L(n)-HYPONORMALITY: A MISSING BRIDGE BETWEEN SUBNORMALITY AND PARANORMALITY

IL BONG JUNG™, SUN HYUN PARK and JAN STOCHEL

(Received 13 March 2009; accepted 17 January 2010)

Communicated by J. J. Koliha

Abstract

A new notion of L(n)-hyponormality is introduced in order to provide a bridge between subnormality and paranormality, two concepts which have received considerable attention from operator theorists since the 1950s. Criteria for L(n)-hyponormality are given. Relationships to other notions of hyponormality are discussed in the context of weighted shift and composition operators.

2000 Mathematics subject classification: primary 47B20; secondary 47B33, 47B37.

Keywords and phrases: subnormal operator, paranormal operator, L(n)-hyponormal operator, weighted shift operator, composition operator.

1. Towards L(n)-hyponormality

Let \mathcal{H} be a complex Hilbert space and let $\boldsymbol{B}(\mathcal{H})$ be the set of all bounded linear operators on \mathcal{H} . Denote by I the identity operator on \mathcal{H} . We write $\mathcal{N}(T)$ and $\mathcal{R}(T)$ for the kernel and the range of $T \in \boldsymbol{B}(\mathcal{H})$. Given two operators $A, B \in \boldsymbol{B}(\mathcal{H})$, we denote by [A, B] their commutator, that is, [A, B] := AB - BA. Recall that an operator $T \in \boldsymbol{B}(\mathcal{H})$ is said to be *subnormal* if there exists a complex Hilbert space \mathcal{K} and a normal operator $N \in \boldsymbol{B}(\mathcal{K})$ such that $\mathcal{H} \subseteq \mathcal{K}$ (isometric embedding) and Th = Nh for all $h \in \mathcal{H}$. The celebrated Halmos–Bram characterization of subnormality (see [5, 19]) states that an operator $T \in \boldsymbol{B}(\mathcal{H})$ is subnormal if and only if

$$\sum_{i,j=0}^{n} \langle T^i f_j, T^j f_i \rangle \ge 0 \tag{1.1}$$

The work of the first author was supported by a Korea Science and Engineering Foundation (KOSEF) grant funded by the Korea government (No. R01-2008-000-20088-0). The work of the third author was supported by MNiSzW grant N201 026 32/1350.

^{© 2010} Australian Mathematical Publishing Association Inc. 1446-7887/2010 \$16.00

for all finite sequences $f_0, \ldots, f_n \in \mathcal{H}$. To build a bridge between subnormality and hyponormality, McCullough and Paulsen introduced the notion of strong n-hyponormality ([23]; see also [4, 8, 9, 11]): T is said to be (strongly) n-hyponormal $(n \ge 1)$ if inequality (1.1) holds for all $f_0, \ldots, f_n \in \mathcal{H}$, or, equivalently, the operator matrix $(T^{*j}T^i)_{i,j=0}^n$ is positive; this turns out to be equivalent to the positivity of the operator matrix $([T^{*j}, T^i])_{i,j=1}^n$ (see [23, 24]). Hence, 1-hyponormality coincides with hyponormality. Two decades later a more subtle characterization of subnormality was described by Embry (see [12]). It states that an operator $T \in \boldsymbol{B}(\mathcal{H})$ is subnormal if and only if

$$\sum_{i,j=0}^{n} \langle T^{i+j} f_j, T^{i+j} f_i \rangle \ge 0 \tag{1.2}$$

for all finite sequences $f_0, \ldots, f_n \in \mathcal{H}$. Based on Embry's characterization, Mc-Cullough and Paulsen introduced in [24] a new class of operators which, following [17], will be called E(n)-hyponormal: T is said to be E(n)-hyponormal $(n \ge 1)$ if inequality (1.2) holds for all $f_0, \ldots, f_n \in \mathcal{H}$, or, equivalently, the operator matrix $(T^{*i}(T^{*j}T^i)T^j)_{i,j=0}^n$ is positive. As shown in [24], E(1)-hyponormality is essentially weaker than 1-hyponormality. Moreover, in view of [17], T is E(1)-hyponormal if and only if $|T|^4 \le |T^2|^2$, and so, by the Heinz inequality, such T must be an A-class operator, that is, $|T|^2 \le |T^2|$ (see [14, p. 166]). Hence, E(n)-hyponormality can be thought of as a bridge between subnormal operators and A-class operators. The class of E(n)-hyponormal composition operators on L^2 -spaces was completely characterized in terms of Radon–Nikodym derivatives in [17].

Let us recall the well-known characterization of positivity of a two by two operator matrix $\begin{pmatrix} A & B \\ B^* & C \end{pmatrix}$, where $A \colon \mathcal{H} \to \mathcal{H}$, $B \colon \mathcal{K} \to \mathcal{H}$ and $C \colon \mathcal{K} \to \mathcal{K}$ are bounded linear operators, \mathcal{K} is a complex Hilbert space and $A \geq 0$ (see [26]):

if A is invertible, then
$$\begin{pmatrix} A & B \\ B^* & C \end{pmatrix}$$
 is positive if and only if $B^*A^{-1}B \le C$. (1.3)

Applying this to A = I, $B = (T^*T, \dots, T^{*n}T^n)$ and $C = (T^{*i+j}T^{i+j})_{i,j=1}^n$, we get the following proposition.

