13

Coincidence experiments (¢,¢’ X)

With the advent of high-energy, high-intensity, high-resolution electron
accelerators with continuous beams (c.w.), a whole new class of coinci-
dence reactions becomes accessible. It is important to have a detailed
understanding of such processes. In this section, a covariant analysis of
the amplitude and cross section for the coincidence reaction (e, e’ X) will
be developed. The results will be exact with one photon exchange, that
is, to order o in the cross section. The particle X can be anything. The
kinematic situation is illustrated in Fig. 13.1. The four-momentum transfer
from the electron is now consistently denoted by

k ki — k>
k> = —2ki -k

0
= 4dgesin® 5 ; lab frame (13.1)

The second relation holds for relativistic (massless) electrons, and the third
relation holds in the laboratory frame. The four-momentum of the emitted
particle X will be consistently denoted by g = (q,iw,), and conservation

final nucleus

initial nucleus

Fig. 13.1. Kinematic situation for a (e, e’ X) coincidence experiment.
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3 = W/IR
—s
8q /1 °
- - : g
. k2x k] . _ : o
K1= T 3 R
I 2X k]I (pq 4\\

Fig. 13.2.  Angles for particle X in the C-M system.

of four-momentum states that
k+pi=q+p (13.2)

Here pi(p>) are the four-momenta of the initial (final) nucleus or nucleon.
Two distinct Lorentz frames are of primary interest. The center of
momentum (C-M) frame is defined by the relation

q+p=k+p=(0,iW) ; C-M frame (13.3)

Note that W is the total energy in the C-M frame. The laboratory frame
is defined by

p1 = (0,iM;) ; lab frame (13.4)

The C-M frame is reached from the laboratory frame by making a
Lorentz transformation along the direction of the three-momentum
transfer k.

Introduce the orthonormal system of unit vectors in the laboratory
(lab), as defined in Fig. 13.1

oo K e = K2 xki
7 K| G x k|

e =e X e (13.5)
It is important to note that since ex; and e, are transverse to k, they
are unchanged under the Lorentz transformation along k from the lab to
the C-M system. ex3, defined as the third unit vector in this orthonormal
system, is thus also uniquely defined in the C-M system (it lies along the
direction of k).

In addition, we define the angles (0,,¢,) that the particle X makes
with respect to this orthonormal basis as seen in the C-M frame; this is
indicated in Fig. 13.2.

From the general discussion of electron scattering in chapter 11,
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one has

4% Bk, 1
do = FT&W”HV W‘uv (136)

Nw = kl,ukZi klvkz,u - (kl : k2) 5,uv
W = QP> 3690 — pi — k)i, (0)|f) {1 u(0)i)(QE )
i f

For definiteness and clarity, specify to a two-particle final state of
particle X plus a second nucleus or nucleon (denoted with subscript 2)!

(1I(0)i) = (p24"1,(0)1p1) (13.7)
Here |p2q™)) is an exact eigenstate of the total hamiltonian; it is a two-
particle scattering state with incoming wave boundary conditions. To go
to states with Lorentz invariant norm, one defines (c.f. chapter 12)

J = 2qu1E2Q3
e MM,

1/2
) (P2 17,.0)p1) (13.8)

Here J, = (J, iJo), and this quantity now properly transforms as a four-
vector under Lorentz transformations. The hadronic response tensor then
takes the form

/Qd q Qd p2

@(p2+q—p1 —k)

M1M2

— < _(QE\JYJ 13.9
szqE1E293( 1) ve# ( )

Here Y indicates a sum over all the remaining variables. The complex
four-vector J is defined by

Jr =I5 i5) (13.10)
Thus

2M1M2

Zzé“ (p2+q—p1— k)dqdszJ (13.11)

Wi 2wq 2E,

This expression is now manifestly Lorentz covariant.

