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Undulatory and oscillatory swimming

Alexander J. Smits†

Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA

Theory and modelling remain central to improving our understanding of undulatory
and oscillatory swimming. Simple models based on added mass can help to give
great insight into the mechanics of undulatory swimming, as demonstrated by
animals such as eels, stingrays and knifefish. To understand the swimming of
oscillatory swimmers such as tuna and dolphins, models need to consider both
added mass forces and circulatory forces. For all types of swimming, experiments
and theory agree that the most important velocity scale is the characteristic lateral
velocity of the tail motion rather than the swimming speed, which erases to a large
extent the difference between results obtained in a tethered mode, compared to
those obtained using a free swimming condition. There is no one-to-one connection
between the integrated swimming performance and the details of the wake structure,
in that similar levels of efficiency can occur with very different wake structures.
Flexibility and viscous effects play crucial roles in determining the efficiency, and
for isolated propulsors changing the profile shape can significantly improve both
thrust and efficiency. Also, combined heave and pitch motions with an appropriate
phase difference are essential to achieve high performance. Reducing the aspect
ratio will always reduce thrust and efficiency, but its effects are now reasonably
well understood. Planform shape can have an important mitigating influence, as do
non-sinusoidal gaits and intermittent actuation.

Key words: flow–structure interactions, propulsion, swimming/flying

1. Introduction

The fluid dynamics of underwater propulsion is an area of research that has
stimulated vigorous collaborations between biologists and engineers, and fostered
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numerous mathematical treatments, experimental investigations and numerical
simulations. It has contributed to a deeper understanding of the underlying biology
of fish and aquatic mammals, and provided inspiration for developing innovative
new underwater systems. This level of attention is no doubt driven at least in
part by the grace and beauty displayed by many swimming animals. There is also
the possibility that evolution has led to propulsive mechanisms that are inherently
more efficient, manoeuvrable and quieter than those currently in use in marine
applications.

The literature surrounding this field is extensive. The books by Gray (1968), Blake
(1983a) and Videler (1993) provide a comprehensive portrait of fish swimming,
while more specific topics, such as the hydrodynamics and energetics of fish
propulsion, dolphin hydrodynamics and performance, fish swimming mechanics and
behaviour in altered flows, passive and active flow control by swimming fishes
and mammals and the mechanics and control of swimming, are considered by
Webb (1975), Fish & Rohr (1999), Colgate & Lynch (2004), Fish & Lauder (2006)
and Liao (2007), respectively, and Lauder & Tytell (2005) present a particularly
insightful review of the hydrodynamics of undulatory propulsion. The analyses by
Lighthill (1969) for slender bodies and Wu (1961) for thin flexible membranes
continue to be influential, as do the considerations on hydrodynamic scaling by
Triantafyllou, Triantafyllou & Yue (2000) and Triantafyllou et al. (2005). There are
also three notable popular articles that have helped introduce a broad audience to
the subject (Webb 1984; Triantafyllou & Triantafyllou 1995; Fish & Lauder 2013).
This is by no means a comprehensive list.

Our aim here is to supplement this body of work with a contemporary perspective
on our understanding of the fundamental fluid dynamic aspects of oscillatory and
undulatory swimming, and to consider the implications for novel propulsors for
future underwater vehicles. We will primarily consider motions at cruise condition,
where the animal is moving in a straight line at an average speed that is constant.
This is expected to be the most efficient condition, in that it is the mode chosen by
fish for sustained swimming (Fish & Rohr 1999; Triantafyllou et al. 2005).

1.1. Swimming styles

The biology is evidently rich with complexity, encompassing a vast range of body
morphologies and swimming styles. A primary sorting can be made on the basis of
Reynolds number. When viscous forces dominate, as they do for micro-organisms
such as bacteria, propulsion requires non-reciprocal motion that breaks symmetry
as a consequence of the linearity of the governing equations. Very small fish, with
lengths of a millimetre or so, also live in this world. However, for somewhat larger
fish, say of length 10 mm, swimming at one body length per second, the Reynolds
number will exceed 100, and reciprocal motions become the dominant form of
propulsion.
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Undulatory and oscillatory swimming

(a) (b) (c) (d)

FIGURE 1. Examples of four swimming types: (a) oscillatory – tuna; (b) undulatory –
ray; (c) pulsatile jet – jellyfish; and (d) drag based – duck. Reproduction with permission
from Van Buren, Floryan & Smits (2019a).

For such organisms, we can identify four major types of swimmers: undulatory,
oscillatory, pulsatile and drag-based, as illustrated in figure 1. Undulatory swimmers
are animals that generate a travelling wave along their body or propulsive fins to
push fluid backwards. Examples include eels, lampreys and some rays. Oscillatory
swimmers, such as salmon, tuna, dolphins and sharks, propel themselves primarily
using a semi-rigid caudal fin or fluke that is oscillated periodically. Animals that
periodically ingest a volume of water and then discharge it impulsively to produce
thrust by reaction are called pulsatile swimmers, and examples include jellyfish,
squid, frogfish and some molluscs (Fish 1987; Dabiri 2009). Finally, drag-based
swimmers such as humans, turtles, seals and ducks propel a bluff body such as a
rigid flipper through the water to generate thrust (Fish 1996).

Our principal consideration here will be undulatory and oscillatory swimmers
that use body and/or caudal fin locomotion. In the conventional view, anguilliform
swimmers such as eels and lampreys pass a travelling wave of increasing amplitude
along the whole body, whereas for thunniform swimmers such as tuna and mackerel
the anterior part of the body is held to be relatively stiff, and only the posterior third
of the body is used for propulsion, with the notable presence of a high-aspect-ratio
caudal fin (Lindsey 1978; Sfakiotakis, Lane & Davies 1999). We shall see that
this distinction is not entirely accurate, and also less useful than one based on the
wavelength of actuation, in that, broadly speaking, undulatory swimmers display
a wavelength shorter than their body length, and oscillatory swimmers display a
wavelength longer than their body length.

1.2. Wake structure

The hydrodynamic structure of the wake is determined by the Reynolds number, the
non-dimensional frequency and the non-dimensional amplitude of the motion. The
non-dimensional frequency is typically expressed either as the Strouhal number St,
or the reduced frequency k. Here, St=2af /U and k= fc/U, where a is the amplitude
of oscillation of the tail, f is the frequency of oscillation (Hz), U is the speed of
swimming and c is a characteristic length such as the length of the body or the
chord of the caudal fin or fluke.
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FIGURE 2. (a) Fluke-beat frequency and (b) non-dimensional fluke-beat amplitude as
functions of length-specific swimming speed for several odontocete cetaceans. Original
data from Rohr & Fish (2004), replotted as in Floryan et al. (2017a), reproduced with
permission.

Triantafyllou, Triantafyllou & Grosenbaugh (1993) analysed the swimming
performance of a wide variety of fishes and mammals, from bream to sharks to
dolphins, and found that they swam broadly within the range of Strouhal numbers
from 0.2 to 0.35. This observation echoes a number of earlier studies (for example,
Bainbridge 1958) that showed that fish tend to increase their swimming speed by
increasing their tail beat frequency while keeping their amplitude of motion more
or less constant (typically 15–20 % or so of the body length), in effect keeping
their Strouhal number fixed. Similar results were found for cetacean swimming by
Fish & Rohr (1999) (see figure 2), although for rainbow trout Webb, Kostecki &
Stevens (1984) found that the amplitude of the tail beat relative to the body size
decreased with the size of the specimen.

Triantafyllou et al. (1993) made two additional observations. First, the efficiency
of a heaving and pitching foil displayed a peak in this ‘optimal’ range (0.2 6
St 6 0.35). Second, the average velocity profile in the wake resembles a jet, and
they showed that the jet profile is convectively unstable over a narrow range of
frequencies that corresponds well to this Strouhal number range. Triantafyllou et al.
(1993) therefore concluded that fish swim in this particular Strouhal number range
because it corresponds to the frequency of maximum amplification and therefore it
is expected to be most efficient. In addition, the associated wake structure resembled
a reverse von Kármán street pattern (Weihs 1972), that is, a pattern akin to the von
Kármán vortex street but with the signs of the vortices reversed so that thrust is
produced instead of drag. No Reynolds number effects were considered, presumably
because the Reynolds numbers for their data set were relatively high (104 to about
106 based on body length). However, as we will show, viscous effects may continue
be important even at very high Reynolds numbers (see § 3.1).
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0 ms 216 ms

(a) (b)

FIGURE 3. Representative flow fields in the wake of the oscillating caudal fin of sunfish
during steady swimming at 1.1 L/s, where L is total body length. Adapted with permission
from Drucker & Lauder (2001).

This view, that the reverse von Kármán street wake pattern corresponds to
the most efficient swimming mode, and that it is typical of cruising fish, is still
widely held. At the time, however, evidence for the ubiquity in nature of the reverse
von Kármán street wake structure was rather scant, and it was not really until the
advent of particle image velocimetry (PIV) that the vortex patterns produced by fish
could be examined in detail (Müller et al. 1997; Drucker & Lauder 2001; Lauder
& Tytell 2005). An early example showing the formation of a reverse von Kármán
street wake, as visualized in the plane of the tail motion, is shown in figure 3. This
type of structure is also called 2S, that is, two vortices are shed into the wake per
shedding cycle, after Williamson & Roshko (1988) who coined the phrase with
respect to wakes generated by oscillating cylinders.

A different example is given in figure 4(a) for an American eel in steady
swimming. Large vortices are shed by the flapping tail, but when viewed in the
plane of the tail motion this wake pattern does not resemble that of a reverse
von Kármán street. The wake of a robotic lamprey, another undulatory swimmer,
shown in figure 4(b), displays a very similar vortex pattern, as do alligators (Fish
& Lauder 2013), and although dolphins typically generate 2S wakes they also
sometimes generate this type of wake (Fish et al. 2014). We see a structure that is
more reminiscent of Williamson and Rosko’s 2P wake structure, where two vortex
pairs are shed per cycle. It is clear that different wake patterns are possible, and
we shall see that efficient swimming is not necessarily restricted to one particular
wake pattern.

These visualizations in the plane of the tail motion tend to ignore the fact that
fish wakes will naturally be highly three-dimensional, even if the caudal fin has a
large aspect ratio. As anticipated by Lighthill (1969), the spanwise vorticity shed
from the central part of the caudal fin is much greater than what can be shed
from the tapered tips, and so the vortex lines shed from the central part must bend
downstream. Further downstream, they must turn inwards, and then close up when
they reach the vorticity of opposite sign shed by the fin half a period earlier. This
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FIGURE 4. Phase-averaged velocity fields in the wake of (a) an American eel moving at
constant speed, adapted with permission from Tytell & Lauder (2004), and (b) a robotic
lamprey, adapted with permission from Hultmark, Leftwich & Smits (2007). Contours give
levels of spanwise vorticity. The views represent the flow field at a similar phase in the
motion.

line of thinking suggests that the wake consists of a series of vortex rings or loops
of alternate sign, and that the reverse von Kármán street is seen only in a particular
cross-section through this structure (see also Videler 1993). Nauen & Lauder (2002)
make this description more explicit by direct observations on chub mackerel at
Strouhal numbers of approximately 0.4. Thus, the stability argument advanced by
Triantafyllou et al. (1993) for two-dimensional flows is unlikely to translate directly
to actual fish wakes.

In addition, we should note that for a free swimming fish moving at constant
speed no resultant force is acting, and the overall wake in the frame of the fish
motion is momentumless. So even if the cross-sectional view of the wake resembles
a 2S or a 2P structure the vortices appear aligned in such a way so that there is
no net axial jet. This is illustrated by the wakes shown in figure 4(a,b), visualized
under free swimming conditions.

We will show here that we should treat the wake structure and the swimming
performance (thrust, power and efficiency), as two separate but inter-related topics,
in that there is no obvious one-to-one connection between them. Zhang (2017), in
the context of a flapping wing, cautioned that examining the flow pattern is much
like looking at the footprints of terrestrial animals; although some information
can be gleaned from the wake, it does not tell the whole story. Similarly, Taylor
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Undulatory and oscillatory swimming

(2018) writes that an explanation of propulsive efficiency given only in terms of the
wake feels a little incomplete, and notes that Eloy (2012) suggested that efficient
development of the wake may be a consequence, rather than a cause, of efficient
propulsion. See also Floryan, Van Buren & Smits (2019).

1.3. Measures of performance

We have a particular interest in the thrust, power and efficiency of a wide variety of
‘swimmers’, a term that may include animals, robots, as well as isolated propulsors
such as oscillating foils and flexible plates. As indicated earlier, the principal non-
dimensional variables governing the performance are the Strouhal number, St, the
reduced frequency, k, and the chord-based Reynolds number, Re= cU/ν, where ν is
the fluid kinematic viscosity. We also have the aspect ratio A= s2/A, where s is the
span and A is the planform area of the propulsor, as well as some measure of the
body flexibility such as the effective stiffness. The results on propulsive performance
are usually presented in terms of the non-dimensional thrust output coefficient, input
power coefficient and Froude efficiency, conventionally defined according to

CT = T
1
2ρU2A

, CP = P
1
2ρU3A

, η= TU
P
= CT

CP
, (1.1a−c)

where T is the net streamwise (x-direction) component of the force developed by
the motion, P is the power expended and ρ is the fluid density. Unless otherwise
indicated, we consider only time averaged values.

What about the drag on the body? The net thrust, T , is given by the thrust
produced by the motion, Fx, minus the drag force, D, so that T = Fx − D. For a
body in steady self-propelled motion (free swimming), the total thrust is equal to the
total drag, so that T = 0, CT = 0 and the efficiency can no longer be defined. In such
cases the cost of transport CoT is often used, as first introduced by Von Kármán
& Gabrielli (1950). That is, for an animal of weight mg, CoT = P/(mgU). This is
a useful quantity to help compare the performance of dissimilar animals where P
is given by the metabolic rate, and the minimum CoT is assumed to occur at the
velocity at which the animal can cover the largest distance for the smallest energy
cost. Fish & Rohr (1999) note that fish have the lowest CoT for any vertebrate,
and that cetaceans have values two or three times higher than similar sized fish,
probably because of the higher maintenance costs. Intriguingly, they found that the
minimum value of the CoT for fish and mammals is a function of body mass m,
scaling approximately according to m−0.25.

In some animals, we can separate the sources of drag from the sources of thrust.
If, for example, we can identify the caudal fin as the main source of propulsive force
and the body as the main source of drag, then the caudal fin needs to generate a
net positive force (its thrust Fx minus its drag Dp) in order to overcome the drag
offered by the body Db. In this case, the fin can be considered in isolation, and we
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can define the efficiency of the propulsor as TU/P, where P is the power necessary
to generate the net propulsor thrust T = Fx − Dp, ignoring the question of how
efficiently the input power was generated to begin with (that is, we are concerned
with fluid mechanical efficiency and not metabolic efficiency). Furthermore, the net
propulsor thrust T then determines the steady swimming speed of the body plus
propulsor, through the force balance T =Fx−Dp=Db. These broad assumptions are
often used in propulsive models for oscillatory swimmers such as tuna and dolphins
(see § 3).

1.4. Undulatory and oscillatory swimming

To compare the swimming styles of undulatory and oscillatory swimmers, we
consider how the shape of the body midline changes during an actuation cycle.
The results are shown for a number of different species in figure 5. The distinction
among swimmer types is obviously less clear than that implied by the conventional
view that there are distinct morphological differences between undulatory and
oscillatory swimmers (Lindsey 1978; Sfakiotakis et al. 1999). That is, all four types
shown here display a midline motion that grows similarly in amplitude along the
body length. Although the anguilliform motion grows more uniformly along the
body compared to other species, there is no great distinction among the other three
types where the motion is largely restricted to the posterior one third of the body.

