
SPINORS AND CANONICAL HERMITIAN FORMS
by P. L. ROBINSON

(Received 23 February, 1987)

Introduction. The space 5 of spinors associated to a 2m-dimensional real inner
product space (V, B) carries a canonical Hermitian form ( ) determined uniquely up to
real multiples. This form arises as follows: the complex Clifford algebra C{V) of (V, B) is
naturally provided with an antilinear involution; this induces an involution on End 5 via
the spin representation; this is the adjoint operation corresponding to ( ).

Suppose that B has signature p - q and rank p + q = 2m. If p and q are odd, then
( ) is zero on each half-spin space; if p and q are even, then the half-spin spaces are
mutually orthogonal under ( ). The signature of ( ) depends rather severely on the type
(p, q) of B. From above, if p and q are odd then ( ) has zero signature. If p and q are
even and non-zero then ( ) has zero signature on each half-spin space. If B is definite
then ( ) is definite on each half-spin space: of like signs when B is negative, of opposite
signs when B is positive.

A few remarks are in order. C(V) actually admits two distinguished involutions,
related by the grading automorphism: we select one of these; choosing the other
engenders a parallel theory, with B and —B interchanged. We restrict our attention to
even dimensions since in odd dimensions the Clifford algebra is not a full matrix algebra.
We deal exclusively with real and complex scalars, though some of our results and proofs
are valid over more general fields with involution. Elementary modifications of the
methods adopted here lead rapidly to the existence and properties of the familiar
canonical bilinear forms on spaces of spinors.

In Section 1 we present a detailed account of the canonical Hermitian forms on spin
spaces. In Section 2 we present some simple examples; in particular, we discuss the
twistor space associated with Minkowski space. Throughout, we assume a certain
familiarity with the structure of Clifford algebras: see any of the references listed at the
end of this paper.

1. The Hermitian forms. Let V be a 2m -dimensional real vector space endowed
with an inner product B of type (p, q)\ thus, B has rank p + q = 2m and signature p - q.
The dimension of V being even, p and q have like parity; we shall refer to B as even or
odd according to whether this parity is even or odd. As is customary, in our notation we
shall generally suppress the inner product.

Denote by C(V) the complex Clifford algebra of the real inner product space (V, B);
we may regard C(V) either as the complexification of the real Clifford algebra of (V, B)
or as the Clifford algebra of the complexification (Vc, Bc). Write y for the unique
automorphism of C(V) restricting to Vc a C(V) as minus the identity; this automorphism
has period two and so determines a ^-grading

C(V) = C0(V)®Cl(V)
with y = / on the even Clifford algebra C0(V) and y = - / on the odd part
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Being a complexification, C(V) comes equipped with a natural conjugation; this we
shall indicate by an upper bar. Write a for the unique antiautomorphism of C(V)
restricting to Vc c C(V) as - / ; the prescription

defines an antilinear involution on the complex algebra C(V).
C(V) is a full matrix algebra: there exists a complex vector space 5 together with an

algebra isomorphism

p:C{V)->End 5;

we speak of p as a spin representation of C{V) with 5 the corresponding space of spinors.
Of course, any two spin representations of C(V) are equivalent by an intertwining
isomorphism which is unique up to scalar multiples.

The spin representation p carries across the involution * on C{V) to an involution *
on End 5; we claim that this determines a Hermitian form of some signature on 5.

THEOREM. Every involution * on End S is the adjoint operation determined by some
Hermitian form ( ) on S, unique up to real scalar multiples.

Proof. Fix a Hermitian form (•, •) on S, with adjoint operation +: if f, r\ eS and
T e End S then

The composite of * and t is an automorphism of End S, so there exists 8 e Aut S such that

TeEndSd>T* = 6-1

Since involutions have period two, if T e End 5 then

consequently, d'^d1 is a scalar operator. Let 6f = Xd for some A e C; then 6 = dn =
whence AA = 1, so that if jit2 = A then (/i0)f = jU0. We may therefore assume that 0f = 6.
Define

for | , i] € 5. Since 6f = 6 it follows that ( ) is Hermitian, of the same signature as 6 when
(•, •) is positive definite. Moreover, if T e End 5 then

whenever §, r\ eS; thus, * is the adjoint operation determined by ( ). It is evident that
determines { ) to within scalar multiples. •
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The space of spinors 5 thus carries a canonical Hermitian form ( ) such that the spin
representation p satisfies

whenever u e C(V) and §, r/ e S.
The spin representation of the even Clifford algebra C0(V) splits as the direct sum of

two irreducibles, called the half-spin representations on the spaces of half-spinors; we
recall how this comes about. The anticentre of C(V) is the set of all a e C(V) satisfying

In fact, the anticentre of C(V) is a complex line in C0(V) and contains an element (o such
that ft)2 = 1. The half-spin spaces S+ and 5_ are the eigenspaces of p(a>) in 5
corresponding to the eigenvalues +1 and - 1 , so that 5 = S+ © 5_. Note that since co lies
in the anticentre of C(V), if u0 e C0(V) then p(u0) stabilizes 5+ and 5_ whilst if
ux e Cx(V) then p(ux) interchanges 5+ and 5_.

