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Abstract
In this paper, we extend the optimal dividend and capital injection problem with affine penalty at ruin in (Xu, R. &
Woo, J.K. (2020). Insurance: Mathematics and Economics 92: 1–16) to the case with singular dividend payments.
The asymptotic relationships between our value function to the one with bounded dividend density are studied,
which also help to verify that our value function is a viscosity solution to the associated Hamilton–Jacob–Bellman
Quasi-Variational Inequality (HJBQVI). We also show that the value function is the smallest viscosity supersolution
within certain functional class. A modified comparison principle is proved to guarantee the uniqueness of the value
function as the viscosity solution within the same functional class. Finally, a band-type dividend and capital injection
strategy is constructed based on four crucial sets; and the optimality of such band-type strategy is proved by using
fixed point argument. Numerical examples of the optimal band-type strategies are provided at the end when the
claim size follows exponential and gamma distribution, respectively.

1. Introduction

The optimal dividend and capital injection problem is currently an active research direction in actuarial
science and quantitative finance. De Finetti [6] first introduced the optimal dividend problem to the
actuarial science literature, where he proposed that the optimal strategy should maximize the expected
discounted dividends until the surplus drops below zero (i.e. ruin occurs). Under a discrete risk model,
he showed that the optimal strategy should follow the so-called barrier dividend strategy; that is,
there exists a non-negative constant barrier such that the excess amount of the surplus above the
barrier should be paid out as dividend to the shareholders. The results of such optimization problem
under the Cramér–Lundberg model was given by Gerber [8,9], where a band-type dividend strategy is
proved to be optimal in general. Later, Azcue and Muler [2] extended the optimal dividend problem
under Cramér–Lundberg model to have reinsurance contracts. They obtained the optimal band-type
dividend strategy by characterizing the value function as the smallest viscosity solution of the associated
Hamilton–Jacobi–Bellman (HJB) equation. Under the same risk model, Albrecher and Thonhauser [1]
considered the force of interest in the surplus process; with application of viscosity theory, they proved
that the optimal dividend strategy is in general a band-type strategy.

However, the aforementioned optimal dividend strategies obtained in the literature usually causes the
almost surely ruin in the optimal dividend problem. The reason is that the dividend optimization frame-
work only considered the maximization of the shareholders’ return (in terms of dividends received)
without taking into account any related solvency issues. Hence, Thonhauser and Albrecher [16] intro-
duced a component to the objective function that penalizes early ruin of the controlled risk process, such
that their value function takes into account both expected dividend payments and time value of ruin.
They identified the optimal dividend strategies for both Cramér–Lundberg model and diffusion model,
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which are barrier strategies for unbounded dividend intensity and threshold strategies for bounded div-
idend intensity. Loeffen [10] considered such optimal dividend problem with a real-valued terminal
payment at ruin under spectrally negative Lévy process, and Loeffen and Renaud [11] further illustrated
the optimality of a barrier strategy or the take-the-money-and-run strategy when there exists an affine
penalty payment at ruin under the same risk model. On the other hand, in stead of considering penalty
payment at ruin, Dickson and Waters [7] introduced the capital injections to the De Finetti’s optimal
dividend problem under Cramér–Lundberg model, where certain amount of capital will be made by
shareholders to protect the insurance company from ruin. Under such framework, ruin never occurs and
the optimal dividend strategy was identified by maximizing the difference between dividend paid out
and capital injected. The study was extended to have administration costs associated with each capi-
tal injection by Scheer and Schmidli [13]. They proved that capital injections are only made when the
surplus falls below zero, and showed that the optimal dividend and capital injection strategy is a band-
type. The optimal dividend and capital injection problem with transaction costs under diffusion model
with regime switching was investigated in Zhu and Yang [22], and Vierkötter and Schmidli [17] further
incorporate exponential and linear penalty functions to such optimal control problem under diffusion
model. In addition, from the risk management point of view, capital injection problem was also studied
in some actuarial papers, see e.g. Nie et al. [12], Zhang et al. [20], Xu et al. [19], etc.

But, in the optimal dividend problem with capital injection, research usually focus on maximizing
net profits over an infinite time horizon (i.e. ruin never occurs). Recently, Xu and Woo [18] consid-
ered both capital injections and affine penalty payments at ruin for optimal dividend problem under
Cramér–Lundberg model with bounded dividend density, where capital injections are made up to the
time of ruin (by forcing ruin when surplus drops below zero). The optimality of a band-type strategy
for the combination of dividends and capital injections is obtained. Note that Zhao et al. [21] studied
the optimal periodic dividend and capital injection problem with the case when ruin still can occur,
but under spectrally positive Lévy process, their model and method are fundamentally different to our
studies. Finally, we remark that in Xu and Woo [18], under assumption of absolutely continuous div-
idend strategies with bounded dividend rate, there exists a nature boundary condition at infinite that
can guarantee the uniqueness of certain viscosity solution to the corresponding HJBQVI. Hence, in
this paper, we continue the study by relaxing such assumption on dividend payments; that is, we con-
sider the optimal singular dividend and capital injection problem with affine penalty at ruin. We derive
most of our results by finding the asymptotic relationship between the scenario with bounded dividend
density and the one with singular dividend payments. In addition, we provide a modified comparison
principle such that we can characterize the value function as the unique viscosity solution to the asso-
ciated HJBQVI within certain functional class. It is noted that the method of using viscosity theory to
solve such optimization problem only generates certain abstract optimal solutions, and the numerical
analysis are limited in the literature, especially when the claim size distribution is non-exponential (see
[3,18]). Therefore, in this paper, we further provide a thorough numerical analysis on the structure of
the optimal band-type strategy in various scenarios.

The rest of the paper is organized as follows: the model and some preliminaries are introduced in
Section 2; the main results are given in Sections 3–5. To specific, in Section 3, certain characteristics of
the value function are derived; the HJBQVI associated with our optimal control problem is derived by
utilizing the asymptotic relationship between the value function under bounded dividend density and
unbounded case; the uniqueness of certain viscosity solution is proved in Section 4; then, in Section
5, a band-type strategy is proposed based on four crucial sets, where the optimality of such dividend
and capital injection strategy is proved at the end. Finally, a comprehensive numerical analysis on the
optimal band-type strategy is given in Section 6, followed by some conclusion remarks in Section 7.

2. The model and some preliminaries

Let’s consider a complete filtered probability space (Ω, F , F, P), where F = (F𝑡 )𝑡≥0 is the corresponding
filtration satisfies the usual condition. Let 𝑈 = (𝑈𝑡 )𝑡≥0 be the uncontrolled surplus process of an
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insurance company; and at any time 𝑡, it is an F-adapted càdlàg process given by

𝑈𝑡 = 𝑢 + 𝑐𝑡 −
𝑁𝑡∑
𝑖=1
𝑌𝑖 , 𝑡 ≥ 0,

where 𝑁 = (𝑁𝑡 )𝑡≥0 is a (homogeneous) Poisson process with intensity 𝜆 > 0. {𝑌𝑖}𝑖≥1 are independent
and identically distributed positive random variables with common distribution function 𝐹 and mean
𝜇 < ∞, we also assume that 𝐹 is continuous for the simplicity of the following analysis. Here, the
independence between {𝑌𝑖}𝑖≥1 and 𝑁 is assumed. The constant 𝑢 denotes the initial surplus of the
insurance company and 𝑐 is the premium rate. Note that in the study with capital injection, no positive
loading condition is needed. Additionally, we use P𝑢 and E𝑢 to denote the probability measure and
expectation, respectively, when the initial surplus is 𝑢; and for notation simplicity, we suppress the
subscript and write as P and E, respectively, when 𝑢 = 0. In addition, we denote almost surely and
almost everywhere with a.s. and a.e. throughout the paper.

