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Abstract

A new notion of L(n)-hyponormality is introduced in order to provide a bridge between subnormality
and paranormality, two concepts which have received considerable attention from operator theorists since
the 1950s. Criteria for L(n)-hyponormality are given. Relationships to other notions of hyponormality
are discussed in the context of weighted shift and composition operators.
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1. Towards L(n)-hyponormality

Let H be a complex Hilbert space and let B(H) be the set of all bounded linear
operators on H. Denote by I the identity operator on H. We write N (T ) and R(T ) for
the kernel and the range of T ∈ B(H). Given two operators A, B ∈ B(H), we denote
by [A, B] their commutator, that is, [A, B] := AB − B A. Recall that an operator
T ∈ B(H) is said to be subnormal if there exists a complex Hilbert space K and a
normal operator N ∈ B(K) such that H⊆K (isometric embedding) and Th = Nh for
all h ∈H. The celebrated Halmos–Bram characterization of subnormality (see [5, 19])
states that an operator T ∈ B(H) is subnormal if and only if

n∑
i, j=0

〈T i f j , T j fi 〉 ≥ 0 (1.1)
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for all finite sequences f0, . . . , fn ∈H. To build a bridge between subnormality
and hyponormality, McCullough and Paulsen introduced the notion of strong
n-hyponormality ([23]; see also [4, 8, 9, 11]): T is said to be (strongly) n-hyponormal
(n ≥ 1) if inequality (1.1) holds for all f0, . . . , fn ∈H, or, equivalently, the operator
matrix (T ∗ j T i )ni, j=0 is positive; this turns out to be equivalent to the positivity of the

operator matrix ([T ∗ j , T i
])ni, j=1 (see [23, 24]). Hence, 1-hyponormality coincides

with hyponormality. Two decades later a more subtle characterization of subnormality
was described by Embry (see [12]). It states that an operator T ∈ B(H) is subnormal
if and only if

n∑
i, j=0

〈T i+ j f j , T i+ j fi 〉 ≥ 0 (1.2)

for all finite sequences f0, . . . , fn ∈H. Based on Embry’s characterization, Mc-
Cullough and Paulsen introduced in [24] a new class of operators which, follow-
ing [17], will be called E(n)-hyponormal: T is said to be E(n)-hyponormal (n ≥ 1)
if inequality (1.2) holds for all f0, . . . , fn ∈H, or, equivalently, the operator matrix
(T ∗i (T ∗ j T i )T j )ni, j=0 is positive. As shown in [24], E(1)-hyponormality is essentially
weaker than 1-hyponormality. Moreover, in view of [17], T is E(1)-hyponormal
if and only if |T |4 ≤ |T 2

|
2, and so, by the Heinz inequality, such T must be an A-class

operator, that is, |T |2 ≤ |T 2
| (see [14, p. 166]). Hence, E(n)-hyponormality can

be thought of as a bridge between subnormal operators and A-class operators.
The class of E(n)-hyponormal composition operators on L2-spaces was completely
characterized in terms of Radon–Nikodym derivatives in [17].

Let us recall the well-known characterization of positivity of a two by two operator
matrix

(
A B

B∗ C

)
, where A : H→H, B : K→H and C : K→K are bounded linear

operators, K is a complex Hilbert space and A ≥ 0 (see [26]):

if A is invertible, then

(
A B

B∗ C

)
is positive if and only if B∗A−1 B ≤ C. (1.3)

Applying this to A = I , B = (T ∗T, . . . , T ∗nT n) and C = (T ∗i+ j T i+ j )ni, j=1, we get
the following proposition.

PROPOSITION 1.1. An operator T ∈ B(H) is E(n)-hyponormal if and only if the
operator matrix (T ∗i [T ∗ j , T i

]T j )ni, j=1 is positive.

The following fact (which was mentioned in [17, p. 3956]) can be deduced either
from the original definition of E(n)-hyponormality or from Proposition 1.1 by using
the fact that powers of an operator with dense range have dense range.

