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Theory and modelling remain central to improving our understanding of undulatory
and oscillatory swimming. Simple models based on added mass can help to give
great insight into the mechanics of undulatory swimming, as demonstrated by
animals such as eels, stingrays and knifefish. To understand the swimming of
oscillatory swimmers such as tuna and dolphins, models need to consider both
added mass forces and circulatory forces. For all types of swimming, experiments
and theory agree that the most important velocity scale is the characteristic lateral
velocity of the tail motion rather than the swimming speed, which erases to a large
extent the difference between results obtained in a tethered mode, compared to
those obtained using a free swimming condition. There is no one-to-one connection
between the integrated swimming performance and the details of the wake structure,
in that similar levels of efficiency can occur with very different wake structures.
Flexibility and viscous effects play crucial roles in determining the efficiency, and
for isolated propulsors changing the profile shape can significantly improve both
thrust and efficiency. Also, combined heave and pitch motions with an appropriate
phase difference are essential to achieve high performance. Reducing the aspect
ratio will always reduce thrust and efficiency, but its effects are now reasonably
well understood. Planform shape can have an important mitigating influence, as do
non-sinusoidal gaits and intermittent actuation.
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1. Introduction
The fluid dynamics of underwater propulsion is an area of research that has
stimulated vigorous collaborations between biologists and engineers, and fostered
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numerous mathematical treatments, experimental investigations and numerical
simulations. It has contributed to a deeper understanding of the underlying biology
of fish and aquatic mammals, and provided inspiration for developing innovative
new underwater systems. This level of attention is no doubt driven at least in
part by the grace and beauty displayed by many swimming animals. There is also
the possibility that evolution has led to propulsive mechanisms that are inherently
more efficient, manoeuvrable and quieter than those currently in use in marine
applications.

The literature surrounding this field is extensive. The books by Gray (1968), Blake
(1983a) and Videler (1993) provide a comprehensive portrait of fish swimming,
while more specific topics, such as the hydrodynamics and energetics of fish
propulsion, dolphin hydrodynamics and performance, fish swimming mechanics and
behaviour in altered flows, passive and active flow control by swimming fishes
and mammals and the mechanics and control of swimming, are considered by
Webb (1975), Fish & Rohr (1999), Colgate & Lynch (2004), Fish & Lauder (2006)
and Liao (2007), respectively, and Lauder & Tytell (2005) present a particularly
insightful review of the hydrodynamics of undulatory propulsion. The analyses by
Lighthill (1969) for slender bodies and Wu (1961) for thin flexible membranes
continue to be influential, as do the considerations on hydrodynamic scaling by
Triantafyllou, Triantafyllou & Yue (2000) and Triantafyllou et al. (2005). There are
also three notable popular articles that have helped introduce a broad audience to
the subject (Webb 1984; Triantafyllou & Triantafyllou 1995; Fish & Lauder 2013).
This is by no means a comprehensive list.

Our aim here is to supplement this body of work with a contemporary perspective
on our understanding of the fundamental fluid dynamic aspects of oscillatory and
undulatory swimming, and to consider the implications for novel propulsors for
future underwater vehicles. We will primarily consider motions at cruise condition,
where the animal is moving in a straight line at an average speed that is constant.
This is expected to be the most efficient condition, in that it is the mode chosen by
fish for sustained swimming (Fish & Rohr 1999; Triantafyllou et al. 2005).

1.1. Swimming styles

The biology is evidently rich with complexity, encompassing a vast range of body
morphologies and swimming styles. A primary sorting can be made on the basis of
Reynolds number. When viscous forces dominate, as they do for micro-organisms
such as bacteria, propulsion requires non-reciprocal motion that breaks symmetry
as a consequence of the linearity of the governing equations. Very small fish, with
lengths of a millimetre or so, also live in this world. However, for somewhat larger
fish, say of length 10 mm, swimming at one body length per second, the Reynolds
number will exceed 100, and reciprocal motions become the dominant form of
propulsion.
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FIGURE 1. Examples of four swimming types: (a) oscillatory — tuna; (b) undulatory —
ray; (c) pulsatile jet — jellyfish; and (d) drag based — duck. Reproduction with permission
from Van Buren, Floryan & Smits (2019a).

For such organisms, we can identify four major types of swimmers: undulatory,
oscillatory, pulsatile and drag-based, as illustrated in figure 1. Undulatory swimmers
are animals that generate a travelling wave along their body or propulsive fins to
push fluid backwards. Examples include eels, lampreys and some rays. Oscillatory
swimmers, such as salmon, tuna, dolphins and sharks, propel themselves primarily
using a semi-rigid caudal fin or fluke that is oscillated periodically. Animals that
periodically ingest a volume of water and then discharge it impulsively to produce
thrust by reaction are called pulsatile swimmers, and examples include jellyfish,
squid, frogfish and some molluscs (Fish 1987; Dabiri 2009). Finally, drag-based
swimmers such as humans, turtles, seals and ducks propel a bluff body such as a
rigid flipper through the water to generate thrust (Fish 1996).

Our principal consideration here will be undulatory and oscillatory swimmers
that use body and/or caudal fin locomotion. In the conventional view, anguilliform
swimmers such as eels and lampreys pass a travelling wave of increasing amplitude
along the whole body, whereas for thunniform swimmers such as tuna and mackerel
the anterior part of the body is held to be relatively stiff, and only the posterior third
of the body is used for propulsion, with the notable presence of a high-aspect-ratio
caudal fin (Lindsey 1978; Sfakiotakis, Lane & Davies 1999). We shall see that
this distinction is not entirely accurate, and also less useful than one based on the
wavelength of actuation, in that, broadly speaking, undulatory swimmers display
a wavelength shorter than their body length, and oscillatory swimmers display a
wavelength longer than their body length.

1.2. Wake structure

The hydrodynamic structure of the wake is determined by the Reynolds number, the
non-dimensional frequency and the non-dimensional amplitude of the motion. The
non-dimensional frequency is typically expressed either as the Strouhal number S?,
or the reduced frequency k. Here, St =2af /U and k=fc/U, where a is the amplitude
of oscillation of the tail, f is the frequency of oscillation (Hz), U is the speed of
swimming and c is a characteristic length such as the length of the body or the
chord of the caudal fin or fluke.
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FIGURE 2. (a) Fluke-beat frequency and (b) non-dimensional fluke-beat amplitude as
functions of length-specific swimming speed for several odontocete cetaceans. Original
data from Rohr & Fish (2004), replotted as in Floryan et al. (2017a), reproduced with
permission.

Triantafyllou, Triantafyllou & Grosenbaugh (1993) analysed the swimming
performance of a wide variety of fishes and mammals, from bream to sharks to
dolphins, and found that they swam broadly within the range of Strouhal numbers
from 0.2 to 0.35. This observation echoes a number of earlier studies (for example,
Bainbridge 1958) that showed that fish tend to increase their swimming speed by
increasing their tail beat frequency while keeping their amplitude of motion more
or less constant (typically 15-20% or so of the body length), in effect keeping
their Strouhal number fixed. Similar results were found for cetacean swimming by
Fish & Rohr (1999) (see figure 2), although for rainbow trout Webb, Kostecki &
Stevens (1984) found that the amplitude of the tail beat relative to the body size
decreased with the size of the specimen.