We assume that the insurance company can pay dividend to its shareholders at any time before ruin,
and on the other hand, up to ruin time, shareholders can inject capital to the current surplus of the
company as well. Let (𝐿𝑑𝑡 )𝑡≥0 be the accumulated dividend process for any 𝑑 ∈ D, where 𝑑 is the
implemented dividend strategy and D is the set of all admissible dividend strategies (see Definition 2.1
in the following); and let (𝐶𝑣

𝑡 )𝑡≥0 denotes the accumulated capital injections until time 𝑡, which is given
by

𝐶𝑣
𝑡 =

∞∑
𝑖=1
𝜁𝑖1{𝜔𝑖<𝑡 }, 𝑡 ≥ 0, (2.1)

where {𝜔𝑖}𝑖≥1 is a sequence of random time points at which capital injections are made and {𝜁𝑖}𝑖≥1
are the injected capital amounts. The superscript 𝑣 = (𝜔1, 𝜔2, . . . ; 𝜁1, 𝜁2, . . .) ∈ V denotes the capital
injection strategy, where V is the corresponding admissible set. We further assume that there exists
fixed and proportional transaction costs associated with each capital injection. Then, we use 𝜃 = (𝑑, 𝑣)
to denote a combined dividend and capital injection strategy with Θ be the corresponding admissible
set. Hence, the controlled risk process𝑈 𝜃

𝑡 at time 𝑡 is given by

𝑈 𝜃
𝑡 = 𝑈𝑡 − 𝐿𝑑𝑡 + 𝐶𝑣

𝑡 , 𝑡 ≥ 0.

Let 𝜏𝜃 := inf{𝑡 > 0,𝑈 𝜃
𝑡 < 0} denotes the time of ruin under such controlled risk process, where

inf ∅ = ∞ is assumed as usual. The following definition of the admissible dividend and capital injection
strategy is borrowed from Xu and Woo [18].

Definition 2.1. A strategy 𝜃 = (𝑑, 𝑣) ∈ Θ is said to be admissible if:

(i) {𝐿𝑑𝑡 }𝑡≥0 is a non-decreasing, F-adapted càglàd process with 𝐿𝑑0 = 0, such that dividend payment
will not cause ruin or immediate capital injection.

(ii) {𝜔𝑖}𝑖≥1 is a sequence of stopping times with respect to filtration F, and 0 ≤ 𝜔1 < 𝜔2 < · · · a.s.;
(iii) 𝜁𝑖 is non-negative and measurable with respect to F𝜔𝑖

for 𝑖 = 1, 2, . . .;
(iv) P(lim𝑖→∞ 𝜔𝑖 ≤ 𝑇) = 0 for all 𝑇 ≥ 0.

The càglàd assumptions for 𝐿𝑑𝑡 and 𝐶𝑣
𝑡 imply that a jump of 𝑈𝑤

𝑡 −𝑈𝑤
𝑡− is solely due to a claim (or

the jump of the uncontrolled process 𝑈), and a jump 𝑈𝑤
𝑡+ −𝑈𝑤

𝑡 is due to lump sum dividend payment
or capital injection but not simultaneously.

We further consider a penalty function 𝜋 : (−∞, 0) → (−∞, 0], which indicates the penalty paid by
insurance company when ruin occurs. We are interested in the affine penalty case, where 𝜋(𝑦) = 𝐾 +Φ𝑦
with Φ ∈ (0, 1] and 𝐾 < 0 (see e.g. [18]). Note that Φ ∈ (0, 1] means that the deficit at ruin should be
paid at least partial by shareholders, and 𝐾 < 0 means that early ruin is penalized. Meanwhile, for 𝑘 > 0
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and 𝜙 ≥ 1, we use 𝑘 and 𝜙 − 1 to denote the fixed and proportional transactions costs associated with
each capital injection payment. Then, the performance function under an admissible strategy 𝜃 ∈ Θ is
given by

𝑉𝜃 (𝑥) = E𝑥
[∫ 𝜏 𝜃

0
𝑒−𝛿𝑡 d𝐿𝑑𝑡 −

∞∑
𝑖=1
𝑒−𝛿𝜔𝑖 (𝑘 + 𝜙𝜁𝑖)1{𝜔𝑖<𝜏 𝜃 }

+ 𝑒−𝛿𝜏 𝜃

𝜋(𝑈 𝜃
𝜏 𝜃 )1{𝜏 𝜃<∞}

]
, 𝑥 ∈ [0,∞), (2.2)

where 𝛿 is the discounting factor. The corresponding value function is then defined as

𝑉 (𝑥) = sup
𝜃 ∈Θ

𝑉𝜃 (𝑥), 𝑥 ∈ [0,∞). (2.3)

In this paper, we aim at studying the value function and obtain the optimal strategy 𝜃∗ (if exists), such
that 𝑉𝜃∗ (𝑥) = 𝑉 (𝑥) for all 𝑥 ≥ 0. Note that, since ruin will occur immediately when surplus is below
zero, then we directly have 𝑉𝜃 (𝑥) = 𝑉 (𝑥) = 𝜋(𝑥) for any 𝜃 ∈ Θ and 𝑥 < 0. Then, we extend the value
function 𝑉 to be defined on R, such that 𝑉 (𝑥) = 𝜋(𝑥) for 𝑥 ∈ (−∞, 0).

To proceed, we provide some preliminaries on certain characteristics of the value function in the
following lemmas.

Lemma 2.1. The extended value function 𝑉 : R→ R is increasing and locally Lipschitz in [0,∞) and
upper semi-continuous at 0 with

𝑥 − 𝑦 ≤ 𝑉 (𝑥) −𝑉 (𝑦) ≤ 𝜙(𝑥 − 𝑦) + 𝑘, 0 ≤ 𝑦 < 𝑥, (2.4)

and admits the following linear upper and lower bounds for 𝑥 ≥ 0,

𝑥 + 𝑐 + 𝜆(𝐾 −Φ𝜇)
𝜆 + 𝛿 ≤ 𝑉 (𝑥) ≤ 𝑥 + 𝑐

𝛿
. (2.5)

Proof. For any 0 ≤ 𝑦 < 𝑥, we consider an 𝜖-optimal strategy 𝜃 𝜖 for initial surplus 𝑥 such that
𝑉 (𝑥) ≤ 𝑉𝜃𝜖 (𝑥) + 𝜖 ; then for initial surplus 𝑦, consider the admissible strategy 𝜃𝑦 with initial capital
injection 𝑥 − 𝑦 followed by applying strategy 𝜃 𝜖 ; hence we obtain

𝑉 (𝑦) ≥ 𝑉𝜃𝑦 = 𝑉𝜃𝜖 (𝑥) − 𝜙(𝑥 − 𝑦) − 𝑘 ≥ 𝑉 (𝑥) − 𝜙(𝑥 − 𝑦) − 𝑘 − 𝜖 .

For the other inequality in (2.4), the proof is similar by consider an 𝜖-optimal strategy for initial surplus
𝑦 and an admissible strategy for initial surplus 𝑦 with immediate dividend payment 𝑥− 𝑦. The increasing
property is a direct consequence of (2.4). In addition, for 𝑥 ≥ 0, we consider a special dividend strategy
𝑑 where the initial surplus is paid as lump sum dividend at time zero and premium income are paid
continuously as dividend for all 𝑡 ≥ 0, i.e. 𝐿𝑑𝑡 = 𝑥 + 𝑐𝑡; hence, we obtain an upper bound

∫ ∞
0 𝑒−𝛿𝑡d𝐿𝑑𝑡

for the performance function under any admissible strategy in Θ, that is∫ ∞

0
𝑒−𝛿𝑡 d𝐿𝑑𝑡 = 𝑥 + 𝑐

𝛿
< ∞,

which is exactly the right-hand side of (2.5). The linear lower bound can be obtained by considering the
admissible strategy 𝜃 with dividend strategy follows 𝐿𝑑𝑡 = 𝑥 + 𝑐𝑡 and no capital injection, then ruin will
occur at the arrival time of the first claim, hence

𝑉 (𝑥) ≥ 𝑉𝜃 (𝑥) = E𝑥
[∫ 𝑇1

0
𝑒−𝛿𝑡 d𝐿𝑑𝑡 + 𝑒−𝛿𝑇1𝜋(−𝑌1)

]
= 𝑥 + 𝑐 + 𝜆(𝐾 −Φ𝜇)

𝜆 + 𝛿 ,
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where 𝑇1 and 𝑌1 are the arrival time and amount of the first claim, respectively; 𝐾 < 0 and Φ ∈ [0, 1]
are the aforementioned parameters in the penalty function 𝜋. To prove the locally Lipschitz continuity,
we consider initial surplus 𝑦 ≥ 0 and any 𝜖 > 0, let 𝜃𝑥 denotes the 𝜖-optimal strategy for any 𝑥 > 𝑦,
i.e. 𝑉𝜃𝑥 (𝑥) ≥ 𝑉 (𝑥) − 𝜖 . Then, consider another strategy 𝜃𝑦 with initial surplus 𝑦 that pays no dividends
and no capital injections if 𝑈 𝜃𝑦

𝑡 < 𝑥 and follows strategy 𝜃𝑥 if 𝑈 𝜃𝑦
𝑡 reaches 𝑥; then, 𝜃𝑦 is obviously an

admissible strategy. Hence, we have

𝑉 (𝑦) ≥ 𝑉𝜃𝑦 (𝑦) ≥ 𝑉𝜃𝑥 (𝑥)𝑒−(𝜆+𝛿) ( (𝑥−𝑦)/𝑐) ≥ (𝑉 (𝑥) − 𝜖)𝑒−(𝜆+𝛿) ( (𝑥−𝑦)/𝑐) ,

then, we obtain
𝑉 (𝑥) −𝑉 (𝑦) ≤ (𝑒 (𝜆+𝛿) ( (𝑥−𝑦)/𝑐) − 1)𝑉 (𝑥).