COROLLARY 1.2. An operator T ∈ B(H) with dense range is n-hyponormal if and
only if it is E(n)-hyponormal.

Embry’s characterization of subnormality was essentially simplified by Lambert in
[21]. The original characterization by Lambert was proved only for injective operators.
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The version formulated below gets rid of this unnecessary restriction (see [27,
Theorem 7]): an operator T ∈ B(H) is subnormal if and only if

n∑
i, j=0

‖T i+ j f ‖2λi λ̄ j ≥ 0 (1.4)

for every vector f ∈H and for all finite sequences λ0, . . . , λn ∈ C. By analogy with
previous definitions, we give the following one.

DEFINITION 1.3. An operator T ∈ B(H) is L(n)-hyponormal (n ≥ 1) if inequal-
ity (1.4) holds for all λ0, . . . , λn ∈ C and for every f ∈H.

Clearly, the class of L(n)-hyponormal operators is closed under the operations of
taking (finite or infinite) orthogonal sums and multiplication by scalars. However, it is
not closed under addition and multiplication in B(H) (this disadvantage is shared by
other types of hyponormality including subnormality; see [11, 22]). Replacing f by
T−2n f in (1.4), we see that the following proposition holds.

PROPOSITION 1.4. If an operator T ∈ B(H) is L(n)-hyponormal and T is invertible
in B(H), then T−1 is L(n)-hyponormal.

We now show that an inductive-type limit procedure preserves L(n)-hyponormality.
Since the same property is valid for other kinds of hyponormality, we formulate the
result for all of them.

PROPOSITION 1.5. Let {Hσ }σ∈Σ be a monotonically increasing net of (closed linear)
subspaces of H such that H=

∨
σ∈Σ Hσ , let {Tσ }σ∈Σ be a net of operators

Tσ ∈ B(Hσ ) and let T ∈ B(H) be an operator such that

sup
τ∈Σ

‖Tτ‖<∞ and T f = lim
τ∈Σ

Tτ f ∀ f ∈
⋃
σ∈Σ

Hσ . (1.5)

If for every σ ∈Σ the operator Tσ is L(n)-hyponormal (E(n)-hyponormal,
n-hyponormal, subnormal), then so is T .

PROOF. A standard approximation argument reduces the proof to showing that

T m f = lim
τ∈Σ

T m
τ f ∀m ≥ 0, f ∈

⋃
σ∈Σ

Hσ . (1.6)

We do so by induction on m. The cases when m = 0, 1 are obvious due to the equality
in (1.5). Suppose that (1.6) holds for a fixed m ≥ 1. It follows from the inequality
in (1.5) that for all τ, τ0, σ ∈Σ such that τ ≥ τ0 ≥ σ and for every f ∈Hσ ,

‖T m+1
τ f − T m+1 f ‖ ≤ ‖Tτ (T

m
τ ) f − Tτ (T

m
τ0

f )‖

+ ‖Tτ (T
m
τ0

f )− T (T m
τ0

f )‖ + ‖T (T m
τ0

f )− T (T m f )‖

≤

(
sup
ρ∈Σ

‖Tρ‖

)
‖T m
τ f − T m

τ0
f ‖

+ ‖Tτ (T
m
τ0

f )− T (T m
τ0

f )‖ + ‖T ‖‖T m
τ0

f − T m f ‖,

which by the equality in (1.5) and the induction hypothesis completes the proof. 2
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COROLLARY 1.6. Let {Hk}
∞

k=1 be a monotonically increasing sequence of invariant
subspaces for an operator T ∈ B(H) such that

∨
∞

k=1 Hk =H. Then T is L(n)-
hyponormal (E(n)-hyponormal, n-hyponormal, subnormal) if and only if T |Hk is
L(n)-hyponormal (E(n)-hyponormal, n-hyponormal, subnormal) for every k ≥ 1.

Below, we characterize L(n)-hyponormality by means of square matrices.