"' As long as one sums over everything else in »_ . the subsequent results for the general
form of the coincidence cross section hold for arbitrary nuclear final states.
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Consider next the Lorentz invariant combination #,,J;J,. It follows
from Eq. (13.6) that

My Ty = (ki - Yk - J) + (ko - I (ki - J) — (ki ~ka)(J™ - J)  (13.12)

Current conservation states that

k-J = 0
ki-J = ky-J (13.13)
Hence
k2
anV*JM = 2(k; -J*)(kl -J)+ 5J* -J (13.14)

This expression is explicitly Lorentz invariant. Let us proceed to evaluate it
in the C-M frame. Since k{ has no projection on e;, which is perpendicular
to the electron scattering plane, one can write in the C-M system (recall
K =0)

ki = [(ky - e2)ex + (ki - e3)es, ikq] (13.15)

Now use current conservation

k-J wJy
e J=—=——+— (13.16)
k| k|
Thus
Wi
k1 -J = (k1 : ez)(ez : J) + L(z(kl ' k) - kl} J() (1317)
The Coulomb amplitude is defined by Jy = J¢, hence
J/l = (Ja lJC)
JJ = I+ e — U
J? = Je>+ T ef (13.18)
Use current conservation again
* 2 wl% 2
JJ = I+ F_l [Jcl
LT
= Wl =5l (13.19)
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A combination of these results yields the following expression in the C-M
system

. 1
modide = 2{PRLP - exPle I

2 4
2 (6% k
+Je [(kz(k1~k)—k1) —41(2]

koo [tk k) — k] 2Rel(es D el (1320)
k CM
The next step is to re-express the electron variables appearing in this ex-
pression in the laboratory frame. Start by observing that the combination
ki - e, is transverse and hence unaffected by the Lorentz transformation
from the lab to the C-M system

k  (ky xky)
k'e =k.e><e =k|:><
1°€ 1-(e3 xer) =k K ok
1
= Kismo K k) k) —kik k]
1 s , i
= W smol® k) —ki ko) —kitki - ke —k3)]
1 .
T T
tki-ejon = w ; lab variables (13.21)

Here x is now the three-momentum transfer in the lab frame
K = |k|lab
= \/8% +8% —2g182c0s0 (13.22)

To distinguish C-M variables, the four-momentum transfer as seen in
the C-M system will be written in the final expressions as

k, = (K", i) ; C-M frame (13.23)

Then with the aid of Eq. (13.3), which defines the C-M frame, one can
write

, 2
K? = P4o2—k— [k - (p1 + k)]

(p1 + k)2
- (mj_k)z[kzp% + 2k2(P1 k) + k* — (k- p1)2 _ 2k2(p1 k) —k4]
1
= iR Erl = k] (1320
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This expression is now in invariant form and can be evaluated in the lab

frame defined by Eq. (13.4) to give

« M .
k™ = WIK ; lab variables
Note that W is expressed in terms of lab variables by
w2 = —(pi+k)’

= M} —2p -k—k*
.40 .
= M? 4 2M (g1 — &3) — 4¢16) sin’ 3 lab variables

Next use (for massless electrons)

kl-kz—kl-kzzékz

to work out in the C-M system

2
1
[Cl:;{(kl 'k)_kl}c = F[wk(kl 'k—’rkm)k)—k](kz—I—a)]%)]2
M
k* 1 2
= [z =]

k* [(p1 +k)? 2
k* 1
= —mm[m - (k1 +k2)]2

(13.25)

(13.26)

(13.27)

_ K {(—1} {—lk (1K) + ki (pr +k)}2

(13.28)

This is also now in invariant form [note Eq. (13.24)] and can be evaluated

in the Iab frame to yield

2 4 a2
{ [Cl:g(kl k) — kl} } = :T44A;/12(81 +&)* ; lab variables
oM

Now in the lab
kK = 1* — (e1 — &2)°
Thus
(e1 + ) = K> —k>+dere
= K> —4g1ssin® g +4e1er

0
= K2+ de16 cos® 5
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= 4 cos? 29 1+—tang
T TRces S 2 g

0 (K2\ (K  w* 0
2
= 48182 COS 5 <k2> (k*z + 7tan 2) (1331)

= 8% + 8% — 2¢e16pcos 0,

2 4 4 2
Wy, k k M] 2
“Kiky - K) — - = | ZL
{I:kz( 1 ) k1:| 4k2}CM k*4 [4W2(81 +82)

Also, since x?