Triantafyllou ef al. (1993) made two additional observations. First, the efficiency
of a heaving and pitching foil displayed a peak in this ‘optimal’ range (0.2 <
St < 0.35). Second, the average velocity profile in the wake resembles a jet, and
they showed that the jet profile is convectively unstable over a narrow range of
frequencies that corresponds well to this Strouhal number range. Triantafyllou et al.
(1993) therefore concluded that fish swim in this particular Strouhal number range
because it corresponds to the frequency of maximum amplification and therefore it
is expected to be most efficient. In addition, the associated wake structure resembled
a reverse von Karman street pattern (Weihs 1972), that is, a pattern akin to the von
Kéarmédn vortex street but with the signs of the vortices reversed so that thrust is
produced instead of drag. No Reynolds number effects were considered, presumably
because the Reynolds numbers for their data set were relatively high (10* to about
10° based on body length). However, as we will show, viscous effects may continue
be important even at very high Reynolds numbers (see §3.1).
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FIGURE 3. Representative flow fields in the wake of the oscillating caudal fin of sunfish
during steady swimming at 1.1 L/s, where L is total body length. Adapted with permission
from Drucker & Lauder (2001).

This view, that the reverse von Karmdn street wake pattern corresponds to
the most efficient swimming mode, and that it is typical of cruising fish, is still
widely held. At the time, however, evidence for the ubiquity in nature of the reverse
von Kdrmdn street wake structure was rather scant, and it was not really until the
advent of particle image velocimetry (PIV) that the vortex patterns produced by fish
could be examined in detail (Miiller et al. 1997, Drucker & Lauder 2001; Lauder
& Tytell 2005). An early example showing the formation of a reverse von Karman
street wake, as visualized in the plane of the tail motion, is shown in figure 3. This
type of structure is also called 2S, that is, two vortices are shed into the wake per
shedding cycle, after Williamson & Roshko (1988) who coined the phrase with
respect to wakes generated by oscillating cylinders.

A different example is given in figure 4(a) for an American eel in steady
swimming. Large vortices are shed by the flapping tail, but when viewed in the
plane of the tail motion this wake pattern does not resemble that of a reverse
von Kédrman street. The wake of a robotic lamprey, another undulatory swimmer,
shown in figure 4(b), displays a very similar vortex pattern, as do alligators (Fish
& Lauder 2013), and although dolphins typically generate 2S wakes they also
sometimes generate this type of wake (Fish er al. 2014). We see a structure that is
more reminiscent of Williamson and Rosko’s 2P wake structure, where two vortex
pairs are shed per cycle. It is clear that different wake patterns are possible, and
we shall see that efficient swimming is not necessarily restricted to one particular
wake pattern.

These visualizations in the plane of the tail motion tend to ignore the fact that
fish wakes will naturally be highly three-dimensional, even if the caudal fin has a
large aspect ratio. As anticipated by Lighthill (1969), the spanwise vorticity shed
from the central part of the caudal fin is much greater than what can be shed
from the tapered tips, and so the vortex lines shed from the central part must bend
downstream. Further downstream, they must turn inwards, and then close up when
they reach the vorticity of opposite sign shed by the fin half a period earlier. This
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FIGURE 4. Phase-averaged velocity fields in the wake of (a) an American eel moving at
constant speed, adapted with permission from Tytell & Lauder (2004), and (b) a robotic
lamprey, adapted with permission from Hultmark, Leftwich & Smits (2007). Contours give
levels of spanwise vorticity. The views represent the flow field at a similar phase in the
motion.

line of thinking suggests that the wake consists of a series of vortex rings or loops
of alternate sign, and that the reverse von Karman street is seen only in a particular
cross-section through this structure (see also Videler 1993). Nauen & Lauder (2002)
make this description more explicit by direct observations on chub mackerel at
Strouhal numbers of approximately 0.4. Thus, the stability argument advanced by
Triantafyllou et al. (1993) for two-dimensional flows is unlikely to translate directly
to actual fish wakes.

In addition, we should note that for a free swimming fish moving at constant
speed no resultant force is acting, and the overall wake in the frame of the fish
motion is momentumless. So even if the cross-sectional view of the wake resembles
a 2S or a 2P structure the vortices appear aligned in such a way so that there is
no net axial jet. This is illustrated by the wakes shown in figure 4(a,b), visualized
under free swimming conditions.

We will show here that we should treat the wake structure and the swimming
performance (thrust, power and efficiency), as two separate but inter-related topics,
in that there is no obvious one-to-one connection between them. Zhang (2017), in
the context of a flapping wing, cautioned that examining the flow pattern is much
like looking at the footprints of terrestrial animals; although some information
can be gleaned from the wake, it does not tell the whole story. Similarly, Taylor
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(2018) writes that an explanation of propulsive efficiency given only in terms of the
wake feels a little incomplete, and notes that Eloy (2012) suggested that efficient
development of the wake may be a consequence, rather than a cause, of efficient
propulsion. See also Floryan, Van Buren & Smits (2019).

1.3. Measures of performance

We have a particular interest in the thrust, power and efficiency of a wide variety of
‘swimmers’, a term that may include animals, robots, as well as isolated propulsors
such as oscillating foils and flexible plates. As indicated earlier, the principal non-
dimensional variables governing the performance are the Strouhal number, St, the
reduced frequency, k, and the chord-based Reynolds number, Re =cU/v, where v is
the fluid kinematic viscosity. We also have the aspect ratio A =s*/A, where s is the
span and A is the planform area of the propulsor, as well as some measure of the
body flexibility such as the effective stiffness. The results on propulsive performance
are usually presented in terms of the non-dimensional thrust output coefficient, input
power coefficient and Froude efficiency, conventionally defined according to

T P _TU _Cr

Cr=1—:—, P=T 77 N= ,
EpU2A EpU3A P Cp

(1.1a—c)
where T is the net streamwise (x-direction) component of the force developed by
the motion, P is the power expended and p is the fluid density. Unless otherwise
indicated, we consider only time averaged values.

What about the drag on the body? The net thrust, 7, is given by the thrust
produced by the motion, F,, minus the drag force, D, so that T = F, — D. For a
body in steady self-propelled motion (free swimming), the total thrust is equal to the
total drag, so that T=0, Cr =0 and the efficiency can no longer be defined. In such
cases the cost of transport CoT is often used, as first introduced by Von Karman
& Gabrielli (1950). That is, for an animal of weight mg, CoT = P/(mgU). This is
a useful quantity to help compare the performance of dissimilar animals where P
is given by the metabolic rate, and the minimum CoT is assumed to occur at the
velocity at which the animal can cover the largest distance for the smallest energy
cost. Fish & Rohr (1999) note that fish have the lowest CoT for any vertebrate,
and that cetaceans have values two or three times higher than similar sized fish,
probably because of the higher maintenance costs. Intriguingly, they found that the
minimum value of the CoT for fish and mammals is a function of body mass m,
scaling approximately according to m~%%.

In some animals, we can separate the sources of drag from the sources of thrust.
If, for example, we can identify the caudal fin as the main source of propulsive force
and the body as the main source of drag, then the caudal fin needs to generate a
net positive force (its thrust F, minus its drag D,) in order to overcome the drag
offered by the body D,. In this case, the fin can be considered in isolation, and we
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can define the efficiency of the propulsor as TU/P, where P is the power necessary
to generate the net propulsor thrust 7' = F, — D, ignoring the question of how
efficiently the input power was generated to begin with (that is, we are concerned
with fluid mechanical efficiency and not metabolic efficiency). Furthermore, the net
propulsor thrust 7' then determines the steady swimming speed of the body plus
propulsor, through the force balance T = F, — D, = D,,. These broad assumptions are
often used in propulsive models for oscillatory swimmers such as tuna and dolphins
(see §3).

