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Abstract
A linear equation E is said to be sparse if there is c> 0 so that every subset of [n] of size n1−c contains a
solution of E in distinct integers. The problem of characterising the sparse equations, first raised by Ruzsa
in the 90s, is one of the most important open problems in additive combinatorics. We say that E in k
variables is abundant if every subset of [n] of size εn contains at least poly(ε) · nk−1 solutions of E. It is
clear that every abundant E is sparse, and Girão, Hurley, Illingworth, and Michel asked if the converse
implication also holds. In this note, we show that this is the case for every E in four variables. We further
discuss a generalisation of this problem which applies to all linear equations.
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1. Introduction
Turán-type questions are some of themost well-studied problems in combinatorics. They typically
ask how ‘dense’ should an object be in order to guarantee that it contains a certain small substruc-
ture. In the setting of graphs, this question asks howmany edges an n-vertex graph should contain
in order to force the appearance of some fixed graph H. For example, a central open problem in
this area asks, given a bipartite graph H, to determine the smallest T = TH(ε) so that for every
n≥ T every n-vertex graph with ε

( n
2
)
edges contains a copy of H (see [3] for recent progress).

A closely related question which also attracted a lot of attention is the supersaturation problem,
introduced by Erdős and Simonovits [5] in the 80s. In the setting of Turán’s problem for bipartite
H, the supersaturation question asks to determine the largest T∗

H(ε) so that every n-vertex graph
with ε

( n
2
)
edges contains at least (T∗

H(ε)− on(1)) · nh labelled copies of H, where h= |V(H)| and
on(1) denotes a quantity tending to 0 as n→ ∞. One of the central conjectures in this area, due
to Sidorenko, suggests that T∗

H(ε)= εm, wherem= |E(H)| (see [4] for recent progress).
We now describe two problems in additive number theory, which are analogous to the graph

problems described above. We say that a homogenous linear equation
∑k

i=1 aixi = 0 is invariant
if
∑

i ai = 0. All equations we consider here will be invariant and homogenous. Given a fixed
linear equation E, the Turán problem for E asks to determine the smallest R= RE(ε) so that for
every n≥ R, every S⊆ [n] := {1, . . . , n} of size εn contains a solution to E in distinct integers.
For example, when E is the equation a+ b= 2c we get the Erdős–Turán–Roth problem on sets
avoiding 3-term arithmetic progressions (see [7] for recent progress). Continuing the analogy with
the previous paragraph, we can now ask to determine the largest R∗

E(ε) so that every S⊆ [n] of size
εn contains at least (R∗

E(ε)− on(1)) · nk−1 solutions to E, where k is the number of variables in E.
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We now turn to discuss two aspects which make the arithmetic problems more challenging than
the graph problems.

Let us say that E is sparse if there is C = C(H) so that1 RE(ε)≤ ε−C. The first aspect which
makes the arithmetic landscape more varied is that while in the case of graphs it is well known
(and easy) that for every bipartite H we have TH(ε)= poly(1/ε), this is no longer the case in
the arithmetic setting. Indeed, while Sidon’s equation a+ b= c+ d is sparse, a well-known con-
struction of Behrend [1] shows that a+ b= 2c is not sparse.2 The problem of determining which
equations E are sparse is a wide open problem due to Ruzsa, see Section 9 in [9].

Our main goal in this paper is to study another aspect which differentiates the arithmetic and
graph-theoretic problems. While it is easy to translate a bound for TH(ε) into a bound for T∗

H(ε)
(in particular, establishing that T∗

H(ε)≥ poly(ε) for all bipartite H), it is not clear if one can anal-
ogously transform a bound for RE(ε) into a bound for R∗

E(ε). The first reason is that while we can
average over all subsets of vertices of graphs, we can only average over “structured” subsets of [n].
This makes is hard to establish a black-box reduction/transformation between RE(ε) and R∗

E(ε).
The second complication is that, as we mentioned above, we do not know which equations are
sparse. This makes it hard to directly relate these two quantities. Following [6], we say that E is
abundant if R∗

E(ε)≥ εC for some C = C(E). Clearly, if E is abundant then it is also sparse. Girão
et al. [6] asked if the converse also holds, that is, if one can transform a polynomial bound for
RE(ε) into a polynomial bound for R∗

E(ε). Our aim in this note is to prove the following.

Theorem 1.1. If an invariant equation E in four variables is sparse, then it is also abundant. More
precisely, if RE(ε)≤ ε−C then R∗

E(ε)≥ 1
2ε

8C for all small enough ε.

Given the above discussion, it is natural to extend the problem raised in [6] to all equations E.

Problem 1.2. Is it true that for every invariant equation E there is c= c(E), so that for all small
enough ε

R∗
E(ε)≥ 1/RE(εc) .