PROPOSITION 1.7. If T ∈ B(H), then the following conditions are equivalent.

(i) T is L(n)-hyponormal.
(ii) For every f ∈H,∣∣∣∣ n∑

i=1

‖T i f ‖2λi

∣∣∣∣2 ≤ ‖ f ‖2
n∑

i, j=1

‖T i+ j f ‖2λi λ̄ j ∀λ1, . . . , λn ∈ C. (1.7)

(iii) For every f ∈H, the matrix M f := (‖T i+ j f ‖2)ni, j=1 is positive, and there exists

x ∈ Cn such that M1/2
f x= (‖T f ‖2, . . . , ‖T n f ‖2) and1

‖x‖ ≤ ‖ f ‖.

PROOF. Set y= (‖T f ‖2, . . . , ‖T n f ‖2).
To show that (i) and (ii) are equivalent, we apply (1.3) to A = ‖ f ‖2, the row matrix

B = (‖T f ‖2, . . . , ‖T n f ‖2) and the square matrix C = (‖T i+ j f ‖2)ni, j=1.
Suppose (ii) holds. To show (iii) also holds, use (1.7) to show that the matrix M f is

positive and
|〈λ, y〉|2 ≤ ‖ f ‖2‖M1/2

f λ‖2 ∀λ ∈ Cn.

This implies that there exists a linear functional ϕ : R(M1/2
f )→ C such that

ϕ(M1/2
f λ)= 〈λ, y〉 ∀λ ∈ Cn, ‖ϕ‖ ≤ ‖ f ‖. (1.8)

As a consequence, there exists x ∈R(M1/2
f ) such that

ϕ(M1/2
f λ)= 〈M1/2

f λ, x〉 ∀λ ∈ Cn, ‖x‖ = ‖ϕ‖. (1.9)

Combining (1.8) with (1.9), we obtain

〈λ, y〉 = ϕ(M1/2
f λ)= 〈M1/2

f λ, x〉 = 〈λ, M1/2
f x〉 ∀λ ∈ Cn,

which gives M1/2
f x = y and ‖x‖ ≤ ‖ f ‖.

To show that (iii) implies (ii), we use the Cauchy–Schwarz inequality, and get

|〈λ, y〉|2 = |〈λ, M1/2
f x〉|2 = |〈M1/2

f λ, x〉|2 ≤ ‖x‖2‖M1/2
f λ‖2 ≤ ‖ f ‖2〈M f λ, λ〉

for all λ ∈ Cn . This is just the inequality in (1.7). 2

1 Here ‖x‖2 = |x1|
2
+ · · · + |xn |

2 for x= (x1, . . . , xn) ∈ Cn ; the inner product induced by this norm is
denoted, as usual, by 〈·, ·〉.
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Recall that an operator T ∈ B(H) is said to be paranormal (see [13, 16]) if

‖T f ‖2 ≤ ‖ f ‖‖T 2 f ‖ ∀ f ∈H. (1.10)

The following is an immediate consequence of Proposition 1.7.

COROLLARY 1.8. An operator T ∈ B(H) is L(1)-hyponormal if and only if it is
paranormal.

It is known that every A-class operator is paranormal but not conversely (see [15,
Example 8(2)]). Therefore, if T is a paranormal operator which is not an A-class
operator, then T is L(1)-hyponormal but not E(1)-hyponormal. It may happen that a
nonzero translate T + α I of an L(1)-hyponormal operator T is not L(1)-hyponormal
([3, pp. 174–175]; see also [7, Theorem 4] for an example concerning other types of
hyponormality).

It follows from Corollary 1.8 that every L(n)-hyponormal operator is automatically
paranormal and, as such, shares all properties of the latter. In particular, every
L(n)-hyponormal operator is normaloid (see [14] for more information on the subject).
Moreover, by the celebrated theorem of Ando (see [3, Theorem 5]), the following
characterization of normal operators turns out to be true.