1.4. Undulatory and oscillatory swimming

To compare the swimming styles of undulatory and oscillatory swimmers, we
consider how the shape of the body midline changes during an actuation cycle.
The results are shown for a number of different species in figure 5. The distinction
among swimmer types is obviously less clear than that implied by the conventional
view that there are distinct morphological differences between undulatory and
oscillatory swimmers (Lindsey 1978; Sfakiotakis et al. 1999). That is, all four types
shown here display a midline motion that grows similarly in amplitude along the
body length. Although the anguilliform motion grows more uniformly along the
body compared to other species, there is no great distinction among the other three
types where the motion is largely restricted to the posterior one third of the body.

Instead of using body morphology to distinguish oscillatory and undulatory
swimmers, we therefore use a criterion based on the mechanism that generates thrust.
In the first group we have animals that pass a travelling wave along the body such as
eels, lampreys, snakes. We call these undulatory swimmers because the wavelength
of the undulation is equal to or shorter than the length of the body. Some rajiform
species such as the blue spotted stingray and Atlantic stingray similarly undulate
their pectoral fins to generate thrust, and amiiform and gymnotiform swimmers such
as the bowfin and knifefish may also be included in this group, since they move by
propagating undulations along their elongated anal or dorsal fin, with a wavelength
shorter than the length of the fin (Fish 2001).

In the second group we have carangiform and thunniform swimmers where
the primary mechanism for producing thrust is a prominent caudal fin. Here, the
wavelength of the undulation is longer than the body length, and so the caudal fin
describes a combination of heaving and pitching motions. Some species of ray such
as the manta ray and cownose ray move their pectoral fins in a similar motion,
which happens when the wavelength of the undulation is longer than the chord of
the pectoral fin (called mobuliform swimming). We also include cetaceans in this
group, because their primary propulsive force is due to the oscillatory motion of the
fluke in the vertical plane. The swimming kinematics of cetaceans are characteristic
of the thunniform mode, also known as carangiform with lunate tail (Lighthill 1969,
1970; Webb 1975; Lindsey 1978). The role of flexibility varies widely, in that the
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FIGURE 5. Four classical categories of fish undulatory propulsion illustrated with fish
outlines and midlines derived from recent experimental data. QOutlines of swimming fishes
are shown above with displacements that to illustrate forward progression, while midlines
at equally spaced time intervals throughout a tail beat are superimposed at right, aligned at
the tip of the snout; each time is shown in a distinct colour. Anguilliform mode based on
Anguilla, subcarangiform mode based on Lepomis, carangiform mode based on Scomber
and thunniform mode based on Euthynnus. All fishes were between 20 and 25 cm total
length (L), and swam at a similar speed of 1.6 to 1.8 L/s. Times shown indicate duration
of the tail beat. Scale bars = 2 cm. Adapted with permission from Lauder & Tytell
(2005).

caudal fin of tuna are stiff compared to the rather flexible flukes of dolphins, and
manta rays can actively control the flexibility of their pectoral fins by muscle action.

In some species, however, it is not always possible to make a clear demarcation
between undulatory and oscillatory swimming. Sharks, for example, display motions
ranging from anguilliform to thunniform (Wilga & Lauder 2004). They also have
a distinctive heterocercal tail, that is, an asymmetric caudal fin shape, and so
are expected to generate asymmetric wake structures (Flammang et al. 2011).
Nevertheless, the broad distinction based on the propulsive mechanism proves to be
useful as an organizing principle.

In what follows, we first consider undulatory swimming, and then oscillatory
swimming. Mobuliform swimmers like manta rays will be considered separately, in
that they are a good example of animals that actively control the shape of their fins
to change the waveform of actuation. Some basic themes will emerge. One, there
is no one-to-one correspondence between wake structure and efficiency. Two, the
primary velocity scale for propulsion is the characteristic velocity of the trailing
edge. Three, the drag of the propulsor is crucially important in determining its
thrust and efficiency. Four, flexibility (either passive or active) can have a major
effect on performance, and a proper exploitation of flexibility seems essential to
attain high thrust and efficiency.
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2. Undulatory swimming

Taylor (1952) was the first to estimate the thrust produced by long and narrow
animals such as snakes, eels and marine worms, by ‘considering the equilibrium of
a flexible cylinder immersed in water when waves of bending of constant amplitude
travel down it at constant speed. The force on each element of the cylinder is
assumed to be the same as that which would act on a corresponding element of a
long straight cylinder moving at the same speed and inclination to the direction of
motion’. This approach is now known as the ‘resistive model’ of thrust production,
and the total thrust is found by integrating the streamwise contributions from all the
segments along the body. By using an appropriate estimate for the drag coefficient
on each segment, and by allowing the amplitude of the bending wave to vary
along the body, the model can be adapted to non-circular cross-sections, varying
locomotion profiles, and a wide range of Reynolds numbers. For example, it was
used by Gray & Hancock (1955) to analyse very low Reynolds number swimmers
using a linear drag dependence. An important result is that for high Reynolds
numbers the bending wave needs to move down the body at a speed greater than
the swim velocity to achieve positive thrust.

As pointed out by Lauder & Tytell (2005) and many others, the theory is limited
by the assumption of small-amplitude bending waves, and the assumption that the
resistive force experienced by each segment is quasi-steady and independent of
the adjacent segments. In addition, the drag coefficients used in the theory are
determined from experiments on steady cylinders, and in unsteady flow added
mass forces will appear, and the circulatory forces would also change from their
steady flow values, at least for high Reynolds numbers. Therefore, although it is
still widely used for low Reynolds number applications (see, for example, Zhong
et al. (2013)), for high Reynolds number flows where accelerations (such as those
associated with added mass effects) need to be considered, resistive models have
largely been replaced by approaches based on some form of slender body theory.

2.1. Slender body theory

Lighthill (1960) was the first to apply slender body theory (originally developed
in the context of airships and supersonic flow by Munk 1924; Tsien 1938) to the
swimming of slender fish, that is, ‘either a fish or a swimming mammal, whose
dimensions and movements at right angles to its direction of locomotion are small
compared with its length, while its cross-section varies along it only gradually’. It
is similar to thin airfoil theory in the sense that the derivatives are evaluated at the
body centreline without consideration to its thickness.

Several other assumptions are made in the basic theory. First, the flow is taken
to be inviscid, so that the instantaneous energy conservation in aquatic animal self-
locomotion is given by

P=E+TU, 2.1)
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https://doi.org/10.1017/jfm.2019.284

https://doi.org/10.1017/jfm.2019.284 Published online by Cambridge University Press

Undulatory and oscillatory swimming

where P is the power exerted by the animal, E is the rate of change of the
kinetic energy of the fluid and TU is the rate of work done to produce thrust 7.
In evaluating the efficiency, the drag is taken to be zero, and therefore the efficiency
in slender body theory measures the part of the power that goes to produce thrust,
compared to the total power input that includes the loss of energy to the fluid
(that is, the wake). Second, the theory assumes that the force on each segment of
the body is given by the reactive force due to the acceleration of the added mass
per unit length of the segment, which is why it is sometimes called a ‘reactive’
model. This reactive force is taken to act only in the y-direction, which is normal
to the direction of the forward progress of the animal (taken to be the x-direction).
Circulatory forces are not considered. Third, it assumes that each segment is
independent of the next, which is the same infinite cylinder approximation used in
resistive theory. Fourth, motions are taken to be small (although the theory was
extended to large-amplitude motions by Lighthill 1971).