It is interesting to note that Varnavides [11] (implicitly) gave a positive answer to Problem 1.2
when E is the equation a+ b= 2c. In fact, essentially the same argument gives a positive answer to
this problem for all E in three variables. Hence, Problem 1.2 can be considered as a generalisation
of Varnavides’s theorem. Problem 1.2 was also implicitly studied previously in [2,8]. In particular,
Kosciuszko [8], extending earlier work of Schoen and Sisask [10], gave direct lower bounds for R∗

E
which, thanks to [7], are quasi-polynomially related to those of RE.

The proof of Theorem 1.1 is given in the next section. For the sake of completeness, and as
a preparation for the proof of Theorem 1.1, we start the next section with a proof that Problem
1.2 holds for equations in three variables. We should point that a somewhat unusual aspect of
the proof of Theorem 1.1 is that it uses a Behrend-type [1] geometric argument in order to find
solutions, rather than avoid them.

2. Proofs
In the first subsection below, we give a concise proof of Varnavides’s theorem, namely, of the fact
that Problem 1.2 has a positive answer for equations with three variables. In the second subsection,
we prove Theorem 1.1.

1It is easy to see that this definition is equivalent to the one we used in the abstract.
2More precisely, it shows that in this case RE(ε)≥ (1/ε)c log 1/ε . Here and throughout this note, all logarithms are base 2.
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2.1 Proof of Varnavides’s theorem
Note that for every equation E, there is a constant C such that for every prime p≥ Cn every solu-
tion of E with integers xi ∈ [n] over Fp is also a solution over R. Since we can always find a prime
Cn≤ p≤ 2Cn, this means that we can assume that n itself is prime3 and count solutions over Fn.
So let S be a subset of Fn of size εn and let R= RE(ε/2). For b= (b0, b1) ∈ (Fn)2 and x ∈ [R] let
fb(x)= b1x+ b0 and4 fb([R])= {x ∈ [R] : fb(x) ∈ S}. Pick b0 and b1 uniformly at random from Fn
and note that for any x ∈ [R] the integer fb(x) is uniformly distributed in Fn. Hence,

E| fb([R])| = εR .
It is also easy to see that for every x 
= y the random variables fb(x) and fb(y) are pairwise
independent. Hence,

Var| fb([R])| ≤ εR .
Therefore, by Chebyshev’s Inequality we have

P

[
| fb([R])| ≤ ε

2
R
]
≤ εR

ε2R2/4
≤ 1/2 .

In other words, at least n2/2 choices of b are such that | fb([R])| ≥ ε
2R. By our choice of R,

this means that fb([R]) contains three distinct integers x1, x2, x3 which satisfy E and such that
fb(xi) ∈ S. Note that if x1, x2, x3 satisfy E, then so do fb(x1), fb(x2), fb(x3). Let us denote the triple
(fb(x1), fb(x2), fb(x3)) by sb. We have thus obtained n2/2 solutions sb of E in S. To conclude the
proof, we just need to estimate the number of times we have double counted each solution sb.
Observe that for every choice of sb = {s1, s2, s3} and distinct x1, x2, x3 ∈ [R], there is exactly one
choice of b= (b0, b1) ∈ (Fn)2 for which b1xi + b0 = si for every 1≤ i≤ 3. Since [R] contains at
most R2 solutions of E this means that for every solution s1, s2, s3 ∈ S, there are at most R2 choices
of b for which sb = {s1, s2, s3}. We conclude that S contains at least n2/2R2 distinct solutions, thus
completing the proof.

2.2 Proof of Theorem 1.1
As in the proof above, we assume that n is a prime and count the number of solutions of the
equation E:

∑4
i=1 aixi = 0 over Fn. Let S be a subset of Fn of size εn, and let d and t be inte-

gers to be chosen later and let X be some subset of [t]d to be chosen later as well. For every
b= (b0, . . . , bd) ∈ (Fn)d+1 and x= (x1, . . . , xd) ∈ X, we use fb(x) to denote b0 +∑d

i=1 bixi and
fb(X)= {x ∈ X : fb(x) ∈ S}. We call b good if | fb(X)| ≥ ε|X|/2.We claim that at least half of all pos-
sible choices of b are good. To see this, pick b= (b0, . . . , bd) uniformly at random from (Fn)d+1,
and note that for any x ∈ X the integer fb(x) is uniformly distributed in Fn. Hence,

E| fb(X)| = ε|X| .
It is also easy to see that for every x 
= y ∈ X the random variables fb(x) and fb(y) are pairwise
independent. Hence,

Var| fb(X)| ≤ ε|X| .
Therefore, by Chebyshev’s Inequality we have5

P

[
| fb(X)| ≤ ε

2
|X|
]
≤ 4/ε|X| ≤ 1/2 , (1)

3The factor 2C loss in the density of S can be absorbed by the factor c in Problem 1.2.
4Since f ([R]) is a subset of [R] (rather than S), it might have been more accurate to denote f ([R]) by f−1([R]) but we drop

the −1 to make the notation simpler.
5We will make sure |X| ≥ 8/ε.
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implying that at least half of the b’s are good. To finish the proof, we need to make sure that every
such choice of a good b will “define” a solution sb in S in a way that sb will not be identical to too
many other sb′ . This will be achieved by a careful choice of d, t, and X.