Instead of using body morphology to distinguish oscillatory and undulatory
swimmers, we therefore use a criterion based on the mechanism that generates thrust.
In the first group we have animals that pass a travelling wave along the body such as
eels, lampreys, snakes. We call these undulatory swimmers because the wavelength
of the undulation is equal to or shorter than the length of the body. Some rajiform
species such as the blue spotted stingray and Atlantic stingray similarly undulate
their pectoral fins to generate thrust, and amiiform and gymnotiform swimmers such
as the bowfin and knifefish may also be included in this group, since they move by
propagating undulations along their elongated anal or dorsal fin, with a wavelength
shorter than the length of the fin (Fish 2001).

In the second group we have carangiform and thunniform swimmers where
the primary mechanism for producing thrust is a prominent caudal fin. Here, the
wavelength of the undulation is longer than the body length, and so the caudal fin
describes a combination of heaving and pitching motions. Some species of ray such
as the manta ray and cownose ray move their pectoral fins in a similar motion,
which happens when the wavelength of the undulation is longer than the chord of
the pectoral fin (called mobuliform swimming). We also include cetaceans in this
group, because their primary propulsive force is due to the oscillatory motion of the
fluke in the vertical plane. The swimming kinematics of cetaceans are characteristic
of the thunniform mode, also known as carangiform with lunate tail (Lighthill 1969,
1970; Webb 1975; Lindsey 1978). The role of flexibility varies widely, in that the
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Anguilliform
 1.8 L/s

0.26 s 0.22 s

2 
cm

0.22 s0.27 s

Carangiform
 1.8 L/s

Thunniform
 1.8 L/s

Subcarangiform
 1.6 L/s

FIGURE 5. Four classical categories of fish undulatory propulsion illustrated with fish
outlines and midlines derived from recent experimental data. Outlines of swimming fishes
are shown above with displacements that to illustrate forward progression, while midlines
at equally spaced time intervals throughout a tail beat are superimposed at right, aligned at
the tip of the snout; each time is shown in a distinct colour. Anguilliform mode based on
Anguilla, subcarangiform mode based on Lepomis, carangiform mode based on Scomber
and thunniform mode based on Euthynnus. All fishes were between 20 and 25 cm total
length (L), and swam at a similar speed of 1.6 to 1.8 L/s. Times shown indicate duration
of the tail beat. Scale bars = 2 cm. Adapted with permission from Lauder & Tytell
(2005).

caudal fin of tuna are stiff compared to the rather flexible flukes of dolphins, and
manta rays can actively control the flexibility of their pectoral fins by muscle action.

In some species, however, it is not always possible to make a clear demarcation
between undulatory and oscillatory swimming. Sharks, for example, display motions
ranging from anguilliform to thunniform (Wilga & Lauder 2004). They also have
a distinctive heterocercal tail, that is, an asymmetric caudal fin shape, and so
are expected to generate asymmetric wake structures (Flammang et al. 2011).
Nevertheless, the broad distinction based on the propulsive mechanism proves to be
useful as an organizing principle.

In what follows, we first consider undulatory swimming, and then oscillatory
swimming. Mobuliform swimmers like manta rays will be considered separately, in
that they are a good example of animals that actively control the shape of their fins
to change the waveform of actuation. Some basic themes will emerge. One, there
is no one-to-one correspondence between wake structure and efficiency. Two, the
primary velocity scale for propulsion is the characteristic velocity of the trailing
edge. Three, the drag of the propulsor is crucially important in determining its
thrust and efficiency. Four, flexibility (either passive or active) can have a major
effect on performance, and a proper exploitation of flexibility seems essential to
attain high thrust and efficiency.
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2. Undulatory swimming

Taylor (1952) was the first to estimate the thrust produced by long and narrow
animals such as snakes, eels and marine worms, by ‘considering the equilibrium of
a flexible cylinder immersed in water when waves of bending of constant amplitude
travel down it at constant speed. The force on each element of the cylinder is
assumed to be the same as that which would act on a corresponding element of a
long straight cylinder moving at the same speed and inclination to the direction of
motion’. This approach is now known as the ‘resistive model’ of thrust production,
and the total thrust is found by integrating the streamwise contributions from all the
segments along the body. By using an appropriate estimate for the drag coefficient
on each segment, and by allowing the amplitude of the bending wave to vary
along the body, the model can be adapted to non-circular cross-sections, varying
locomotion profiles, and a wide range of Reynolds numbers. For example, it was
used by Gray & Hancock (1955) to analyse very low Reynolds number swimmers
using a linear drag dependence. An important result is that for high Reynolds
numbers the bending wave needs to move down the body at a speed greater than
the swim velocity to achieve positive thrust.

As pointed out by Lauder & Tytell (2005) and many others, the theory is limited
by the assumption of small-amplitude bending waves, and the assumption that the
resistive force experienced by each segment is quasi-steady and independent of
the adjacent segments. In addition, the drag coefficients used in the theory are
determined from experiments on steady cylinders, and in unsteady flow added
mass forces will appear, and the circulatory forces would also change from their
steady flow values, at least for high Reynolds numbers. Therefore, although it is
still widely used for low Reynolds number applications (see, for example, Zhong
et al. (2013)), for high Reynolds number flows where accelerations (such as those
associated with added mass effects) need to be considered, resistive models have
largely been replaced by approaches based on some form of slender body theory.

2.1. Slender body theory

Lighthill (1960) was the first to apply slender body theory (originally developed
in the context of airships and supersonic flow by Munk 1924; Tsien 1938) to the
swimming of slender fish, that is, ‘either a fish or a swimming mammal, whose
dimensions and movements at right angles to its direction of locomotion are small
compared with its length, while its cross-section varies along it only gradually’. It
is similar to thin airfoil theory in the sense that the derivatives are evaluated at the
body centreline without consideration to its thickness.

Several other assumptions are made in the basic theory. First, the flow is taken
to be inviscid, so that the instantaneous energy conservation in aquatic animal self-
locomotion is given by

P= E+ TU, (2.1)
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Undulatory and oscillatory swimming

where P is the power exerted by the animal, E is the rate of change of the
kinetic energy of the fluid and TU is the rate of work done to produce thrust T .
In evaluating the efficiency, the drag is taken to be zero, and therefore the efficiency
in slender body theory measures the part of the power that goes to produce thrust,
compared to the total power input that includes the loss of energy to the fluid
(that is, the wake). Second, the theory assumes that the force on each segment of
the body is given by the reactive force due to the acceleration of the added mass
per unit length of the segment, which is why it is sometimes called a ‘reactive’
model. This reactive force is taken to act only in the y-direction, which is normal
to the direction of the forward progress of the animal (taken to be the x-direction).
Circulatory forces are not considered. Third, it assumes that each segment is
independent of the next, which is the same infinite cylinder approximation used in
resistive theory. Fourth, motions are taken to be small (although the theory was
extended to large-amplitude motions by Lighthill 1971).

We now summarize the salient results. The notation and approach follow Wu
(2011), and the theory applies equally well to long slender bodies and thin
membranes (that is, flexible ribbon plates of constant width where the width is
small compared to its length). We give more details than might be wise, but the
results will find a number of applications in the rest of this paper.

For a travelling wave described by h(x, t), the local velocity in the y-direction is
given by V(x, t)= (∂/∂t + U∂/∂x)h. The associated force per unit length is called
the specific lift L (Wu 2011), where L= (∂/∂t+U∂/∂x)(mV). Note that L depends
entirely on the added mass per unit length m, and that there is no contribution due to
circulatory forces. Typically, the added mass model is very simple, in that it is taken
to be proportional to the area of the body cross-section. Then, instantaneously,

P=−
∫ `

0

∂h
∂t

L dx, E=−
∫ `

0

(
∂h
∂t
+U

∂h
∂x

)
L dx, T =

∫ `

0

∂h
∂x

L dx, (2.2a−c)

where ` is the body length, and E is evaluated as the rate of shedding of kinetic
energy of lateral fluid motions into the fluid. The thrust T is found from the energy
balance in (2.1), although it can be formally shown that T is the projection in the
x-direction of the forces due to pressure differences acting on the body.

For a body in periodic motion with m(x) = 0 and m(`) = m`, the time-averaged
values are given by

P=m`U

{
∂h
∂t

(
∂h
∂t
+U

∂h
∂x

)}
`

=m`U
[
∂h
∂t

V
]
`

(2.3)

and

E= m`

2
U

{(
∂h
∂t
+U

∂h
∂x

)2
}
`

= m`

2
U[V2]`. (2.4)
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Then, from the energy balance given in (2.1),

T = m`

2

{(
∂h
∂t

)2

−U2

(
∂h
∂x

)2
}
`

. (2.5)

We see that the mean thrust and power depend only on the conditions at the trailing
edge where x= `. In addition, the lateral velocity of the tail, V , plays a crucial role
in determining the performance.

Following Lighthill (1960) and Wu (1971b), we consider the special case of a
distally propagating wave g(x)γ (x − cwt), where cw is the wave velocity and the
wave amplitude g depends on x (|γ | = 1). It will be assumed that such a motion can
be made to satisfy the restrictions on the lateral and angular momenta embodied
in the evaluation of the specific lift (the so-called ‘recoil’ constraint). Lighthill
(1960) argues, on the basis of efficiency, that it is best to have gx(`) = 0, and if
this condition is satisfied then

T = 1
2 m`(1− k−2

λ )g
2(`)(dγ /dt)2`, (2.6)

where kλ = cw/U = fλ/U. The thrust is therefore proportional to the mean square
lateral velocity of the trailing edge, and for a given kλ it is independent of U. Also,
the travelling wave needs to move down the body at a speed greater than the swim
velocity to achieve positive thrust; that is, T is only positive for cw > U, the same
conclusion reached by Taylor (1952) using resistive theory.

To find the steady swimming speed, we balance the thrust against the body drag.
If it is assumed that the drag depends only on the body wetted area Ab so that Db=
ρU2AbCD/2, where CD is the drag coefficient, then

U2 = m`

ρAbCD
(1− k−2

λ )g
2(`)(dγ /dt)2`. (2.7)

For a given body at a fixed value of kλ, the swim speed is therefore proportional to
the root-mean-square (r.m.s.) lateral velocity of the trailing edge. Furthermore, since
the thrust only depends on the conditions at the trailing edge, it would be ‘wasteful’
(Lighthill’s word) to keep g(x) constant along the length of the body, and it is more
desirable to let it increase from zero at the snout to its maximum at the tail.

Such observations follow from the model, which is entirely based on added mass
considerations. Neglecting the circulatory force seems reasonable for long slender
bodies because these forces tend to be important mostly near the leading edge. In
this respect, the assumption that the lateral motion of the leading edge motion was
zero is an important ingredient of the model; relaxing this assumption might also
introduce a significant contribution from lift.

Finally, Lighthill considered how the angular and transverse momenta affected
the thrust and efficiency, and concluded that minimizing the angular ‘recoil’ due
to the body motion would be particularly desirable. This could be achieved by
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Undulatory and oscillatory swimming

confining the motions to the rear part of the fish where the fish mass is low, and
by letting the waveform have both a positive and negative phase in the region of
substantial motion amplitude. This accurately describes anguilliform motion. For
example, Tytell & Lauder (2004) investigated the kinematics of a steadily swimming
American eel and found that the motion of the body midline was described well by
an exponentially growing travelling wave,

y(s)= ae[α(s/`−1)] sin[2π(s− cwt)/λ], (2.8)

where y is the lateral position of the midline, s is the coordinate following the
midline, λ is the wavelength, a is the tail beat amplitude and α is the amplitude
growth rate. Equation (2.8) also describes lamprey motion (Hultmark et al. 2007),
and it appears to satisfy Lighthill’s conditions for high thrust production and minimal
recoil but not the condition for high efficiency, in that ys 6= 0 at the tail.

The important role played by the lateral tail velocity in undulatory swimming was
also confirmed by studying the thrust production of lampreys. Hultmark et al. (2007)
used a robotic lamprey that was actuated to copy the lamprey motion described by
(2.8). The near-wake structure for the lamprey robot and the American eel were
shown in figure 4(a,b) and figure 6 gives the instantaneous vorticity fields generated
by the robot at three phases in its motion. A band of positive vorticity is evident
in the region near the body, confined to a relatively thin boundary layer rather than
being shed and convected downstream. The undulatory motion of the robot generates
alternating favourable and unfavourable pressure gradients along the body, seen in
the streamwise varying strength of the near-surface vorticity, but there is no evidence
of separation. The flow in the vicinity of the body, therefore, is unlikely to contribute
little to either drag or thrust. As the tail moves to the right (figure 6b), the maximum
strength of the near-surface vorticity increases, and as the tail changes direction the
pressure gradients change sign and the region of vorticity becomes weaker, as seen
in figure 6(c), indicating that a significant amount of vorticity has been shed into the
wake. As might be expected, the tail motions and the vortices shed into the wake are
closely correlated to the fluctuations in pressure on the body near the tail (Leftwich
& Smits 2011).

To determine the contributions to the thrust, the momentum flux was integrated
over the boundaries of a two-dimensional control volume containing the wake and
parts of the tail. By varying the size of the box to include progressively more of the
body, it was found that the region very close to the tail (x/`> 0.99) was responsible
for the majority of the thrust production. For the region 0.99 > x/`> 0.9 the thrust
was essentially balanced by the drag, and at locations upstream of x/`= 0.9 the drag
was found to be greater than the thrust. The dominant role of the tail in producing
thrust is in complete accordance with slender body theory. In addition, Leftwich &
Smits (2011) found that the net mean thrust produced by their lamprey robot at
St = 0.53 was only approximately 20 % less than that given by (2.5). That would
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FIGURE 6. Phase-averaged out-of-plane vorticity fields along the body and in the wake for
a steadily swimming robot. The flow is from top to bottom, and the body of the robot is
indicated by the black shape. Reproduction with permission from Hultmark et al. (2007).

imply a drag coefficient for the robot of about 0.08, which seems like a reasonable
value.

2.2. Flexible panels in undulatory motion

Slender body theory gives estimates for the forces acting on the body and the
surrounding fluid under a prescribed motion. It does not generally consider the
mechanical response of the body itself, although Wu (1971b) considered the
internal forces generated by an elastic membrane in prescribed motion in terms
of the attendant recoil. In fish, the amplitude and wavelength of their undulation
can generally be controlled by muscle action. In laboratory studies of undulatory
motion, this sort of active control is rarely imitated (for an exception, see Clark &
Smits 2006). Instead, experiments typically rely on a predetermined motion input
(such as heave or pitch) and allow the flexibility of the foil, membrane or body to
determine its response. Computations generally go further, and prescribe the full
motion, typically determined directly from animal studies, without accounting for
any fluid–structure interaction.
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Undulatory and oscillatory swimming

To understand the effects of flexibility and the mechanical response of the body
more generally, Quinn, Lauder & Smits (2014) examined the behaviour of flexible,
rectangular panels, actuated in heave at their leading edge with an amplitude a′. For
small deflections h of a flexible panel with constant thickness δ and span s, the panel
response can be modelled by the Euler–Bernoulli beam equation,

ρpsδ
∂2h
∂t2
+ EI

∂4h
∂x4
= Fext, (2.9)

where ρp is the density of the panel, E is the elastic modulus, I is the area moment
of inertia and Fext is the external force per unit length (Allen & Smits 2001). Since
ρp/ρ = O(1) and δ/c � 1, the added mass forces are expected to dominate over
the inertia of the panel, and so the mass per length of the panel, ρpsδ, is replaced
with an effective (added) mass per length, ρsc, which is assumed constant along
the chord. For long, narrow panels (A� 1), the added mass per unit length will
vary as ρs2, and for short, wide panels (A� 1) it varies as ρcs. For panels with
A of O(1), the appropriate added mass term is less clear. Quinn et al. used panels
with A = 0.77, so their choice of ρsc is somewhat arbitrary but since the aspect
ratio was fixed it does not affect any of their conclusions (see also Allen & Smits
2001; Thiria & Godoy-Diana 2010; Dewey et al. 2013; Ramananarivo, Godoy-Diana
& Thiria 2013). This issue is addressed in more detail in § 3.6.

