dp(lt; h0)/|A(v)|2 and K (lt; h0)/|A(v)|2 can be bounded from above
as in Corollary 3.3.

4. Proofs

4.1. Additional notation

For y > 0 we write T(y)=U(ey) and, for t < x∗, we define the functions

pt(y)=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(T(y+ T−1(t))− t)/s(t)− (eγ y − 1)/γ, γ > 0,

(T(y+ T−1(t))− t)/s(t)− y, γ = 0,

(T(y+ T−1(t))− x∗ − γ−1s(t))/s(t)− (eγ y − 1)/γ, γ < 0,

with s(t)= (1− F(t))/f (t), and

qt(y)=
⎧⎨⎩(1/γ ) ln [1+ γ e−γ ypt(y)], γ �= 0,

pt(y), γ = 0.
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Moreover, for t < x∗ we set

x̃∗t =
⎧⎨⎩(x∗ − t)/s(t), γ ≥ 0,

−1/γ, γ < 0.

Furthermore, for x ∈ (0, x∗ − t), we let φt(x)= T−1(x+ t)− T−1(t). Finally, for x ∈R, γ ∈R,
and ρ ≤ 0, we set

Iγ,ρ(x)=
⎧⎨⎩

∫ x
0 eγ s

∫ s
0 eρz dz ds, γ ≥ 0,

− ∫∞
x eγ s

∫ s
0 eρz dz ds, γ < 0.

4.2. Auxiliary results

In this section we provide some results which are auxiliary to the proofs of the main ones,
presented in Section 3. Throughout, for Lemmas 4.1–4.6, Condition 3.1 is implicitly assumed
to hold. The proofs are provided in the Supplementary Material. In particular, Lemmas 4.1
and 4.2 are used directly in the proof of our main result, Theorem 3.1.

Lemma 4.1. For every ε > 0 and every α > 0, there exist x1 < x∗ and κ1 > 0 (depending on γ )
such that, for all t≥ x1 and y ∈ (0,−α ln |A(eT−1(t))|),

exp
{−κ1|A(eT−1(t))|e2εy} < e−qt(y) < exp

{
κ1|A(eT−1(t))|e2εy}.

Lemma 4.2. For every ε > 0 and every α > 0, there exist x2 < x∗ and κ2 > 0 (depending on γ )
such that, for all t≥ x2 and y ∈ (0,−α ln |A(eT−1(t))|),

exp
{−κ2|A(eT−1(t))|e2εy} < 1+ q′t(y) < exp

{
κ2|A(eT−1(t))|e2εy}.

Lemma 4.3. If γ > 0 and ρ < 0, there exists a regularly varying function R with negative
index 
 such that, defining the function

η(t) := (1+ γ t)f (t)

1− F(t)
− 1,

as v→∞, η(U(v))=O(R(v)).

Lemma 4.4. If γ > 0 and ρ < 0, there exists x3 ∈ (0,∞) and δ > 0 such that, for all x≥ x3,
f (x)= hγ (x)[1+O({1−Hγ (x)}δ)].

Lemma 4.5. If γ < 0 and ρ < 0, there exists a a regularly varying function R̃ with negative
index 
̃= (−1)∨ (−ρ/γ ) such that, defining the function

η̃(y) := (1− γ y)f (x∗ − 1/y)

[1− F(x∗ − 1/y)]y2
− 1,

as y→∞, η̃(y)=O(R̃(y)).

Lemma 4.6. If γ < 0 and ρ < 0, there exist δ̃ > 0 such that, as y→∞,

f (x∗ − 1/y)

y2
= (1− γ y)1/γ−1[1+O({1−H−γ (y)}δ̃)].
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Finally, in order to exploit Theorem 3.1 to give bounds on Kullback–Leibler and higher-
order divergences, we introduce by the next lemma a uniform bound on density ratios.

Lemma 4.7. Under the assumptions of Theorem 3.1, if ρ < 0 and γ �= 0, then there exist a
t∗ < x∗ and a constant M ∈ (0,∞) such that

sup
t≥t∗

sup
0<x<x̃∗t

l̃t(x)

hγ (x)
< M.

4.3. Proof of Theorem 3.1

Proof of Theorem 3.1. For every xt > 0,

H 2(lt; hγ )

=
∫ xt

0
+

∫ ∞
xt

[√
ft(x)−√

hγ ((x− c(t))/s(t))/s(t)
]2

dx

≤
∫ φt(xt)

0
e−y

[
1−

√
e−qt(y)(1+ q′t(y))

]2
dy+

[√
1− Ft(xt)+

√
1−Hγ

(
xt − c(t)

s(t)

)]2

=: I1(t)+ I2(t).