PROPOSITION 1.1. An operator $T \in B(\mathcal{H})$ is E(n)-hyponormal if and only if the operator matrix $(T^{*i}[T^{*j}, T^i]T^j)_{i,j=1}^n$ is positive.

The following fact (which was mentioned in [17, p. 3956]) can be deduced either from the original definition of E(n)-hyponormality or from Proposition 1.1 by using the fact that powers of an operator with dense range have dense range.

COROLLARY 1.2. An operator $T \in \mathbf{B}(\mathcal{H})$ with dense range is n-hyponormal if and only if it is E(n)-hyponormal.

Embry's characterization of subnormality was essentially simplified by Lambert in [21]. The original characterization by Lambert was proved only for injective operators.

The version formulated below gets rid of this unnecessary restriction (see [27, Theorem 7]): an operator $T \in B(\mathcal{H})$ is subnormal if and only if

$$\sum_{i,j=0}^{n} \|T^{i+j}f\|^2 \lambda_i \bar{\lambda}_j \ge 0 \tag{1.4}$$

for every vector $f \in \mathcal{H}$ and for all finite sequences $\lambda_0, \ldots, \lambda_n \in \mathbb{C}$. By analogy with previous definitions, we give the following one.

DEFINITION 1.3. An operator $T \in \mathbf{B}(\mathcal{H})$ is L(n)-hyponormal $(n \ge 1)$ if inequality (1.4) holds for all $\lambda_0, \ldots, \lambda_n \in \mathbb{C}$ and for every $f \in \mathcal{H}$.

Clearly, the class of L(n)-hyponormal operators is closed under the operations of taking (finite or infinite) orthogonal sums and multiplication by scalars. However, it is not closed under addition and multiplication in $B(\mathcal{H})$ (this disadvantage is shared by other types of hyponormality including subnormality; see [11, 22]). Replacing f by $T^{-2n} f$ in (1.4), we see that the following proposition holds.

PROPOSITION 1.4. If an operator $T \in \mathbf{B}(\mathcal{H})$ is L(n)-hyponormal and T is invertible in $\mathbf{B}(\mathcal{H})$, then T^{-1} is L(n)-hyponormal.

We now show that an inductive-type limit procedure preserves L(n)-hyponormality. Since the same property is valid for other kinds of hyponormality, we formulate the result for all of them.

PROPOSITION 1.5. Let $\{\mathcal{H}_{\sigma}\}_{{\sigma}\in\Sigma}$ be a monotonically increasing net of (closed linear) subspaces of \mathcal{H} such that $\mathcal{H}=\bigvee_{{\sigma}\in\Sigma}\mathcal{H}_{\sigma}$, let $\{T_{\sigma}\}_{{\sigma}\in\Sigma}$ be a net of operators $T_{\sigma}\in B(\mathcal{H}_{\sigma})$ and let $T\in B(\mathcal{H})$ be an operator such that

$$\sup_{\tau \in \Sigma} \|T_{\tau}\| < \infty \quad and \quad Tf = \lim_{\tau \in \Sigma} T_{\tau} f \quad \forall f \in \bigcup_{\sigma \in \Sigma} \mathcal{H}_{\sigma}. \tag{1.5}$$

If for every $\sigma \in \Sigma$ the operator T_{σ} is L(n)-hyponormal (E(n)-hyponormal, n-hyponormal, subnormal), then so is T.

PROOF. A standard approximation argument reduces the proof to showing that

$$T^m f = \lim_{\tau \in \Sigma} T_{\tau}^m f \quad \forall m \ge 0, f \in \bigcup_{\sigma \in \Sigma} \mathcal{H}_{\sigma}.$$
 (1.6)

We do so by induction on m. The cases when m=0, 1 are obvious due to the equality in (1.5). Suppose that (1.6) holds for a fixed $m \ge 1$. It follows from the inequality in (1.5) that for all τ , τ_0 , $\sigma \in \Sigma$ such that $\tau \ge \tau_0 \ge \sigma$ and for every $f \in \mathcal{H}_{\sigma}$,

$$\begin{split} \|T_{\tau}^{m+1}f - T^{m+1}f\| &\leq \|T_{\tau}(T_{\tau}^{m})f - T_{\tau}(T_{\tau_{0}}^{m}f)\| \\ &+ \|T_{\tau}(T_{\tau_{0}}^{m}f) - T(T_{\tau_{0}}^{m}f)\| + \|T(T_{\tau_{0}}^{m}f) - T(T^{m}f)\| \\ &\leq \left(\sup_{\rho \in \Sigma} \|T_{\rho}\|\right) \|T_{\tau}^{m}f - T_{\tau_{0}}^{m}f\| \\ &+ \|T_{\tau}(T_{\tau_{0}}^{m}f) - T(T_{\tau_{0}}^{m}f)\| + \|T\| \|T_{\tau_{0}}^{m}f - T^{m}f\|, \end{split}$$

which by the equality in (1.5) and the induction hypothesis completes the proof. \Box

COROLLARY 1.6. Let $\{\mathcal{H}_k\}_{k=1}^{\infty}$ be a monotonically increasing sequence of invariant subspaces for an operator $T \in \mathbf{B}(\mathcal{H})$ such that $\bigvee_{k=1}^{\infty} \mathcal{H}_k = \mathcal{H}$. Then T is L(n)hyponormal (E(n)-hyponormal, n-hyponormal, subnormal) if and only if $T|_{\mathcal{H}_k}$ is L(n)-hyponormal (E(n)-hyponormal, n-hyponormal, subnormal) for every $k \ge 1$.