Introducing the dimensionless variables x∗≡ x/c, h∗≡ h/a, and t∗≡ tf , where a is
(as usual) the amplitude of the trailing edge motion, gives

Π 2
1
∂2h∗

∂t∗2
+ ∂

4h∗

∂x∗4
= F′ext, (2.10)

where F′ext ≡ Fext c4/(EIa) is the dimensionless external force per unit length, except
for added mass, which is now incorporated into the left-hand side as the effective
mass per length. These external forces could include, for example, circulatory forces
and internal damping or viscous drag. Here,

Π1 = f
√
ρsc5/(EI) (= f /f̂1 = f ∗), (2.11)

and it is the ratio of added mass forces to internal bending forces, called the
effective flexibility. We also recognize it as a non-dimensional frequency f ∗, that is,
the ratio of the driving frequency to the first resonant frequency of the panel when
added mass forces are considered.

The effect of resonances for pitching foils was examined with a more exact,
though two-dimensional fluid dynamical model by Alben (2008), who found that
the resonances were distributed as integers to the −5/2 power, and the input power
and thrust power were proportional to the parameter R2 = Π ′1 at the resonances.
The Froude efficiency tended to 1 at small thrust power (when many wavelengths
are present on the body), then dropped to a fixed fraction at large thrust power.
No peaks were seen in the efficiency, as was also found by Floryan & Rowley
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Panel D C P1 P2 P3 P4 P5 B P6 A P∞

EI × 103 N m−2 0.069 0.81 0.54 1.3 2.5 3.6 7.2 11 14 320 18 000
δ/c× 103 0.6 1.6 1.1 1.6 2.1 3.2 4.2 3.9 5.3 3.4 26.5
Π ′1 — — 0.3 0.7 1.4 2.0 4.0 — 7.8 — O(104)

TABLE 1. Panel physical properties. Panels A to D from Quinn et al. (2014); Panels P1
to P∞ from Dewey et al. (2013). Here, Π ′1 = k2/Π1 (see (3.19)). The effective stiffness
for fish is likely in the range 1.4<Π ′1 < 4 (panels P3 to P5).

(2018). Alben et al. (2012) later studied (theoretically and experimentally) a freely
swimming flexible foil in heave, and observed that the scaling of swimming speed
with bending modulus and foil length was given as power laws at resonant peaks
(separate power laws in terms of dimensional and dimensionless parameters).

Quinn et al. (2014) conducted experiments on four panels with bending stiffnesses
ranging from EI= 320× 10−3 (Panel A, rigid) to 0.069× 10−3 N m−2 (Panel D, the
most flexible), as listed in table 1. The modal contributions to the panel undulatory
motion were expressed in terms of the eigenfunctions for the homogenous form of
(2.10), that is, where F′ext = 0. The natural frequencies of these modes, f̂i, are such
that f /f̂i = Π1λ

2
i , where λi is the corresponding wavelength. Flexibility essentially

adds resonances to the system. The two most rigid panels displayed only the
first mode, while the most flexible panel exhibited the first four modes. As the
heaving frequency of the more flexible panels increased, the modal contributions
passed through a series of peaks as successively higher modes were activated, and
with increasing flow speed these peaks shifted to higher frequencies. Resonance
occurred at certain driving frequencies where the trailing edge amplitude was
locally maximized, and Quinn et al. (2014) found that the frequency at which this
resonance occurs was a strong function of f ∗, but relatively independent of flow
speed (for a factor of 5 variation).

From slender body theory, we know that the conditions at the trailing edge are
paramount. For flexible panels, the trailing edge amplitude a is an output of the
system since it depends on the panel response to the input a′. The amplitudes of the
resonant peaks in a/a′ decrease with increasing flexibility as the deflections are more
easily suppressed by fluid forces when the panel is more flexible. They also decrease
with increasing flow speed as the form drag at higher flow speeds suppresses panel
deflections and thereby reduces the amplitude of the wave along the panel. It appears
that the first-order effect of form and viscous drag is to stretch the shape of the panel
in the streamwise direction but leave the resonant frequencies relatively unaffected.

The time-averaged thrust behaviour is shown in figure 7. In general, T increases
with heaving frequency, but it does so at different rates, and in some ranges even
decreases with frequency. The resulting plateaus are directly related to resonance
at the trailing edge. Since the more flexible panels pass through multiple resonant
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FIGURE 7. Time-averaged thrust. (a,b,c,d) C, u∞ = 40 mm s−1; B, u∞ = 110 mm s−1;
A, u∞ = 170 mm s−1; D, u∞ = 240 mm s−1. Adapted with permission from
Quinn et al. (2014).

frequencies, they exhibit multiple plateaus (for (b) the first resonance is close to
1 Hz, and the second resonance occurs beyond 3 Hz).

Higher flow speeds reduce T in two main ways. One way is by shifting the curves
downward due to viscous drag producing an offset between them (see also § 3.1). At
higher frequencies, the curves differ by more than just an offset, especially for the
more flexible panels. This trend suggests that variations beyond the simple offset
are due to the different kinematics brought on by higher flow speeds. A similar
behaviour was seen by Floryan & Rowley (2018) who analysed the response of
two-dimensional, flexible panels in heave and pitch. When the flow speed increases,
circulatory forces start to become important, the natural frequencies of the system
begin to shift away from their quiescent behaviour, and the eigenvalues become more
damped.
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FIGURE 8. Predictions of the Lighthill model for a sinusoidal propulsor. Thin line:
a/c = 0.1; thick line: a/c = 0.1(1 + 0.15 sin2k). Adapted with permission from
Quinn et al. (2014).

Quinn et al. (2014) used slender body theory to help understand the formation of
the plateaus in thrust. From (2.5) we can write

CT ≡ T
1
2ρU2sc

= m`

ρsc

(a
c

)2
[

k2

(
∂h∗

∂t∗

)2

−
(
∂h∗

∂x∗

)2
]

x∗=1

. (2.12)

Consider a panel experiencing a sinusoidal travelling wave with a wavelength equal
to the chord, that is, h∗ = sin(2π(x∗ + t∗)). Figure 8 plots the predicted variation of
the thrust coefficient for the case where a/c is constant, and for the case where a/c
varies sinusoidally with the reduced frequency k. The local maxima in the trailing
edge amplitude increase the net thrust coefficient such that plateaus appear in the
k–CT curve. In addition, if the heaving panel were perfectly rigid (EI →∞), h∗

would have no spatial variation. For finite rigidities, however, h∗ varies with x∗, and
(2.12) predicts that this spatial variation will reduce CT , which is consistent with the
data shown in figure 7.

The efficiency can be quantified for thrust-producing conditions (T > 0) where the
propulsor is accelerating or overcoming the drag on a body to which it is attached.
Following Dewey et al. (2013), the results for the flexible propulsors with T > 0
are shown in figure 9 as η̂ = ηSt (this scaling will be addressed further in § 3.6).
Peaks in η̂ occur at or just above the f ∗ values where the trailing edge amplitude
was maximal. The efficiency is maximized at low speeds and high flexibilities. At
high flow speeds, flow visualizations indicated the presence of flow separation on
the membrane itself, undoubtedly resulting in significantly higher drag and lower
efficiency.

Since the value of the Strouhal number in the vicinity of the peaks varies from
approximately 0.5 to 1, it is evident from figure 9 that the corresponding values
of the efficiency η for a flexible heaving panel are quite low. In a later study
focusing on panel D (see table 1), Quinn, Lauder & Smits (2015) found that adding
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FIGURE 9. Efficiency peaks of heaving flexible panels at multiple resonance modes.
Panels A, B, C and D have stiffnesses EI= 3.2× 10−1, 1.1× 10−2, 8.1× 10−4, 6.9× 10−5,
and are coloured red, orange, green and blue respectively. Adapted with permission from
Quinn et al. (2014).
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FIGURE 10. Contour plot of propulsive efficiency, heave only motions, a′/c= 0.07.
Adapted with permission from Quinn et al. (2015).

a pitching motion enhanced the efficiency considerably. Although the net thrust and
power scaled as expected with the frequency and amplitude of the leading edge,
the efficiency showed a complex multimodal response. For heave only motions,
two optimal conditions were found, one with η = 0.23 at St = 0.53, and one with
η = 0.21 at St = 0.40, as illustrated in figure 10. For pitch and heave motions
combined, two optimal conditions were also found, one for St= 0.26, η= 0.38, and
the other for St = 0.33, η = 0.37, so the addition of pitch increased the efficiency
by a factor of approximately 1.7. The conditions correspond almost exactly to a
doubling of the parameter Π1= f ∗, that is, the non-dimensional frequency describing
the resonant modes.

In this respect, Floryan & Rowley (2018) showed that linear inviscid theory
predicts that local resonant maxima in thrust and power appear, but it does not
predict any local resonant maxima in efficiency, whereas such efficiency peaks are
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FIGURE 11. Phase-averaged spanwise vorticity (red is positive, blue is negative). (a) First
optimum, St=0.26, f ∗=24.8, a′/c=0.07, α=30◦, φ=76◦, η=0.38. (b) Second optimum,
St= 0.33, f ∗= 50.8, a′/c= 0.07, α= 30◦, φ= 96◦, η= 0.37. Adapted with permission from
Quinn et al. (2015).

clearly observed in experiments. Therefore, the resonant peaks in efficiency are
due to either finite Reynolds number effects, nonlinear effects, or both. Floryan
& Rowley (2018) found that the presence of drag will always create resonant
peaks in efficiency, while Ramananarivo, Godoy-Diana & Thiria (2011) showed that
nonlinearities can create non-resonant peaks in efficiency for flexible flapping wings.

Figure 11 shows the phase-averaged vorticity plots corresponding to the two
optima for heave and pitch combined. Although the efficiencies are almost the
same, they occur at two different mode shapes, and generate very different wakes;
whereas the first optimum resembles a 2S (reverse von Kármán street) structure,
the second optimum is more a 2P structure. For simple flexible panels, therefore,
efficient swimming can be achieved for (at least) two different wake structures.

In general, Quinn et al. (2015) concluded that efficiency is globally optimized
when (i) the Strouhal number is high enough that the flow does not separate over the
peaks and troughs in the panel waveform, but low enough that the vortex cores in
the wake remain tightly packed and coherent; (ii) the panel is actuated at a resonant
frequency of the fluid–panel system; (iii) heave amplitude is tuned such that trailing
edge amplitude is maximized while the flow along the body remains attached; and
(iv) the maximum pitch angle and phase lag are chosen so that the effective angle
of attack is minimized.

We now turn to oscillatory swimming.

3. Oscillatory Swimming

For fast, efficient swimming in sustained cruise, the prototypical animal is the
tuna (Webb 1984). The tuna has a streamlined (fusiform) shape that is deepest about
halfway between the head and the tail (see figure 12), and its particular swimming
motion is called thunniform, as described earlier. As pointed out by Lighthill (1969),
the body morphology also helps to minimize recoil. For anguilliform swimmers,
the unsteady side forces and yawing moments tend to cancel because they have at
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FIGURE 12. Clockwise from top left: Kawakawa (Euthynnus affinis, or mackerel tuna,
License: by Attribution-Noncommercial Australian National Fish Collection, CSIRO);
Dace (Leuciscus leuciscus, reproduced by attribution from http://www.fishinginireland.info/
index.htm); Bream (Abramis brama, reproduced with permission from www.sommen.nu);
Goldfish (Carassius auratus, reproduced by attribution from https://archive.usgs.gov/
archive/sites/fl.biology.usgs.gov/Carp_ID/html/carassius_auratus.html).

least one wavelength present along their body length. Carangiform and thunniform
swimmers do not, but the recoil motions are minimized by having a deep anterior
body and a narrowing posterior.

Because the posterior part tapers down to a narrow peduncle, and the caudal fin
planform area is relatively large by comparison, it is expected that most of the thrust
production is due to the caudal fin motion, and that the contribution by the body
motion is secondary. Bainbridge (1963) analysed the swimming performance of dace,
bream and goldfish, and estimated that the contribution of the caudal fin to the
total thrust varied from a value of 45 % for the bream, to 65 % for the goldfish, to
84 % for the dace. He also quotes Gray (1933), who estimated 40 % for the whiting
(Gadus merlangu). We will show that these estimates are probably low (see § 3.10),
and so a useful approximation for the purposes of modelling is to assume that all
of the thrust is provided by the motion of the caudal fin (or fluke, as the case may
be), and, by extension, that the body is the principal (but not the only) source of
drag.

We therefore focus on the hydrodynamic performance of the caudal fin. In essence,
it describes a combination of heaving and pitching, naively described by sinusoidal
motions at a common frequency, so that

h= h0 sin(2πft), θ = θ0 sin(2πft+ φ), (3.1a,b)

where h0 is the heave amplitude, θ0 is the pitch amplitude and φ is the phase
difference between pitch and heave. For reference, figure 16 illustrates the motion
of a swimming foil for phase differences φ = 0◦, 90◦, 180◦ and 270◦.
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We now describe some simple models for thrust and efficiency of heaving and
pitching foils, based on experiments and analytical considerations. We mainly
consider rectangular foils as an abstraction of a caudal fin, but some aspects of the
fin planform shape including the aspect ratio and the shape of the trailing edge will
also be discussed. The coefficients of thrust and power are given by

CT = Fx
1
2ρU2A

, CP = Fyḣ+Mθ̇
1
2ρU3A

, (3.2a,b)

where Fx is time-averaged thrust in the streamwise direction produced by the foil
motion, Fy is the force perpendicular to the free-stream direction and M is the
moment taken about the leading edge of the foil.

3.1. Pitching foils

We begin with a simple example that captures some of the salient characteristics of
oscillatory propulsion. Consider a two-dimensional NACA0012 airfoil pitching about
its quarter chord in a uniform stream of speed U so that its pitch angle θ varies
as θ0 sin(2πft). There is no heaving motion. The results for the thrust, power and
efficiency shown in figure 13 were computed using the direct numerical simulations
(DNS) method described by Sentürk & Smits (2018) and Sentürk et al. (2019). The
Reynolds number was varied from 500 to 32 000. To put that range into perspective,
consider a fish with a caudal fin that has a chord length 10 % of its overall length.
A chord Reynolds number of 500 would then correspond to a fish of length 70 mm,
swimming at about one body length per second, which is a typical speed for the
kind of fish we are interested in. Similarly, a chord Reynolds number of 32 000
would correspond to a fish of length 560 mm, also swimming at one body length per
second. The corresponding fluke Reynolds numbers for dolphins can reach 106, with
a body length Reynolds number of 107, and the corresponding numbers for whales
could be 10 times higher.

We first note that the mean thrust and power coefficients increase nonlinearly
with Strouhal number. The thrust varies approximately as St2, and power varies
approximately as St3 (the actual scaling is considered in § 3.3). Second, we see
that the thrust coefficient and the efficiency display a strong Reynolds number
dependence. Third, the thrust coefficient has a negative offset at small values of the
Strouhal number, which corresponds to the drag offset at very low Strouhal number
(quasi-steady flow), averaged over a pitching cycle. This offset is similar to that seen
by Quinn et al. (2014) for a flexible pitching panel in heave (see figure 7). Fourth,
the efficiency tends to negative values at low Strouhal number (corresponding to a
negative thrust coefficient), rising quickly as the Strouhal number increases, before
falling more slowly at higher Strouhal numbers. The curves display a maximum
value of efficiency ηm at a particular Strouhal number St∗, where both ηm and St∗

depend strongly on Reynolds number; increasing the Reynolds number tends to
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Undulatory and oscillatory swimming
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FIGURE 13. NACA0012 foil pitching about quarter chord from the leading edge (θ0= 8◦).
DNS by Sentürk & Smits (2019). All data averaged over one pitching cycle. Adapted with
permission from Sentürk & Smits (2019).

increase the efficiency at all Strouhal numbers, while also notably increasing the
maximum efficiency. Similar peaks in efficiency were seen for flexible panels in
undulatory motion (figure 10).