COROLLARY 1.9. Let n be a positive integer. An operator T ∈ B(H) is normal if and
only if T and T ∗ are L(n)-hyponormal and N (T )=N (T ∗).

In this paper we show that the notions of L(n)-hyponormality and E(n)-
hyponormality coincide for weighted shifts (see Section 2) and composition operators
(see Section 3). In Section 3 we characterize L(n)-hyponormal composition operators
in terms of Radon–Nikodym derivatives. As a byproduct, we obtain a simpler
proof of [17, Theorem 2.3]. In Section 4 we discuss L(n)-hyponormality and
E(n)-hyponormality in the framework of Agler’s functional model.

2. Weighted shifts

Given a unilateral weighted shift T on `2 with a positive weight sequence {αk}
∞

k=0,
we set γ0 = 1 and γk = α

2
0 · · · α

2
k−1 for k ≥ 1. It was shown in [24, Theorem 2.2]

that the weighted shift T is E(n)-hyponormal if and only if it is n-hyponormal. The
latter turns out to be equivalent to positivity of all (n + 1)× (n + 1) Hankel matrices
(γk+i+ j )

n
i, j=0, where k ≥ 0 (see [8, 9]). Below we show that there is no distinction

among the notions of n-hyponormality, E(n)-hyponormality and L(n)-hyponormality
as far as unilateral and bilateral weighted shifts are concerned.

PROPOSITION 2.1. If T is either a unilateral weighted shift or a bilateral weighted
shift, then T is n-hyponormal if and only if it is L(n)-hyponormal.

PROOF. We only have to prove that if T is L(n)-hyponormal, then T is n-hyponormal.
First, we consider the case where T is a unilateral weighted shift on `2 with a positive
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weight sequence {αn}
∞

n=0. If {el}
∞

l=0 is the standard orthonormal basis of `2 and
x = {xl}

∞

l=0 ∈ `
2, then

0≤
n∑

i, j=0

∥∥∥∥T i+ j
( ∞∑

l=0

xlel

)∥∥∥∥2

λi λ̄ j =

∞∑
l=0

|xl |
2

n∑
i, j=0

γl+i+ j

γl
λi λ̄ j ∀λ0, . . . , λn ∈ C,

which, after substituting x = ek into the above inequality, implies that the matrix
(γk+i+ j )

n
i, j=0 is positive for all integers k ≥ 0. By [8, Theorem 4], the weighted shift

T is n-hyponormal.
Consider now the case where T is a bilateral weighted shift on `2(Z), where Z is

the set of all integers. If {εl}
∞

l=−∞ is the standard orthonormal basis of `2(Z), then
for every integer k ≥ 1, the space Hk =

∨
∞

l=−k εl is invariant for T and T |Hk is a
unilateral weighted shift. Applying what was proved in the previous paragraph and
Corollary 1.6, we complete the proof. 2

REMARK 2.2. Let us note that if T is a unilateral weighted shift, then for every integer
n ≥ 1 the adjoint of T is never L(n)-hyponormal. Indeed, otherwise by Corollary 1.8
the operator T ∗ is paranormal, and so ‖T ∗e1‖

2
≤ ‖T ∗2e1‖ = 0, which is impossible

(e1 is as in the proof of Proposition 2.1). On the other hand, since the adjoint of
a bilateral weighted shift is unitarily equivalent to a bilateral weighted shift, we can
apply Proposition 2.1 in this case as well.

Using weighted shift operators we show that the classes of L(n)-hyponormal
operators are distinct from one another. Let Wα be a subnormal weighted shift on `2

with a positive weight sequence α = {αn}
∞

n=0. Set

Lh(n)= {x ∈ (0,∞) |Wα(x) is L(n)-hyponormal} and Lh(∞)=
∞⋂

n=1

Lh(n),

where α(x) := (x, α1, α2, . . .) for x > 0. Then Lh(∞) is the set of all x ∈ (0,∞)
such that the weighted shift Wα(x) is subnormal. By Proposition 2.1, the L(n)-
hyponormality of Wα(x) is equivalent to its n-hyponormality. Hence, [8, Proposition 7]
(see also [18, Example 3.1]) can be interpreted as follows.