Finally, the upper semi-continuity at 0 can be derived by including the take-the-money-and-run strategy
at 0 into our admissible set, which is reasonable since it should have a higher expected return to run
the business rather than simply declare to ruin when surplus is at 0 (see e.g. [18]). Hence, we have
𝑉 (0) ≥ 𝜋(0). �

We further introduce the capital injection operator M as follows:

M𝜑(𝑥) := sup
𝑦≥0

{𝜑(𝑥 + 𝑦) − (𝑘 + 𝜙𝑦)}, 𝑥 ≥ 0, (2.6)

with 𝑘 and 𝜙 − 1 be the fixed and proportional transaction costs associated with each capital injection.
Obviously, M𝑉 (𝑥) indicates the value function after an immediate capital injection. Below two lemmas
illustrate some useful properties of the operator M.

Lemma 2.2. Let 𝜑(𝑥) be an increasing, locally Lipschitz, and upper bounded by linear function 𝑥 + 𝑚
for all 𝑥 ∈ [0,∞) and a constant 𝑚 > 0. Then, M𝜑(𝑥), as a function of 𝑥 defined in (2.6), is increasing,
Lipschitz continuous and linearly bounded.

Proof. We only prove that M𝜑(𝑥) is linearly bounded here, for the proof of increasing, Lipschitz
continuous can refer to Xu and Woo [18] Lemma 5.1. Note that,

M𝜑(𝑥) = sup
𝑦≥0

{𝜑(𝑥 + 𝑦) − (𝑘 + 𝜙𝑦)}

≤ sup
𝑦≥0

{𝑥 + 𝑦 + 𝑚 − (𝑘 + 𝜙𝑦)}

= 𝑥 + 𝑚 − 𝑘 + sup
𝑦≥0

{(1 − 𝜙)𝑦} = 𝑥 + 𝑚 − 𝑘,

where the last equation holds since 𝜙 ≥ 1. �

Lemma 2.3. (i) The capital injection operator M is convex such that for ℎ ∈ [0, 1],

M(ℎ 𝑓 + (1 − ℎ)𝑔) ≤ ℎM 𝑓 + (1 − ℎ)M𝑔.

(ii) For ℎ > 0,
M(−ℎ 𝑓 + (1 + ℎ)𝑔) ≥ −ℎM 𝑓 + (1 + ℎ)M𝑔,

given that the right-hand side is well-defined.

Proof. The proof follows easily from the sup manipulations (see e.g. [15]), i.e.

sup
𝑥
( 𝑓 (𝑥) + 𝑔(𝑥)) ≤ sup

𝑥
( 𝑓 (𝑥)) + sup

𝑥
(𝑔(𝑥)),
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and
sup
𝑥
( 𝑓 (𝑥) + 𝑔(𝑥)) ≥ sup

𝑥
( 𝑓 (𝑥)) + inf

𝑥
(𝑔(𝑥)).

Hence, for any 𝑥 ≥ 0,

M(ℎ 𝑓 + (1 − ℎ)𝑔)(𝑥) = sup
𝑦≥0

{ℎ 𝑓 (𝑥 + 𝑦) + (1 − ℎ)𝑔(𝑥 + 𝑦) − 𝜙𝑦 − 𝑘}

= sup
𝑦≥0

{ℎ( 𝑓 (𝑥 + 𝑦) − 𝜙𝑦 − 𝑘) + (1 − ℎ)(𝑔(𝑥 + 𝑦) − 𝜙𝑦 − 𝑘)}

≤ ℎ sup
𝑦≥0

{ 𝑓 (𝑥 + 𝑦) − 𝜙𝑦 − 𝑘} + (1 − ℎ) sup
𝑦≥0

{𝑔(𝑥 + 𝑦) − 𝜙𝑦 − 𝑘}

= ℎM 𝑓 (𝑥) + (1 − ℎ)M𝑔(𝑥).

Similarly,

M(−ℎ 𝑓 + (1 + ℎ)𝑔) = sup
𝑦≥0

{−ℎ 𝑓 (𝑥 + 𝑦) + (1 + ℎ)𝑔(𝑥 + 𝑦) − 𝜙𝑦 − 𝑘}

= sup
𝑦≥0

{−ℎ( 𝑓 (𝑥 + 𝑦) − 𝜙𝑦 − 𝑘) + (1 + ℎ)(𝑔(𝑥 + 𝑦) − 𝜙𝑦 − 𝑘)}

≥ −ℎ sup
𝑦≥0

{ 𝑓 (𝑥 + 𝑦) − 𝜙𝑦 − 𝑘} + (1 + ℎ) sup
𝑦≥0

{𝑔(𝑥 + 𝑦) − 𝜙𝑦 − 𝑘}

= −ℎM 𝑓 (𝑥) + (1 + ℎ)M𝑔(𝑥).

�

3. HJBQVI and viscosity solution

In this section, we first analyze the asymptotic relationships between the value function (𝑉) with singular
dividend payments in this paper and the one with bounded dividend intensity (𝑉𝑏, where 𝑏 denote the
ceiling dividend rate) studied in Xu and Woo [18].

Proposition 3.1. Let 𝑉 be the value function given in (2.3), and let (𝑉𝑛)𝑛∈N denotes the sequence of
value functions analogy to (2.3) but with absolutely continuous dividend density bounded by ceiling
dividend rate 𝑛. Then, we have

lim
𝑛→∞

𝑉𝑛 (𝑥) = 𝑉 (𝑥), for 𝑥 ∈ [0,∞), (3.1)

lim
𝑛→∞

M𝑉𝑛 (𝑥) = M𝑉 (𝑥), for 𝑥 ∈ [0,∞). (3.2)

Proof. For the proof of (3.1), we follow the analysis in Schmidli [14] Lemma 2.38. Note that we work
under the assumptions that dividend payments and capital injections cannot occur simultaneously, and
any dividend payment should not result in capital injection and vice versa. Since Θ𝑟

1 ⊂ Θ𝑟
2 ⊂ Θ, where

Θ𝑟
1 and Θ𝑟

2 are the corresponding sets of admissible strategies with ceiling dividend rates 𝑛1 and 𝑛2
with 𝑛1 < 𝑛2, respectively (see e.g. [18]). Then, one has 𝑉𝑛 (𝑥) is an increasing sequence of 𝑛 and
lim sup𝑛→∞𝑉

𝑛 (𝑥) ≤ 𝑉 (𝑥). Next, to show that 𝑉 (𝑥) ≤ lim inf𝑛→∞𝑉𝑛 (𝑥), we consider, for each 𝜖 > 0, a
dividend strategy 𝑑 𝑗 with pure jump of size that is greater or equal to 𝜖 , and combine with an admissible
capital injection strategy 𝑣 such that 𝑉(𝑑 𝑗 ,𝑣) (𝑥) ≥ 𝑉 (𝑥) − 2𝜖 . On the other hand, we construct another
dividend strategy 𝑑 𝑗 with absolutely continuous dividend density that is bounded by 𝑛. To be specific,
under strategy 𝑑 𝑗 , dividends will start to be paid at rate 𝑛 when a lump sum dividend payment occurs
in strategy 𝑑 𝑗 until the accumulated amount of dividend meet with the lump sum in strategy 𝑑 𝑗 . Hence,
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with sufficiently large 𝑛, the difference between the performance function of these two strategies is
bounded by 𝜖 . Therefore, we have 𝑉 (𝑥) − 𝑉(𝑑,𝑣) (𝑥) ≤ 3𝜖 . Then, by letting 𝜖 → 0, we obtain that
𝑉 (𝑥) ≤ lim inf𝑛→∞𝑉𝑛 (𝑥). Then, (3.1) holds true.