These DNS results are in broad agreement with the experiments of Buchholz &
Smits (2008) on rigid rectangular panels pitching about their leading edge. Buchholz
et al. found that decreasing the aspect ratio of the panel monotonically decreased the
thrust coefficient, while the efficiency was largely unaffected except for the smallest
aspect ratio (A = s/c = 0.54) where it decreased somewhat. As to the effects of
Reynolds number, their measurements were conducted over two Reynolds number
ranges with average values of approximately 10 000 and 21 000. Small differences
in the thrust and efficiency were observed, but conclusive trends were difficult to
discern, which is perhaps not surprising given the results shown in figure 13, where
CD is seen to vary slowly for Reynolds numbers larger than approximately 10 000,
and its effects on thrust and efficiency are also seen to diminish.

It is important to note that the drag coefficient for a given foil depends on its
profile shape as well as its Reynolds number. Maximizing thrust and efficiency at
a given Reynolds number therefore poses an optimization problem to find the foil
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U

(b)

(a)

(d)(c)

FIGURE 14. (a,b) Dye flow visualizations. Flow is from left to right. (c,d) Vortex
skeleton models of the wake for A = 0.54, A/s = 0.31 and Rec = 640. (a,c) St = 0.23;
(b,d) St= 0.43. Adapted with permission from Buchholz & Smits (2005, 2006).

shape with the lowest drag coefficient for a given motion profile (Van Buren et al.
2019b) (see also § 3.4).

In addition to considering the thrust and efficiency, Buchholz & Smits (2005,
2006) visualized the wake using different colour dyes, and suggested vortex skeleton
models for the wake structure (see figure 14). For these low Reynolds number
wakes (Rec= 640), three distinct and highly three-dimensional wake structures were
observed as the Strouhal number was varied. For approximately 0.20<St<0.25, two
horseshoe vortices were shed per pitching cycle, which interacted with neighbouring
structures to form a three-dimensional chain of vortex loops. When viewed along
the spanwise axis, the wake resembles a transversely growing von Kármán vortex
street. Two critical attributes are that the streamwise legs of the structures increase
in strength (circulation) toward the trailing edge, as well as changing in strength
with the phase of the motion. This influences the dynamics of the wake in that the
interaction between horseshoes is dominated by the most recently created structure.
It also implies the existence of spanwise vorticity bridging the legs which is a
salient feature of the wakes observed at higher Strouhal numbers and is consistent
with the dynamic stall vortex shed by other unsteady propulsors. For all wakes, there
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Undulatory and oscillatory swimming

is a strong compression of the wake in the spanwise direction, and an expansion in
the plane of the motion.

For approximately St > 0.25, the wake bifurcates into two oblique trains of
vortex structures. At St = 0.43, the individual structures are topologically similar
to the structures observed at St = 0.23 except that a portion of the spanwise shear
layer found at St = 0.23 is shed from the trailing edge as a discrete spanwise
vortex. The resulting fundamental structure is therefore a vortex ring that is partly
entrained into the tip of a horseshoe vortex. These vortex rings move away from
the centreline under their own induced velocity, and the wake is seen to bifurcate.
At St = 0.64 (not shown here), the wake contains an additional feature in which
streamwise vortices undergo a perturbation near the trailing edge of the panel which
leads to the generation of hairpin or horseshoe vortices that convect outward in the
spanwise direction. This transition from a kind of 2S structure to a 2P structure
with increasing Strouhal number is very similar to that seen in other cases, such as
pitching and heaving plates (Guglielmini 2004; Dong et al. 2005).

The wake structure was found to depend on the Reynolds number, although
a similar global wake behaviour was observed at moderate Reynolds numbers
of O(104). Of course, the effects of Strouhal number and Reynolds number are
intertwined, as made clear by the results shown in figure 13 for the NACA0012
airfoil. That is, at a given Strouhal number (for example, 0.3), the efficiency at low
Reynolds number is negative, meaning the drag is larger than the thrust, whereas at
higher Reynolds numbers the efficiency is positive because the thrust is larger than
the drag. In this regard, the orientation of the vortices in the plane of motion for
St= 0.23 in figure 14 suggests that for this panel at this Strouhal number and this
Reynolds number the wake is drag producing. Increasing the Reynolds number will
reduce the drag, lead to a net positive thrust, and a re-orientation of the vortices.

3.2. Heaving and pitching foils

The results shown in figure 13 also demonstrate that the peak efficiency for this
particular pitching foil does not exceed about 25 %, even at the largest Reynolds
number considered. Adding a heave motion, with an appropriate phase difference can
improve this result substantially. For example, figure 15 displays the time-averaged
thrust coefficient and efficiency of a pitching foil with incremental increases in heave
amplitude while keeping the pitch amplitude fixed at θ0 = 15◦. Similar increases in
thrust and efficiency for undulatory swimming were seen in the case of a flexible
plate, where adding pitch to heave increased the optimal efficiency by a factor of
about 1.7 (see figure 10). For the rigid foil shown in figure 15 the efficiency curves
also exhibit a clear maximum value, suggesting that an optimum efficiency exists
for any heave/pitch combination. For reduced frequencies below the optimum, the
efficiency decreases sharply as the effects of the viscous drag on the propulsor
become important.
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FIGURE 15. Pitching foil with incremental increases in heave amplitude for φ =
270◦ ( f ∗ = k). (a) Thrust coefficient; (b) efficiency. Reproduction with permission from
Van Buren, Floryan & Smits (2018a).

When combining sinusoidal heaving and pitching motions the phase offset is a
critical parameter. Figure 16 illustrates the motion of a swimming foil for phase
differences φ = 0◦, 90◦, 180◦ and 270◦. When heave and pitch are in phase (φ = 0),
the motion appears to an observer moving with the foil as if the foil is pitching
about some point upstream of the leading edge. For phase angles around φ = 90◦,
the trailing edge leads the leading edge, and when φ= 180◦ the foil appears to pitch
about a point behind the leading edge. For φ=270◦ the motion seems to be the most
‘fish-like’, cleanly slicing through the water with the lowest angles of attack (the
angle between the foil and its instantaneous direction of motion). This case is further
illustrated in figure 17. Compared to heave-only motions, greater heave velocities
can be achieved for the same angle of attack by adding the appropriate pitch. The
increased heave velocity increases the thrust component and rotates more of the lift
vector in the thrust direction, increasing the efficiency. As a useful measure of the
relative magnitudes of pitching and heaving, Lighthill (1969, 1970) introduced the
proportional-feathering parameter, Θ defined so that αm =ΘV/U, where αm is the
maximum angle of attack. Therefore Θ is a parameter that measures the reduction in
the instantaneous angle of attack from its maximum value, and decreasing Θ tends
to increase thrust while decreasing the efficiency.

The performance of submerged foils in combined heaving and pitching motion
has been studied relatively extensively (Lighthill 1970; Dickinson 1996; Sfakiotakis
et al. 1999; Triantafyllou et al. 2000; Von Ellenrieder, Parker & Soria 2003). In
a particularly influential work, Anderson et al. (1998) obtained efficiencies as
high as 87 % using a heaving and pitching two-dimensional NACA0012 airfoil in
sinusoidal motion. They connected the wake structure to the performance of the foil,
arguing that for maximum efficiency the leading edge vortex pair needs to interact
beneficially with the trailing edge vorticity. The flow visualization was performed
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Undulatory and oscillatory swimming

(a)

(b)

(c)

(d)

FIGURE 16. Motion of a foil swimming from left to right via heave and pitch motions
with a phase offset (a) φ = 0◦, (b) 90◦, (c) 180◦ and (d) 270◦. In this example, h0/c=
0.375, θ0 = 15◦ and f ∗ = 0.16. Reproduction with permission from Van Buren et al.
(2018a).
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La Lb
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œ

FIGURE 17. Heaving foil at the same instantaneous angle of attack (a) without and
(b) with added pitch motion (φ= 270◦). Streamwise, heave and effective velocities shown
in red, resulting lift-based forces shown in blue. Reproduction with permission from
Van Buren et al. (2018a).

at Re = 1000, whereas their force measurements were at Re = 40 000. Subsequent
research suggests that it is necessary to avoid leading edge vortices altogether in
order to maximize efficiency (Tuncer & Kaya 2005; Young et al. 2006; Young
& Lai 2007). In related work, Read, Hover & Triantafyllou (2003) recognized the
importance of the peak angle of attack when considering performance, although they
reported lower values of efficiency (55 %–70 %) than the 87 % reported by Anderson
et al. (1998) in the same laboratory under similar experimental conditions. We take
that to indicate the crucial role played by drag in determining the efficiency, as
we will see. Experiments on large amplitude motions by Scherer (1968) showed
similar peak efficiency values to those found by Read et al. (2003), over a wide
range of parameters. We now present some simple models for the thrust production,
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power expenditure, and efficiency of heaving and pitching foils, to help explain
these trends.

3.3. Analysis of heaving or pitching foils

The analysis of heaving and pitching plates and foils has a distinguished history,
dating back to Theodorsen (1935), who first derived the linearized expressions for
the forces generated by an oscillating foil in the context of aerodynamic flutter. His
analysis included the contributions due to circulatory and added mass forces, and
Garrick (1936) used his results to develop expressions for thrust and power for a
two-dimensional, rigid propulsor. We now follow Floryan et al. (2017a), Floryan,
Van Buren & Smits (2018) and Van Buren et al. (2018a) to consider a foil moving
in heave and pitch as a simplified model of an isolated propulsor. The unsteady lift
model of Theodorsen (1935) will be combined with the added mass force model by
Sedov (1965) to construct scaling relations for the thrust and efficiency. The added
mass model given by Sedov (1965) is preferred to that given by Theodorsen (1935)
because Sedov’s model includes both the normal and tangential contributions. In
this section, we examine either heaving or pitching foils in sinusoidal motion, as
described by (3.1). Combined motions are studied in the following section.

The only circulatory (lift-based) forces considered are those that arise when the
foil is at an instantaneous angle of attack to the free stream given by α. The
effective flow velocity seen by the foil has a magnitude Ueff =

√
U2 + ḣ2, and an

angle relative to the free-stream velocity of arctan (ḣ/U), so that α= θ − arctan (ḣ/U)
(notation as given in figure 18). Hence, for a foil of chord c and span s,

Fx =−L sin (θ − α)=−Lḣ/Ueff , (3.3)

Fy = L cos (θ − α)= LU∞/Ueff . (3.4)

Here, Fx is the thrust, Fy is the lateral force, L is the lift on the foil given by
L= (1/2)ρU2

eff scCL and the lift coefficient CL= 2π sinα+ (3/2)πα̇c/U (Theodorsen
1935). The moment about the leading edge is M = −cL/4. The wake correction
term due to downwash (Theodorsen’s lift deficiency factor) is neglected as it is
approximately constant under the conditions considered here.

Floryan et al. (2017a) combined circulatory and added mass-based contributions
to the thrust and power for pitching or heaving foils. They showed that. the mean
thrust generated by heaving motions is entirely lift-based (see figure 18), whereas
mean thrust generated by pitching motions is from added mass alone. However, for
both heave and pitch motions, the mean input power (and thus efficiency) depends
on lift-based and added mass forces. In contrast, slender body theory, and the
analysis of undulatory motions in general, assumes that the only forces acting are
those due to added mass.

We can anticipate some later results by first doing a simple scaling analysis (see
also Dewey et al. 2013, Quinn et al. 2015). We expect that the thrust generated by
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-or-
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average forward

motion

Amplitude of
heaving oscillation

Instantaneous path
of quarter-chord

(a) (b)

FIGURE 18. (a) Notation. (b) Lift-based thrust generation for a foil in pure heave.
Adapted from the original shown in Katz & Plotkin (2001).

a purely pitching motion will scale as the component in the streamwise direction
of the added mass (∼ρc2s for two-dimensional panels, that is, A� 1) times the
acceleration (∼cθ̈ ). Hence,

Fx ∼ ρsc3θ̈ θ , (3.5)

so that the mean thrust scales as

Fx ∼ ρsc3f 2θ 2
0 ≈ ρscV2, (3.6)

where V is the amplitude of the trailing edge velocity.
For a purely heaving motion, the thrust is expected to scale as the component in

the streamwise direction of the instantaneous lift force. That is, from (3.4),

Fx ∼ L(ḣ/Ueff ). (3.7)

If we assume that the contribution to the lift is quasi-steady, and that for small
angles of attack α ≈ ḣ/Ueff , then

Fx ∼ 1
2ρU2

eff sc (2πα)(ḣ/Ueff )∼πρsc ḣ2, (3.8)

so that the mean thrust scales as

Fx ∼ ρscf 2h2
0 ≈ ρscV2. (3.9)

We see that for both pitch and heave, to this level of approximation, the
time-averaged thrust depends on the velocity of the trailing edge, and it is
independent of the flow velocity. The experimental results given by Van Buren
et al. (2018b) demonstrated that this scaling with V for heaving and pitching foils
holds well for a twofold change in mean velocity, and oscillations in the flow
velocity of up to 38 %. That is, the most important velocity scale for describing
the thrust performance is not the flow velocity but the characteristic velocity of the
trailing edge. This is completely in accord with the conclusions drawn from slender
body theory (§ 2.1), although here we considered both circulatory and added mass
forces. It is also not unexpected. The early work by Garrick (1936) on flapping
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and oscillating airfoils had already indicated that the mean thrust should depend
approximately on V2 (Garrick’s equation 29 simplified), and in the context of fish
swimming Bainbridge (1963) indicated that the thrust should depend on ‘the square
of its speed of transverse movement’, although his reasoning is unclear. More
recently, Gazzola, Argentina & Mahadevan (2014) offered a mechanistic basis for
the importance of the transverse tail velocity, and they showed that for added mass
forces the thrust should scale as V2. However, aerodynamic forces are important
when heaving motions are present, and so considerations of pitching and heaving
propulsors need to take into account both added mass and lift-based forces (Floryan
et al. 2017a).

Equations (3.6) and (3.9) also suggest that the thrust coefficient CT (as convention-
ally defined) scales with St2. However, this simple scaling argument neglects the
drag on the propulsor, and as we saw earlier (as in figure 13) the drag can have an
important effect on the total thrust. Thus the conclusions embodied in (3.6) and (3.9)
will only hold when the drag is small relative to the total thrust. As suggested by the
results shown in figure 13, this requires the Reynolds number and Strouhal number
to be sufficiently large.

A more complete treatment, as given by Floryan et al. (2017a), includes the
unsteady effects embodied by α̇, the interaction between lift-based and added
mass forces, and the drag on the propulsor. In addition, high-frequency and
large-amplitude motions will undoubtedly strengthen the nonlinearities in the
response; the work of Liu et al. (2014) suggests that this will alter the phase
differences between forces and motions. As such, terms that are expected to be 90◦

out of phase (for example, displacement and velocity, or velocity and acceleration)
may develop in-phase components. These phase shifts are included in the analysis
that follows, although they will be assumed to remain fixed for simplicity. In this
way, some degree of nonlinearity is retained in an otherwise linear model.

Following Floryan et al. (2017a), we obtain for purely heaving motions

CT = c1St2
h + c2St2

h k U∗ −CDh,

CP = c3St2
h + c4St2

h k+ c5St2
h k U∗,

η= c1 + c2kU∗

c3 + c4k+ c5kU∗
,

 (3.10)

where CDh is the drag coefficient on the propulsor for heaving motions. Here, U∗=
Ueff/U, and Sth = 2fh0/U. The constants ci need to be determined by experiment.
The thrust coefficient demonstrates a St2

h scaling, but the reduced frequency and the
effective velocity also make an appearance (however, for small motions U∗ ≈ 1).
The expression for the efficiency neglects the drag force, and this inviscid estimate
depends only on k and U∗. Furthermore, for large k, the inviscid efficiency tends to
a constant value.
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Similarly, for purely pitching motions, Floryan et al. (2017a) finds

CT = c6St2
θ + c7Stθθ0 −CDp,

CP = c8St2
θ + c9St2

θ k,

η= 1
k

c6k+ c7/2
c9k+ c8

,

 (3.11)

where CDp is the drag coefficient for pitching motions, and Stθ = 2fcθ0/U. Note that
the expression for efficiency only holds in the limit of negligible drag, and that this
inviscid estimate is independent of the Strouhal number, and depends only on the
reduced frequency, falling off as k−1 for large k.