Below, we characterize L(n)-hyponormality by means of square matrices.

PROPOSITION 1.7. If $T \in \mathbf{B}(\mathcal{H})$, then the following conditions are equivalent.

- (i) T is L(n)-hyponormal.
- For every $f \in \mathcal{H}$,

$$\left| \sum_{i=1}^{n} \| T^{i} f \|^{2} \lambda_{i} \right|^{2} \leq \| f \|^{2} \sum_{i,j=1}^{n} \| T^{i+j} f \|^{2} \lambda_{i} \bar{\lambda}_{j} \quad \forall \lambda_{1}, \dots, \lambda_{n} \in \mathbb{C}.$$
 (1.7)

(iii) For every $f \in \mathcal{H}$, the matrix $M_f := (\|T^{i+j}f\|^2)_{i,j=1}^n$ is positive, and there exists $x \in \mathbb{C}^n$ such that $M_f^{1/2}x = (\|Tf\|^2, \dots, \|T^nf\|^2)$ and $\|x\| \le \|f\|$.

PROOF. Set $y = (||Tf||^2, ..., ||T^n f||^2)$.

To show that (i) and (ii) are equivalent, we apply (1.3) to $A = ||f||^2$, the row matrix $B = (||Tf||^2, \dots, ||T^n f||^2)$ and the square matrix $C = (||T^{i+j} f||^2)_{i,j=1}^n$. Suppose (ii) holds. To show (iii) also holds, use (1.7) to show that the matrix M_f is

positive and

$$|\langle \boldsymbol{\lambda}, \boldsymbol{y} \rangle|^2 \le ||f||^2 ||M_f^{1/2} \boldsymbol{\lambda}||^2 \quad \forall \boldsymbol{\lambda} \in \mathbb{C}^n.$$

This implies that there exists a linear functional $\varphi\colon \mathcal{R}(M_f^{1/2}) \to \mathbb{C}$ such that

$$\varphi(M_f^{1/2}\lambda) = \langle \lambda, y \rangle \quad \forall \lambda \in \mathbb{C}^n, \|\varphi\| \le \|f\|. \tag{1.8}$$

As a consequence, there exists $x \in \mathcal{R}(M_f^{1/2})$ such that

$$\varphi(M_f^{1/2}\lambda) = \langle M_f^{1/2}\lambda, x \rangle \quad \forall \lambda \in \mathbb{C}^n, \, \|x\| = \|\varphi\|. \tag{1.9}$$

Combining (1.8) with (1.9), we obtain

$$\langle \boldsymbol{\lambda}, \, \boldsymbol{y} \rangle = \varphi(M_f^{1/2} \boldsymbol{\lambda}) = \langle M_f^{1/2} \boldsymbol{\lambda}, \, \boldsymbol{x} \rangle = \langle \boldsymbol{\lambda}, \, M_f^{1/2} \boldsymbol{x} \rangle \quad \forall \boldsymbol{\lambda} \in \mathbb{C}^n,$$

which gives $M_f^{1/2}x = y$ and $||x|| \le ||f||$. To show that (iii) implies (ii), we use the Cauchy–Schwarz inequality, and get

$$|\langle \boldsymbol{\lambda}, \boldsymbol{y} \rangle|^2 = |\langle \boldsymbol{\lambda}, M_f^{1/2} \boldsymbol{x} \rangle|^2 = |\langle M_f^{1/2} \boldsymbol{\lambda}, \boldsymbol{x} \rangle|^2 \le ||\boldsymbol{x}||^2 ||M_f^{1/2} \boldsymbol{\lambda}||^2 \le ||f||^2 \langle M_f \boldsymbol{\lambda}, \boldsymbol{\lambda} \rangle$$

for all $\lambda \in \mathbb{C}^n$. This is just the inequality in (1.7).

Here $||x||^2 = |x_1|^2 + \cdots + |x_n|^2$ for $x = (x_1, \dots, x_n) \in \mathbb{C}^n$; the inner product induced by this norm is denoted, as usual, by $\langle \cdot, \cdot \rangle$.

Recall that an operator $T \in \mathbf{B}(\mathcal{H})$ is said to be paranormal (see [13, 16]) if

$$||Tf||^2 \le ||f|| ||T^2 f|| \quad \forall f \in \mathcal{H}.$$
 (1.10)

The following is an immediate consequence of Proposition 1.7.

COROLLARY 1.8. An operator $T \in \mathbf{B}(\mathcal{H})$ is L(1)-hyponormal if and only if it is paranormal.

It is known that every A-class operator is paranormal but not conversely (see [15, Example 8(2)]). Therefore, if T is a paranormal operator which is not an A-class operator, then T is L(1)-hyponormal but not E(1)-hyponormal. It may happen that a nonzero translate $T + \alpha I$ of an L(1)-hyponormal operator T is not L(1)-hyponormal ([3, pp. 174–175]; see also [7, Theorem 4] for an example concerning other types of hyponormality).