1 M?
—Zﬁ( T+ — 218 cos@)]
k* M} , 0 '
= prapfieces s ; lab variables

(13.32)

Note that since k? = k* —w}? > 0 in electron scattering, one can determine
the sign of the quantity in square brackets in Eq. (13.29) as

wi(k - kp)
K2
In summary the expressions involving the electron variables in the cross

section are Lorentz transformed from the C-M to the laboratory frame
according to

ki — >0 (13.33)

0 ( M} k?
{(ki-e)}em = 8182C0$22<Wl2k*2) (13.34)

2 0 ( M? k2
_ 2 1
{[kz (ky - k)—kl} }CM = §£1&CO0S8" = <W2k*2>
X K + W tan Q
k*2 2

2 g ,0 Mf K2\ K2
{l:kz (kl k)—k1:| — 4k2}CM = £&1&CO0S 5 WkTZ sz

W2 = —(pi+k)*
., 0
= M12+2M1(31 — &) —4e18) s1n2§

k-(pi + K] M}
P e (1335)

Here

kK = k-
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are respectively the squares of the total energy and three- momentum
transfer in the C-M system. The quantities (eg, &, 0) with klab =¢l+&5—
2¢e1er cos O are the electron scattering variables in the lab.

The remaining task is to work out the phase space integral. The Lorentz
invariant expression is

Ppy 4
o= [44 s | 50+ pi—ke—p—a) (13.36)

We choose to evaluate this in the C-M frame. The [ dp, can be immedi-
ately evaluated with the aid of the 6 to give

2
q-dQq [ dq
O = o(We — W))dW;
4w, E> (an (Wi = WadWw,
2
q dq
= dQ, 13.37
4a)qE2 <6Wf> ( )
Next use
W, = \/q2+m§(+\/q2+M§ s Wi= W
oWy q q qW
= 4 .4 _ 13.38
dq oy + E, wqeE> ( )

One has finally

&q [ &ps

q
— [ —= ——dQ, ; C-M f 13.
20, ] 2, dQ, ; C rame (13.39)

@D(ky +p1 —ky —pr—q) = W

Note that the first of Eqgs. (13.38) allows a determination of g(W).
The above results are now combined to yield the laboratory cross section

4o dk 1
do = 77277’]#1’ Wuv

k* 280 \/(ky - p1)?

4% dderdQ; 1 2M1M2( q dQ> My el
T kY 26 Mg (2np \4w w2 | g

W2 k2
X [ 3 tan *‘JJ_|2 ‘J e2|2 + k*4|‘]c|2

M 12
~ (kz AT tan’ 2) 2ReJi(J - e2) (13.40)
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Define?

P \/; JMiM, (quEﬂEzQ ) (17, 0) 1) (13.41)

AW Ju= Ag W MM,

The differential cross section in the lab is then given by

Ao gM; ) ) W2 )
_f9 —t 0
derd€dQ, M ( W) k*4|fC| + k*2|j el + an’ \jﬂ

k kz W2 0 1/2 .
k72 (k*2+ tan22> 2Re[fc(f~ez)]} (13.42)

Here (1, ¢;,0) are electron scattering variables in the lab, and [W,q(W),
k*,04, ¢4] are C-M variables, the first three of which can be calculated in
terms of electron lab variables by utilizing the Lorentz invariant expres-
sions in Egs. (13.35). The current is evaluated in the C-M system.

It is useful to rewrite this cross section in terms of helicity polarization
vectors for the virtual photon.> Define helicity unit vectors (see Fig. 13.1)
according to

1
ex+1 = +—=(ex1 L iex) (13.43)
+ \/i

Since these are still transverse, they are also unchanged under the Lorentz
transformation from the lab to the C-M system. Inversion of the definition
gives (we again suppress the k subscript)

i
e = —(ep] +e_
2 \/i( +1 1)

e = \1ﬁ(e_1—e+1) (13.44)
Define
Jr=e - F (13.45)
It follows that
I = el el =P+ )
Sl = L7 4R ()
2Re JU(S @) = —R2Imgi(s + 77 (13.46)