Let xt be such that φt(xt)=−α ln
∣∣A(eT−1(t))

∣∣ for a positive constant α to be specified later.
Then, by Lemmas 4.1 and 4.2, for a suitably small ε > 0 there exists κ3 > 0 such that, for all
sufficiently large t,

I1(t)≤
∫ −α ln |A(eT−1(t))|

0
κ3

∣∣A(eT−1(t))
∣∣2e(4ε−1)y dy≤ κ3

∣∣A(eT−1(t))
∣∣2[1− ∣∣A(eT−1(t))

∣∣α1
]
,

where α1 := α(1− 4ε) is positive. Moreover, on one hand we have the identity 1− Ft(xt)=
|A(eT−1(t))|α . On the other hand, for some constant κ5 > 0 we have the inequality

1−Hγ

(
xt − c(t)

s(t)

)
= ∣∣A(eT−1(t))

∣∣α exp
{− qt

(−α ln
∣∣A(eT−1(t))

∣∣)}
≤ ∣∣A(eT−1(t))

∣∣α exp
{
κ5

∣∣A(eT−1(t))
∣∣1−2εα}

.

Consequently,

I2(t)≤ ∣∣A(eT−1(t))
∣∣α[

1+ exp

{
κ5

2

∣∣A(eT−1(t))
∣∣1−2εα

}]
.

Now, we can choose α > 2 and ε small enough that
∣∣A(eT−1(t))

∣∣α <
∣∣A(eT−1(t))

∣∣2 and
α2 := 1− 2εα > 0. The conclusion then follows noting that T−1(t)=−ln(1− F(t)) and, in
turn,

∣∣A(eT−1(t))
∣∣= |A(v)|. �

https://doi.org/10.1017/jpr.2023.53 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2023.53


Strong convergence of POT 537

4.4. Proof of Proposition 3.1

Proof of Proposition 3.1. Assume first that, for all large t, μt = (x∗ − t)/s(t)+ 1/γ is
positive. In this case, we have the following identities:

H 2(hγ ; hγ ( · −μt))=
∫ −1/γ

0

[√
hγ (x)−√

hγ (x−μt)
]2

dx+ 1−Hγ

(
− 1

γ
−μt

)

=
∫ ∞

0
e−s

[√
exp{−(1/γ ) ln(1− γ e−γ sμt)}

1− γ e−γ sμt
− 1

]2

ds+ (−γμt)
−1/γ .

Concerning the first term on the right-hand side, for all s > 0 as t→ x∗ we have
0≤ ln(1− γ e−γ sμt)≤ ln(1− γμt)=O(μt) and

1≥ 1

1− γ e−γ sμt
≥ 1

1− γμt
= 1+O(μt),

where, for a positive constant τ , μt satisfies μt/|A(v)| = (1+ o(1))τ (see, e.g., [4, Lemma
4.5.4]). Then, as t→ x∗,

∫ ∞
0

e−s

[√
exp{−(1/γ ) ln(1− γ e−γ sμt)}

1− γ e−γ sμt
− 1

]2

ds=O(μ2
t )=O(|A(v)|2).

Concerning the second term, as t→ x∗, (−γμt)−1γ = (−γ )−1/γ (1+ o(1))τ−1/γ |A(v)|−1/γ .
The result now follows for the case where μt is ultimately positive. When it is ultimately
negative, simply note that

H 2(hγ ; hγ ( · −μt))=H 2(hγ ( · +μt); hγ )=H 2(hγ ( · −(−μt)); hγ ), (4.1)

and proceed as above, but replacing μt with −μt. �

4.5. Proof of Corollary 3.2

Proof of Corollary 3.2. Observe that, for γ < 0, H (lt; hγ )=H (l̃t; hγ ( · +μt)). Moreover,
note that, by the triangular inequality and the first identity in (4.1),

H (hγ ; hγ ( · −μt))−H (l̃t; hγ ( · +μt))≤H (l̃t; hγ ( · +μt))

≤H (hγ ;hγ ( · −μt))+H (l̃t; hγ ( · +μt)).

Whenever γ ≥−1/2, by Theorem 3.1 and Proposition 3.1, the term on the second line is of
order O(|A(v)|) as t→ x∗. Instead, if γ <−1/2, by Theorem 3.1 and Proposition 3.1, as t→ x∗
the term on the left-hand side of the first line satisfies

H (hγ ; hγ ( · −μt))−H (l̃t; hγ ( · +μt))≥ c3|A(v)|−1/2γ −O(|A(v)|)
= c3|A(v)|−1/2γ (1+ o(1)).

The result now follows. �
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4.6. Proof of Corollary 3.3

Proof of Corollary 3.3. By [8, Lemma 8.2],

K (l̃t; hγ )≤ 2

[
sup

0<x<x̃∗t

l̃t(x)

hγ (x)

]
H 2(l̃t; hγ ).

Moreover, by [9, Lemma B.3], for p≥ 2,

Dp(l̃t; hγ )≤ 2p!
[

sup
0<x<x̃∗t

l̃t(x)

hγ (x)

]
H 2(l̃t; hγ ).

The conclusion now follows by combining the above inequalities and applying Theorem 3.1
and Lemma 4.7. �
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