We now summarize the salient results. The notation and approach follow Wu
(2011), and the theory applies equally well to long slender bodies and thin
membranes (that is, flexible ribbon plates of constant width where the width is
small compared to its length). We give more details than might be wise, but the
results will find a number of applications in the rest of this paper.

For a travelling wave described by h(x, ), the local velocity in the y-direction is
given by V(x, t) = (d/0t + Ud/dx)h. The associated force per unit length is called
the specific lift £ (Wu 2011), where £ =(3d/d¢+ Ud/dx)(mV). Note that £ depends
entirely on the added mass per unit length m, and that there is no contribution due to
circulatory forces. Typically, the added mass model is very simple, in that it is taken
to be proportional to the area of the body cross-section. Then, instantaneously,

t9n ¢/ oh oh tan
P=- —Ldx, E=-— —+U— ) Ldx, T= —Ldx, (2.2a—c)
0 8t 0 8t Bx 0 3x

where ¢ is the body length, and E is evaluated as the rate of shedding of kinetic
energy of lateral fluid motions into the fluid. The thrust 7" is found from the energy
balance in (2.1), although it can be formally shown that 7" is the projection in the
x-direction of the forces due to pressure differences acting on the body.

For a body in periodic motion with m(x) =0 and m(£) = m,, the time-averaged
values are given by

_ oh [dh _ oh oh
ar \ ot ox) | at |,
and
gy [ (0 YL ey .4
) a1 ox) [ 72 “ '
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Then, from the energy balance given in (2.1),

2 2
7 {(8}‘) _ U2<ah) } . (2.5)
2\ \or ax) |

We see that the mean thrust and power depend only on the conditions at the trailing
edge where x=/¢. In addition, the lateral velocity of the tail, V, plays a crucial role
in determining the performance.

Following Lighthill (1960) and Wu (1971b), we consider the special case of a
distally propagating wave g(x)y (x — c,t), where ¢, is the wave velocity and the
wave amplitude g depends on x (|y|=1). It will be assumed that such a motion can
be made to satisfy the restrictions on the lateral and angular momenta embodied
in the evaluation of the specific lift (the so-called ‘recoil’ constraint). Lighthill
(1960) argues, on the basis of efficiency, that it is best to have g.(¢) =0, and if
this condition is satisfied then

T =1my(1 — kg (©)(dy /dD)?, 2.6)

where k, = c,/U = fA/U. The thrust is therefore proportional to the mean square
lateral velocity of the trailing edge, and for a given k, it is independent of U. Also,
the travelling wave needs to move down the body at a speed greater than the swim
velocity to achieve positive thrust; that is, 7 is only positive for ¢, > U, the same
conclusion reached by Taylor (1952) using resistive theory.

To find the steady swimming speed, we balance the thrust against the body drag.
If it is assumed that the drag depends only on the body wetted area A, so that D, =
pU?A,Cp/2, where Cj, is the drag coefficient, then

my
B pA,Cp

For a given body at a fixed value of k,, the swim speed is therefore proportional to
the root-mean-square (r.m.s.) lateral velocity of the trailing edge. Furthermore, since
the thrust only depends on the conditions at the trailing edge, it would be ‘wasteful’
(Lighthill’s word) to keep g(x) constant along the length of the body, and it is more
desirable to let it increase from zero at the snout to its maximum at the tail.

Such observations follow from the model, which is entirely based on added mass
considerations. Neglecting the circulatory force seems reasonable for long slender
bodies because these forces tend to be important mostly near the leading edge. In
this respect, the assumption that the lateral motion of the leading edge motion was
zero is an important ingredient of the model; relaxing this assumption might also
introduce a significant contribution from lift.

Finally, Lighthill considered how the angular and transverse momenta affected
the thrust and efficiency, and concluded that minimizing the angular ‘recoil’ due
to the body motion would be particularly desirable. This could be achieved by
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confining the motions to the rear part of the fish where the fish mass is low, and
by letting the waveform have both a positive and negative phase in the region of
substantial motion amplitude. This accurately describes anguilliform motion. For
example, Tytell & Lauder (2004) investigated the kinematics of a steadily swimming
American eel and found that the motion of the body midline was described well by
an exponentially growing travelling wave,

y(s) = e sin[2n(s — ¢, 1) /1], (2.8)

where y is the lateral position of the midline, s is the coordinate following the
midline, A is the wavelength, a is the tail beat amplitude and « is the amplitude
growth rate. Equation (2.8) also describes lamprey motion (Hultmark et al. 2007),
and it appears to satisfy Lighthill’s conditions for high thrust production and minimal
recoil but not the condition for high efficiency, in that y; # 0 at the tail.

The important role played by the lateral tail velocity in undulatory swimming was
also confirmed by studying the thrust production of lampreys. Hultmark ef al. (2007)
used a robotic lamprey that was actuated to copy the lamprey motion described by
(2.8). The near-wake structure for the lamprey robot and the American eel were
shown in figure 4(a,b) and figure 6 gives the instantaneous vorticity fields generated
by the robot at three phases in its motion. A band of positive vorticity is evident
in the region near the body, confined to a relatively thin boundary layer rather than
being shed and convected downstream. The undulatory motion of the robot generates
alternating favourable and unfavourable pressure gradients along the body, seen in
the streamwise varying strength of the near-surface vorticity, but there is no evidence
of separation. The flow in the vicinity of the body, therefore, is unlikely to contribute
little to either drag or thrust. As the tail moves to the right (figure 6b), the maximum
strength of the near-surface vorticity increases, and as the tail changes direction the
pressure gradients change sign and the region of vorticity becomes weaker, as seen
in figure 6(c), indicating that a significant amount of vorticity has been shed into the
wake. As might be expected, the tail motions and the vortices shed into the wake are
closely correlated to the fluctuations in pressure on the body near the tail (Leftwich
& Smits 2011).

To determine the contributions to the thrust, the momentum flux was integrated
over the boundaries of a two-dimensional control volume containing the wake and
parts of the tail. By varying the size of the box to include progressively more of the
body, it was found that the region very close to the tail (x/£ > 0.99) was responsible
for the majority of the thrust production. For the region 0.99 > x/¢ > 0.9 the thrust
was essentially balanced by the drag, and at locations upstream of x/¢=0.9 the drag
was found to be greater than the thrust. The dominant role of the tail in producing
thrust is in complete accordance with slender body theory. In addition, Leftwich &
Smits (2011) found that the net mean thrust produced by their lamprey robot at
St =0.53 was only approximately 20 % less than that given by (2.5). That would
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FIGURE 6. Phase-averaged out-of-plane vorticity fields along the body and in the wake for
a steadily swimming robot. The flow is from top to bottom, and the body of the robot is
indicated by the black shape. Reproduction with permission from Hultmark et al. (2007).

imply a drag coefficient for the robot of about 0.08, which seems like a reasonable
value.