EXAMPLE 2.3. Assume that the corresponding Berger measure of Wα (that is, a
representing measure of the Stieltjes moment sequence {γk}

∞

k=0) has infinite support.
Then, by [18, Corollary 2.3], Lh(n)\Lh(n + 1) 6=∅ for all n = 1, 2, . . . . In particular,
if Wα is the Bergman shift, that is, the weighted shift on `2 with the weight sequence
α = {

√
(n + 1)/(n + 2)}∞n=0, then

Lh(1)= (0,
√

2/3], Lh(2)= (0, 3/4],

Lh(3)= (0,
√

8/15], Lh(4)= (0,
√

25/48],

and so on, and Lh(∞)= (0,
√

1/2].
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3. Composition operators

Let (X, A, µ) be a σ -finite measure space and let φ : X→ X be a measurable
transformation, that is, φ−1A⊆A. The mapping Cφ : L2(µ) 3 f 7→ f ◦ φ ∈ L2(µ)

is called the composition operator. If it is well defined, then, by the closed
graph theorem, it is a bounded linear operator, and consequently µ ◦ φ−1

� µ and
hk := dµ ◦ φ−k/dµ ∈ L∞(µ) for every integer k ≥ 0 (see [25] for more details).

THEOREM 3.1. Let Cφ be a bounded composition operator on L2(µ). Then the
following three assertions are equivalent.

(i) Cφ is E(n)-hyponormal.
(ii) Cφ is L(n)-hyponormal.
(iii) The (n + 1)× (n + 1) matrix (hi+ j (x))ni, j=0 is positive for µ-almost every

x ∈ X.

If, additionally, Cφ has dense range, then Cφ is L(n)-hyponormal if and only if Cφ is
n-hyponormal.

PROOF. It is obvious that (i) implies (ii).
Suppose (ii) holds. To show (iii) also holds, take f ∈ L2(µ) and λ0, . . . , λn ∈ C.

Using the measure transport theorem (see [20, Theorem C, p. 163]), we obtain

0≤
n∑

i, j=0

‖C i+ j
φ f ‖2λi λ̄ j =

n∑
i, j=0

λi λ̄ j

∫
X
| f ◦ φi+ j

|
2 dµ

=

n∑
i, j=0

λi λ̄ j

∫
X
| f |2 dµ ◦ φ−(i+ j)

=

∫
X

( n∑
i, j=0

hi+ jλi λ̄ j

)
| f |2 dµ.

Substituting f = χσ with σ ∈A such that µ(σ) <∞, we get∫
σ

( n∑
i, j=0

hi+ j (x)λi λ̄ j

)
dµ(x)≥ 0 (3.1)

for all λ= (λ0, . . . , λn) ∈ Cn+1. By assumption µ is σ -finite, so we may write X =⋃
∞

k=1 Xk with Xk ∈A such that µ(Xk) <∞. For λ= (λ0, . . . , λn) ∈ Cn+1, we set
Ωλ = {x ∈ X : Hλ(x)≥ 0}, where Hλ(x)=

∑n
i, j=0 hi+ j (x)λi λ̄ j . Since (3.1) holds

for all σ ∈A such that σ ⊆ Xk , we deduce that Hλ(x)≥ 0 for µ-almost every x ∈ Xk ,
that is, µ(Xk\Ωλ)= 0. As k is an arbitrary positive integer, we see that µ(X\Ωλ)= 0
for all λ ∈ Cn+1. Consider now any countable dense subset Z of Cn+1 and define
ΩZ =