2 By looking at a simple example for the matrix element, the reader can establish that this
expression still has dimensions [M]™!
3 Think of this as the annihilation of a photon.
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Thus one arrives at the basic result for the (e, e’ X) coincidence cross
section in the laboratory frame

dSO' qu 2 k2 W2 2
m = UM( > [k*“jd k*z-i-—tan 5 | 171

2
2k*22Re(f“) (7
2 2 2 1/2
+,f <,f*z+ W tan? §) V2Im 7o+ 77h| (13.47)

In this expression k* is the three-momentum transfer, W is the total energy,
and g = |q| and dQ, refer to the momentum of particle X, all in the C-M
system. The electron variables (k?,k*, W, 0) appearing in the cross section
are functions of (k% k- p1, 0) where 0 is the electron scattering angle in the
laboratory frame. The appropriate relations for (k*, W) as functions of
(k?,k - p1) are given in Egs. (13.35). There are three independent electron
scattering variables in the lab, (&1, ¢, 0); hence it is possible to fix (k2, k- pi)
and vary 6. The current is evaluated in the C-M system.

There are four target responses appearing in the cross section expressed
as bilinear combinations of current matrix elements where the current
is defined by Eq. (13.41) with ¢, = (#,ifc) and #* = e; - #. These
four responses are functions of the variables (k% W, 04, ¢4) or (k% k
p1, 04, ¢4). The dependence on the angle variables will be made explicit in
the subsequent analysis. The dependence on the “out-of-plane” angle ¢,
whose content must be transmitted through the virtual photon, turns out
to be particularly simple. It is explicitly exhibited as

Il
AP+
2Re (™Y (#™) o cos2g,
V2Im g+ 77 o sing, (13.48)

The dependence on (0, ¢4) in Eqs. (13.47, 13.48) now allows a complete
kinematic separation of the four target response functions at fixed (k2 k -
p1,04), or equivalently fixed k2, W, 0,4). Since the term in cos2¢, takes
the same value at ¢, = n/2 and ¢, = 3n/2, for which the reaction
plane and electron scattering plane in Fig. 13.1 coincide, an out-of-plane
measurement is needed to separate its contribution. Conversely, the term
in sin ¢, can be isolated with two in-plane measurements at these two
values.

This derivation is from appendix C of [Pr69]. Other work on coinci-
dence experiments is contained in [de67, Wa79, KI183]. Work on coinci-
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1>
//<_)(P\\ |
/ I

x -
Ve Pr=-i

A

dg X

| FS

Fig. 13.3. Configuration for helicity analysis of current matrix elements in the
C-M system. Here everything is referred to the incoming and outgoing target
states with momenta and helicities (p;4;) and (p24,) respectively. Note how the
(x,y,z) coordinate system is related to the original system defined by e; with
i =1,2,3. Note in particular the relations 0, = 0, and ¢, + ¢, = 2n.

dence experiments in pion electroproduction is contained in [Be66, Pr70].
Coincidence experiments with a polarized electron beam are discussed in
[Ad68, Ra89]* and with both a polarized electron beam and polarized
target in [Ra89].

The next step is to demonstrate the angular dependence in the nuclear
matrix elements. This will be done through the use of a helicity analysis
of the current matrix elements in the C-M system. Let us go back to the
form of the cross section before the ; >_¢ has been carried out. The cross
section is then being calculated for given initial and final helicities of all
the particles in the C-M system, and of the virtual photon. The situation
is illustrated in Fig. 13.3. The analysis parallels that of Jacob and Wick
[Ja59]. First, recall some of the basic results from that work

For two-particles in the C-M system, the transformation from a state
where the relative momentum is directed at an angle (0, ¢), to a state of
definite angular momentum (J, M) is given by

2J +1

1/2
) s (1349)

(JM AN 25|01 22) = 5,111/151212 <
Here 4 = 41—/, is the net helicity of the state. We have seen this expression
before as the “photon wave function” in Eq. (9.35). The transformation
in Eq. (13.49) is unitary.

4In a coincidence reaction with a polarized electron beam (€,¢' X) there is an additional,
fifth response function, sensitive to final-state interactions, which can only be accessed
with out-of-plane measurements [Ra89].
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The S-matrix for an arbitrary two-particle process in the C-M system
can be written as

(2m)2 o' ]

bl 1 27‘[4
(DePalealSIpappiatn) = 2D 54(p, — P) s

x(0'¢’ hﬂd\S( N0 Aaln) (13.50)

Here (p,v) are relative momenta and velocity in the C-M system and P
is the total four-momentum in that frame. For transitions, the S-matrix is
related to the T-matrix by S =14 iT.