2.2. Flexible panels in undulatory motion

Slender body theory gives estimates for the forces acting on the body and the
surrounding fluid under a prescribed motion. It does not generally consider the
mechanical response of the body itself, although Wu (1971b) considered the
internal forces generated by an elastic membrane in prescribed motion in terms
of the attendant recoil. In fish, the amplitude and wavelength of their undulation
can generally be controlled by muscle action. In laboratory studies of undulatory
motion, this sort of active control is rarely imitated (for an exception, see Clark &
Smits 2006). Instead, experiments typically rely on a predetermined motion input
(such as heave or pitch) and allow the flexibility of the foil, membrane or body to
determine its response. Computations generally go further, and prescribe the full
motion, typically determined directly from animal studies, without accounting for
any fluid—structure interaction.
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To understand the effects of flexibility and the mechanical response of the body
more generally, Quinn, Lauder & Smits (2014) examined the behaviour of flexible,
rectangular panels, actuated in heave at their leading edge with an amplitude «'. For
small deflections % of a flexible panel with constant thickness § and span s, the panel
response can be modelled by the Euler—Bernoulli beam equation,

a%h a*h

,o,,sSw + EI@ = Fou, (2.9)
where p, is the density of the panel, E is the elastic modulus, I is the area moment
of inertia and F,,, is the external force per unit length (Allen & Smits 2001). Since
pp/p =0(1) and §/c < 1, the added mass forces are expected to dominate over
the inertia of the panel, and so the mass per length of the panel, p,s8, is replaced
with an effective (added) mass per length, psc, which is assumed constant along
the chord. For long, narrow panels (A4 <« 1), the added mass per unit length will
vary as ps’, and for short, wide panels (AR > 1) it varies as pcs. For panels with
A of O(1), the appropriate added mass term is less clear. Quinn et al. used panels
with AR = 0.77, so their choice of psc is somewhat arbitrary but since the aspect
ratio was fixed it does not affect any of their conclusions (see also Allen & Smits
2001; Thiria & Godoy-Diana 2010; Dewey et al. 2013; Ramananarivo, Godoy-Diana
& Thiria 2013). This issue is addressed in more detail in § 3.6.

Introducing the dimensionless variables x*=x/c, h*=h/a, and t* =1tf, where a is
(as usual) the amplitude of the trailing edge motion, gives

, 0% 3t ,
+ —=F (2.10)

Lop2 gy e

where F, =F,,c*/(Ela) is the dimensionless external force per unit length, except
for added mass, which is now incorporated into the left-hand side as the effective
mass per length. These external forces could include, for example, circulatory forces

and internal damping or viscous drag. Here,

I =f+\/pscSJ(ED) (=f/fi =f), (2.11)

and it is the ratio of added mass forces to internal bending forces, called the
effective flexibility. We also recognize it as a non-dimensional frequency f*, that is,
the ratio of the driving frequency to the first resonant frequency of the panel when
added mass forces are considered.

The effect of resonances for pitching foils was examined with a more exact,
though two-dimensional fluid dynamical model by Alben (2008), who found that
the resonances were distributed as integers to the —5/2 power, and the input power
and thrust power were proportional to the parameter R, = I1| at the resonances.
The Froude efficiency tended to 1 at small thrust power (when many wavelengths
are present on the body), then dropped to a fixed fraction at large thrust power.
No peaks were seen in the efficiency, as was also found by Floryan & Rowley
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Panel Q Q Pl Pz P3 P4 P5 B P6 A Poo
EIx10° Nm=2 0.069 081 054 13 25 36 72 11 14 320 18000
8/c x 10° 0.6 1.6 1.1 16 21 32 42 39 53 34 26.5
I — — 03 07 14 20 40 — 78 — 0(10Y

TABLE 1. Panel physical properties. Panels A to D from Quinn et al. (2014); Panels P,
to Py from Dewey et al. (2013). Here, I1; = k*/I1; (see (3.19)). The effective stiffness
for fish is likely in the range 1.4 < II{ <4 (panels P; to Ps).

(2018). Alben et al. (2012) later studied (theoretically and experimentally) a freely
swimming flexible foil in heave, and observed that the scaling of swimming speed
with bending modulus and foil length was given as power laws at resonant peaks
(separate power laws in terms of dimensional and dimensionless parameters).

Quinn et al. (2014) conducted experiments on four panels with bending stiffnesses
ranging from EI =320 x 10~* (Panel A, rigid) to 0.069 x 107> N m~2 (Panel D, the
most flexible), as listed in table 1. The modal contributions to the panel undulatory
motion were expressed in terms of the eigenfunctions for the homogenous form of
(2.10), that is, where F, , =0. The natural frequencies of these modes, fi» are such
that f /ﬁ- = IT1,A?, where J; is the corresponding wavelength. Flexibility essentially
adds resonances to the system. The two most rigid panels displayed only the
first mode, while the most flexible panel exhibited the first four modes. As the
heaving frequency of the more flexible panels increased, the modal contributions
passed through a series of peaks as successively higher modes were activated, and
with increasing flow speed these peaks shifted to higher frequencies. Resonance
occurred at certain driving frequencies where the trailing edge amplitude was
locally maximized, and Quinn ef al. (2014) found that the frequency at which this
resonance occurs was a strong function of f*, but relatively independent of flow
speed (for a factor of 5 variation).

From slender body theory, we know that the conditions at the trailing edge are
paramount. For flexible panels, the trailing edge amplitude a is an output of the
system since it depends on the panel response to the input ¢’. The amplitudes of the
resonant peaks in a/a’ decrease with increasing flexibility as the deflections are more
easily suppressed by fluid forces when the panel is more flexible. They also decrease
with increasing flow speed as the form drag at higher flow speeds suppresses panel
deflections and thereby reduces the amplitude of the wave along the panel. It appears
that the first-order effect of form and viscous drag is to stretch the shape of the panel
in the streamwise direction but leave the resonant frequencies relatively unaffected.

The time-averaged thrust behaviour is shown in figure 7. In general, T increases
with heaving frequency, but it does so at different rates, and in some ranges even
decreases with frequency. The resulting plateaus are directly related to resonance
at the trailing edge. Since the more flexible panels pass through multiple resonant
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FIGURE 7. Time-averaged thrust. (a,b,c,d) V, Uy =40 mm s~'; <, u,, = 110 mm s7';

A, Uy = 170 mm s7'; >, u,, = 240 mm s~!. Adapted with permission from
Quinn et al. (2014).

frequencies, they exhibit multiple plateaus (for (b) the first resonance is close to
1 Hz, and the second resonance occurs beyond 3 Hz).

Higher flow speeds reduce T in two main ways. One way is by shifting the curves
downward due to viscous drag producing an offset between them (see also § 3.1). At
higher frequencies, the curves differ by more than just an offset, especially for the
more flexible panels. This trend suggests that variations beyond the simple offset
are due to the different kinematics brought on by higher flow speeds. A similar
behaviour was seen by Floryan & Rowley (2018) who analysed the response of
two-dimensional, flexible panels in heave and pitch. When the flow speed increases,
circulatory forces start to become important, the natural frequencies of the system
begin to shift away from their quiescent behaviour, and the eigenvalues become more
damped.

874 P1-17


https://doi.org/10.1017/jfm.2019.284

https://doi.org/10.1017/jfm.2019.284 Published online by Cambridge University Press

A. J Smits

a/c varying sinusoidally

_ 6
C
T 4t a/c constant
2 L
0 1
3 4 5 6 7 8 9 10
k

FIGURE 8. Predictions of the Lighthill model for a sinusoidal propulsor. Thin line:
a/c = 0.1; thick line: a/c = 0.1(1 + 0.15sin’k). Adapted with permission from
Quinn et al. (2014).

Quinn et al. (2014) used slender body theory to help understand the formation of
the plateaus in thrust. From (2.5) we can write

= N 2 N2
Cfrzlizﬂ (9)2 [k2<ah ) — (ah ) ] . 2.12)
3pUsc psc \c ar dx* .