For (3.2), since 𝑉𝑛 (𝑥) is increasing in 𝑛 and absolutely continuous with respective to 𝑥, then there
must exist 𝑛∗ > 𝑛 and 𝑦∗ ≥ 0 such that

sup
𝑦≥0

{𝑉𝑛 (𝑥 + 𝑦) − (𝑘 + 𝜙𝑦)} ≤ 𝑉𝑛∗ (𝑥 + 𝑦∗) − (𝑘 + 𝜙𝑦∗),

let 𝑛, 𝑛∗ → ∞, one arrives at

lim
𝑛→∞

sup
𝑦≥0

{𝑉𝑛 (𝑥 + 𝑦) − (𝑘 + 𝜙𝑦)}

≤ 𝑉 (𝑥 + 𝑦∗) − (𝑘 + 𝜙𝑦∗) ≤ sup
𝑦≥0

{𝑉 (𝑥 + 𝑦) − (𝑘 + 𝜙𝑦)}.

Meanwhile, for each 𝑦′ ≥ 0,

sup
𝑦≥0

{𝑉𝑛 (𝑥 + 𝑦) − (𝑘 + 𝜙𝑦)} ≥ 𝑉𝑛 (𝑥 + 𝑦′) − (𝑘 + 𝜙𝑦′)

then, let 𝑛→ ∞, one arrives at

lim
𝑛→∞

sup
𝑦≥0

{𝑉𝑛 (𝑥 + 𝑦) − (𝑘 + 𝜙𝑦)} ≥ 𝑉 (𝑥 + 𝑦′) − (𝑘 + 𝜙𝑦′),

since 𝑦′ is arbitrary, one has

lim
𝑛→∞

sup
𝑦≥0

{𝑉𝑛 (𝑥 + 𝑦) − (𝑘 + 𝜙𝑦)} ≥ sup
𝑦≥0

{𝑉 (𝑥 + 𝑦) − (𝑘 + 𝜙𝑦)}.

Then, one completes the proof. �

According to Xu and Woo [18], it is obvious that the HJBQVI associated with the present optimal
singular dividend and capital injection problem with affined penalty payment at ruin has the following
form,

HJBQVI :

{
max{(A𝜋 − 𝛿)𝜑(𝑥), 1 − 𝜑′(𝑥),M𝜑(𝑥) − 𝜑(𝑥)} = 0, 𝑥 ≥ 0,
𝜑(𝑥) = 𝜋(𝑥), 𝑥 < 0,

(3.3)

where the operator A𝜋 is defined for any continuously differentiable function ℎ on [0,∞):

A𝜋ℎ(𝑥) = 𝑐ℎ′(𝑥) − 𝜆ℎ(𝑥) + 𝜆
∫ 𝑥

0
ℎ(𝑥 − 𝑦) d𝐹 (𝑦) + 𝜆

∫ ∞

𝑥

𝜋(𝑥 − 𝑦) d𝐹 (𝑦). (3.4)

Since the value function given in (2.3) is, in general, not continuously differentiable on [0,∞), we shall
proceed our analysis with the method of viscosity theory (see [5]). The following is the definition of
viscosity solution fitting to our HJBQVI given in (3.3).

Definition 3.1 (Viscosity Solution). A function 𝜑 is a viscosity subsolution (supersolution) of (3.3) at
𝑥 ∈ [0,∞) if it is locally Lipschitz and for any continuously differentiable function ℎ on (0,∞) with
𝜑 ≤ (≥)ℎ and 𝜑(𝑥) = ℎ(𝑥), then

max{(A𝜋 − 𝛿)ℎ(𝑥), 1 − ℎ′(𝑥),Mℎ(𝑥) − ℎ(𝑥)} ≥ (≤) 0.

We say 𝜑 is a viscosity solution of (3.3) if it is both a viscosity subsolution and supersolution of (3.3) at
any 𝑥 ∈ [0,∞), and 𝜑(𝑥) = 𝜋(𝑥) for 𝑥 < 0.
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Before we move to next proposition, we introduce a functional class LB 𝜋 (R), such that for any
𝑓 ∈ LB 𝜋 (R), the following conditions are satisfied:

(i) 𝑓 : R→ R is locally Lipschitz continuous on [0,∞).
(ii) 𝑓 (𝑥) = 𝜋(𝑥) for 𝑥 < 0.
(iii) For any 0 ≤ 𝑦 < 𝑥, there exists constants 𝑘 > 0 and 𝜙 ≥ 1 such that

𝑥 − 𝑦 ≤ 𝑓 (𝑥) − 𝑓 (𝑦) ≤ 𝑘 + 𝜙(𝑥 − 𝑦).
(iv) There exists constant 𝑙 > 0 such that 𝑓 (𝑥) ≤ 𝑥 + 𝑙 for all 𝑥 ∈ [0,∞).
It is obvious that the value function belongs to this class.

Proposition 3.2. The value function 𝑉 (𝑥) defined in (2.3) is a viscosity solution of (3.3).

Proof. Note that according to Lemma 5.2 in Xu and Woo [18] and Proposition 3.1, one directly has
𝑉 (𝑥) ≥ M𝑉 (𝑥) for 𝑥 ≥ 0. And for 𝑥 < 0, by definition of the value function, 𝑉 (𝑥) = 𝜋(𝑥).
(i) 𝑉 is subsolution: For any 𝑥 ∈ [0,∞) and ℎ ∈ 𝐶1(0,∞) such that ℎ ≥ 𝑉 on [0,∞) and

ℎ(𝑥) = 𝑉 (𝑥), we need to show that

max{(A𝜋 − 𝛿)ℎ(𝑥), 1 − ℎ′(𝑥),Mℎ(𝑥) − ℎ(𝑥)} ≥ 0. (3.5)

When ℎ(𝑥) = 𝑉 (𝑥) = M𝑉 (𝑥) = Mℎ(𝑥), (3.5) holds trivially, hence we focus on the case
𝑉 (𝑥) >M𝑉 (𝑥). If 1 − ℎ′(𝑥) ≥ 0, then (3.5) holds true obviously. Finally, if 1 − ℎ′(𝑥) < 0, we
consider a sequence 𝑑𝑛 ↑ ∞ as 𝑛→ ∞, which corresponds to the ceiling rate for the value function
𝑉𝑑𝑛 with bounded dividend density Xu and Woo [18] Eq. (3.1), such that there exists an associated
sequence of functions ℎ𝑛 ∈ 𝐶1(0,∞) with ℎ𝑛 converges to ℎ uniformly on compact sets and
ℎ′𝑛 (𝑥) → ℎ′(𝑥) when 𝑛→ ∞, and ℎ𝑛 ≥ 𝑉𝑑𝑛 on [0,∞) with ℎ𝑛 (𝑥) = 𝑉𝑑𝑛 (𝑥). Then according to Xu
and Woo [18] Proposition 5.1 and Proposition 3.1, for sufficiently large 𝑛, we have
𝑉𝑑𝑛 (𝑥) >M𝑉𝑑𝑛 (𝑥), then one must have,

sup
𝑑∈[0,𝑑𝑛 ]

{(A𝜋 − 𝛿)ℎ𝑛 (𝑥) + (1 − ℎ′𝑛 (𝑥))𝑑} ≥ 0. (3.6)

Since 1− ℎ′(𝑥) < 0, there exists a sufficiently large �̄� such that for all 𝑛 > �̄�, one has 1− ℎ′𝑛 (𝑥) < 0,
and (3.6) becomes (A𝜋 − 𝛿)ℎ𝑛 (𝑥) ≥ 0, then, by letting 𝑛→ ∞, one arrives at (A𝜋 − 𝛿)ℎ(𝑥) ≥ 0.
Hence, (3.5) holds.