It follows from Corollary 1.8 that every L(n)-hyponormal operator is automatically paranormal and, as such, shares all properties of the latter. In particular, every L(n)-hyponormal operator is normaloid (see [14] for more information on the subject). Moreover, by the celebrated theorem of Ando (see [3, Theorem 5]), the following characterization of normal operators turns out to be true.

COROLLARY 1.9. Let n be a positive integer. An operator $T \in \mathbf{B}(\mathcal{H})$ is normal if and only if T and T^* are L(n)-hyponormal and $\mathcal{N}(T) = \mathcal{N}(T^*)$.

In this paper we show that the notions of L(n)-hyponormality and E(n)-hyponormality coincide for weighted shifts (see Section 2) and composition operators (see Section 3). In Section 3 we characterize L(n)-hyponormal composition operators in terms of Radon–Nikodym derivatives. As a byproduct, we obtain a simpler proof of [17, Theorem 2.3]. In Section 4 we discuss L(n)-hyponormality and E(n)-hyponormality in the framework of Agler's functional model.

2. Weighted shifts

Given a unilateral weighted shift T on ℓ^2 with a positive weight sequence $\{\alpha_k\}_{k=0}^{\infty}$, we set $\gamma_0 = 1$ and $\gamma_k = \alpha_0^2 \cdots \alpha_{k-1}^2$ for $k \ge 1$. It was shown in [24, Theorem 2.2] that the weighted shift T is E(n)-hyponormal if and only if it is n-hyponormal. The latter turns out to be equivalent to positivity of all $(n+1) \times (n+1)$ Hankel matrices $(\gamma_{k+i+j})_{i,j=0}^n$, where $k \ge 0$ (see [8, 9]). Below we show that there is no distinction among the notions of n-hyponormality, E(n)-hyponormality and L(n)-hyponormality as far as unilateral and bilateral weighted shifts are concerned.

PROPOSITION 2.1. If T is either a unilateral weighted shift or a bilateral weighted shift, then T is n-hyponormal if and only if it is L(n)-hyponormal.

PROOF. We only have to prove that if T is L(n)-hyponormal, then T is n-hyponormal. First, we consider the case where T is a unilateral weighted shift on ℓ^2 with a positive

weight sequence $\{\alpha_n\}_{n=0}^{\infty}$. If $\{e_l\}_{l=0}^{\infty}$ is the standard orthonormal basis of ℓ^2 and $x = \{x_l\}_{l=0}^{\infty} \in \ell^2$, then

$$0 \leq \sum_{i,j=0}^{n} \left\| T^{i+j} \left(\sum_{l=0}^{\infty} x_{l} e_{l} \right) \right\|^{2} \lambda_{i} \bar{\lambda}_{j} = \sum_{l=0}^{\infty} |x_{l}|^{2} \sum_{i,j=0}^{n} \frac{\gamma_{l+i+j}}{\gamma_{l}} \lambda_{i} \bar{\lambda}_{j} \quad \forall \lambda_{0}, \ldots, \lambda_{n} \in \mathbb{C},$$

which, after substituting $x = e_k$ into the above inequality, implies that the matrix $(\gamma_{k+i+j})_{i,j=0}^n$ is positive for all integers $k \ge 0$. By [8, Theorem 4], the weighted shift T is n-hyponormal.

Consider now the case where T is a bilateral weighted shift on $\ell^2(\mathbb{Z})$, where \mathbb{Z} is the set of all integers. If $\{\varepsilon_l\}_{l=-\infty}^{\infty}$ is the standard orthonormal basis of $\ell^2(\mathbb{Z})$, then for every integer $k \geq 1$, the space $\mathcal{H}_k = \bigvee_{l=-k}^{\infty} \varepsilon_l$ is invariant for T and $T|_{\mathcal{H}_k}$ is a unilateral weighted shift. Applying what was proved in the previous paragraph and Corollary 1.6, we complete the proof.

REMARK 2.2. Let us note that if T is a unilateral weighted shift, then for every integer $n \ge 1$ the adjoint of T is never L(n)-hyponormal. Indeed, otherwise by Corollary 1.8 the operator T^* is paranormal, and so $||T^*e_1||^2 \le ||T^{*2}e_1|| = 0$, which is impossible (e_1) is as in the proof of Proposition 2.1). On the other hand, since the adjoint of a bilateral weighted shift is unitarily equivalent to a bilateral weighted shift, we can apply Proposition 2.1 in this case as well.

Using weighted shift operators we show that the classes of L(n)-hyponormal operators are distinct from one another. Let W_{α} be a subnormal weighted shift on ℓ^2 with a positive weight sequence $\alpha = \{\alpha_n\}_{n=0}^{\infty}$. Set

$$\mathsf{Lh}(n) = \{x \in (0, \infty) \mid W_{\alpha(x)} \text{ is } L(n)\text{-hyponormal}\} \quad \text{and} \quad \mathsf{Lh}(\infty) = \bigcap_{n=1}^{\infty} \mathsf{Lh}(n),$$

where $\alpha(x) := (x, \alpha_1, \alpha_2, \ldots)$ for x > 0. Then $\mathsf{Lh}(\infty)$ is the set of all $x \in (0, \infty)$ such that the weighted shift $W_{\alpha(x)}$ is subnormal. By Proposition 2.1, the L(n)-hyponormality of $W_{\alpha(x)}$ is equivalent to its n-hyponormality. Hence, [8, Proposition 7] (see also [18, Example 3.1]) can be interpreted as follows.