Consider a panel experiencing a sinusoidal travelling wave with a wavelength equal
to the chord, that is, #* = sin(2w(x* + ¢*)). Figure 8 plots the predicted variation of
the thrust coefficient for the case where a/c is constant, and for the case where a/c
varies sinusoidally with the reduced frequency k. The local maxima in the trailing
edge amplitude increase the net thrust coefficient such that plateaus appear in the
k—Cy curve. In addition, if the heaving panel were perfectly rigid (EI — o0), h*
would have no spatial variation. For finite rigidities, however, h* varies with x*, and
(2.12) predicts that this spatial variation will reduce Cr, which is consistent with the
data shown in figure 7.

The efficiency can be quantified for thrust-producing conditions (T > 0) where the
propulsor is accelerating or overcoming the drag on a body to which it is attached.
Following Dewey et al. (2013), the results for the flexible propulsors with 7 > 0
are shown in figure 9 as n = nSt (this scaling will be addressed further in §3.6).
Peaks in 7 occur at or just above the f* values where the trailing edge amplitude
was maximal. The efficiency is maximized at low speeds and high flexibilities. At
high flow speeds, flow visualizations indicated the presence of flow separation on
the membrane itself, undoubtedly resulting in significantly higher drag and lower
efficiency.

Since the value of the Strouhal number in the vicinity of the peaks varies from
approximately 0.5 to 1, it is evident from figure 9 that the corresponding values
of the efficiency n for a flexible heaving panel are quite low. In a later study
focusing on panel D (see table 1), Quinn, Lauder & Smits (2015) found that adding
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FIGURE 9. Efficiency peaks of heaving flexible panels at multiple resonance modes.
Panels A, B, C and D have stiffnesses EI=3.2 x 107", 1.1 x 1072, 8.1 x 107*, 6.9 x 1073,

and are coloured red, orange, green and blue respectively. Adapted with permission from
Quinn et al. (2014).
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FIGURE 10. Contour plot of propulsive efficiency, heave only motions, a’'/c =0.07.
Adapted with permission from Quinn et al. (2015).

a pitching motion enhanced the efficiency considerably. Although the net thrust and
power scaled as expected with the frequency and amplitude of the leading edge,
the efficiency showed a complex multimodal response. For heave only motions,
two optimal conditions were found, one with n = 0.23 at St = 0.53, and one with
n = 0.21 at St = 0.40, as illustrated in figure 10. For pitch and heave motions
combined, two optimal conditions were also found, one for St=0.26, n =0.38, and
the other for St =0.33, n =0.37, so the addition of pitch increased the efficiency
by a factor of approximately 1.7. The conditions correspond almost exactly to a
doubling of the parameter I1; =f*, that is, the non-dimensional frequency describing
the resonant modes.

In this respect, Floryan & Rowley (2018) showed that linear inviscid theory
predicts that local resonant maxima in thrust and power appear, but it does not
predict any local resonant maxima in efficiency, whereas such efficiency peaks are
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FIGURE 11. Phase-averaged spanwise vorticity (red is positive, blue is negative). (a) First
optimum, St=0.26, f*=24.8, a'/c=0.07, « =30°, ¢ =76°, n=0.38. (b) Second optimum,
St=0.33, f*=50.8, a’/c=0.07, « =30°, ¢ =96°, n=0.37. Adapted with permission from
Quinn et al. (2015).

clearly observed in experiments. Therefore, the resonant peaks in efficiency are
due to either finite Reynolds number effects, nonlinear effects, or both. Floryan
& Rowley (2018) found that the presence of drag will always create resonant
peaks in efficiency, while Ramananarivo, Godoy-Diana & Thiria (2011) showed that
nonlinearities can create non-resonant peaks in efficiency for flexible flapping wings.

Figure 11 shows the phase-averaged vorticity plots corresponding to the two
optima for heave and pitch combined. Although the efficiencies are almost the
same, they occur at two different mode shapes, and generate very different wakes;
whereas the first optimum resembles a 2S (reverse von Karmén street) structure,
the second optimum is more a 2P structure. For simple flexible panels, therefore,
efficient swimming can be achieved for (at least) two different wake structures.

In general, Quinn et al. (2015) concluded that efficiency is globally optimized
when (i) the Strouhal number is high enough that the flow does not separate over the
peaks and troughs in the panel waveform, but low enough that the vortex cores in
the wake remain tightly packed and coherent; (ii) the panel is actuated at a resonant
frequency of the fluid—panel system; (iii) heave amplitude is tuned such that trailing
edge amplitude is maximized while the flow along the body remains attached; and
(iv) the maximum pitch angle and phase lag are chosen so that the effective angle
of attack is minimized.

We now turn to oscillatory swimming.

3. Oscillatory Swimming

For fast, efficient swimming in sustained cruise, the prototypical animal is the
tuna (Webb 1984). The tuna has a streamlined (fusiform) shape that is deepest about
halfway between the head and the tail (see figure 12), and its particular swimming
motion is called thunniform, as described earlier. As pointed out by Lighthill (1969),
the body morphology also helps to minimize recoil. For anguilliform swimmers,
the unsteady side forces and yawing moments tend to cancel because they have at
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FIGURE 12. Clockwise from top left: Kawakawa (Euthynnus affinis, or mackerel tuna,
License: by Attribution-Noncommercial Australian National Fish Collection, CSIRO);
Dace (Leuciscus leuciscus, reproduced by attribution from http://www.fishinginireland.info/
index.htm); Bream (Abramis brama, reproduced with permission from www.sommen.nu);
Goldfish (Carassius auratus, reproduced by attribution from https://archive.usgs.gov/
archive/sites/fl.biology.usgs.gov/Carp_ID/html/carassius_auratus.html).

least one wavelength present along their body length. Carangiform and thunniform
swimmers do not, but the recoil motions are minimized by having a deep anterior
body and a narrowing posterior.

Because the posterior part tapers down to a narrow peduncle, and the caudal fin
planform area is relatively large by comparison, it is expected that most of the thrust
production is due to the caudal fin motion, and that the contribution by the body
motion is secondary. Bainbridge (1963) analysed the swimming performance of dace,
bream and goldfish, and estimated that the contribution of the caudal fin to the
total thrust varied from a value of 45 % for the bream, to 65 % for the goldfish, to
84 % for the dace. He also quotes Gray (1933), who estimated 40 % for the whiting
(Gadus merlangu). We will show that these estimates are probably low (see §3.10),
and so a useful approximation for the purposes of modelling is to assume that all
of the thrust is provided by the motion of the caudal fin (or fluke, as the case may
be), and, by extension, that the body is the principal (but not the only) source of
drag.

We therefore focus on the hydrodynamic performance of the caudal fin. In essence,
it describes a combination of heaving and pitching, naively described by sinusoidal
motions at a common frequency, so that

h=hysin(2nft), 6 =06,sin(2nft+ ¢), (3.1a,b)

where h, is the heave amplitude, 6, is the pitch amplitude and ¢ is the phase
difference between pitch and heave. For reference, figure 16 illustrates the motion
of a swimming foil for phase differences ¢ =0°, 90°, 180° and 270°.
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We now describe some simple models for thrust and efficiency of heaving and
pitching foils, based on experiments and analytical considerations. We mainly
consider rectangular foils as an abstraction of a caudal fin, but some aspects of the
fin planform shape including the aspect ratio and the shape of the trailing edge will
also be discussed. The coefficients of thrust and power are given by

F, _ Fyh+Mb

Cr=-—"—\ Cp=
Tt TN oA

, (3.2a,b)
where F, is time-averaged thrust in the streamwise direction produced by the foil
motion, F, is the force perpendicular to the free-stream direction and M is the
moment taken about the leading edge of the foil.