These results on efficiency may be compared to those of two-dimensional small-
amplitude theory. Wu (1971c) considered the problem of a rigid plate in sinusoidal
pitching and heaving motions in inviscid flow. For pure pitch, the efficiency was
found to increase monotonically from a value of zero at k = 1.781/π (for smaller
values of the reduced frequency the thrust was negative) to a value of 0.5 at k=∞.
For pure heave, he found that the efficiency monotonically decreased from a value of
one at k= 0 to a value of about 0.5 at k=∞. These predictions are rather different
from those given by (3.11) and (3.10), so we now consider the comparisons with
experiment.

The results for a heaving foil are given in figures 19 and 20. The thrust data
collapse well onto a single curve, suggesting that the simplified physics used in
the model are sufficient to explain the behaviour of the thrust. In (3.10), the St2

h

term is rooted in circulatory forces due to the angle of attack, and the St2
h kU∗ term

corresponds to the rate of change of angle of attack. We see therefore that the
thrust for heaving motions is entirely due to lift-based forces, and that the effects of
unsteadiness on the mean thrust appear to be well captured by the rate of change
of angle of attack. The data also suggest that the drag coefficient CDh is small (of
O(0.1)) and approximately constant over the conditions explored in the experiment.

Likewise, the power data collapse well onto a single curve, although there is some
spread in the data for the stronger motions. The angle of attack, the rate of change of
angle of attack and added mass contribute to the power scaling. Power for heaving
motions is thus affected by both lift-based and added mass forces, and the essential
effects of unsteadiness on the mean power are well captured by the rate of change of
angle of attack and added mass. The fact that the mean power is a weakly nonlinear
function of the scaling parameters suggests the limits of our model; this is likely
caused by the modification of the added mass (Liu et al. 2014), although Moored
& Quinn (2018) propose an alternative explanation that considers the energy shed
into the wake.

The efficiency data are given in figure 20, presented both as a function of Strouhal
number and the reduced frequency. For heaving motions, the scaling arguments
indicate that the efficiency in the absence of drag should be approximately constant
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FIGURE 19. Heaving motions of a tear-drop shaped foil. Time-averaged (a) thrust and
(b) power coefficients as functions of the scaling parameters (3.10) for various h∗ = h0/c.
Adapted with permission from Floryan et al. (2017a).
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FIGURE 20. Heaving motions of a tear-drop shaped foil. Efficiency as a function of
(a) Strouhal number St, and (b) reduced frequency k. In (b) solid lines indicate the scaling
given by (3.10); short dashed line indicates the scaling with CDh= 0 and large k. Adapted
with permission from Floryan et al. (2017a).

(for these constants and this range of parameters). For higher values of the reduced
frequency we see that the efficiency data indeed approach a constant, marked by
the dashed line. The efficiency deviates from this trend for lower values of the
reduced frequency and for smaller heave amplitudes due to the viscous drag on
the foil. As motions become weaker, they produce less thrust. The drag, however,
remains essentially constant. Thus, as the motions become weaker, the drag will
constitute a larger portion of the net streamwise force, eventually overtaking any
thrust produced and leading to a negative efficiency. The solid lines in figure 20(b)
show the curve fits of our model after taking the drag into account, where CDh was
estimated from the thrust measurements at zero frequency.
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FIGURE 21. Scaling of the time-averaged (a) thrust and (b) power coefficients for all
motion amplitudes and phases for the tear-drop shaped foil tested by Van Buren et al.
(2018a). Adapted with permission from Van Buren et al. (2018a).

The results on pitch-only motions are similar to those for heave-only motions, in
that the scaling given here collapses the data onto a single curve for thrust and
power (see Floryan et al. (2017a) for details). The drag coefficient CDp was found
to be small (≈0.08) and the efficiency data for large values of the reduced frequency
followed the k−1 scaling predicted by the model.

3.4. Analysis of heave and pitch motions combined

To find the total thrust and power expended by the foil in a combined heaving and
pitching motion, Van Buren et al. (2018a) used the same scaling advanced in the
previous section. All the motions were assumed to be small, which also implies
that U∗ ≈ 1, and the out-of-phase terms were retained, as in Floryan et al. (2017a).
Van Buren et al. (2018a) gives

CT = c1 St2 + c2 Sthθ0 sin φ + c3 Stθθ0 −CD, (3.12)

CP = c5 St2 + c6 kSthStθ sin φ + c7 Sthθ0 sin φ

+ c8 kSt2
h + c9 kSt2

θ + c10 Stθ θ0. (3.13)

The total motion Strouhal number is defined by St = 2fa/U, and St2 = St2
h + St2

θ +
2SthStθ cos φ. In the special cases of pure pitch (h0 = 0) and pure heave (θ0 = 0),
these expressions for thrust and power reduce to those given in (3.11) and (3.10),
as required.

To verify these scaling relationships, Van Buren et al. (2018a) performed
experiments over a wide range of motion amplitudes and phase differences [0◦,360◦],
for the same tear-drop shaped foil used by Floryan et al. (2017a). The results shown
in figure 21 display the expected linear relationship between the data and the model
thrust, but again the power shows a slight nonlinear behaviour. To make the power
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scaling linear, we would need to add a higher-order term (one in St3), but that is
beyond the level of the current analysis. The coefficients were determined via linear
regression over the entire experimental dataset.

A number of useful approximations can now be made (Van Buren et al. 2018a;
Floryan et al. 2018). The heave-based term in the power, kSt2

h, which originates
from the out-of-phase ḧḣ term, made an important contribution to the power, and
the drag term CD was found to have a linear dependence on the pitch amplitude
θ0, that is, a linear dependence on the projected frontal area for slow motions
( f → 0). Furthermore, the pitch-based terms in the thrust and power (associated
with constants c3, c9 and c10) can be neglected without much penalty on the data
collapse. Such terms are all of order O(θ 2

0 ), so this is not surprising.
Neglecting these terms, and noting that for biologically relevant motions where

phase angles are confined to the range 0◦–270◦ the terms associated with c2 and c7

are small compared to the other terms, Van Buren et al. (2018a) found that

CT = c1St2 − c4θ0, (3.14)

CP = a1St2 + a2kSt2 + a3kSthStθ , (3.15)

where ai are new empirical constants. We see that the thrust and power are now
independent of phase. Furthermore, based on the values of the constants in (3.14)–
(3.15) as determined from the experiment, we can propose an approximate model
where

CT = c1St2 − c4θ0, (3.16)

CP = a2k(St2 − SthStθ). (3.17)

Plotting the thrust and power data against expressions (3.16)–(3.17) yields figure 22.
The collapse using these reduced models is similar to that seen using the full
expressions (compare with figure 21). Hence,

η∼ A∗(St2 − c4θ0)

St3(1−H∗Θ∗)
, (3.18)

where the constant c4 sets the relative importance of the drag term compared to the
thrust term (in general, we expect c4 to be a function of Reynolds number). Also,
A∗= a/c, H∗=H= h0/a and Θ∗= cθ0/a. Parenthetically, at a given Strouhal number,
the thrust in combined heave and pitch was consistently higher than the thrust in
pitch only by a factor of approximately 5 (this observation will become useful in
§ 3.10).

We see immediately that to achieve high efficiency, the dimensionless amplitude
A∗ should be large. This observation is consistent with the argument that large-
amplitude motions are more efficient than small-amplitude motions (Alexander
2003). However, there are two potential limiting factors. First, as A∗ becomes larger
the instantaneous angle of attack increases, so that leading edge vortex formation
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FIGURE 22. Thrust and power data plotted against expressions (3.16)–(3.17) for φ = 0◦
(blue) and φ=270◦ (orange). The coefficients are c1=4.65, c4=0.49, a2=62.51. Adapted
with permission from Floryan et al. (2018).

and dynamic stall effects may become important and the drag model given here
would be invalidated. Second, animal morphology naturally sets a limit as to how
large they can make A∗. For efficient cruising, therefore, A∗ should be as large as
an animal’s morphology allows, while avoiding dynamic stall at all times.

What about the optimal Strouhal number? Equation (3.18) gives negative
efficiencies at low St, a rapid increase with St to achieve a positive peak value
at St = √3c4θ0, and a subsequent slow decrease with further increases in St as
the influence of drag becomes weaker. The comparison between the form given by
(3.18) and the data for a heaving and pitching airfoil makes this clear, as displayed
in figure 23. The offset drag is critical in determining the low St behaviour and
in setting the particular St at which the peak efficiency occurs. In addition, the
maximum value of the efficiency is directly related to the value of the drag constant
c4, which further emphasizes the critical role of the drag term in determining the
efficiency behaviour.

We expect that the relative importance of the drag, captured by c4, will depend
on the Reynolds number. Our drag model is similar to that for a bluff body, such
as a sphere or cylinder, so we expect c4 will be large at small Reynolds numbers,
and decrease as the Reynolds number increases until it reaches approximately 1000,
above which the drag will be almost constant (at least for Re < 2 × 105, although
biological measurements imply that the drag may remain constant up to Re= 108)
(Gazzola et al. 2014). Our conclusion is consistent with biological measurements
(at least for swimmers), where the preferred Strouhal number appears to decrease
as the Reynolds number increases, until it reaches an asymptotic value (Gazzola
et al. 2014). The drag on the propulsor is the crucial factor in creating an efficiency
peak which dictates the cruising conditions of swimming animals. In other words,
energetic considerations set the kinematics of the propulsor to the most efficient one,
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˙
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FIGURE 23. Efficiency η as a function of St. Data are as given for a heaving and
pitching NACA0012 foil (Quinn et al. 2015). Solid lines are given by (3.18) with a fixed
proportionality constant of 0.155. The drag constant, c4, is set to 0.5, 0.35, 0.23, 0.15,
0.1 and 0.05 as the colours vary from dark to light. Reproduction with permission from
Floryan et al. (2018).

and the net thrust of the propulsor at peak efficiency balances the drag of the body
to set the cruising speed.

As noted earlier, the drag behaviour will depend on the profile shape of the
propulsor as well as the Reynolds number, and it is likely that there exists an
optimum profile for a given Reynolds number and set of operating conditions.
Van Buren et al. (2019b) used variety of techniques to address this optimization
problem, and figure 24 shows the path of optimization from the starting foil,
NACA0012, to the optimized foil, on a map of the efficiency and thrust coefficient
for two reduced frequencies, k= 0.4 and 1.0. The pitch and heave amplitudes were
chosen to match experiments, with c= 80 mm, h0= 30 mm and θ0= 15◦. Although
the optimization was aimed only at improving efficiency, the optimization improves
both the efficiency and thrust by approximately 30 % and 15 %, respectively, at k=1.
The optimized foil performance exceeds other common foil shapes as well, including
the EPPLER 836 and a dolphin fluke profile. Figure 25 shows the efficiency as it
varies with Reynolds number. At k= 1 the foil is in the regime of high thrust but far
from having peak efficiency, and the impact of Reynolds number is small. However,
at k= 0.4 the foil is near peak efficiency and the Reynolds number becomes much
more important, and the benefits of having an optimized foil increase with Reynolds
number. Hence, the foil kinematics and shape are tightly intertwined and must be
simultaneously taken into consideration to truly maximize performance.

There remains the question of setting an operating point where reasonable
efficiency and thrust can be achieved at the same time. To illustrate this challenge,
we use the data obtained by Van Buren et al. (2018a) and plot the efficiency versus

874 P1-36

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

28
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.284


Undulatory and oscillatory swimming

0.92

NACA0020

NACA0010

NACA0012

NACA0012

EPPLER 836

EPPLER 836
Average airfoil

of UIUC database
Average airfoil

of UIUC
database

Dolphin fluke Dolphin fluke

Optimization
result Optimization

result

0.96 1.00
CT/CT0 CT/CT0

1.04 1.08

1.12(a) (b)

1.08

1.04

1.00

0.96

˙/
˙ 0

0.90 0.95 1.00 1.05 1.10 1.15 1.20

1.4

1.3

1.2

1.1

1.0

0.9

FIGURE 24. Efficiency and thrust for optimized two-dimensional foil, as they develop
during optimization, relative to the NACA0012 reference foil. (a) k = 0.4; (b) k = 1.0.
Other common foil shapes are also shown. Reproduction with permission from Van Buren
et al. (2019b).
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FIGURE 25. Reynolds number dependence of efficiency for optimized two-dimensional
foil, compared to the NACA0012 reference foil. (a) k = 0.4; (b) k = 1.0. Reproduction
with permission from Van Buren et al. (2019b).

the thrust coefficient for the cases where 210◦6 φ6 330◦, as in figure 26. The data
appear to display a Pareto front, where the maximum instantaneous angle of attack
is less than about 30◦. This limit of the angle of attack suggests that leading edge
vortex formation and dynamic stall effects need to be avoided to achieve the best
performance (Tuncer & Kaya 2005; Young et al. 2006; Young & Lai 2007). The
presence of this front indicates that for rigid propulsors, even at optimum conditions,
high efficiency motions occur at low thrust, and increasing the thrust reduces the
efficiency.
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FIGURE 26. Combined heave and pitch motions of a rigid foil. Data points are coloured
by maximum angle of attack. The Pareto front is broadly defined by αm between 20◦ and
30◦. Data obtained by Van Buren et al. (2018a).

3.5. Flexibility in oscillatory motions

In § 2.2 we examined the performance of flexible panels in undulatory motion,
mainly by reference to the results obtained by Quinn et al. (2014, 2015). We now
consider flexible panels in oscillatory motion by considering the work by Dewey
et al. (2013) on flexible pitching panels. The flexibility was passive, in the sense that
the foils were actuated in pitch at the leading edge, and the resulting foil shape was
set by the interaction between the panel and the fluid flow. This passive flexibility
might be a reasonable model for the flukes of mammals, where muscles appear
to be absent. Seven panels with different flexibilities were considered, including
one rigid panel (P1–P∞ in table 1). The flexibility of the panel was defined by the
effective stiffness of the panel Π ′1, where

Π ′1 =
Eδ3

12(1− ν2
p)ρU2∞c3

. (3.19)

This definition of the effective stiffness differs from the bending stiffness coefficient
of an isotropic plate Eδ3/[12(1− ν2

p)] used by Shyy et al. (2010). See also Alben
(2008), where R2=Π ′1. In addition, Π ′1= k2

1/Π
2
1 , where Π1 is the effective flexibility

used by Quinn et al. (2014) (see § 2.2). It is difficult to assign a corresponding value
of the effective stiffness for fish, but it is likely in the range 1.4<Π ′1 < 4 (panels
P3–P5).

Figure 27 shows the thrust coefficients as a function of reduced frequency. For
the flexible panels, the thrust coefficient initially increases with k until a maximum
is reached after which it declines slightly with a further increase in k. The peaks
occur at a frequency that is approximately 50 % higher than the structural resonance
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FIGURE 27. Coefficients of thrust, power and efficiency as a function of reduced
frequency for nominally two-dimensional pitching panels. Panel properties given in table 1.
Adapted with permission from Dewey et al. (2013).

frequency f1 for each panel, as measured when the panel is immersed in water (for
Panels P1 and P2 the resonant frequency of the first beam bending mode is lower
than the frequencies examined here). Each of the flexible panels generates a higher
thrust coefficient than its rigid counterpart over a certain frequency range. For
example, at k= 10, the results in figure 27(a) indicate that panels P5 and P6 yield
thrust coefficients that are twice as large as the rigid panel (P∞). The coefficient of
power CP (figure 27b) demonstrates qualitatively similar trends.