EXAMPLE 2.3. Assume that the corresponding Berger measure of W_{α} (that is, a representing measure of the Stieltjes moment sequence $\{\gamma_k\}_{k=0}^{\infty}$) has infinite support. Then, by [18, Corollary 2.3], $Lh(n) \setminus Lh(n+1) \neq \emptyset$ for all $n=1, 2, \ldots$ In particular, if W_{α} is the Bergman shift, that is, the weighted shift on ℓ^2 with the weight sequence $\alpha = \{\sqrt{(n+1)/(n+2)}\}_{n=0}^{\infty}$, then

$$Lh(1) = (0, \sqrt{2/3}], \quad Lh(2) = (0, 3/4],$$

$$Lh(3) = (0, \sqrt{8/15}], \quad Lh(4) = (0, \sqrt{25/48}],$$

and so on, and $Lh(\infty) = (0, \sqrt{1/2}].$

3. Composition operators

Let (X, \mathcal{A}, μ) be a σ -finite measure space and let $\phi \colon X \to X$ be a measurable transformation, that is, $\phi^{-1}\mathcal{A} \subseteq \mathcal{A}$. The mapping $C_{\phi} \colon L^{2}(\mu) \ni f \mapsto f \circ \phi \in L^{2}(\mu)$ is called the *composition* operator. If it is well defined, then, by the closed graph theorem, it is a bounded linear operator, and consequently $\mu \circ \phi^{-1} \ll \mu$ and $h_{k} := d\mu \circ \phi^{-k}/d\mu \in L^{\infty}(\mu)$ for every integer $k \geq 0$ (see [25] for more details).

THEOREM 3.1. Let C_{ϕ} be a bounded composition operator on $L^2(\mu)$. Then the following three assertions are equivalent.

- (i) C_{ϕ} is E(n)-hyponormal.
- (ii) C_{ϕ} is L(n)-hyponormal.
- (iii) The $(n+1) \times (n+1)$ matrix $(h_{i+j}(x))_{i,j=0}^n$ is positive for μ -almost every $x \in X$.

If, additionally, C_{ϕ} has dense range, then C_{ϕ} is L(n)-hyponormal if and only if C_{ϕ} is n-hyponormal.

PROOF. It is obvious that (i) implies (ii).

Suppose (ii) holds. To show (iii) also holds, take $f \in L^2(\mu)$ and $\lambda_0, \ldots, \lambda_n \in \mathbb{C}$. Using the measure transport theorem (see [20, Theorem C, p. 163]), we obtain

$$0 \leq \sum_{i,j=0}^{n} \|C_{\phi}^{i+j} f\|^{2} \lambda_{i} \bar{\lambda}_{j} = \sum_{i,j=0}^{n} \lambda_{i} \bar{\lambda}_{j} \int_{X} |f \circ \phi^{i+j}|^{2} d\mu$$
$$= \sum_{i,j=0}^{n} \lambda_{i} \bar{\lambda}_{j} \int_{X} |f|^{2} d\mu \circ \phi^{-(i+j)}$$
$$= \int_{X} \left(\sum_{i,j=0}^{n} h_{i+j} \lambda_{i} \bar{\lambda}_{j} \right) |f|^{2} d\mu.$$

Substituting $f = \chi_{\sigma}$ with $\sigma \in \mathcal{A}$ such that $\mu(\sigma) < \infty$, we get

$$\int_{\sigma} \left(\sum_{i=0}^{n} h_{i+j}(x) \lambda_{i} \bar{\lambda}_{j} \right) d\mu(x) \ge 0$$
(3.1)

for all $\lambda = (\lambda_0, \dots, \lambda_n) \in \mathbb{C}^{n+1}$. By assumption μ is σ -finite, so we may write $X = \bigcup_{k=1}^{\infty} X_k$ with $X_k \in \mathcal{A}$ such that $\mu(X_k) < \infty$. For $\lambda = (\lambda_0, \dots, \lambda_n) \in \mathbb{C}^{n+1}$, we set $\Omega_{\lambda} = \{x \in X : H_{\lambda}(x) \geq 0\}$, where $H_{\lambda}(x) = \sum_{i,j=0}^{n} h_{i+j}(x)\lambda_i\bar{\lambda}_j$. Since (3.1) holds for all $\sigma \in \mathcal{A}$ such that $\sigma \subseteq X_k$, we deduce that $H_{\lambda}(x) \geq 0$ for μ -almost every $x \in X_k$, that is, $\mu(X_k \setminus \Omega_{\lambda}) = 0$. As k is an arbitrary positive integer, we see that $\mu(X \setminus \Omega_{\lambda}) = 0$ for all $\lambda \in \mathbb{C}^{n+1}$. Consider now any countable dense subset \mathcal{Z} of \mathbb{C}^{n+1} and define $\Omega_{\mathcal{Z}} = \bigcap_{\lambda \in \mathcal{Z}} \Omega_{\lambda}$. Then $\Omega_{\mathcal{Z}} \in \mathcal{A}$ and $\mu(X \setminus \Omega_{\mathcal{Z}}) = 0$. For every $\lambda \in \mathbb{C}^{n+1}$, there exists a sequence $\{\lambda^{(l)}\}_{l=1}^{\infty} \subseteq \mathcal{Z}$ which converges to λ . Since $H_{\lambda^{(l)}}(x) \geq 0$ for all $x \in \Omega_{\mathcal{Z}}$ and $l \geq 1$, we deduce that $H_{\lambda}(x) \geq 0$ for all $x \in \Omega_{\mathcal{Z}}$. Hence the matrix $(h_{i+j}(x))_{i,j=0}^n$ is positive for all $x \in \Omega_{\mathcal{Z}}$, which together with $\mu(X \setminus \Omega_{\mathcal{Z}}) = 0$ gives condition (iii).