(ii) 𝑉 is supsolution: For any 𝑥 ∈ [0,∞), we have 𝑉 (𝑥) ≥ M𝑉 (𝑥). Then, it remains to show that for
any ℎ ∈ 𝐶1(0,∞) with ℎ ≤ 𝑉 on [0,∞) and ℎ(𝑥) = 𝑉 (𝑥), one has

max{(A𝜋 − 𝛿)ℎ(𝑥), 1 − ℎ′(𝑥)} ≤ 0.

Similarly, we consider a sequence 𝑑𝑛 ↑ ∞ as 𝑛→ ∞ such that there exists an associated sequence
of test function ℎ𝑛 ∈ 𝐶1(0,∞) with ℎ𝑛 ≤ 𝑉𝑑𝑛 on [0,∞), ℎ𝑛 (𝑥) = 𝑉𝑑𝑛 (𝑥), and ℎ𝑛 converges
uniformly to ℎ on compact sets, ℎ′𝑛 (𝑥) → ℎ′(𝑥) when 𝑛→ ∞. Then, from Xu and Woo [18]
Proposition 5.1, one has

sup
𝑑∈[0,𝑑𝑛 ]

{(A𝜋 − 𝛿)ℎ𝑛 (𝑥) + (1 − ℎ′𝑛 (𝑥))𝑑} ≤ 0, for all 𝑛. (3.7)

Then, one has 1 − ℎ′𝑛 (𝑥) ≤ 0 for sufficiently large 𝑛, therefore 1 − ℎ′(𝑥) ≤ 0. In addition, for
sufficiently large 𝑛 when 1 − ℎ′𝑛 (𝑥) ≤ 0, (3.7) reduces to (A𝜋 − 𝛿)ℎ𝑛 (𝑥) ≤ 0, and by letting
𝑛→ ∞, one has (A𝜋 − 𝛿)ℎ(𝑥) ≤ 0. Then, we complete the proof.

�
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4. Characterization of the value function

In this section, we further characterize the value function as a unique viscosity solution of (3.3) that
belongs to the functional class LB 𝜋 (R). In particular, we first show in the following proposition that 𝑉
is the smallest viscosity supersolution of (3.3) that belongs to LB 𝜋 (R).

Proposition 4.1. The value function 𝑉 defined in (2.3) is the smallest viscosity supersolution of the
HJBQVI (3.3).

Proof. Let ℎ̄ ∈ LB 𝜋 (R) be a viscosity supersolution of (3.3). According to Lemma A.1, there exists
a sequence of continuously differentiable functions ℎ𝑛 on R satisfy the condition (iv) in LB 𝜋 (R) with
ℎ𝑛 (𝑥) = 𝜋(𝑥) for 𝑥 < 0, such that ℎ𝑛 ≤ ℎ̄ on [0,∞), and when ℎ𝑛 (𝑥) = ℎ̄(𝑥) we have (A𝜋−𝛿)ℎ𝑛 (𝑥) ≤ 0
and ℎ′𝑛 (𝑥) ≥ 1 for 𝑥 ≥ 0. In addition, ℎ𝑛 converges uniformly to ℎ̄ on compact sets and ℎ′𝑛 (𝑥) converges
to ℎ̄′(𝑥) a.e. Then, let us consider the controlled process 𝑈 𝜃 with an arbitrary admissible strategy
𝜃 = (𝑑, 𝑣). Denote the cumulative dividend process as

𝐿𝑑𝑡 =
∫ 𝑡

0
d�̃�𝑑𝑡 +

∑
𝐿𝑑
𝑠+≠𝐿𝑑

𝑠

(𝐿𝑑𝑠+ − 𝐿𝑑𝑠 ),

where �̃�𝑑𝑡 denotes the continuous part of the dividend process, and 𝐿𝑑𝑠+ − 𝐿𝑑𝑠 denotes the cor-
responding jump components. In addition, let capital injection strategy be an impulse strategy
𝑣 = (𝜔1, 𝜔2, . . . ; 𝜁1, 𝜁2, . . .). We apply Itô’s formula within the interval [𝜔+

𝑖 ∧ 𝜏𝜃 , 𝜔𝑖+1 ∧ 𝜏𝜃 ), then
we arrive at

𝑒−𝛿 (𝜔𝑖+1∧𝜏 𝜃 )ℎ𝑛 (𝑋 𝜃
𝜔𝑖+1∧𝜏 𝜃 ) − 𝑒−𝛿 (𝜔+

𝑖 ∧𝜏 𝜃 )ℎ𝑛 (𝑋 𝜃
𝜔+

𝑖 ∧𝜏 𝜃 )

= 𝑐
∫ 𝜔𝑖+1∧𝜏 𝜃

𝜔+
𝑖 ∧𝜏 𝜃

𝑒−𝛿𝑠ℎ′𝑛 (𝑋 𝜃
𝑠− ) d𝑠 −

∫ 𝜔𝑖+1∧𝜏 𝜃

𝜔+
𝑖 ∧𝜏 𝜃

𝑒−𝛿𝑠ℎ′𝑛 (𝑋 𝜃
𝑠− ) d�̃�𝑑𝑠 − 𝛿

∫ 𝜔𝑖+1∧𝜏 𝜃

𝜔+
𝑖 ∧𝜏 𝜃

𝑒−𝛿𝑠ℎ𝑛 (𝑋 𝜃
𝑠− ) d𝑠

+
∑

𝑋 𝜃
𝑠 ≠𝑋

𝜃
𝑠−

𝑠∈(𝜔+
𝑖 ∧𝜏 𝜃 ,𝜔𝑖+1∧𝜏 𝜃 ]

𝑒−𝛿𝑠 (ℎ𝑛 (𝑋 𝜃
𝑠 ) − ℎ𝑛 (𝑋 𝜃

𝑠− ))

+
∑

𝑋 𝜃
𝑠+≠𝑋

𝜃
𝑠

𝑠∈[𝜔+
𝑖 ∧𝜏 𝜃 ,𝜔𝑖+1∧𝜏 𝜃 )

𝑒−𝛿𝑠 (ℎ𝑛 (𝑋 𝜃
𝑠+ ) − ℎ𝑛 (𝑋 𝜃

𝑠 )).

Note that within the interval [𝜔+
𝑖 ∧ 𝜏𝜃 , 𝜔𝑖+1 ∧ 𝜏𝜃 ), the jumps of 𝑋 𝜃

𝑠+ − 𝑋 𝜃
𝑠 is equal to the jumps of 𝐿𝑑𝑠 ,

that is 𝑋 𝜃
𝑠+ − 𝑋 𝜃

𝑠 = −(𝐿𝑑𝑠+ − 𝐿𝑑𝑠 ), then with the fact that ℎ′𝑛 (·) ≥ 1, we have

−
∫ 𝜔𝑖+1∧𝜏 𝜃

𝜔+
𝑖 ∧𝜏 𝜃

𝑒−𝛿𝑠ℎ′𝑛 (𝑋 𝜃
𝑠− ) d�̃�𝑑𝑠 +

∑
𝑋 𝜃
𝑠+≠𝑋

𝜃
𝑠

𝑠∈[𝜔+
𝑖 ∧𝜏 𝜃 ,𝜔𝑖+1∧𝜏 𝜃 )

𝑒−𝛿𝑠 (ℎ𝑛 (𝑋 𝜃
𝑠+) − ℎ𝑛 (𝑋 𝜃

𝑠 ))

= −
∫ 𝜔𝑖+1∧𝜏 𝜃

𝜔+
𝑖 ∧𝜏 𝜃

𝑒−𝛿𝑠ℎ′𝑛 (𝑋 𝜃
𝑠− ) d�̃�𝑑𝑠 −

∑
𝐿𝑢
𝑠+≠𝐿

𝑑
𝑠

𝑠∈[𝜔+
𝑖 ∧𝜏 𝜃 ,𝜔𝑖+1∧𝜏 𝜃 )

𝑒−𝛿𝑠
(∫ 𝐿𝑑

𝑠+−𝐿𝑑
𝑠

0
ℎ′𝑛 (𝑋 𝜃

𝑠− − 𝑦) d𝑦

)