3.1. Pitching foils

We begin with a simple example that captures some of the salient characteristics of
oscillatory propulsion. Consider a two-dimensional NACAQO012 airfoil pitching about
its quarter chord in a uniform stream of speed U so that its pitch angle 6 varies
as 6 sin(2mft). There is no heaving motion. The results for the thrust, power and
efficiency shown in figure 13 were computed using the direct numerical simulations
(DNS) method described by Sentiirk & Smits (2018) and Sentiirk et al. (2019). The
Reynolds number was varied from 500 to 32 000. To put that range into perspective,
consider a fish with a caudal fin that has a chord length 10 % of its overall length.
A chord Reynolds number of 500 would then correspond to a fish of length 70 mm,
swimming at about one body length per second, which is a typical speed for the
kind of fish we are interested in. Similarly, a chord Reynolds number of 32000
would correspond to a fish of length 560 mm, also swimming at one body length per
second. The corresponding fluke Reynolds numbers for dolphins can reach 10°, with
a body length Reynolds number of 107, and the corresponding numbers for whales
could be 10 times higher.

We first note that the mean thrust and power coefficients increase nonlinearly
with Strouhal number. The thrust varies approximately as Sf*, and power varies
approximately as S7° (the actual scaling is considered in §3.3). Second, we see
that the thrust coefficient and the efficiency display a strong Reynolds number
dependence. Third, the thrust coefficient has a negative offset at small values of the
Strouhal number, which corresponds to the drag offset at very low Strouhal number
(quasi-steady flow), averaged over a pitching cycle. This offset is similar to that seen
by Quinn et al. (2014) for a flexible pitching panel in heave (see figure 7). Fourth,
the efficiency tends to negative values at low Strouhal number (corresponding to a
negative thrust coefficient), rising quickly as the Strouhal number increases, before
falling more slowly at higher Strouhal numbers. The curves display a maximum
value of efficiency 7, at a particular Strouhal number St*, where both 7, and St*
depend strongly on Reynolds number; increasing the Reynolds number tends to
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FIGURE 13. NACAOQO012 foil pitching about quarter chord from the leading edge (6, = 8°).
DNS by Sentiirk & Smits (2019). All data averaged over one pitching cycle. Adapted with
permission from Sentiirk & Smits (2019).

increase the efficiency at all Strouhal numbers, while also notably increasing the
maximum efficiency. Similar peaks in efficiency were seen for flexible panels in
undulatory motion (figure 10).

These DNS results are in broad agreement with the experiments of Buchholz &
Smits (2008) on rigid rectangular panels pitching about their leading edge. Buchholz
et al. found that decreasing the aspect ratio of the panel monotonically decreased the
thrust coefficient, while the efficiency was largely unaffected except for the smallest
aspect ratio (AR = s/c = 0.54) where it decreased somewhat. As to the effects of
Reynolds number, their measurements were conducted over two Reynolds number
ranges with average values of approximately 10000 and 21000. Small differences
in the thrust and efficiency were observed, but conclusive trends were difficult to
discern, which is perhaps not surprising given the results shown in figure 13, where
Cp is seen to vary slowly for Reynolds numbers larger than approximately 10000,
and its effects on thrust and efficiency are also seen to diminish.

It is important to note that the drag coefficient for a given foil depends on its
profile shape as well as its Reynolds number. Maximizing thrust and efficiency at
a given Reynolds number therefore poses an optimization problem to find the foil
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FIGURE 14. (a,b) Dye flow visualizations. Flow is from left to right. (c,d) Vortex
skeleton models of the wake for /R =0.54, A/s =0.31 and Re. = 640. (a,c) St =0.23;
(b,d) St=0.43. Adapted with permission from Buchholz & Smits (2005, 2006).

shape with the lowest drag coefficient for a given motion profile (Van Buren et al.
2019b) (see also §3.4).

In addition to considering the thrust and efficiency, Buchholz & Smits (2005,
2006) visualized the wake using different colour dyes, and suggested vortex skeleton
models for the wake structure (see figure 14). For these low Reynolds number
wakes (Re. = 640), three distinct and highly three-dimensional wake structures were
observed as the Strouhal number was varied. For approximately 0.20 < St <0.25, two
horseshoe vortices were shed per pitching cycle, which interacted with neighbouring
structures to form a three-dimensional chain of vortex loops. When viewed along
the spanwise axis, the wake resembles a transversely growing von Karmdn vortex
street. Two critical attributes are that the streamwise legs of the structures increase
in strength (circulation) toward the trailing edge, as well as changing in strength
with the phase of the motion. This influences the dynamics of the wake in that the
interaction between horseshoes is dominated by the most recently created structure.
It also implies the existence of spanwise vorticity bridging the legs which is a
salient feature of the wakes observed at higher Strouhal numbers and is consistent
with the dynamic stall vortex shed by other unsteady propulsors. For all wakes, there
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is a strong compression of the wake in the spanwise direction, and an expansion in
the plane of the motion.

For approximately St > 0.25, the wake bifurcates into two oblique trains of
vortex structures. At St = 0.43, the individual structures are topologically similar
to the structures observed at St =0.23 except that a portion of the spanwise shear
layer found at St = 0.23 is shed from the trailing edge as a discrete spanwise
vortex. The resulting fundamental structure is therefore a vortex ring that is partly
entrained into the tip of a horseshoe vortex. These vortex rings move away from
the centreline under their own induced velocity, and the wake is seen to bifurcate.
At St = 0.64 (not shown here), the wake contains an additional feature in which
streamwise vortices undergo a perturbation near the trailing edge of the panel which
leads to the generation of hairpin or horseshoe vortices that convect outward in the
spanwise direction. This transition from a kind of 2S structure to a 2P structure
with increasing Strouhal number is very similar to that seen in other cases, such as
pitching and heaving plates (Guglielmini 2004; Dong et al. 2005).

The wake structure was found to depend on the Reynolds number, although
a similar global wake behaviour was observed at moderate Reynolds numbers
of 0(10%). Of course, the effects of Strouhal number and Reynolds number are
intertwined, as made clear by the results shown in figure 13 for the NACAO0012
airfoil. That is, at a given Strouhal number (for example, 0.3), the efficiency at low
Reynolds number is negative, meaning the drag is larger than the thrust, whereas at
higher Reynolds numbers the efficiency is positive because the thrust is larger than
the drag. In this regard, the orientation of the vortices in the plane of motion for
St =0.23 in figure 14 suggests that for this panel at this Strouhal number and this
Reynolds number the wake is drag producing. Increasing the Reynolds number will
reduce the drag, lead to a net positive thrust, and a re-orientation of the vortices.