Figure 27(c) indicates that the moderately flexible panels (P3 and P4) yield the
highest propulsive efficiencies, and that there is an optimal stiffness for maximum
efficiency. The global maximum efficiency for the rigid panel reaches only 16 % at
k = 6.3, but for the flexible panels it reaches about 38 % (panel P3) at the same
reduced frequency. In addition, the flexible panels exhibit high efficiency across a
wide range of frequencies whereas the rigid panels display sharper peaks. As the
frequency is increased, therefore, the performance benefit of the flexible panels over
the rigid panels becomes even more pronounced. This trend may be contrasted with
the efficiency curve of a typical propeller, which shows a relatively slow rise with
the advance ratio up to its peak value followed by a sharp decline.
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FIGURE 28. Effects of flexibility on time-averaged (a) thrust and (b) efficiency for
a pitching and heaving panels separated by phase φ = 270◦. Pitch amplitudes θ =
{6◦, 9◦, . . . , 15◦}; heave amplitudes h0/c = {0.083, 0.167, . . . , 0.33}; and frequencies
f = {0.2, 0.25, . . . , 1 Hz}. The rigid panel corresponds to Π ′1 ∼∞. See table 1. Adapted
with permission from Van Buren et al. (2019a).

Dewey et al. (2013) concluded that the global maximum in propulsive efficiency
across a range of panel flexibilities is achieved when two conditions are simultane-
ously satisfied: (i) the oscillation of the panel yields a Strouhal number in the range
0.25< St< 0.35; and (ii) the frequency of motion is tuned to the structural resonant
frequency of the panel.

These conclusions were made with respect to panels in pitch only. To demonstrate
the effects of flexibility on the performance of panels in combined pitch and
heave motions, consider the results shown in figure 28. These panels had effective
stiffnesses similar to those used by Dewey et al. (2013) – see table 1. For certain
flexibilities, there is a clear envelope where the thrust production is up to 1.5 times
higher than the thrust of a rigid panel. Here, the peak efficiency is less influenced
by flexibility than thrust, but the efficiency tends to remain higher over a larger
Strouhal number range, which also means higher thrust levels. Thus, those animals
that can control their fin stiffness using muscle action may be able to maintain high
efficiency at higher cruising speeds by actively changing the stiffness.

3.6. Effects of aspect ratio

So far, we have analysed rectangular foils or panels in oscillatory motion that
were effectively two-dimensional, as in Floryan et al. (2017a) and Van Buren
et al. (2018a), or the panels had a fixed aspect ratio, as in Quinn et al. (2014). The
effects of aspect ratio have not yet been considered, but it is obviously an important
consideration given the range of caudal fin and fluke shapes seen in nature. These
effects were explored systematically for rectangular panels by Buchholz & Smits
(2008), Green & Smits (2008), Dai et al. (2012), Dewey et al. (2013) and, more
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recently, Ayancik et al. (2018). Chopra (1974) extended Lighthill’s (1970) and Wu’s
(1971a) inviscid flow theory for a thin plate to the three-dimensional case of finite
aspect ratio, for combined pitch and heave motion. He concluded that reducing the
aspect ratio would lead to lower thrust and efficiency.

Buchholz & Smits (2008) studied rectangular rigid panels in pitch with A= 0.54,
0.83. 1.11 and 2.38. For the highest aspect ratio, the panel spanned the working
section, and so was taken to represent the two-dimensional case (A = ∞). At a
given Strouhal number, the thrust coefficient (defined on the basis of panel area
sc, as usual) decreased with increasing aspect ratio, but the effects on efficiency
were generally rather minor. Green & Smits (2008) analysed the same data, and
showed that the thrust results could be collapsed by the scaling C∗T =CT(1+ c′a/s)
where c′ is an empirical constant, and noted that this scaling is similar to the that
used to account for the effects of aspect ratio on the lift coefficient in finite wing
theory. This last observation is somewhat misleading in that the thrust produced by
a pitching panel is primarily due to added mass forces, not circulatory forces, but
as we shall see the added mass scaling with aspect ratio follows a somewhat similar
variation.

Dewey et al. (2013) considered rectangular flexible panels in pitch with A= 0.5,
1.0, 1.5 and 2.0, and found that flexible panels did not exhibit a monotonic trend
with aspect ratio (see figure 29a). For panel P4, for example, the coefficient of thrust
increases with aspect ratio at lower frequencies, while it decreases with aspect ratio
at higher frequencies. The results for CP demonstrate qualitatively similar trends
as those of CT (figure 29b). Whereas for the rigid panels the coefficient of power
monotonically increases with reduced frequency, for the flexible panels it initially
increases with reduced frequency until a maximum is reached at which point the
coefficient of power tends to level off. The peak in CP occurs at a frequency that
is approximately 50 % higher than the structural resonance frequency, which is the
same point where the thrust reaches its maximum. In addition, for each flexibility
examined, the efficiency increases with aspect ratio as observed by Buchholz &
Smits (2008) for rigid panels (figure 29c), although this effect is rather small
compared to the effects of flexibility, where there is a clear optimal stiffness to
achieve maximum efficiency.

For all the flexible panels considered by Dewey et al. (2013), only the first
mode was excited, so that f1 was the single resonant frequency of interest. In such
cases, the elastic forces in bending become important, so that the dynamics will
be governed by the balance between inertial, fluid forces and elastic forces acting
on the panel. The inertial force Fi is the mass of the panel times its characteristic
acceleration, so that Fi ∼ ρpscδ( f 2c), and for thin panels in water this is expected
to be small compared to the other forces. The fluid force Fv is taken to be due to
added mass, so that Fv ∼ ρs2c( f 2c). Here, Dewey et al. (2013), chose to use ρs2c
for the added mass, which is the form appropriate to panels with small aspect ratios,
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FIGURE 29. Coefficients of thrust, power and efficiency as a function of reduced
frequency for finite-aspect-ratio pitching panels. Panel properties given in table 1. Adapted
with permission from Dewey et al. (2013).

even though the aspect ratios in their experiments varied from 0.5 to effectively
infinite. The elastic forces depend on the flexural stiffness of the panel (EI ∼ Esδ3),
and so the characteristic elastic force is Fe = Esδ3/c2.

When flexibility is the dominant effect, we expect that the thrust will scale with
Fe, and the characteristic power expended in bending is then expressed by the
product of Fe and a characteristic velocity. Dewey et al. (2013) chose fc for this
velocity scale, whereas a more natural choice might be fa, since that represents
the characteristic velocity of the trailing edge. However, the pitch amplitude at
the leading edge was fixed (θ0 = 7.2◦), and if we ignore Panels P1 and P2, the
amplitude of the trailing edge motion compared to its value for the rigid panel
was only approximately 20 %–30 % larger for the infinite-aspect-ratio cases, and
25 %–40 % larger for the finite-aspect-ratio cases. Hence the difference between
choosing fc and fa is generally rather small for these experiments. If we accept this
scaling, the non-dimensional thrust production and power input for flexible panels
are then given by

C̃T = T
Fe
= Tc2

Eδ3s
and C̃P = P

fcFe
= Pc2

Eδ3s( fc)
. (3.20a,b)
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FIGURE 30. Flexible pitching panels with 0.5 6A 6∞. (a) Scaled thrust behaviour;
(b) scaled power behaviour; and (c) scaled efficiency behaviour. Symbols are the same
used in figure 27, but only the flexible panel data for panels P3 to P6 are presented here.
Reproduction with permission from Dewey et al. (2013).

This suggests a new efficiency parameter given by η̃ = T( fc)/P = kη. The thrust,
power and efficiency data in this new scaling are shown in figure 30, where
f ∗1 = f /f1. This scaling collapses the data remarkably well across all aspect ratios
examined. The effects of aspect ratio for these flexible panels therefore seem to be
well accounted for by the elastic response of the panel.

For the rigid panels examined by Dewey et al. (2013) we expect that the data
should scale with the characteristic fluid force Fv. That is, we can define new thrust
and power coefficients according to

T̃ = T
Fv
= T
ρs2c( f 2c)

and P̃= P
fcFv
= P
ρs2c( f 2c)( fc)

, (3.21a,b)

and, as before, η̃ = T( fc)/P = kη. The collapse of the data shown in figure 31 is
quite remarkable, particularly in that it is independent of aspect ratio.

To see why, remember that the characteristic fluid force Fv is due to added
mass. For small-aspect-ratio panels we would expect the added mass to vary
as ρs2c, that is, the circumscribing circle that is at the basis of added mass
models is defined by the span. This is also used in slender body theory where the
circumscribing circle is defined by the cross-sectional area of the body. However,
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FIGURE 31. Rigid pitching panels (P5) with 0.5 6A6∞. (a) Scaled thrust behaviour;
(b) scaled power behaviour; and (c) scaled efficiency behaviour. Symbols are the same
used in figure 27. Adapted with permission from Dewey et al. (2013).

for large-aspect-ratio panels we would expect the added mass term to look like
ρsc2, that is, the circumscribing circle is defined by the chord. The force Fv was
defined using ρs2c for the added mass term, but given the range of aspect ratios
covered in the experiments, the added mass term should depend on aspect ratio,
something like m ∼ ρsc2g(A), where the function g =A for A� 1 and g = 1
for A � 1. A suitable form would be g =A/(1 +An)1/n, where the exponent
n needs to be determined. The form with n = 1 was proposed by Brennen (1982),
but the comparison with the data given in figure 32 is not encouraging. Rather
unexpectedly, the data suggest that the variation with aspect ratio is not smooth
and that they seem better fitted by a discontinuous function g = 0.5A for A < 2,
and g= 1 for A> 2. That is, the preferred added mass representation seems to be
m= ρs2c for A< 2, and ρsc2 for A> 2. Therefore Dewey et al. (2013)’s choice
for the added mass term appears to embody precisely the correct scaling for the
effects of aspect ratio, for the range of values considered in their experiments.

We conclude that the data for the thrust production and power input to the fluid
for rigid and flexible panels in pitch collapse using scalings for the characteristic
fluid force and the characteristic elastic force, respectively. In particular, the effects
of aspect ratio for the flexible panels is contained within the characteristic elastic
force, and for the rigid panels it is contained in a judicious choice for the added
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FIGURE 32. Added mass variation with aspect ratio, g =A/(1 +An)1/n. Dotted line
is the discontinuous function proposed here. Chain-dotted line is from Brennen (1982),
apparently a smoothed curve fitted to the experimental data from Patton (1965), as
reproduced here.

mass term in the characteristic fluid force. For those panels that have stiffnesses
between what we have called ‘rigid’ or ‘flexible’ the scaling will undoubtedly
depend on both the elastic force and the fluid force.

So far we have only discussed the effects of aspect ratio on panels in pitch. For
panels in heave, the circulatory forces will be important, and so it seems likely
that that the circulatory forces should vary with aspect ratio as indicated by finite
wing theory, that is, they would reduce by the factor A/(A+ 2). Recent results by
Ayancik et al. (2018) support this expectation, although the results for finite wing
theory are probably not reliable for A < 1, and for more complicated planform
shapes.

3.7. Effects of planform

All the foils considered so far have been rectangular in planform. Caudal fins, of
course, exhibit a wide range of shapes, as shown in figure 33 (see also figure 12).
The shape of the caudal fin clearly affects the fish flow kinematics, swimming
efficiency, acceleration and manoeuvrability (Sambilay Jr 1990; Lauder 2000;
Sumich & Morrissey 2004). To understand the effects on performance, a number
of investigations have systematically altered the planform of fin-like propulsors. For
example, Webb (1973) employed caudal fin amputation as a tool to examine drag
and thrust relations for a swimming fish, using the Lighthill (1969) model to analyse
the thrust mechanics. Karpouzian, Spedding & Cheng (1990) analytically compared
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Rounded Lanceolate Eel-like Pointed

FIGURE 33. The variety of fish caudal fin types. Reproduction with permission from
Van Buren et al. (2017a).

the performance of fins with varying aspect ratio and sweep, and both parameters
were found to have a significant impact on thrust and efficiency. The effects of
planform shape as it applies to many fish-like propulsors were studied analytically
and numerically for inviscid flow by Chopra & Kambe (1977), who explored the
complex relationship between thrust and (inviscid) efficiency when the sweep, taper
and aspect ratio were varied. They found that ‘compared with a rectangular tail,
a curved leading edge as in lunate tails gives a reduced thrust contribution from
the leading edge suction for the same total thrust; however, a sweep angle of the
leading edge exceeding about 30◦ leads to a marked reduction of efficiency’. The
reduction in leading edge suction would help to reduce the incidence of dynamic
stall, as well as the possible formation of a strong leading edge vortex, so it seems
likely that a curved leading edge would help push the performance envelope to
higher angles of attack. The reduced efficiency at high sweep angles is associated
with the reduced thrust developed by such planforms.

In addition, Li, Luodin & Lu (2012) and Liu & Bose (1993) compared the
performance of three whale fins using a quasi-vortex-lattice numerical method. By
varying pitch and heave amplitude, it was found that the tail shape significantly
altered the conditions for maximum efficiency. Lauder et al. (2011) isolated
the effects of trailing edge shape for highly flexible panels of very low aspect
ratio (0.194 6 A 6 0.340) akin to eel-like swimmers, and found experimentally
that the trailing edge could be manipulated to improve the panel self-propelled
swimming speed.

Part of the complexity introduced by a change in planform is that it usually
changes more than one fin parameter at the same time. For example, changing
the sweep alters the angle of the leading and trailing edges simultaneously, and
changing the planform of the panel also affects its flexibility. Even for rigid panels
the planform can assume many different shapes, so that a multitude of geometric
parameters come into play. Three studies that have addressed these issues to some
extent are Green, Rowley & Smits (2011) and King, Kumar & Green (2018) who
studied the behaviour of low aspect ratio trapezoidal panels with square trailing
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FIGURE 34. Wake development for pitching trapezoidal foil. Isometric views of Q
isosurfaces at a value of 1 % Qmax at t/T = 0. Q isosurfaces are coloured by the
local value of ωz. (a–c) St = 0.17, 0.37 and 0.56. Adapted with permission from
King et al. (2018).

edges (an approximation to the truncate caudal fin shape), and Van Buren et al.
(2017a) who investigated foils with planforms that varied systematically from a
shape that approximated a forked tail to that of a lanceolate tail.

King et al. (2018) focused primarily on the wake structure that develops
downstream of the trapezoidal foil with increasing Strouhal number. Isometric
views of the phase-averaged three-dimensional isosurfaces of Q are shown in
figure 34, where the Q criterion proposed by Hunt, Wray & Moin (1988) helps to
identify the vortex structure. They observed that the spanwise vortices shed from
the trailing edge of the panel formed a reverse von Kármán vortex street in at least
some sections of the wake at all Strouhal numbers considered. Streamwise vortices
were created near the spanwise tips of the panel, connecting with spanwise vortices
to create vortex rings, and a connected chain of vortex rings was shown to exist at
each Strouhal number, prior to the onset of wake breakdown. The induced velocities
of the vortex rings were consistent with the transverse expansion and a spanwise
compression of the wake, and increasing the Strouhal number produced a greater
amount of transverse wake expansion, together with a greater amount of spanwise
wake compression. Such observations are consistent with those of Buchholz & Smits
(2006) for a pitching rectangular panel with aspect ratio A= 0.54 (see figure 14),
who demonstrated that the wake formation is dominated by the streamwise vorticity
generated at the panel edges, driving the wake towards the panel centre, very much
like the axis switching phenomena of non-axisymmetric jets (Dhanak & Bernardinis
1981).