With the aid of completeness, one then establishes the following relation
for the required S-matrix in the C-M system

(0p27alSW)004dp) = D> (0¢AcialIMiciq)
JM J' M’
AT M A2l S(WHI' M 302} (J' M 2425|00447)  (13.51)

The scattering operator S is a scalar under rotations; it commutes with the
angular momentum operator J. The Wigner—Eckart theorem then implies
that the matrix element of S must be diagonal in J and independent of
M. Use

2J 4+ 1\ /2 2J +1\ /2
(Z) " Auo00 = (25 Tow, (13.52)

Here the initial angular momentum along the z-axis is M = 1 = 4, — 4.
A combination of the above results then yields the expression

(072l S(W)|0 04 dp) =

20 +1 i
S (Far ) Pho (000 Gl W i)
i = A — A L g = e — (13.53)

There are various conditions on the helicity matrix elements of the
scattering operator that follow from unitarity and symmetry properties of
the strong interactions. Parity invariance essentially cuts the number of
independent matrix elements in half. The parity operator reflects momen-
tum and leaves particle spins unchanged; hence it reflects the helicity. It
leaves the angular momentum and z-component of the angular momen-
tum unchanged. The parity operator thus has the following effect on a
two-particle state [Ja59]

P|IMtia) = (=1 =575y |IM — 2y — o) (13.54)
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Here the #; are intrinsic parities and the overall phase is conventional.” If
the scattering operator is invariant under the parity transformation, i.e. if
it commutes with P, then [Ja59]

(—2e = 2aIST(W)| = Da = 2p) = nanpnng(2elalS” (W)l 2als)  (13.55)

Now the electroproduction process (e, e’ X) in the C-M system presents
exactly the same problem as discussed above.® The behavior under rotation
of all quantities is exactly the same. The only new feature is that k2, the
mass of the virtual photon, provides an additional kinematic variable
in the C-M system. To make the analogy more explicit, recall Low’s
first reduction of the S-matrix [Lo55]. For non-forward pion—nucleon
scattering it takes the form

(r'q'ISIpq) 1
(01S10) 2004,Q

Here J(0) is the pion current (the isospin label is suppressed). This expres-
sion now has exactly the same form in terms of target matrix elements
of the current as that we have been studying. The only difference is that
in our case it is the matrix element of the electromagnetic current that is
required. With the Low reduction, one shifts the transformation properties
from the state vector (which we do not have for a virtual photon) to those
of the current (which we do have).

With the electromagnetic current, one can use current conservation to
relate the Coulomb and longitudinal matrix elements

w*
ey = J0= kfffc (13.57)

This reduces the problem to the study of one or the other of these.

As a result of the above discussion, the helicity matrix elements of
the electromagnetic current for the hadronic target in the C-M system,
required for the cross section in Eq. (13.47), must have the following
angular dependence

k* 1
(JCipsy = of VAR

=—2n)*ioY(p' +4 —p—q) (P'q"1J0)p) (13.56)

> (2 +1) D55 (~bp,—0p, bp)"
J

X (A x| TY (W, k?)| 21 Jc) ; =0
1
Y _ J _ _ *
(5 = g 2O+ Vs 0O b)
x (22 2x| T (W, k?)| A1 k) Dk =41 (13.58)

3 For the photon (—1)Sy, = 1.
¢ The particular coordinate system chosen in Fig. 13.3, which might appear somewhat
perverse to the reader, was chosen to make this analogy explicit.

https://doi.org/10.1017/9781009290616.016 Published online by Cambridge University Press


https://doi.org/10.1017/9781009290616.016

13 Coincidence experiments (e, €' X) 89

The normalization is conventional. Here

Ai= A1 — A s Ap = /A2 —Ax (13.59)
All the angular dependence is now explicit. From Fig. 13.3
0, = 0,
¢, = 2n—¢, (13.60)

The angular dependence with respect to the angles of Fig. 13.2 is then
given by the relation