⋂
λ∈Z Ωλ. Then ΩZ ∈A and µ(X\ΩZ)= 0. For every λ ∈ Cn+1, there exists

a sequence {λ(l)}∞l=1 ⊆ Z which converges to λ. Since Hλ(l)(x)≥ 0 for all x ∈ΩZ and
l ≥ 1, we deduce that Hλ(x)≥ 0 for all x ∈ΩZ . Hence the matrix (hi+ j (x))ni, j=0 is
positive for all x ∈ΩZ , which together with µ(X\ΩZ)= 0 gives condition (iii).
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To show that (iii) implies (i), we apply the equality

〈Ck
φ f, Ck

φg〉 =
∫

X
f ḡhk dµ ∀ f, g ∈ L2(µ), k = 0, 1, 2, . . . , (3.2)

which is a direct consequence of the measure transport theorem.
The last part of the conclusion follows from the above and Corollary 1.2. 2

According to [6, Theorem 2.3], a composition operator is of A-class if and only if it
is paranormal. This fact also follows from Corollary 1.8 and Theorem 3.1. As shown
in [6, Example 3.1], there are paranormal (read: E(1)-hyponormal) composition
operators which are not hyponormal.

We now prove that the notions of L(n)-hyponormality and E(n)-hyponormality
coincide for adjoints of composition operators with dense range. As a byproduct,
we show that the assumption h1 > 0 of [17, Proposition 2.6] (which is equivalent to
R(C∗φ)= L2(µ)) can be dropped without affecting the result.

PROPOSITION 3.2. Let Cφ be a bounded composition operator on L2(µ) with dense
range. Then the following three assertions are equivalent.

(i) C∗φ is E(n)-hyponormal.
(ii) C∗φ is L(n)-hyponormal.

(iii) The (n + 1)× (n + 1) matrix (hi+ j ◦ φ
i+ j (x))ni, j=0 is positive for µ-almost

every x ∈ X.

If, additionally, Cφ is injective, then C∗φ is L(n)-hyponormal if and only if C∗φ is
n-hyponormal.

PROOF. Fix a nonnegative integer k. By (3.2), C∗kφ Ck
φ f = hk · f for all f ∈ L2(µ).

Hence Ck
φC∗kφ (C

k
φ f )= Mhk◦φ

k (Ck
φ f ) for all f ∈ L2(µ), where Mhk◦φ

k is the operator

of multiplication by hk ◦ φ
k . Since hk ◦ φ

k
∈ L∞(µ), the operator Mhk◦φ

k is bounded.
Therefore

Ck
φC∗kφ (g)= Mhk◦φ

k (g) ∀g ∈R(Ck
φ).

As R(Ck
φ)= L2(µ), we get

Ck
φC∗kφ = Mhk◦φ

k ∀k = 0, 1, 2, . . . . (3.3)

It is obvious that (i) implies (ii).
To show that (ii) implies (iii), we apply (3.3) and obtain

0≤
n∑

i, j=0

‖C∗i+ j
φ f ‖2λi λ̄ j =

∫
X

( n∑
i, j=0

hi+ j ◦ φ
i+ j (x)λi λ̄ j

)
| f (x)|2 dµ(x)

for all f ∈ L2(µ) and λ0, . . . , λn ∈ C. Next, arguing as in the proof that (ii) implies
(iii) in Theorem 3.1, we derive (iii).
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Suppose that (iii) holds. To show (i), take f0, . . . , fn ∈ L2(µ), then; by (3.3),

n∑
i, j=0

〈C∗i+ j
φ f j , C∗i+ j

φ fi 〉 =

∫
X

( n∑
i, j=0

hi+ j ◦ φ
i+ j (x) fi (x) f j (x)

)
dµ(x)≥ 0.

The last part of the conclusion follows from the above and Corollary 1.2. 2

Proposition 3.2 can be applied to (unilateral and bilateral) weighted shift operators
because the adjoint of a weighted shift is a composition operator with dense range.

4. Connections with Agler’s functional model

Let C[z] stand for the ring of all complex polynomials in complex variable z. For
every integer n ≥ 0, we define the linear subspace Cn[z] of C[z] via

Cn[z] = {p ∈ C[z] : deg p ≤ n} ∀n = 0, 1, 2, . . . .