We first choose X to be the largest subset of [t]d containing no three points on one line. We
claim that

|X| ≥ td−2/d . (2)

Indeed, for an integer r let Br be the points x ∈ [t]d satisfying
∑d

i=1 x2i = r. Then every point of
[t]d lies on one such Br , where 1≤ r ≤ dt2. Hence, at least one such Br contains at least td−2/d of
the points of [t]d. Furthermore, since each set Br is a subset of a sphere, it does not contain three
points on one line.

We now turn to choose t and d. Let C be such that RE(ε)≤ (1/ε)C. Set a=∑4
i=1 |ai| and pick

t and d satisfying

(1/ε)2C ≥ td ≥
(
2dt2ad

ε

)C

. (3)

Taking t = 2
√

log 1/ε and d = 2C
√
log 1/ε satisfies6 the above for all small enough ε. Note that

by (3) and our choice of C, we have RE
(

ε

2dt2ad

)
≤ td.

Let us call a collection of four vectors x1, x2, x3, x4 ∈ X helpful if they are distinct, and they
satisfy E in each coordinate, that is, for every 1≤ i≤ d we have

∑4
j=1 ajx

j
i = 0. We claim that for

every good r, there are useful x1, x2, x3, x4 ∈ fr(X). To see this letM denote the integers 1, . . . , (at)d
and note that (2) along with the fact that r is good implies that

| fr(X)| ≥ ε|X|/2≥ εtd

2t2d
= ε

2dt2ad
· |M| (4)

Now think of every d-tuple x ∈ X as representing an integer p(x) ∈ [M] written in base at. So we
can also think of fr(X) as a subset of [M] of density at least ε/2dt2ad. By (3), we have

M = (at)d ≥ td ≥ RE
(

ε

2dt2ad

)
,

implying that there are distinct x1, x2, x3, x4 ∈ fr(X) for which
∑4

j=1 aj · p(xj)= 0. But note that
since the entries of x1, x2, x3, x4 are from [t], there is no carry when evaluating

∑4
j=1 aj · p(xj) in

base at, implying that x1, x2, x3, x4 satisfy E in each coordinate. Finally, the fact that
∑

j aj = 0 and
that x1i , x2i , x3i , x4i satisfy E for each 1≤ i≤ d allows us to deduce that

4∑
j=1

aj · fb(xj)=
4∑

j=1
aj ·

⎛
⎝b0 +

d∑
i=1

bix
j
i

⎞
⎠=

d∑
i=1

bi ·
⎛
⎝ 4∑

j=1
ajx

j
i

⎞
⎠= 0 ,

which means that fb(x1), fb(x2), fb(x3), fb(x4) forms a solution of E. So for every good b, let sb be
(some choice of) fb(x1), fb(x2), fb(x3), fb(x4) ∈ S as defined above. We know from (1) that at least
nd+1/2 of all choices of b are good, so we have thus obtained nd+1/2 solutions sb of E in S. To
finish the proof, we need to bound the number of times we have counted the same solution in S,
that is, the number of b for which sb can equal a certain 4-tuple in S satisfying E.

6Recalling (2), we see that since C ≥ 1 (indeed, a standard probabilistic deletion method argument shows that if an equation
has k variables, then C(E)≥ 1+ 1

k−2 ), we indeed have |X| ≥ 8/ε as we promised earlier.
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Fix s= {s1, s2, s3, s4} and recall that sb = s only if there is a helpful 4-tuple x1, x2, x3, x4 (as
defined just before equation (4)) such that fb(xi)= si. We claim that for every helpful 4-tuple
x1, x2, x3, x4, there are at most nd−2 choices of b= (b0, . . . , bd) for which sb = s. Indeed recall
that by our choice of X the vectors x1, x2, x3 are distinct and do not lie on one line. Hence, they
are affine independent7 over R. But since the entries of xi belong to [t] and t ≤ 1/ε, we see that
for large enough n the vectors x1, x2, x3 are also affine independent over Fn. This means that the
system of three linear equations:

b0 + b1x11 + . . . + bdx1d = s1
b0 + b1x21 + . . . + bdx2d = s2
b0 + b1x31 + . . . + bdx3d = s3

(in d + 1 unknowns b0, . . . , bd over Fn) has only nd−2 solutions, implying the desired bound on
the number of choices of b. Since |X| ≤ td ≤ (1/ε)2C by (3), we see that X contains at most (1/ε)8C
helpful 4-tuples. Altogether this means that for every s1, s2, s3, s4 ∈ S satisfying E, there are at most
(1/ε)8Cnd−2 choices of b for which sb = s. Since we have previously deduced that S contains at
least 1

2n
d+1 solutions sb, we get that S contains at least 1

2ε
8Cn3 distinct solutions, as needed.
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