≤ −
∫ 𝜔𝑖+1∧𝜏 𝜃

𝜔+
𝑖 ∧𝜏 𝜃

𝑒−𝛿𝑠 d�̃�𝑑𝑠 −
∑

𝐿𝑑
𝑠+≠𝐿

𝑑
𝑠

𝑠∈[𝜔+
𝑖 ∧𝜏 𝜃 ,𝜔𝑖+1∧𝜏 𝜃 )

𝑒−𝛿𝑠 (𝐿𝑑𝑠+ − 𝐿𝑑𝑠 )

= −
∫ 𝜔𝑖+1∧𝜏 𝜃

𝜔+
𝑖 ∧𝜏 𝜃

𝑒−𝛿𝑠 d𝐿𝑑𝑠 . (4.1)
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On the other hand, for the jumps 𝑋 𝜃
𝑠 − 𝑋 𝜃

𝑠− which only related to the arrival of claims, we define

𝑀𝑡 =
∑

𝑋 𝜃
𝑠 ≠𝑋

𝜃
𝑠−

𝑠≤𝑡

𝑒−𝛿𝑠 (ℎ𝑛 (𝑋 𝜃
𝑠 ) − ℎ𝑛 (𝑋 𝜃

𝑠−))

− 𝜆
∫ 𝑡

0
𝑒−𝛿𝑠

∫ ∞

0
(ℎ𝑛 (𝑋 𝜃

𝑠− − 𝑦) − ℎ𝑛 (𝑋 𝜃
𝑠 )) d𝐹 (𝑦) d𝑠,

which is obviously a zero mean martingale; then, one can obtain that

𝑒−𝛿 (𝜔𝑖+1∧𝜏 𝜃 )ℎ𝑛 (𝑋 𝜃
𝜔𝑖+1∧𝜏 𝜃 ) − 𝑒−𝛿 (𝜔+

𝑖 ∧𝜏 𝜃 )ℎ𝑛 (𝑋 𝜃
𝜔+

𝑖 ∧𝜏 𝜃 )

≤ −
∫ 𝜔𝑖+1∧𝜏 𝜃

𝜔+
𝑖 ∧𝜏 𝜃

𝑒−𝛿𝑠 d𝐿𝑑𝑠 +
∫ 𝜔𝑖+1∧𝜏 𝜃

𝜔+
𝑖 ∧𝜏 𝜃

𝑒−𝛿𝑠 (A − 𝛿)ℎ𝑛 (𝑋 𝜃
𝑠−) d𝑠 + (𝑀𝜔𝑖+1∧𝜏 𝜃 − 𝑀𝜔+

𝑖 ∧𝜏 𝜃 ),

where

(A − 𝛿)ℎ𝑛 (𝑥) = 𝑐ℎ′𝑛 (𝑥) − (𝜆 + 𝛿)ℎ𝑛 (𝑥) + 𝜆
∫ ∞

0
ℎ𝑛 (𝑥 − 𝑦) d𝐹 (𝑦)

= 𝑐ℎ′𝑛 (𝑥) − (𝜆 + 𝛿)ℎ𝑛 (𝑥) + 𝜆
∫ 𝑥

0
ℎ𝑛 (𝑥 − 𝑦) d𝐹 (𝑦) + 𝜆

∫ ∞

𝑥

𝜋(𝑥 − 𝑦) d𝐹 (𝑦)

= (A𝜋 − 𝛿)ℎ𝑛 (𝑥).

By taking expectation on both sides of the above inequality, one arrives at

E𝑥 [𝑒−𝛿 (𝜔𝑖+1∧𝜏 𝜃 )ℎ𝑛 (𝑋 𝜃
𝜔𝑖+1∧𝜏 𝜃 )] − E𝑥 [𝑒−𝛿 (𝜔+

𝑖 ∧𝜏 𝜃 )ℎ𝑛 (𝑋 𝜃
𝜔+

𝑖 ∧𝜏 𝜃 )]

≤ −E𝑥
[∫ 𝜔𝑖+1∧𝜏 𝜃

𝜔+
𝑖 ∧𝜏 𝜃

𝑒−𝛿𝑠 d𝐿𝑑𝑠

]
+ E𝑥

[∫ 𝜔𝑖+1∧𝜏 𝜃

𝜔+
𝑖 ∧𝜏 𝜃

𝑒−𝛿𝑠 (A𝜋 − 𝛿)ℎ𝑛 (𝑋 𝜃
𝑠−) d𝑠

]
. (4.2)

Summing both sides of (4.2) from 𝑖 = 0 to 𝑖 = 𝑚, it follows that

ℎ𝑛 (𝑥) +
𝑚∑
𝑖=1
E𝑥 [𝑒−𝛿 (𝜔𝑖∧𝜏 𝜃 ) (ℎ𝑛 (𝑋 𝜃

𝜔+
𝑖 ∧𝜏 𝜃 ) − ℎ𝑛 (𝑋 𝜃

𝜔𝑖∧𝜏 𝜃 ))] − E𝑥 [𝑒−𝛿 (𝜔𝑚+1∧𝜏 𝜃 )ℎ𝑛 (𝑋 𝜃
𝜔𝑚+1∧𝜏 𝜃 )]

≥ E𝑥
[∫ 𝜔𝑚+1∧𝜏 𝜃

0
𝑒−𝛿𝑠 d𝐿𝑑𝑠

]
− E𝑥

[∫ 𝜔𝑚+1∧𝜏 𝜃

0
𝑒−𝛿𝑠 (A𝜋 − 𝛿)ℎ𝑛 (𝑋 𝜃

𝑠−) d𝑠

]
. (4.3)

Note that when there is a capital injection before 𝜏𝜃 , the following equation holds

𝑋 𝜃
𝜔+

𝑖
= 𝑋 𝜃

𝜔𝑖
+ 𝜁𝑖 . (4.4)

Hence when 𝜔𝑖 < 𝜏
𝜃 , from (4.4) and (2.6) one has

ℎ𝑛 (𝑋 𝜃
𝜔+

𝑖
) = ℎ𝑛 (𝑋 𝜃

𝜔𝑖
+ 𝜁𝑖) ≤ Mℎ𝑛

(
𝑋 𝜃
𝜔𝑖

) + 𝑘 + 𝜙𝜁𝑖 ,
which yields

ℎ𝑛 (𝑋 𝜃
𝜔+

𝑖
) − ℎ𝑛 (𝑋 𝜃

𝜔𝑖
) ≤ Mℎ𝑛 (𝑋 𝜃

𝜔𝑖
) − ℎ𝑛 (𝑋 𝜃

𝜔𝑖
) + 𝑘 + 𝜙𝜁𝑖 .
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But, when 𝜔𝑖 ≥ 𝜏𝜃 , we obtain ℎ𝑛 (𝑋 𝜃
𝜔+

𝑖 ∧𝜏 𝜃 ) = ℎ𝑛 (𝑋 𝜃
𝜔𝑖∧𝜏 𝜃 ) = 𝜋(𝑋 𝜃

𝜔𝑖∧𝜏 𝜃 ). Hence, it follows that (4.3)
may be expressed as

ℎ𝑛 (𝑥) +
𝑚∑
𝑖=1
E𝑥 [𝑒−𝛿𝜔𝑖 (Mℎ𝑛 (𝑋 𝜃

𝜔𝑖
) − ℎ𝑛 (𝑋 𝜃

𝜔𝑖
))1{𝜔𝑖<𝜏 𝜃 }]

≥ E𝑥
[∫ 𝜔𝑚+1∧𝜏 𝜃

0
𝑒−𝛿𝑠 d𝐿𝑑𝑠 + 𝑒−𝛿 (𝜔𝑚+1∧𝜏 𝜃 )ℎ𝑛 (𝑋 𝜃

𝜔𝑚+1∧𝜏 𝜃 ) −
𝑚∑
𝑖=1
𝑒−𝛿𝜔𝑖 (𝑘 + 𝜙𝜁𝑖)1{𝜔𝑖<𝜏 𝜃 }

]

− E𝑥
[∫ 𝜔𝑚+1∧𝜏 𝜃

0
𝑒−𝛿𝑠 (A𝜋 − 𝛿)ℎ𝑛 (𝑋 𝜃

𝑠−) d𝑠

]
. (4.5)

Next, we show that

lim
𝑚,𝑛→∞

E𝑥

[∫ 𝜔𝑚+1∧𝜏 𝜃

0
𝑒−𝛿𝑠 (A𝜋 − 𝛿)ℎ𝑛 (𝑋 𝜃

𝑠−) d𝑠

]

= E𝑥

[∫ 𝜏 𝜃

0
𝑒−𝛿𝑠 (A𝜋 − 𝛿) ℎ̄(𝑋 𝜃

𝑠−) d𝑠

]
≤ 0, (4.6)

where the second inequality holds true since ℎ̄ is a viscosity supersolution of (3.3) for 𝑥 ≥ 0; note that
we also have ℎ̄′(𝑥) ≥ 1 a.e. In addition, since ℎ𝑛 converges to ℎ̄ uniformly on compact sets and ℎ′𝑛 (𝑥)
converges to ℎ̄′(𝑥) a.e.; then, we have

𝑒−𝛿𝑠 (A𝜋 − 𝛿)ℎ𝑛 (𝑋 𝜃
𝑠−)

𝑛→∞−→ 𝑒−𝛿𝑠 (A𝜋 − 𝛿) ℎ̄(𝑋 𝜃
𝑠−) a.e.