To show that (iii) implies (i), we apply the equality

$$\langle C_{\phi}^{k} f, C_{\phi}^{k} g \rangle = \int_{X} f \bar{g} h_{k} d\mu \quad \forall f, g \in L^{2}(\mu), k = 0, 1, 2, \dots,$$
 (3.2)

which is a direct consequence of the measure transport theorem.

The last part of the conclusion follows from the above and Corollary 1.2.

According to [6, Theorem 2.3], a composition operator is of A-class if and only if it is paranormal. This fact also follows from Corollary 1.8 and Theorem 3.1. As shown in [6, Example 3.1], there are paranormal (read: E(1)-hyponormal) composition operators which are not hyponormal.

We now prove that the notions of L(n)-hyponormality and E(n)-hyponormality coincide for adjoints of composition operators with dense range. As a byproduct, we show that the assumption $h_1 > 0$ of [17, Proposition 2.6] (which is equivalent to $\overline{\mathcal{R}(C_{\phi}^*)} = L^2(\mu)$) can be dropped without affecting the result.

PROPOSITION 3.2. Let C_{ϕ} be a bounded composition operator on $L^{2}(\mu)$ with dense range. Then the following three assertions are equivalent.

- (i) C_{ϕ}^* is E(n)-hyponormal. (ii) C_{ϕ}^* is L(n)-hyponormal.
- (iii) The $(n+1) \times (n+1)$ matrix $(h_{i+j} \circ \phi^{i+j}(x))_{i=0}^n$ is positive for μ -almost every $x \in X$.

If, additionally, C_{ϕ} is injective, then C_{ϕ}^{*} is L(n)-hyponormal if and only if C_{ϕ}^{*} is *n-hyponormal*.

PROOF. Fix a nonnegative integer k. By (3.2), $C_{\phi}^{*k}C_{\phi}^{k}f = h_{k} \cdot f$ for all $f \in L^{2}(\mu)$. Hence $C_{\phi}^{k}C_{\phi}^{*k}(C_{\phi}^{k}f) = M_{h_{k}\circ\phi^{k}}(C_{\phi}^{k}f)$ for all $f \in L^{2}(\mu)$, where $M_{h_{k}\circ\phi^{k}}$ is the operator of multiplication by $h_k \circ \phi^k$. Since $h_k \circ \phi^k \in L^{\infty}(\mu)$, the operator $M_{h_k \circ \phi^k}$ is bounded. Therefore

$$C_{\phi}^{k}C_{\phi}^{*k}(g) = M_{h_{k}\circ\phi^{k}}(g) \quad \forall g \in \overline{\mathcal{R}(C_{\phi}^{k})}.$$

As $\overline{\mathcal{R}(C_{\phi}^k)} = L^2(\mu)$, we get

$$C_{\phi}^{k} C_{\phi}^{*k} = M_{h_{k} \circ \phi^{k}} \quad \forall k = 0, 1, 2, \dots$$
 (3.3)

It is obvious that (i) implies (ii).

To show that (ii) implies (iii), we apply (3.3) and obtain

$$0 \le \sum_{i,j=0}^{n} \|C_{\phi}^{*i+j} f\|^{2} \lambda_{i} \bar{\lambda}_{j} = \int_{X} \left(\sum_{i,j=0}^{n} h_{i+j} \circ \phi^{i+j}(x) \lambda_{i} \bar{\lambda}_{j} \right) |f(x)|^{2} d\mu(x)$$

for all $f \in L^2(\mu)$ and $\lambda_0, \ldots, \lambda_n \in \mathbb{C}$. Next, arguing as in the proof that (ii) implies (iii) in Theorem 3.1, we derive (iii).

Suppose that (iii) holds. To show (i), take $f_0, \ldots, f_n \in L^2(\mu)$, then; by (3.3),

$$\sum_{i,j=0}^n \langle C_\phi^{*i+j} f_j, \, C_\phi^{*i+j} f_i \rangle = \int_X \left(\sum_{i,j=0}^n h_{i+j} \circ \phi^{i+j}(x) \overline{f_i(x)} f_j(x) \right) d\mu(x) \ge 0.$$

The last part of the conclusion follows from the above and Corollary 1.2.

Proposition 3.2 can be applied to (unilateral and bilateral) weighted shift operators because the adjoint of a weighted shift is a composition operator with dense range.