/1 )f( ¢Pa 01” 4)17)* = }f A,(¢£I’ q> ¢q) (1361)
The proof follows from [Ed74] and the fact that Ay — /; is an integer
@./]u,,ﬂf(_(ﬁ[h _Hp) (b[))* = elmd)pd./{“lf(_ep)e_l}f¢p
e Hbud] ; (0g)er%
= 7] (¢g,00,—y) (13.62)

In the expression for the (e, e’ X) cross section, for a given set of particle
helicities, one needs the bilinear expression

* y 1 *
(7, (F%),, = Gore S0 0T+ DT + 1) T i)
£l Aot VARE

X </l2)vX| TJ/ |}“1 ;“;c>@£i,if(_¢pa _gp’ (lap)gjl’:),f(_(bp’ _Qpa ¢p)* (13-63)
Here
if = )Q — /1)( ) )\,i = )q — ;Lk ; )\4; = )\41 — /1;{ (13.64)

This expression is required for values of 4, and 4 of 0 and +1. With the
aid of Eq. (13.62) and formulas in [Ed74], the angular functions appearing
in these bilinear combinations can be written as

Afi(d)q’ q» ¢q) @)fA(d)(I’ q> (bq) = (1365)
DD (g, 0g. =) Z, (g, 00— g)

Now use the composition law for rotation matrices [Ed74] to rewrite the
r.h.s. of this expression as

ths. = (1) (] ) Tl 0=y

Imm’
J J 1 >
X 13.66
< —;ui ;u: m’ ( )
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Since m must vanish by the properties of the 3-j symbols, use

] N A7 1/2
Do ($q: 04, —g)” = <2l+1> Yi (0 ) (13.67)
Since 4; — A; = A, — A, one finally has
, 1
Ak A — /L,—) ’
(), F4), = gV T+ nes )

J

X (o 2x| T? | A da)* Gadx| T |21 20) > VaAr(2l+1)
I

J J 1 J J I
X < A~ 0 > Y, ;/_;k(9q,¢q)< W = > (13.68)

This formula gives the general angular dependence of the bilinear forms of
the current appearing in the cross section for an arbitrary set of helicities
of the reaction participants.” As such, it can be used to calculate the
angular distributions in the C-M system for any polarization of the initial
and final systems. It is a central result.

If the target is unpolarized, and the final particles are unobserved, one
must average over initial helicities and sum over final helicities. We denote
these sums with a bar over the bilinear combinations of currents

TI=YNN s (13.69)

M Ix

The transition matrix elements are functions of (W, k?). Parity invariance
of the strong and electromagnetic interactions implies

(=22 = x| TI (WK = 21 — Z) =
i (=13 o dx | TH (W k) 2udx) - (13.70)
A change of dummy helicity sum values to their negatives, use of the
parity relation, and use of the symmetry properties of the 3-j symbols

allow us to write the bilinear products of current matrix elements required
in the electron scattering cross section in Eq. (13.47) in the following form?®

Jel> = 4k* ZA;PI cos 0,) (13.71)

7 This includes, for example, the process of “virtual Compton scattering,” now studied
extensively through the coincidence reaction p(e,e'p)y.

8 The spherical harmonics are defined by Y;,, = (—1)" [ zii(lz)ﬁmm ] l/2P’”(cos 0)e™? for m >
0 while for m < 0 one has Y}, = (—=1)"Y,, . Here P/"(cos 0)) are the associated Legendre

polynomials [Ed74], which for positive m are given by P/"(x) = (1 — x2)™/2d"Py(x)/dx".
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Fig. 13.4. In-plane angular distribution of protons in '2C(e,€' py)'iB through
the giant dipole resonance measured with the SCA at HEPL [KI183]. Data from

[Ca80].
1
242 = —— > BiP(cos0y)
4k*q 7
* 1 1
Im 74 (/H +f*1) = T ZCIPI(I)(COS 0,) sin ¢,
I

TNk . N 1
Re (f“) (f_l) = m ZnDlP,(z)(cos 04) cos2¢y
I

These expressions provide the general angular distributions in the C-M
system for (e,e’ X) for any target particles and any X. The coefficients
(Ay, B;, C;, D) are bilinear combinations of helicity amplitudes; they are
functions of (W,k?). They are developed in detail in appendix F. The
quantity # = nin3n% is the real combination of intrinsic parities. These
expressions are further analyzed and tabulated in [KI83].