In addition, with a similar analysis as in Azcue and Muler [2] Lemma A.2, we have for 𝑥 ≥ 0,

1 ≤ ℎ̄′(𝑥) ≤ 𝜆 + 𝛿
𝑐
ℎ̄(𝑥) − 𝜆

𝑐

∫ 𝑥

0
ℎ̄(𝑥 − 𝑦) d𝐹 (𝑦) − 𝜆

𝑐
𝑀 (𝑥) ≤ 𝜆�̄� (𝑥) + 𝛿

𝑐
ℎ̄(𝑥) − 𝜆

𝑐
𝑀 (𝑥) a.e.,

where

𝑀 (𝑥) =
∫ ∞

𝑥

Π(𝑥 − 𝑦) d𝐹 (𝑦) < 0,

and

1 ≤ ℎ′𝑛 (𝑥) ≤
𝜆�̄� (𝑥) + 𝛿

𝑐
ℎ𝑛 (𝑥) − 𝜆

𝑐
𝑀 (𝑥).

Hence,

𝑒−𝛿𝑠 | (A𝜋 − 𝛿) ℎ̄(𝑋 𝜃
𝑠−) − (A𝜋 − 𝛿)ℎ𝑛 (𝑋 𝜃

𝑠−) |

≤ 𝑒−𝛿𝑠
(
𝑐ℎ̄′(𝑋 𝜃

𝑠−) + (𝜆 + 𝛿) ℎ̄(𝑋 𝜃
𝑠−) + 𝜆

∫ 𝑋 𝜃
𝑠−

0
ℎ̄(𝑋 𝜃

𝑠− − 𝑦) d𝐹 (𝑦) + 𝜆 |𝑀 (𝑋 𝜃
𝑠−) |

)

+ 𝑒−𝛿𝑠
(
𝑐ℎ′𝑛 (𝑋 𝜃

𝑠−) + (𝜆 + 𝛿)ℎ𝑛 (𝑋 𝜃
𝑠−) + 𝜆

∫ 𝑋 𝜃
𝑠−

0
ℎ𝑛 (𝑋 𝜃

𝑠− − 𝑦) d𝐹 (𝑦) + 𝜆 |𝑀 (𝑋 𝜃
𝑠−) |

)
≤ 𝑒−𝛿𝑠 (𝜆 + 2𝛿)( ℎ̄(𝑋 𝜃

𝑠−) + ℎ𝑛 (𝑋 𝜃
𝑠−)) + 4𝜆𝑒−𝛿𝑠 |𝑀 (𝑋 𝜃

𝑠−) |
≤ 2𝑒−𝛿𝑠 (𝜆 + 2𝛿)(𝑥 + 𝑐𝑠 + 𝑁) + 4𝜆𝑒−𝛿𝑠𝑀

for sufficiently large 𝑁 and 𝑀 . Therefore, 𝑒−𝛿𝑠 | (A𝜋 − 𝛿) ℎ̄(𝑋 𝜃
𝑠−) − (A𝜋 − 𝛿)ℎ𝑛 (𝑋 𝜃

𝑠−) | is bounded by a
positive integrable function as shown above, then (4.6) holds true by dominated convergence theorem.
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Finally, with the help of monotone and bounded convergence theorem, we let𝑚, 𝑛→ ∞ on both sides of
(4.5), and utilize the uniformly convergence of ℎ𝑛 to ℎ̄ and ℎ̄(𝑥) = 𝜋(𝑥) for 𝑥 < 0, and (4.6), we arrive at

ℎ̄(𝑥) +
∞∑
𝑖=1
E𝑥 [𝑒−𝛿𝜔𝑖 (M ℎ̄(𝑋 𝜃

𝜔𝑖
) − ℎ̄(𝑋 𝜃

𝜔𝑖
))1{𝜔𝑖<𝜏 𝜃 }]

≥ E𝑥
[∫ 𝜏 𝜃

0
𝑒−𝛿𝑠 d𝐿𝑑𝑠 + 𝑒−𝛿𝜏

𝜃

𝜋(𝑋 𝜃
𝜏 𝜃 )1{𝜏 𝜃<∞} −

∞∑
𝑖=1
𝑒−𝛿𝜔𝑖 (𝑘 + 𝜙𝜁𝑖)1{𝜔𝑖<𝜏 𝜃 }

]
. (4.7)

In addition, since M ℎ̄(𝑥) − ℎ̄(𝑥) ≤ 0 for all 𝑥 ∈ [0,∞) and the strategy 𝜃 is arbitrary, we get

ℎ̄(𝑥) ≥ 𝑉 (𝑥).

�

As discussed in Xu and Woo [18], the uniqueness can be obtained with the known boundary condition
at infinity when the dividend payment is restricted to the class of absolutely continuous strategy with
bounded dividend density. However, when we extend to the singular dividend payment, more efforts are
needed to the show the uniqueness. Hence in the following, we provide a modified comparison principle,
with which we can show that 𝑉 is the unique viscosity solution of (3.3) within the class LB 𝜋 (R).

Lemma 4.1. Let 𝜉 be a subsolution and 𝜂 a supersolution of (3.3). Assume that there is a function
𝑤 ∈ 𝐶1(0,∞) and positive function 𝜅 such that{

max{(A𝜋 − 𝛿)𝑤(𝑥), 1 − 𝑤′(𝑥),M𝑤(𝑥) − 𝑤(𝑥)} ≤ −𝜅(𝑥), 𝑥 ≥ 0,
𝑤(𝑥) = 𝜋(𝑥), 𝑥 < 0.

(4.8)

Define

𝜉𝑚 :=
(
1 + 1

𝑚

)
𝜉 − 1

𝑚
𝑤, 𝜂𝑚 :=

(
1 − 1

𝑚

)
𝜂 + 1

𝑚
𝑤.

Then, 𝜉𝑚 is a subsolution of

⎧⎪⎪⎨⎪⎪⎩
max{(A𝜋 − 𝛿)𝜑(𝑥), 1 − 𝜑′(𝑥),M𝜑(𝑥) − 𝜑(𝑥)} − 𝜅(𝑥)

𝑚
= 0, 𝑥 ≥ 0,

𝜑(𝑥) = 𝜋(𝑥), 𝑥 < 0.