Let ( « ! , . . . , V2m) be an orthonormal basis for V with

B(vJt v,) =+1(1*j*p),

B(vt,v1) = -l(p<j*2m).

In view of the anticommutation relations

x,y e V ^>xy + yx = 2B(x, y)l

in C(V), it is readily seen that the product v±. . . v^ lies in the anticentre of C(V) and
satisfies (vx.. . v2m)2 = (-l)m + < 7. Thus: when m + q is even, we may take u> = vl. .. v2m;
when m + q is odd, we may take co = ivx. . . v2m. Note that in any case we have
(0* = (-l)«a>.

As a first step in understanding the interaction of the canonical Hermitian form with
the half-spinors, we have the following result.

THEOREM. If B is even, then 5+ and S_ are mutually orthogonal; if B is odd, then S+
and 5_ are self-orthogonal.

Proof. If § e S+ and rj e 5_ then

it follows that the half-spin spaces 5+ and 5_ are mutually orthogonal when q is even.
Similarly, if | , TJ e S+ or | , r\ e 5_ then

so that 5+ and 5_ are self-orthogonal when q is odd.
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As an immediate corollary, if B is odd then ( ) has zero signature.
Suppose now that B is even. According to the theorem, ( ) restricts to a

non-singular Hermitian form on each space of half-spinors. We claim: if B is indefinite
then ( ) has zero signature on each half-spin space; if B is definite then ( ) is definite on
each half-spin space, with like or opposite signs according to whether B is negative or
positive. Justification follows.

If v e V satisfies B(v, v) = ±1 then

v*v = a(v)v = -v2 = -B(v, v)l = T 1;

consequently, if §, r\ e S then

< p ( u ) £ p{v)r,) = <§, p(v*v)r,) = =F < £ ij>;

moreover, p{v) interchanges the half-spin spaces 5+ and S_.

THEOREM. / / B is even and indefinite then { ) has zero signature on each half-spin
space.

Proof. From the above observation it is clear that the signatures of ( ) on S+ and 5_
are both equal and opposite, and therefore zero. •

More work is required when B is definite. Our observation prior to the preceding
theorem certainly implies that if B is negative then ( ) has the same signature on 5+ and
5_ whilst if B is positive then the signatures of ( ) on S+ and 5_ are opposite. In order to
establish that ( ) is definite on S+ and 5_ in either case, we digress to discuss the
behaviour of spinors under orthogonal decompositions of V.

Suppose that V is decomposed as the orthogonal sum X © Y of even-dimensional
vector spaces. Let Sx and SY be spaces of spinors for X and Y; write 5 = Sx ® SY- Fix a> in
the anticentre of C{X) with a>2 = 1 and define

by the prescription

p(

for x e X and y e Y. We claim that p is a Clifford map: indeed, if x e X and y e Y then

since <w2 = 1 and co anticommutes with x. Simplicity of C(V) and a dimensional check
guarantee that the induced algebra map

p:C{V)-* End S

is actually an isomorphism. In this way, 5 = 5^ ® SY is realized as a space of spinors for
X®Y. The spaces of half-spinors in this realization are precisely

S+ = (Sx)+ <g> (SY)+ + (Sx)_ (8) (5y)_,
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Suppose further that co* - <w; this will be so iff B is even on X. Let ( } x and ( ) y be
canonical Hermitian forms on Sx and SY- A Hermitian form ( ) is defined on 5 by the
prescription

for | , I' e Sx and t], rj' e SY. If x eX and y e Y then

whenever f, ^'CSA- and rj, r j 'e5y . It follows that ( ) is a canonical Hermitian form
on 5.

We are now essentially in a position to prove the following result.

THEOREM. / / B is negative definite on V then ( ) is definite on S. If B is positive
definite on V then { ) is definite of opposite signs on S+ and 5_.

Proof. Induction on m = \ dim V. The case m = 1 is presented explicitly as an
example in the next section. In general let V = X 0 Y be an orthogonal decomposition
into even-dimensional subspaces. We have seen that ( ) is determined on 5 = 5* ® SY as
the product of ( ) x and ( ) y ; we have also identified S± in terms of (Sx)± and (5y)±.
From these observations and the mutual orthogonality of the half-spin spaces, it follows
that if ( ) x and ( ) y are definite on their respective half-spin spaces then so is ( ). It has
already been established that the signs of ( ) on S+ and 5_ are equal or opposite
according to whether B is negative or positive. •

We close this section with the following remarks. If B is negative definite then C(V)
is a C* algebra in a natural manner. If B is positive definite then C0(V) is a C* algebra
but C(V) is not: u*u has negative spectrum when u e Ci(V). If B is indefinite then C0(V)
is not a C* algebra: it contains a nonzero u such that u*u = 0.