4. Connections with Agler's functional model

Let $\mathbb{C}[z]$ stand for the ring of all complex polynomials in complex variable z. For every integer $n \ge 0$, we define the linear subspace $\mathbb{C}_n[z]$ of $\mathbb{C}[z]$ via

$$\mathbb{C}_n[z] = \{ p \in \mathbb{C}[z] : \deg p < n \} \quad \forall n = 0, 1, 2, \dots$$

We denote by $\mathbb{C}[z, \bar{z}]$ the ring of all complex polynomials in z and \bar{z} . It is well known that the ring $\mathbb{C}[z, \bar{z}]$ can be identified with that of all complex functions of the form $\mathbb{C} \ni z \to p(z, \bar{z}) \in \mathbb{C}$, where p is a complex polynomial in two complex variables; such a representation is unique. For every integer $n \ge 1$, we define the following four convex cones in $\mathbb{C}[z, \bar{z}]$:

$$\mathcal{C} = \operatorname{conv}\{(1 - |z|^2)|p(z)|^2 \colon p \in \mathbb{C}[z]\},
\widetilde{\mathcal{L}}^n = \operatorname{conv}\{|p(z)q(|z|^2)|^2 \colon p \in \mathbb{C}[z], q \in \mathbb{C}_n[z]\},
\widetilde{\mathcal{E}}^n = \operatorname{conv}\left\{\left|\sum_{i=0}^n p_i(z)|z|^{2i}\right|^2 \colon p_0, \dots, p_n \in \mathbb{C}[z]\right\},$$
(4.1)

$$\widetilde{S}^n = \operatorname{conv} \left\{ \left| \sum_{i=0}^n p_i(z) \overline{z}^i \right|^2 \colon p_0, \dots, p_n \in \mathbb{C}[z] \right\}, \tag{4.2}$$

where 'conv' denotes the convex hull. Denote by \mathcal{L}^n , \mathcal{E}^n and \mathcal{S}^n the convex cones generated by $\mathcal{C} \cup \widetilde{\mathcal{L}}^n$, $\mathcal{C} \cup \widetilde{\mathcal{E}}^n$ and $\mathcal{C} \cup \widetilde{\mathcal{S}}^n$, respectively. Substituting $p_i(z) = a_i \, p(z)$ into (4.1), where $p(z) = \sum_{i=0}^n a_i z^i$, we see that $\widetilde{\mathcal{L}}^n \subseteq \widetilde{\mathcal{E}}^n$. In turn, substituting $p_i(z)z^i$ into (4.2) in place of $p_i(z)$, we get $\widetilde{\mathcal{E}}^n \subseteq \widetilde{\mathcal{S}}^n$. Hence $\mathcal{L}^n \subseteq \mathcal{E}^n \subseteq \mathcal{S}^n$.

Let us recall Agler's functional model ([1, 2]; see also [23]). If $T \in B(\mathcal{H})$ is a cyclic contraction with a cyclic vector γ , then we can associate with T a unique linear functional $\Lambda_T : \mathbb{C}[z, \bar{z}] \to \mathbb{C}$ such that

$$\Lambda_T(z^m \bar{z}^n) = \langle T^m \gamma, T^n \gamma \rangle = \langle T^{*n} T^m \gamma, \gamma \rangle \quad \forall m, n = 0, 1, 2, \dots$$
 (4.3)

In terms of the functional Λ_T , the L(n)-hyponormality of cyclic contractions can be characterized as follows (the proof, being standard, is omitted; consult [23]).

PROPOSITION 4.1. The mapping $(T, \gamma) \mapsto \Lambda_T$ given by (4.3) is a surjection between the set of all L(n)-hyponormal cyclic contractions and the set of all linear functionals $\Lambda \colon \mathbb{C}[z, \bar{z}] \to \mathbb{C}$ which are nonnegative on the convex cone \mathbb{L}^n . Moreover, if T_1 and T_2 are cyclic contractions on complex Hilbert spaces \mathcal{H}_1 and \mathcal{H}_2 with cyclic vectors γ_1 and γ_2 respectively, then $\Lambda_{T_1} = \Lambda_{T_2}$ if and only if there exists a unitary isomorphism $U \colon \mathcal{H}_1 \to \mathcal{H}_2$ such that $U\gamma_1 = \gamma_2$ and $UT_1 = T_2U$.

The case of E(n)-hyponormality can be described in a similar manner.

PROPOSITION 4.2. The mapping $(T, \gamma) \mapsto \Lambda_T$ given by (4.3) is a surjection between the set of all E(n)-hyponormal cyclic contractions and the set of all linear functionals $\Lambda \colon \mathbb{C}[z, \bar{z}] \to \mathbb{C}$ which are nonnegative on the convex cone \mathcal{E}^n .

In view of [23, Propositions 2.2 and 2.3], a cyclic contraction T is n-hyponormal if and only if Λ_T is nonnegative on \mathbb{S}^n , while T is weakly n-hyponormal if and only if Λ_T is nonnegative on the convex cone \mathcal{W}^n generated by $\mathcal{C} \cup \widetilde{\mathcal{W}}^n$, where

$$\widetilde{\mathcal{W}}^n = \operatorname{conv}\{|r(z) + p(z)\overline{q(z)}|^2 : p, r \in \mathbb{C}[z], q \in \mathbb{C}_n[z]\}.$$

One can verify that $\widetilde{\mathcal{L}}^1 \subseteq \widetilde{\mathcal{W}}^1$ and so $\mathcal{L}^1 \subseteq \mathcal{W}^1$. If $n \ge 2$, then there is no nice relationship between convex cones \mathcal{L}^n and \mathcal{W}^n . The reason for this is that according to Proposition 2.1 and [23, Theorem 4.1] there are weakly 2-hyponormal weighted shifts which are not L(2)-hyponormal (see also [10] and references therein for recent examples of this sort). Nevertheless, it is tempting to continue investigations along these lines.