3.2. Heaving and pitching foils

The results shown in figure 13 also demonstrate that the peak efficiency for this
particular pitching foil does not exceed about 25 %, even at the largest Reynolds
number considered. Adding a heave motion, with an appropriate phase difference can
improve this result substantially. For example, figure 15 displays the time-averaged
thrust coefficient and efficiency of a pitching foil with incremental increases in heave
amplitude while keeping the pitch amplitude fixed at 6, = 15°. Similar increases in
thrust and efficiency for undulatory swimming were seen in the case of a flexible
plate, where adding pitch to heave increased the optimal efficiency by a factor of
about 1.7 (see figure 10). For the rigid foil shown in figure 15 the efficiency curves
also exhibit a clear maximum value, suggesting that an optimum efficiency exists
for any heave/pitch combination. For reduced frequencies below the optimum, the
efficiency decreases sharply as the effects of the viscous drag on the propulsor
become important.
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FIGURE 15. Pitching foil with incremental increases in heave amplitude for ¢ =
270° (f* = k). (a) Thrust coefficient; (b) efficiency. Reproduction with permission from
Van Buren, Floryan & Smits (2018a).

When combining sinusoidal heaving and pitching motions the phase offset is a
critical parameter. Figure 16 illustrates the motion of a swimming foil for phase
differences ¢ = 0°, 90°, 180° and 270°. When heave and pitch are in phase (¢ =0),
the motion appears to an observer moving with the foil as if the foil is pitching
about some point upstream of the leading edge. For phase angles around ¢ = 90°,
the trailing edge leads the leading edge, and when ¢ = 180° the foil appears to pitch
about a point behind the leading edge. For ¢ =270° the motion seems to be the most
‘fish-like’, cleanly slicing through the water with the lowest angles of attack (the
angle between the foil and its instantaneous direction of motion). This case is further
illustrated in figure 17. Compared to heave-only motions, greater heave velocities
can be achieved for the same angle of attack by adding the appropriate pitch. The
increased heave velocity increases the thrust component and rotates more of the lift
vector in the thrust direction, increasing the efficiency. As a useful measure of the
relative magnitudes of pitching and heaving, Lighthill (1969, 1970) introduced the
proportional-feathering parameter, @ defined so that ¢, = ®V /U, where «,, is the
maximum angle of attack. Therefore @ is a parameter that measures the reduction in
the instantaneous angle of attack from its maximum value, and decreasing @ tends
to increase thrust while decreasing the efficiency.

The performance of submerged foils in combined heaving and pitching motion
has been studied relatively extensively (Lighthill 1970; Dickinson 1996; Sfakiotakis
et al. 1999; Triantafyllou et al. 2000; Von Ellenrieder, Parker & Soria 2003). In
a particularly influential work, Anderson et al. (1998) obtained efficiencies as
high as 87 % using a heaving and pitching two-dimensional NACAOQ012 airfoil in
sinusoidal motion. They connected the wake structure to the performance of the foil,
arguing that for maximum efficiency the leading edge vortex pair needs to interact
beneficially with the trailing edge vorticity. The flow visualization was performed
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(c) e
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FIGURE 16. Motion of a foil swimming from left to right via heave and pitch motions
with a phase offset (a) ¢ =0°, (b) 90°, (¢) 180° and (d) 270°. In this example, hy/c =
0.375, 6y = 15° and f* = 0.16. Reproduction with permission from Van Buren et al
(2018a).
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FIGURE 17. Heaving foil at the same instantaneous angle of attack (a) without and
(b) with added pitch motion (¢ =270°). Streamwise, heave and effective velocities shown
in red, resulting lift-based forces shown in blue. Reproduction with permission from
Van Buren et al. (2018a).

at Re = 1000, whereas their force measurements were at Re = 40000. Subsequent
research suggests that it is necessary to avoid leading edge vortices altogether in
order to maximize efficiency (Tuncer & Kaya 2005; Young ef al. 2006; Young
& Lai 2007). In related work, Read, Hover & Triantafyllou (2003) recognized the
importance of the peak angle of attack when considering performance, although they
reported lower values of efficiency (55 %—70 %) than the 87 % reported by Anderson
et al. (1998) in the same laboratory under similar experimental conditions. We take
that to indicate the crucial role played by drag in determining the efficiency, as
we will see. Experiments on large amplitude motions by Scherer (1968) showed
similar peak efficiency values to those found by Read et al. (2003), over a wide
range of parameters. We now present some simple models for the thrust production,
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power expenditure, and efficiency of heaving and pitching foils, to help explain
these trends.

3.3. Analysis of heaving or pitching foils

The analysis of heaving and pitching plates and foils has a distinguished history,
dating back to Theodorsen (1935), who first derived the linearized expressions for
the forces generated by an oscillating foil in the context of aerodynamic flutter. His
analysis included the contributions due to circulatory and added mass forces, and
Garrick (1936) used his results to develop expressions for thrust and power for a
two-dimensional, rigid propulsor. We now follow Floryan et al. (2017a), Floryan,
Van Buren & Smits (2018) and Van Buren et al. (2018a) to consider a foil moving
in heave and pitch as a simplified model of an isolated propulsor. The unsteady lift
model of Theodorsen (1935) will be combined with the added mass force model by
Sedov (1965) to construct scaling relations for the thrust and efficiency. The added
mass model given by Sedov (1965) is preferred to that given by Theodorsen (1935)
because Sedov’s model includes both the normal and tangential contributions. In
this section, we examine either heaving or pitching foils in sinusoidal motion, as
described by (3.1). Combined motions are studied in the following section.

The only circulatory (lift-based) forces considered are those that arise when the
foil is at an instantaneous angle of attack to the free stream given by «. The
effective flow velocity seen by the foil has a magnitude U, =/ U? + h2, and an
angle relative to the free-stream velocity of arctan (iz/ U), so that o« =6 — arctan (h/ U)
(notation as given in figure 18). Hence, for a foil of chord ¢ and span s,

F,=—Lsin (0 —a) = —Lh/U.,y, (3.3)
Fy=Lcos () —a)=LUs/U,. (3.4)

Here, F, is the thrust, F, is the lateral force, L is the lift on the foil given by
L=(1/2)p UfﬂcscCL and the lift coefficient C; =27 sina + (3/2)mac/U (Theodorsen
1935). The moment about the leading edge is M = —cL/4. The wake correction
term due to downwash (Theodorsen’s lift deficiency factor) is neglected as it is
approximately constant under the conditions considered here.

Floryan et al. (2017a) combined circulatory and added mass-based contributions
to the thrust and power for pitching or heaving foils. They showed that. the mean
thrust generated by heaving motions is entirely lift-based (see figure 18), whereas
mean thrust generated by pitching motions is from added mass alone. However, for
both heave and pitch motions, the mean input power (and thus efficiency) depends
on lift-based and added mass forces. In contrast, slender body theory, and the
analysis of undulatory motions in general, assumes that the only forces acting are
those due to added mass.

We can anticipate some later results by first doing a simple scaling analysis (see
also Dewey et al. 2013, Quinn et al. 2015). We expect that the thrust generated by
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FIGURE 18. (a) Notation. (b) Lift-based thrust generation for a foil in pure heave.
Adapted from the original shown in Katz & Plotkin (2001).

a purely pitching motion will scale as the component in the streamwise direction
of the added mass (~pc’s for two-dimensional panels, that is, 42 >> 1) times the
acceleration (~c6). Hence,

F. ~ psc360, (3.5)
so that the mean thrust scales as
F,~ psc’f*0; ~ pscV?, (3.6)

where V is the amplitude of the trailing edge velocity.
For a purely heaving motion, the thrust is expected to scale as the component in
the streamwise direction of the instantaneous lift force. That is, from (3.4),

Fo~L(h/Uy). (3.7)

If we assume that the contribution to the lift is quasi-steady, and that for small
angles of attack a ~h/U,q, then

F.~1pUl