2. Some simple examples. Let V be two-dimensional and let B be definite. We shall
prove that the canonical Hermitian form ( ) is definite on 5+. In order to do this, it is
enough to prove that ( | , | ) and (r\,r\) have the same sign whenever §, r\ eS+. Let
r] <£> | be the rank one operator defined on 5 by the prescription

and let ueC(V) correspond to rj ® f under the spin representation p; since half-spin
spaces are mutually orthogonal, r] <8> f stabilizes both 5+ and 5_ so that u actually lies in
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C0(V). Note that

consequently, the spectrum of u*u is given by

Thus, it suffices to show that the spectrum of u*u is positive whenever u e C0(V).
Take an orthonormal basis {x, y} for V; thus, x and y are mutually orthogonal and

B(x, x) = B(y, y) = ±1. The elements 1 and xy provide a basis for C0(V). For our
purposes, a more convenient basis is given by

where to = ixy; note that p{n+) and p{nJ) project 5 onto the half-spin spaces 5+ and 5_
In fact, n+ and n_ axe complementary mutually orthogonal self adjoint idempo tents:

2 * 2 *
yi_4- — J l + — Jlj-, Jl _ — Jl _ — J T _ ,

Jt+JT- = .7r_.7ir+ = 0 ,

^ + + ^ _ = 1,
as is readily verified . Let

be any element of C0(V). From the above properties of n+ and jr_ we deduce

consequently,
o(u*u) = {\a\2,\b\2}.

We have now justified our claim that if B is definite then ( ) is definite on S+.
For completeness we describe o(u*u) for u e CX(F). As basis for CX{V) we take

_ 1 . _ 1

2z 2i

Let 6 = ± 1 be the common value of B{x, x) and B(y, y). li 6 = -I then v + v_ = n+ and
v_v + = jr_ whilst if 6 = + 1 then v + v_ = - J T _ and v_v + = —JI+; in either case we have

v* = v_, v* = v + .

As an arbitrary element of C^(V) consider

u = av+ + bv_;

we have
6 = - 1 ^>u*u = +(\b\2 n+ + \a\2 *_) ,

6 = +1 ^> u*u = -{\a\2 JZ+ + \b\2 n.),
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and therefore

a(u*u) = {-6 \a\2, -8 \b\2}.

Thus: if u e Ct(V) then the spectrum of u*u is positive when B is negative definite and
negative when B is positive definite.

When B is indefinite, so that ( ) vanishes on each space of half-spinors, it can be
shown that if u e C0(V) then o(u*u) consists of a pair of complex conjugates; in this case,
it is convenient to take ^(1 + xy) and ^(1 - xy) as basis vectors for C0(V).

As a further example we consider Minkowski space: a four-dimensional real vector
space V with an inner product B of type (1,3). From our general theory, the full
four-dimensional complex vector space 5 of spinors for (V, B) is naturally provided with a
Hermitian form ( ); since B is odd, ( ) vanishes on each space of half-spinors. When
taken with this canonical Hermitian form ( ), 5 becomes what is known as twistor space.

It is perhaps worthwhile to present an explicit construction of Minkowski space,
along with the spin representation and associated Hermitian form; this we proceed to do.

Let S+ be a two-dimensional complex vector space equipped with a complex
symplectic form e. The conjugate space to 5+ will be denoted 5_ = 5+; the identity map
from S+ to S_ is antilinear and will be denoted by an upper bar. An antilinear
automorphism T of S+ <8> 5_ is determined by the requirement

T(p <8) q) = q <8)p

for p, q eS+. We take V to be the four-dimensional real vector space of points fixed
under x, so that 5+ <8> 5_ is naturally the complexification of V. A symmetric bilinear map
B is defined on S+ <8> S_ by requiring

B(p ®q,r®s) = e(p, r)e(q, s)

to hold for all p, q, r,s eS+. The restriction of B to V is a real inner product of type

(1, 3): indeed, if {e,f} is a basis for S+ with e(e,/) = ~7= then the vectors

z = i{e®f-f®e)

are mutually orthogonal in V and satisfy

-B(t, t) = B{x, x) = B(y, y) = B(z, z) = - 1 .

(V, B) is our model of Minkowski space.
The direct sum 5 = 5+©5_ is a canonical space of spinors for Minkowski space.
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Define ^
y j p(p ® q)(a © b) = e(b, q)p © e(p, a)q

for p, q, a, b eS+. It is routine to verify that if p, q, r, s e S+ then

p(p ® q)p{r <8> s) + p(r ® s)p{p ®q) = 2B(p ®q,

consequently,

is a Clifford map. The induced algebra map

End 5

is actually an isomorphism, for any number of reasons. This exhibits 5 as a space of
spinors for Minkowski space. Observe that 5+ and 5_ are the corresponding spaces of
half-spinors, as our notation suggests.

In searching for a Hermitian form ( ) on S = S+ ® 5_ satisfying

whenever u e C(V) and f, rj eS, we may be guided by its abstract properties. The
formula _

(a © 6, c © d) = i{e(a, d) - e(c, b)},

for a, b, c, d e S+, determines such a form: if p, q e S+ then (p ® q)* = —q ®p and a
direct calculation verifies

(p(p ® q){a ®b),c®d) + {a@ b, p(q ®p)(c © d)) = 0

whenever a, b, c, d eS+.
In this treatment of Minkowski space, responsibility for the explicit formula giving

the spin representation p of 5+ ® 5_ on S+ © 5_ is shared with Roger Plymen.
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