The experiments by Van Buren et al. (2017a) were directed more to understanding
the effects of changing the trailing edge shape, which was varied from concave to
convex (see figure 35). The aspect ratio was held constant (A= 1) as was the foil
planform area, so that the propulsive performance among the different foils could
be compared directly. The wake visualizations displayed in figure 35 show that the
angle of the trailing edge bends the trailing edge vortices so that the natural vortex
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FIGURE 35. Isosurfaces of phase-averaged spanwise vorticity 〈ω∗z 〉, for St = 0.2. Red
is positive, blue is negative. Spanwise (i) and panel-normal (ii) views are shown
for three cases. (a–c) concave, square and convex. Adapted with permission from
Van Buren et al. (2017a).

bending and wake compression could be promoted (convex) or delayed (concave).
This change in vortex formation had a significant impact on the time-averaged
velocity field, with a single jet-like wake structure appearing for the concave panels,
and a four jet structure for the convex panels. In terms of performance, the thrust
and efficiency generally improved going from concave to convex trailing edges.
For instance, the most convex panel produced a thrust that was approximately
15 % higher than the square panel. For concave panels, the peak efficiency was
reduced by a maximum of approximately 3 % compared to the square trailing edge
case, while for convex panels the peak efficiency was improved by a maximum of
approximately 2 %. These were significant differences in that the average efficiency
of the square panel was only approximately 10 %.

We take these results to imply that the evolution of the various fish caudal fin
shapes may include other purposes than simply improving thrust and efficiency; most
fish have concave tails, but the data suggest that this may not generate the optimum
performance. It is possible that the diversity in caudal fin trailing edge shape fulfils
other evolutionary purposes, or it may be that trailing edge shape works together
with another parameter to improve performance, for example, sweep angle. It is also
possible that the relatively small benefits due to trailing edge shape seen here might
be outweighed by the much larger effects due to flexibility or an adaptation to the
motion profile.

3.8. Intermittent motions

Many aquatic animals, such as sharks and seals as well as small schooling fish,
exhibit an intermittent swimming behaviour, sometimes called burst-and-coast
swimming (Videler & Weihs 1982; Blake 1983b; Fish, Fegely & Xanthopoulos
1991; Chung 2009). Fish practice intermittent swimming while hunting, fleeing a
predator or pursuing a mate, and exhibit a wide range of ratios of burst-to-coast
times (Kramer & McLaughlin 2001). Of interest here is the possible energy benefit
of intermittent swimming versus continuous swimming.
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FIGURE 36. (a) Thrust and (b) power coefficients as functions of Strouhal number.
(a,b) Conventional scaling. (c,d) Coefficients normalized by duty cycle. Dark to light
symbols represent increasing duty cycles, ranging from ∆= 0.2 to 1 every 0.1. Symbols
identify pitch amplitudes of θ0= 5◦ (circle), 10◦ (square) and 15◦ (triangle). Adapted with
permission from Floryan et al. (2017b).

To help answer this question, Floryan, Van Buren & Smits (2017b) conducted
experiments on a two-dimensional tear-drop foil in pitch, and varied the swimming
duty cycle ∆ from 0.2 to 1, where 1 represents continuous swimming. The results
show that the mean thrust and power scale linearly with the duty cycle (figure 36),
indicating that individual bursts of activity in intermittent motions are independent of
each other (Akoz & Moored 2018 arrived at a similar result). This conclusion was
corroborated by flow visualizations, which show that the main vortical structures in
the wake did not change with duty cycle, at least for the range of Strouhal numbers
considered. The results also indicate that wake vortex proximity to the propulsor
itself does appear to be important. We expect that at higher Strouhal numbers these
conclusions may not continue to hold because the interaction among the wake
vortices would become more intense.

Of particular interest is the free swimming performance during intermittent
swimming, that is, the point where the mean thrust is equal to the mean drag. Does
the duty cycle decrease the energy required to travel a certain distance? Floryan

874 P1-49

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

28
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.284


A. J. Smits

0.2 0.4 0.6
Î

0.8 1.0 0.2 0.4 0.6
Î

0.8 1.0

2.0(a) (b)

1.5

1.0

0.5

(E
 +

 E
m
)/

(E
0 +

 E
m
)

0

¡(Î + c)/(1 + c)�Î

1.2

1.1

1.0

CD,u = 0.08 CD,u = 0.04

CD,u = 0.16

0.9

ƒ|
U

m
ea

n

0.8

0.7

0.6

FIGURE 37. (a) Ratio of energy expended by intermittent motions to energy expended
by continuous motions, including metabolic energy losses, as a function of duty cycle for
θ0=15◦, all frequencies, with CDb=0.1. Each point is an average over all frequencies. The
shading denotes the value of the metabolic power fraction cm, 0 to 2 in intervals of 0.25
(dark to light). (b) Ratio of energy expended by intermittent motions to energy expended
by continuous motions, restricted to equal mean speeds. Dashed lines correspond to the
model. The symbol grey scale corresponds to three values of (dimensional) mean speed
chosen, Umean= 0.2, 0.25, 0.3 (dark to light). The frequency of the intermittent motion was
chosen so that it would have a speed equal to the continuous motion. Reproduction with
permission from Floryan et al. (2017b).

et al. (2017b) argue that over a fixed distance, the energy ratio φ = E/E0 should
scale according to

√
∆, where E is the energy expended by intermittent motion,

and E0 is the energy expended by continuous motion with the same actuation.
Their data generally follow this trend, and so for this simple case it would appear
that intermittent motions are always energetically favourable. However, apart from
energy spent on swimming, aquatic animals also expend energy on metabolic
processes, Em. When the mean power spent on metabolic processes is assumed the
same for continuous and intermittent motion, and that it remains a constant fraction
cm of the power lost in continuous swimming, Floryan et al. find that

E+ Em

E0 + Em0
= ∆+ cm

(1+ cm)
√
∆
. (3.22)

From figure 37(a) we see that the data and the scaling tell the same story: even
though intermittent motions expend less energy on swimming, the metabolic losses
can play a significant role because intermittent motions take more time to traverse
a given distance than continuous motions. The extra time to travel will increase
the metabolic energy losses, and this effect may dominate the benefits gained in
reducing swimming energy losses. Estimates for cm from nature are difficult to
obtain, but it is likely in the range shown in figure 37(a), and so the possible
benefits of intermittent swimming will vary with species.
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FIGURE 38. Jacobi elliptic functions produce varying actuation waveform shape based
on the elliptic modulus, κ . Coloured circles represent points of vortex production in the
cycle based on PIV measurements, and smaller circles correspond to secondary vortices
(see figure 41). Adapted with permission from Van Buren et al. (2017b).

It is also possible to restrict ourselves to motions which produce the same mean
speed, that is, φ|Umean . For example, it may be that a continuous motion produces
the same mean speed as an intermittent motion with a duty cycle of 0.5 actuating
at twice the frequency. Which strategy is best if a swimmer wants to traverse a given
distance in a given amount of time? The results are plotted in figure 37(b), where the
lines in the figure are derived using the propulsive model derived in § 3.1 to make
estimates for the thrust and power exerted in the free swimming condition. It appears
that intermittent motions continue to be energetically favourable with the added time
restriction. Energetically optimal duty cycles exist, and savings are greater for lower
speeds, at least for the data considered here, despite having to increase the frequency
of actuation in order to match the mean speed of continuous motions.

3.9. Non-sinusoidal motions

Thus far, we have always assumed that the foil is actuated sinusoidally, but there
may be times when animals use non-sinusoidal motions, and there may be benefits
to doing so. In terms of optimization, Kaya & Tuncer (2007) numerically studied
heaving and pitching airfoil performance in laminar air flow, and used gradient-based
optimization of the motion paths to show that there were significant benefits to thrust
by moving non-sinusoidally. They found that motions that maintain a constant angle
of attack for longer periods of time, a topic also considered by Read et al. (2003),
produced higher thrust than purely sinusoidal motions. Similar results were reported
by Van Buren et al. (2017b), who used Jacobi elliptic functions to vary the shape
of the actuation from more triangular (κ = −0.99), to sinusoidal (κ = 0), to more
square-like motions (κ =+0.99), as shown in figure 38.

Their results for heaving motions of a tear-drop shaped foil are shown in figure 39.
We see that square-like motions exhibit much higher thrust and power than the
triangular-like and sinusoidal motions. Similar results were found for pitch. This
variation of thrust with κ suggested that the thrust may scale with waveform peak
velocity, especially for heaving motions. Empirically, a function P2 was found that
was only a function of the peak velocity. When the scaling of Floryan et al. (2017a)

874 P1-51

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

28
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.284


A. J. Smits

0 1 2 3

c1St2 + c2St2kU*

C T
/P

2

CT CP

C P
/P

2

4

3

2

1

0

-1
2 4 6 8 10 12

c3St2 + c4St2k + c5St2kU*

30

25

20

15

10

5

0

0 0.1 0.2 0.3
St

0.4 0.5 0.1 0.2 0.3
St

0.4 0.5

8(a) (b)

(c) (d)

6

Triangle, ˚ = -0.99

Square, ˚ = 0.99
Sine, ˚ = 0

4

2

0

-2

100

80

60

40

20

0

FIGURE 39. Performance as a function of Strouhal number, for heave. (a,b) (i)
Thrust coefficient; (ii) power coefficient versus Strouhal number. (c,d) (i) Thrust and
(ii) power modified by the lateral velocity scale plotted against the scaling proposed
by Floryan et al. (2017a). Symbol colour identifies the waveform shape, and tone
represents amplitude of motion ranging from low (dark) to high (light). For heave, h/c=
6.25 %–18.75 % every 2.5 %. For pitch θ =3◦–15◦ every 2◦. Adapted with permission from
Van Buren et al. (2017b).

is combined with this peak velocity scaling parameter, there is an encouraging
collapse of the thrust and power coefficients for a large range of motion parameters,
as shown in figure 39. The empirical constants used in the scaling were identical
to those found by Floryan et al. (2017a) for purely sinusoidal motions.

The efficiency as a function of thrust is given in figure 40. For heave, the effects
of waveform shape are rather minor (within the range of amplitudes studied), but for
pitch increasing κ tends to decrease the efficiency at a given thrust, and the highest
peak efficiency is achieved with sinusoidal motions. We see that actuation waveform
can be used to regulate thrust/efficiency trade-offs during locomotion, for a given
frequency and amplitude.

In addition to its effect on the performance, the waveform shape has a dramatic
impact on the vortex structure produced in the wake of the foil. The rapid start
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FIGURE 40. Efficiency versus thrust coefficient for (a) heave, and (b) pitch. Symbols
and colours as in figure 39. Adapted with permission from Van Buren et al. (2017b).
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(h/c = 12.5 %, St = 0.4). Waveform: (a) triangular-like κ = −0.99; (b) sinusoidal κ = 0;
(c) square-like κ = 0.99. Reproduction with permission from Van Buren et al. (2017b).
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and stop of square-like wave type motions produces vortex pairs instead of the
typical vortex street, resulting in a dual-jet velocity wake (see figure 41). This wake
structure was associated with large increases in the thrust, producing up to four
times higher forces than sinusoidal motions. These effects are more pronounced
in heave than in pitch, though similar trends were found in both cases and across
all Strouhal numbers studied (St= 0.2, 0.3, and 0.4). Triangular-like and sinusoidal
motions showed more typical behaviour, with a reverse von Kármán vortex street
and a single jet-like wake.

As Van Buren et al. (2017b) indicate, these results imply that animals and
vehicles could use non-sinusoidal propulsive motions to increase thrust, efficiency
or swimming speed, depending on the need. A square wave motion, for example,
could be used to accelerate quickly, whereas a sinusoidal motion could be used for
efficient cruise. These ideas are consistent with the diversity of motion types seen
in biological swimmers, and they suggest new strategies for effective motor control
in swimming robots.

3.10. Contribution of caudal fin to total thrust

Our aim in modelling the propulsive forces produced by an oscillating foil was to
help understand the swimming of fish and mammals. At the outset (§ 3), we made
the assumption that for oscillatory swimming the caudal fin is the principal source
of thrust, and the body is the principal source of drag. Now that we have some
reasonable models for the production of thrust by heaving and pitching foils we can
examine the plausibility of this approximation, at least for the case of the tuna. To
do so, we revisit the analysis by Bainbridge (1963) of the swimming performance
of dace, bream and goldfish (see figure 12). In particular, Bainbridge estimated the
contribution of the caudal fin to the total thrust by using biological data on lateral
velocity and planform area distributions. He assumed that for a segment of planform
area dA the local thrust contribution is proportional to V2 dA, so that

T ∼
∫

b
V2 dA+

∫
c

V2 dA= I1 + I2, (3.23)

where T is the mean total thrust in steady swimming, V is the local transverse
velocity and the first integral is taken over the body (from the snout to the fork)
while the second integral is taken over the caudal fin. This scaling with the lateral
velocity is entirely in accord with many of the observations we have made so far. As
indicated earlier, Bainbridge found that the proportion of the total thrust contributed
by the caudal fin varied from 45 % for the bream, 65 % for the goldfish, to 84 % for
the dace, while Gray (1933) estimated 40 % for the whiting.

A similar analysis may be performed for a member of the tuna family, in
particular the kawakawa (Euthynnus affinis, or mackerel tuna, see figure 12). Donley
& Dickson (2000) measured the mean maximum intervertebral lateral displacement
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of juvenile kawakawa during steady swimming, which together with measurements
of the tail beat frequency and the assumption of sinusoidal actuation gives an
estimate of V . Taking the planform aspect from the literature (as in figure 12)
allows us to estimate the terms in (3.23), and the result indicates that for this
member of the tuna family the caudal fin contributes approximately 40 % of the
total thrust.

These analyses, however, overlook an important distinction between the thrust due
to body movement and that due to caudal fin oscillation: the former is primarily a
flapping or pitching motion, whereas the latter is primarily a combination of heave
and pitch motions with a phase difference of approximately 270◦. The difference is
that heave is a much more effective means of generating thrust compared to pitch.
For rigid, rectangular panels, for example, Floryan et al. (2017a) found that at a
Strouhal number St = 0.35 a heaving motion gives CT = 0.6 compared to a value
of 0.2 for a pitching motion, at comparable amplitudes of the trailing edge motion
(h/c = 0.1875 for heave, and θ = 10◦ = 0.1745 rad for pitch), see § 3.1. That is,
under similar conditions heave produces about three times the thrust produced by
pitch. The difference is even larger in combined pitch and heave, where our earlier
observations indicated a factor closer to five (see § 3.4). Therefore, in estimating the
thrust contributions of the body motion compared to the caudal fin motion, we need
to take these differences into account by weighting the caudal fin contribution given
by I2 in (3.23) by a factor close to five (for similar amplitudes of motion). When
this is done for the kawakawa example, we find that the contribution by the caudal
fin to the total thrust increases from 40 % to 77 %.

We also need to take into account the effects of aspect ratio,A. The measurements
on rectangular foils by Dewey et al. (2013) and theoretical considerations by
Ayancik et al. (2018) indicate that the fall-off in thrust due to the contribution
made by added mass forces is important only at small values of A (figure 32),
and the fall-off due to circulatory forces depends approximately on A/(2 +A).
For pitching motions, the thrust is due primarily to added mass forces, so that it
needs to be discounted by a factor similar to that shown in figure 32. For heaving
motions, the thrust is primarily due to circulatory forces, so that it needs to be
discounted by the factor approximately given by A/(2 +A). For the kawakawa
caudal fin, we have A= 5, and for the body we use the local aspect ratio defined
as s2/dA, where s is the local span of the fish in side view. The contribution by
the caudal fin to the total thrust then increases from 77 % to 86 %.

We see that in modelling the propulsive forces produced by swimming fish of the
kind considered here (low predation, steady swimming, high flow; Langerhans &
Reznick 2010), it seems reasonable to assume that the caudal fin is the principal
source of thrust, and the contribution made by the body motion can be discounted.
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4. Mobuliform swimming

For undulatory swimming, we used eels and lampreys as prototypical examples,
and for oscillatory swimming we put forward tuna and dolphins. Batoid swimmers
like rays use a different propulsive mechanism, in that they use their greatly enlarged
pectoral fins to propel themselves, and can display either undulatory or oscillatory
swimming behaviours, called rajiform and mobuliform, respectively (Rosenberger
& Westneat 1999; Rosenberger 2001; Fish et al. 2016, 2017). Rays are fish of the
order Batoidei. They are related to sharks, and the order encompasses more than
500 species. Most species live on the ocean floor, but a few, such as the manta
ray, live in the open sea. Rays such as the blue spotted and southern stingray are
undulatory swimmers and display at least a full wavelength of activation on their
pectoral fin (λ∗ = λ/c < 1), while manta rays and cownose rays are oscillatory
swimmers and display less than a full wavelength of activation (λ∗ > 1). One of
the important aspects of mobuliform swimming is that rays precisely control the
shape of their fins to swim and manoeuver. While this is also true for undulatory
swimmers such as eels and knifefish, manta rays provide a good example of an
oscillatory swimmer that uses active rather than passive flexibility to control the
amplitude and wavelength of the actuating waveform.