We denote by C[z, z̄] the ring of all complex polynomials in z and z̄. It is well known
that the ring C[z, z̄] can be identified with that of all complex functions of the form
C 3 z→ p(z, z̄) ∈ C, where p is a complex polynomial in two complex variables;
such a representation is unique. For every integer n ≥ 1, we define the following four
convex cones in C[z, z̄]:

C= conv{(1− |z|2)|p(z)|2 : p ∈ C[z]},
L̃

n
= conv{|p(z)q(|z|2)|2 : p ∈ C[z], q ∈ Cn[z]},

Ẽ
n
= conv

{∣∣∣∣ n∑
i=0

pi (z)|z|
2i
∣∣∣∣2 : p0, . . . , pn ∈ C[z]

}
, (4.1)

S̃
n
= conv

{∣∣∣∣ n∑
i=0

pi (z)z̄
i
∣∣∣∣2 : p0, . . . , pn ∈ C[z]

}
, (4.2)

where ‘conv’ denotes the convex hull. Denote by Ln , En and Sn the convex cones
generated by C ∪ L̃

n
, C ∪ Ẽ

n
and C ∪ S̃

n
, respectively. Substituting pi (z)= ai p(z)

into (4.1), where p(z)=
∑n

i=0 ai zi , we see that L̃
n
⊆ Ẽ

n
. In turn, substituting pi (z)zi

into (4.2) in place of pi (z), we get Ẽ
n
⊆ S̃

n
. Hence Ln

⊆ En
⊆ Sn .

Let us recall Agler’s functional model ([1, 2]; see also [23]). If T ∈ B(H) is a
cyclic contraction with a cyclic vector γ , then we can associate with T a unique linear
functional ΛT : C[z, z̄] → C such that

ΛT (z
m z̄n)= 〈T mγ, T nγ 〉 = 〈T ∗nT mγ, γ 〉 ∀m, n = 0, 1, 2, . . . . (4.3)

In terms of the functional ΛT , the L(n)-hyponormality of cyclic contractions can be
characterized as follows (the proof, being standard, is omitted; consult [23]).
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PROPOSITION 4.1. The mapping (T, γ ) 7→ΛT given by (4.3) is a surjection between
the set of all L(n)-hyponormal cyclic contractions and the set of all linear functionals
Λ : C[z, z̄] → C which are nonnegative on the convex cone Ln . Moreover, if T1 and T2
are cyclic contractions on complex Hilbert spaces H1 and H2 with cyclic vectors γ1
and γ2 respectively, then ΛT1 =ΛT2 if and only if there exists a unitary isomorphism
U : H1→H2 such that Uγ1 = γ2 and U T1 = T2U.

The case of E(n)-hyponormality can be described in a similar manner.

PROPOSITION 4.2. The mapping (T, γ ) 7→ΛT given by (4.3) is a surjection between
the set of all E(n)-hyponormal cyclic contractions and the set of all linear functionals
Λ : C[z, z̄] → C which are nonnegative on the convex cone En .

In view of [23, Propositions 2.2 and 2.3], a cyclic contraction T is n-hyponormal if
and only if ΛT is nonnegative on Sn , while T is weakly n-hyponormal if and only
if ΛT is nonnegative on the convex cone Wn generated by C ∪ W̃

n
, where

W̃
n
= conv

{
|r(z)+ p(z)q(z)|2 : p, r ∈ C[z], q ∈ Cn[z]

}
.

One can verify that L̃
1
⊆ W̃

1
and so L1

⊆W1. If n ≥ 2, then there is no nice
relationship between convex cones Ln and Wn . The reason for this is that according
to Proposition 2.1 and [23, Theorem 4.1] there are weakly 2-hyponormal weighted
shifts which are not L(2)-hyponormal (see also [10] and references therein for recent
examples of this sort). Nevertheless, it is tempting to continue investigations along
these lines.
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