Acknowledgements

A substantial part of this paper was written while the third author visited Kyungpook National University during the fall of 2008; he wishes to thank the faculty and administration for their warm hospitality. The authors would like to thank the referee for careful reading of the paper.

References

- [1] J. Agler, 'The Arveson extension theorem and coanalytic models', *Integral Equations Operator Theory* **5** (1982), 608–631.
- [2] J. Agler, 'Hypercontractions and subnormality', J. Operator Theory 13 (1985), 203–217.
- [3] T. Ando, 'Operators with a norm condition', Acta Sci. Math. (Szeged) 33 (1972), 169–178.
- [4] A. Athavale, 'On joint hyponormality of operators', Proc. Amer. Math. Soc. 103 (1988), 417–423.
- [5] J. Bram, 'Subnormal operators', Duke Math. J. 22 (1955), 75–94.
- [6] C. Burnap and I. Jung, 'Composition operators with weak hyponormality', J. Math. Anal. Appl. 337 (2008), 686–694.
- [7] M. Chō and J. Lee, 'p-hyponormality is not translation-invariant', Proc. Amer. Math. Soc. 131 (2003), 3109–3111.
- [8] R. E. Curto, 'Quadratically hyponormal weighted shift', *Integral Equations Operator Theory* **13** (1990), 49–66.

- [9] R. E. Curto, 'Joint hyponormality: a bridge between hyponormality and subnormality', *Proc. Sym. Math.* 51 (1990), 69–91.
- [10] R. E. Curto and S. H. Lee, 'Quartically hyponormal weighted shifts need not be 3-hyponormal', J. Math. Anal. Appl. 314 (2006), 455–463.
- [11] R. E. Curto, P. S. Muhly and J. Xia, 'Hyponormal pairs of commuting operators', *Oper. Theory Adv. Appl.* **35** (1988), 1–22.
- [12] M. Embry, 'A generalization of the Halmos–Bram condition for subnormality', Acta. Sci. Math. (Szeged) 35 (1973), 61–64.
- [13] T. Furuta, 'On the class of paranormal operators', Proc. Japan. Acad. 43 (1967), 594–598.
- [14] T. Furuta, *Invitation to Linear Operators* (Taylor & Francis, London, 2001).
- [15] T. Furuta, M. Ito and T. Yamazaki, 'A subclass of paranormal operators including class of loghyponormal and several related classes', Sci. Math. 1 (1998), 389–403.
- [16] V. Istrăţescu, T. Saitô and T. Yoshino, 'On a class of operators', Tôhoku Math. J. 18 (1966), 410–413.
- [17] I. Jung, M. Lee and S. Park, 'Separating classes of composition operators', Proc. Amer. Math. Soc. 135 (2007), 3955–3965.
- [18] I. Jung and C. Li, 'A formula for k-hyponormality of backstep extensions of subnormal weighted shifts', Proc. Amer. Math. Soc. 129 (2000), 2343–2351.
- [19] P. R. Halmos, 'Normal dilations and extensions of operators', *Summa Bras. Math.* 2 (1950), 124–134.
- [20] P. R. Halmos, *Measure Theory* (van Nostrand, Princeton, NJ, 1956).
- [21] A. Lambert, 'Subnormality and weighted shifts', J. London Math. Soc. 14 (1976), 476–480.
- [22] A. Lubin, 'Weighted shifts and products of subnormal operators', *Indiana Univ. Math. J.* 26 (1977), 839–845.
- [23] S. McCullough and V. I. Paulsen, 'A note on joint hyponormality', Proc. Amer. Math. Soc. 107 (1989), 187–195.
- [24] S. McCullough and V. I. Paulsen, 'k-hyponormality of weighted shifts', *Proc. Amer. Math. Soc.* **116** (1992), 165–169.
- [25] R. K. Singh and J. S. Manhas, Composition Operators on Function Spaces, North-Holland Mathematics Studies, 179 (North-Holland, Amsterdam, 1993).
- [26] J. L. Šmul'jan, 'An operator Hellinger integral', Mat. Sb. 49 (1959), 381–430 (in Russian).
- [27] J. Stochel and F. H. Szafraniec, 'On normal extensions of unbounded operators, II', Acta Sci. Math. (Szeged) 53 (1989), 153–177.

IL BONG JUNG, Department of Mathematics, Kyungpook National University, Daegu 702-701, Korea

e-mail: ibjung@knu.ac.kr

SUN HYUN PARK, Department of Mathematics, Kyungpook National University, Daegu 702-701, Korea

e-mail: sm1907s4@hanmail.net

JAN STOCHEL, Instytut Matematyki, Uniwersytet Jagielloński, ul. Łojasiewicza 6, PL-30348 Kraków, Poland

e-mail: Jan.Stochel@im.uj.edu.pl