To help understand the swimming of rays that use oscillatory propulsion, Clark &
Smits (2006) performed experiments on a flexible fin that replicated some features
of the pectoral fin of a manta ray or cownose ray. The cross-section of the fin was
approximated by a NACA0020 airfoil section, which is close to that seen in nature,
and the planform was semi-elliptic, with the root chord assumed to act as a plane of
symmetry (A= 1.2 for the half-span). The fin was aligned with the flow direction,
and it was actuated in a travelling wave motion, with the wave amplitude increasing
linearly along the span from root to tip (see figure 42). By changing the phase angle
φ between the individual actuators from 0, 30, 60, 90, 120 and 240◦, the wavelength
could be varied from λ∗=∞, to 12, 6, 4, 3 and 2. Since the wavelength was always
larger than the chord of the fin, the motion was oscillatory in nature, with the added
feature of having a fin with a chord-wise profile that conformed to the prescribed
actuation.

The thrust and efficiency results are shown in figure 43. Thrust generally increases
with Strouhal number, as expected, but local peaks are present in the vicinity of
St= 0.3–0.35, where the Strouhal number is based on the amplitude of the trailing
edge motion at midspan. The highest thrust was found to occur at either λ∗ = 4
or 6 (φ = 90◦ or 60◦). These wavelengths also gave the highest efficiencies, with a
global maximum efficiency of approximately 54 % for λ∗ = 6, which is impressive
for such a relatively crude approximation to manta ray locomotion. Also, the optimal
wavelength of λ∗ = 4 to 6 is in accord with observations of manta rays in nature
by Rosenberger (2001). Most intriguingly, the efficiencies displayed two local peaks;
one at approximately St= 0.2 to 0.225, and another at approximately St= 0.3.
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FIGURE 42. Fin actuation mechanism. A DC motor with a speed controller turns a shaft
at frequency f which powers a gear train. The rotation of the gears actuates rods which
impose a travelling wave along the fin through rigid spars. PIV was used to investigate the
structure of the wake. Reproduction with permission from Dewey, Carriou & Smits (2012).

0.05 0.10 0.15 0.20
StA StA

CT

0.25 0.30 0.35 0.40

4.5(a) (b)
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5

0
0 0.2 0.4 0.6 0.8 1.0

0.8

0.6

0.4˙

0.2

0

Fin phase 90 Re ¡ 11 000
Fin phase 60 Re ¡ 11 000
Triantafyllou high AR Re ¡ 17 000
Anderson high AR Re ¡ 40 000
Gugliemini high AR Re ¡ 1100
Gugliemini high AR Re ¡ 2200
Gugliemini high AR Re ¡ 3300
Dong high AR Re ¡ 200
Dong AR = 5.08 Re ¡ 200
Dong AR = 1.27 Re ¡ 200

Phase 0

Phase 30

Phase 60

Phase 90

Phase 120

Phase 180

FIGURE 43. (a) Coefficient of thrust for different traveling wave phase differentials φ.
(b) Efficiency at φ = 60◦ and 90◦ (λ∗ = 6 and 4). For the fin, the Strouhal number StA is
based on Ā, the trailing edge displacement at the mid-chord; for the other cases, A= Ā.
Reproduction with permission from Clark & Smits (2006).

Dewey et al. (2012) used PIV to investigate the wake structure corresponding to
these thrust and efficiency trends. The highly three-dimensional wake exhibited a
structure that varied with both the spanwise location and the streamwise location.
Because the circulation distribution at any point in the flapping cycle varies along
the span of the fin, with it being zero at the root and tip, the trailing edge vortex
varies in strength along the span. It also varies in time, of course, because the
motion is periodic. At St = 0.25 and λ∗ = 4 (highest efficiency condition), both a
2S and a 2P wake were observed at different spanwise locations (2S at midspan),
as also seen by Heathcote, Wang & Gursul (2008) for flexible foils where the
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FIGURE 44. Wake transition from 2P to 2S with increasing Strouhal number at the
midspan: (a,b) λ∗ = 6, St = 0.15 (a) and St = 0.25 (b); (c,d) λ∗ = 3, St = 0.2 (c) and
St = 0.3 (d). Flow is from left to right, and the trailing edge of the fin is outlined in
black. Adapted with permission from Dewey et al. (2012).

peak-to-peak amplitude increased with span. The wavelength of actuation had a
significant impact, in that it caused a transition from a 2S to a 2P structure at a
particular downstream location (see figure 44). This transition appeared to be directly
linked to the increasing phase delay of the trailing edge of the fin with decreasing
wavelength, and indicates that for a given Strouhal number (or non-dimensional
wavelength) there is a specific non-dimensional wavelength (or Strouhal number)
such that a transition from a 2S to 2P wake structure occurs. In fact, a transition
from 2P to 2S always occurs with increasing Strouhal number, and at a fixed
Strouhal number the distance from the trailing edge to the location of the bifurcation
increases with decreasing wavelength. Similarly, for a fixed bifurcation distance,
the longest wavelength (λ∗ = ∞) causes the bifurcation to occur at the lowest
Strouhal number.

5. Wake resonance

Moored et al. (2012) sought to gain a better understanding of the conditions
necessary for efficient propulsion, and how these conditions make themselves
evident in the flow field. They introduced the concept of wake resonance, which is
based on a linear stability analysis of the mean velocity profile in the wake. The
work built on that originally done by Triantafyllou et al. (1993), who performed
a linear stability analysis of the time-averaged wake behind a two-dimensional
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foil pitching about its quarter chord point with a small amplitude. They found
that the maximum spatial growth of the instabilities of the velocity jet occurred
over a range of Strouhal numbers of 0.25 to 0.35, corresponding to the range of
Strouhal numbers observed for fish and mammals in nature. Hence, they inferred
that efficient swimming occurs at the frequency of maximum amplification (see
also § 1.2). That is, the perturbation waves will have the largest amplification (per
unit input energy) at the ‘resonant’ frequency of the jet profile (where there is
maximum spatial growth), and that this will cause an expedient shear layer roll
up and entrainment, and result in the strongest momentum jet for a given input
energy. Thus a peak in the propulsive efficiency is expected when the fin is driven
at the resonant frequency of the jet. By inference, this peak was associated with a
2S (reverse von Kármán vortex street), and an ‘optimal’ Strouhal number range of
0.25< St< 0.35.

Although many animals swim in this Strouhal number range, we have seen that
there are many cases where the peak efficiency falls outside this range (Anderson
et al. 1998; Taylor, Nudds & Thomas 2003; Clark & Smits 2006; Buchholz & Smits
2008). Furthermore, elongated fish such as the eel and lamprey typically generate
2P wakes meaning that two pairs of vortices are shed per cycle (see figure 4a),
and fish with low aspect ratio propulsors such as rays can exhibit both 2S and 2P
wakes depending upon the fin kinematics (see figure 44). Other more elaborate wake
structures have also been observed in the wakes of heaving and pitching airfoils
(Lewin & Haj-Hariri 2003; Lentink et al. 2008).

For the model of mobuliform locomotion studied by Clark & Smits (2006)
and Dewey et al. (2012), the instantaneous flow field at any spanwise location
is characterized by the formation of wavy jet structures (figure 45b), while the
time-averaged flow field exhibits a jet-like behaviour (figure 45c). In most cases,
the jet can be considered weakly non-parallel, meaning that the characteristic length
scale of a velocity profile changes slowly in the downstream direction as compared
to the instability wavelength (Chomaz 2005), and so the flow may be analysed
using a local spatial stability analysis. Moored et al. (2012) found that when the
driving frequency is close to the jet resonant frequency, a peak in efficiency is
expected. This may occur at more than one Strouhal number. With λ∗ = 4, for
example, the driving frequency is nearly coincident with the resonant frequency at
two Strouhal numbers: St = 0.2 and 0.3 (see figure 46). Moreover, the two wake
resonant frequencies from the linear stability analysis match closely to the two
peaks observed in efficiency.

To connect the analysis to the wake structure, Moored et al. (2012) then examined
the eigenfunction, φ(y), associated with each eigenvalue. The eigenfunctions relate
to stream function perturbations and thus velocity perturbations that must be
superimposed onto the base flow. The linear vorticity perturbation can also be
obtained from φ(y) and captures many of the features of the observed wake
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FIGURE 45. (a) Schematic of a ray-like robotic pectoral fin and the vortex wake structure
at a laser illuminated plane, (b) reverse von Kármán vortex street inducing a wavy jet and
(c) time-average velocity field. The x- and y-coordinates are non-dimensionalized with the
chord length, L. Adapted with permission from Moored et al. (2012).
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FIGURE 46. (a) Propulsive efficiency data of the elliptical fin measured by Clark &
Smits (2006) for λ∗ = 4. Dashed lines denote the resonant frequencies found by the
linear stability analysis. The solid lines denote the regions of uncertainty in the wake
resonant frequencies. (b) Stability curves for 5 velocity profiles taken from DPIV data
measured by Dewey et al. (2012), where αi is the imaginary part of the complex
wavenumber. The × mark the resonant frequency of a stability curve while the E mark
the driving frequency used to generate the velocity profile. Reproduction with permission
from Moored et al. (2012).

structures. For example, the vorticity eigenmodes for λ∗ = 4 are compared with the
wake structure at the midspan at three Strouhal numbers in figure 47. At the first
peak in efficiency (at St= 0.2 for this wavelength), the vorticity perturbation exhibits
a characteristic 2P pattern, although some asymmetry occurs and the eigenfunction
has a slightly different spatial wavelength compared to the experimentally observed
vortices. The experimentally observed wake displays a 2P structure in the near
wake, but for x > 0.5 a transition from 2P to 2S is occurring, which is reflected
in the time-averaged velocity field (not shown here). When the Strouhal number
increases, as in figure 47(c–f ), the wake structures and vorticity eigenmodes begin
to display the characteristics of a 2S wake. Each of the wake resonant frequencies
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(e) St = 0.3. The vorticity perturbations (b), (d) and ( f ) are at the same parameters,
respectively. A transition from a 2P wake to a 2S wake (dashed line) is observed.
Reproduction with permission from Moored et al. (2012).

can now be associated with a specific wake mode. There is a resonant frequency
for the 2P wake mode and a resonant frequency for the 2S wake mode (as labelled
in figure 46a).

These wake resonance results, although derived in the context of manta ray
locomotion, are expected to hold more generally. When combined with the
experiments of Clark & Smits (2006) and Dewey et al. (2012), we now have
a preliminary prescription for efficient unsteady propulsion. First, tuning the driving
frequency to a wake resonant frequency results in a local peak in efficiency. Second,
there may be multiple wake resonant frequencies relating to multiple peaks in
efficiency. Third, some observed wake structures will transition when the wake
instability modes transition. We see that a 2S wake structure is not the only wake
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mode that leads to efficient locomotion and other wake modes such as a 2P mode
can also lead to locally efficient propulsion. The global maximum in efficiency will
be based on the kinematics of motion as well as the shape of the fin or device.
That is, for one set of kinematics and one propulsor shape a 2P mode may be
the most efficient wake mode to utilize, while for another set of kinematics and a
different propulsor shape a 2S mode may be the optimally efficient wake mode.

In this respect, Linden & Turner (2001) and Dabiri (2009) have interpreted the
structure of wakes generated by swimmers in terms of optimal vortex formation,
a concept that was originally proposed in terms of vortex ring formation Gharib,
Rambod & Shariff (1998). There may well be a connection between this concept
and the idea of wake resonance, and this may be a profitable direction to explore
in future work.

6. General observations

This may be a good place to end. I have attempted to give a perspective on
undulatory and oscillatory swimming mechanisms, from a reasonably fundamental
point of view. In doing so I have not addressed much of the other research that
is relevant to swimming. I have largely ignored the strong connections to the
fluid–structure interaction community, and to the extensive work on non-steady
swimming, gust response, or other aggressive manoeuvers. Similarly, I have not
highlighted the experiments done on entire fish, either in vivo or on robotic
imitations, and passed over many of the computations of the flow field developed
by swimming animals. Nor have I addressed the possible benefits of coordinated
swimming, or swimming near the sea bottom, fin–fin interactions and many other
interesting features of swimming as seen in nature. These are among the topics that
I have neglected in order to focus on more basic theory and modelling efforts.

Within this restricted focus, I find that theory and modelling remain central to
developing our understanding of swimming, and that observations on the fluid
dynamics of simple membranes and foils in unsteady motion can illustrate much
of the underlying physics seen. In particular, experiments and theory agree that
the more important velocity scale is the characteristic lateral velocity of the tail
motion rather than the swimming speed. Although the swimming speed is the most
important factor in biology, in that it relates to survival, it is the characteristic
lateral velocity of the tail motion that largely governs performance. The primacy
of the lateral velocity over the swimming speed as the correct velocity scale erases
to a large extent the difference between the results obtained in a tethered mode,
compared to those obtained using a free swimming condition.

More particular observations are as follows. First, there is no one-to-one
connection between the integrated swimming performance and the details of the
wake structure. In this respect, wake resonance theory reveals the possibility of
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multiple wake structures that exhibit high efficiency, while also helping to identify
the conditions for efficient swimming. Second, there are fundamental differences
between the study of rigid propulsors, and flexible ones. Animal locomotion usually
involves fins with some level of flexibility, passive or active, and the distinction
from rigid foils is important to remember since flexibility can be used to improve
efficiency. Third, animals propel themselves using a wide variety of actions, which
may combine undulatory motion with heaving and pitching motions. Studying
heaving or pitching motions by themselves will only give limited insight into actual
animal locomotion, and combined heave and pitch motions with an appropriate
phase difference seem essential to achieve high performance. Fourth, the effects of
Reynolds number are often ignored, based on the assumption that the unsteadiness
(characterized by the Strouhal number or the reduced frequency), is the major
physical phenomenon, and that viscous effects are secondary. Although we have
been guilty of making this assumption at various times ourselves, it turns out
that viscous effects play a critical role in determining the thrust and efficiency,
and so any assumptions about Reynolds number effects need to be carefully
substantiated (Floryan et al. 2018). Likewise, the shape of the foil influences
its drag performance, and we have seen that optimizing the foil shape can result
in substantial improvements in performance. In the context of fish swimming, the
recent computations by Haibo Dong and his colleagues at UVA have shown that
oscillation of the head and front body region in tuna acts to reduce the bending body
coefficient of drag by 22 % (private communication). In addition, George Lauder
and his colleagues at Harvard are finding very consistent head yaw patterns across
species (private communication), and Gemmell et al. (2015) and Gemmell et al.
(2016) have reported that the negative pressures associated with head movements
in lampreys can lead to a strong ‘pulling’ contribution to thrust. Hence, there are
undoubtedly other factors in addition to reducing drag that contribute to enhancing
fish swimming efficiency. Fifth, cautionary remarks should also be made regarding
changing aspect ratio, although we are close to a reasonable understanding of
these effects. In contrast, we are far from understanding the effects of changing
the planform shape. Sixth, almost all laboratory and computational work has been
done on foils that are sinusoidally actuated, although non-sinusoidal gaits may be
beneficial in some circumstances. In this context, the positive effects of intermittent
swimming are now well recognized.

As a final remark, while it is true that the investigation of the mechanics of
swimming is inspired by biological organisms, it is also true that such engineering
studies have broadened our understanding of the performance of animals. In this
area of research, biology and engineering are tightly intertwined, to the benefit
of all.
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