The claim made in exhibiting the dependence on the out-of-plane angle
¢4 in Eqgs. (13.48) has now been established.

To give the reader some feel for coincident electron scattering, we
present three brief examples. First, consider Fig. 13.4 which shows the
coincidence cross section for 1%C(e, e’ po)'1B [Ca80]. This is the first coin-
cidence experiment done with the superconducting accelerator (SCA) at
the Stanford High Energy Physics Laboratory (HEPL), a machine that
proved to be the prototype for CEBAF . The energy transfer is controlled
so that !>C is excited to the giant dipole resonance. The in-plane angular
distribution of the emitted proton leading to the ground state of ''B
is then measured with respect to the momentum transfer x. This is an
example of the angular correlation measurement discussed above, where
the inelastic scattering of the electron first aligns the target along the
direction of the momentum transfer. Notice the very nice dipole pattern
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Fig. 13.5. Same reaction as in Fig. 13.4 with subsequent data from Mainz
[De86, Ca94]. Here x = 0.25,0.34,0.41,0.59 fm .
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Fig. 13.6. Nuclear response for the reaction 25Pb(e, ¢ p)*)| Tl measured at

NIKHEF [de86].

of the subsequently emitted proton.” The two theoretical curves in Fig.
13.4 are calculations carried out within the particle-hole model of the
giant dipole resonance in '>C [KI83]. Now one may well say that the
four points do not determine an angular distribution, and it is hard to
disagree; however, Fig.13.5 shows the quality of the data one can now

® The initial aligned >C nucleus has J™ = 1~ (hence the phrase “dipole pattern”). The
final ground state of !'B is (3/2) and the emitted proton conserves angular momentum.
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Fig. 13.7. Triple coincidence signal from ?H(é,¢ 1) experiment done at Bates
[Ma92, Wa93].

obtain using the new generation of c.w. electron accelerators on the same
reaction — this data is from Mainz [De86, Ca94]. The dipole pattern is
now beautifully displayed.

As a second example, Fig.13.6 shows the nuclear response function for
the reaction 2%Pb(e, ¢ p)2gZTl measured at NIKHEF [de86]. This example
illustrates the discussion of (e,e’ p) in chapter 6.!° One sees the ground
state (E, = 0), and then several excited hole states of 2gZTl. Consider first
the ground state. As k — q is increased, the data exhibit the fall-off of the
Fourier transform of the (3s; /2);1 wave function. The growth and fall-off
of the Fourier transform of the (2d3/,); ! first excited state is then seen.
At somewhat larger E,, the high-multipolarity transition to the (1hy; /2);1
appears from nowhere until it dominates the spectrum at the highest k —q.
Note that one requires good resolution at high momenta to resolve the
states.

This class of experiments represents one of the most important results
coming from NIKHEF. These data are even more impressive when one
realizes that they were obtained with only a few percent duty factor (d.f))
— the new generation of c.w. accelerators provides a significant advance.
With this reaction, one can take the nucleus apart layer by layer and
probe the limits of the single-nucleon description of nuclei.

As a third example, Fig. 13.7 shows the timing signal from the polar-
ization transfer experiment H(é,¢' ) carried out at Bates [Ma92]. This
experiment provides an excellent example of how one can use interference
in coincidence experiments to measure small quantities, in this case the
electric form factor of the neutron which interferes with the well-known

N

10 Here (gba K— é) = (E)m Pm)~
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magnetic form factor [Ar81]. This is really a triple coincidence experiment.
The electron is detected, then the produced neutron, then the up or down
scattering of the neutron to measure its polarization. The final signal is
the small peak in the middle of the figure; the background consists of ac-
cidentals. The experiment was performed with an accelerator with ~ 1%
d.f. Now imagine that the signal forms a sea mount and the background
an ocean. With a cw. (100% d.f.) accelerator, one can lower the ocean
level by over two orders of magnitude, and the small peak sticking up
becomes a mountain. This is the most dramatic example, of which the
author is aware, of what one gains with a c.w. machine.
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