And 𝜂𝑚 is a supersolution of

⎧⎪⎪⎨⎪⎪⎩
max{(A𝜋 − 𝛿)𝜑(𝑥), 1 − 𝜑′(𝑥),M𝜑(𝑥) − 𝜑(𝑥)} + 𝜅(𝑥)

𝑚
= 0, 𝑥 ≥ 0,

𝜑(𝑥) = 𝜋(𝑥), 𝑥 < 0.
(4.9)

Proof. Since 𝜉 is a subsolution of (3.3), then according to Definition 3.1, for any continuously
differentiable function ℎ with ℎ ≥ 𝜉 and ℎ(𝑥) = 𝜉 (𝑥), we have

max{(A𝜋 − 𝛿)ℎ(𝑥), 1 − ℎ′(𝑥),Mℎ(𝑥) − ℎ(𝑥)} ≥ 0.
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Then, we construct the continuously differentiable function ℎ𝑚 = (1 + 1/𝑚)ℎ − (1//𝑚)𝑤 such that
ℎ𝑚 ≥ 𝜉𝑚 and at 𝑥 where ℎ𝑚 (𝑥) = 𝜉𝑚 (𝑥), with the help of Lemma 2.3 we must have

max{(A𝜋 − 𝛿)ℎ𝑚 (𝑥), 1 − ℎ′𝑚 (𝑥),Mℎ𝑚 (𝑥) − ℎ𝑚 (𝑥)}

= max
{(

1 + 1
𝑚

)
(A𝜋 − 𝛿)ℎ(𝑥) − 1

𝑚
(A𝜋 − 𝛿)𝑤(𝑥),(

1 + 1
𝑚

)
(1 − ℎ′(𝑥)) − 1

𝑚
(1 − 𝑤′(𝑥)),Mℎ𝑚(𝑥) − ℎ𝑚 (𝑥)

}
≥ max

{(
1 + 1

𝑚

)
(A𝜋 − 𝛿)ℎ(𝑥) − 1

𝑚
(A𝜋 − 𝛿)𝑤(𝑥),(

1 + 1
𝑚

)
(1 − ℎ′(𝑥)) − 1

𝑚
(1 − 𝑤′(𝑥)),(

1 + 1
𝑚

)
(Mℎ(𝑥) − ℎ(𝑥)) − 1

𝑚
(M𝑤(𝑥) − 𝑤(𝑥))

}
≥ 𝜅(𝑥)

𝑚
.

The proof for 𝜂𝑚 is similar, we omit the detail here. �

Remark 4.1. A thorough discussion on how to find a suitable function 𝜔 in the following comparison
result can refer to Seydel [15] Example 2.2. In general, 𝜔 can be chosen from the class of functions with
the form 𝜔1𝑥

𝑝 + 𝜔2 for 𝑝 > 1 and 𝑥 ≥ 0.

Proposition 4.2 (Comparison principle). Let 𝜉 ∈ LB 𝜋 (R) be a subsolution and 𝜂 ∈ LB 𝜋 (R)
be a supersolution of (3.3). Assume that there is a function 𝑤 as introduced in Lemma 4.1 with
lim𝑥→∞ 𝑤(𝑥)/𝑥 = ∞. If 𝜉 (0) ≤ 𝜂(0), then 𝜉 (𝑥) ≤ 𝜂(𝑥) for all 𝑥 ∈ [0,∞).

Proof. The proof follows the method used in Albrecher and Thonhauser [1], see also Azcue and Muler
[2]; however, difficulties raised from the capital injection part in the HJBQVI, which is resolved by
utilizing the method discussed in Seydel [15]. Let 𝜂𝑚 for 𝑚 ∈ N as defined in Lemma 4.1. Then, it is
sufficient to show that 𝜉 ≤ 𝜂𝑚 for all𝑚 large. For any fixed𝑚 ∈ N, let 0 < 𝑀 := sup𝑥≥0{𝜉 (𝑥)−𝜂𝑚 (𝑥)} <
∞, and 𝑥∗ := argmax𝑥≥0{𝜉 (𝑥) − 𝜂𝑚 (𝑥)}. Since 𝜉 (𝑥) is linearly bounded and 𝜂𝑚 (𝑥) is increasing as
polynomial function with degree 𝑝 > 1, then we can find a sufficient large 𝐵 such that 𝜉 (𝑥) − 𝜂𝑚(𝑥) ≤ 0
for 𝑥 > 𝐵. Furthermore, since 𝜉 and 𝜂𝑚 are locally Lipschitz continuous, there exists a constant 𝑛 > 0
such that

𝜉 (𝑦) − 𝜉 (𝑥)
𝑦 − 𝑥 ≤ 𝑛, 𝜂𝑚 (𝑦) − 𝜂𝑚 (𝑥)

𝑦 − 𝑥 ≤ 𝑛, for 0 ≤ 𝑥 ≤ 𝑦 ≤ 𝐵. (4.10)

Then, we consider a set 𝐴 as
𝐴 = {(𝑥, 𝑦) | 0 ≤ 𝑥 ≤ 𝑦 ≤ 𝐵},

we define an auxiliary function

𝐻𝜖 (𝑥, 𝑦) := 𝜉 (𝑥) − 𝜂𝑚 (𝑦) − 𝜖2 (𝑥 − 𝑦)
2 − 2𝑛

𝜖2(𝑦 − 𝑥) + 𝜖 ,

and let 𝑀𝜖 := sup(𝑥,𝑦) ∈𝐴𝐻𝜖 (𝑥, 𝑦) with the maximizer (𝑥𝜖 , 𝑦 𝜖 ). Then, it is obvious that

𝑀𝜖 ≥ 𝐻𝜖 (𝑥∗, 𝑥∗) = 𝑀 − 2𝑛
𝜖
,

which is positive for sufficient large 𝜖 , then we arrive at

lim inf
𝜖→∞

𝑀𝜖 ≥ 𝑀 > 0.
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Note that we shall prove that the maximizer (𝑥𝜖 , 𝑦 𝜖 ) is not on the boundary of set 𝐴 in order to retain
the differentiability at 𝑥𝜖 and 𝑦 𝜖 . We postpone the proof to Lemma A.2 in the Appendix. Next, we
introduce the other two auxiliary functions,

𝑢(𝑥) = 𝜂𝑚 (𝑦 𝜖 ) + 𝜖2 (𝑥 − 𝑦 𝜖 )
2 + 2𝑛

𝜖2(𝑦 𝜖 − 𝑥) + 𝜖
+ 𝐻𝜖 (𝑥𝜖 , 𝑦 𝜖 ), (4.11)

𝑣(𝑦) = 𝜉 (𝑥𝜖 ) − 𝜖2 (𝑥𝜖 − 𝑦)
2 − 2𝑛

𝜖2(𝑦 − 𝑥𝜖 ) + 𝜖
− 𝐻𝜖 (𝑥𝜖 , 𝑦 𝜖 ). (4.12)

Note that 𝑢 and 𝑣 are continuously differentiable, and 𝜉 (𝑥) − 𝑢(𝑥) = 𝐻𝜖 (𝑥, 𝑦 𝜖 ) − 𝐻𝜖 (𝑥𝜖 , 𝑦 𝜖 ) ≤ 0,
which reaches the maximum 0 at 𝑥𝜖 , i.e. 𝜉 (𝑥𝜖 ) = 𝑢(𝑥𝜖 ). Similarly, 𝜂𝑚 (𝑦) − 𝑣(𝑦) = 𝐻𝜖 (𝑥𝜖 , 𝑦 𝜖 ) −
𝐻𝜖 (𝑥𝜖 , 𝑦) ≥ 0 and reaches the minimum at 𝑦 𝜖 , i.e. 𝜂𝑚 (𝑦 𝜖 ) = 𝑣(𝑦 𝜖 ). Since 𝜉 is a subsolution of (3.3)
and 𝜂𝑚 is a supersolution of (4.9), we have at the points 𝑥𝜖 and 𝑦 𝜖

max{(A𝜋 − 𝛿)(𝜉, 𝑢)(𝑥𝜖 ), 1 − 𝑢′(𝑥𝜖 ),M𝜉 (𝑥𝜖 ) − 𝜉 (𝑥𝜖 )} ≥ 0,

max{(A𝜋 − 𝛿)(𝜂𝑚, 𝑣)(𝑦 𝜖 ), 1 − 𝑣′(𝑦 𝜖 ),M𝜂𝑚(𝑦 𝜖 ) − 𝜂𝑚 (𝑦 𝜖 )} ≤ − 𝜅
𝑚
,

where 𝜅 = 𝜅(𝑦 𝜖 ) > 0, 𝜅(·) is the positive function introduced in Lemma 4.1, and

(A𝜋 − 𝛿)(𝜉, 𝑢)(𝑥𝜖 ) = 𝑐𝑢′(𝑥𝜖 ) − (𝜆 + 𝛿)𝜉 (𝑥𝜖 ) + 𝜆
∫ 𝑥𝜖

0
𝜉 (𝑥𝜖 − 𝑦) d𝐹 (𝑦) + 𝜆

∫ ∞

𝑥𝜖

𝜋(𝑥𝜖 − 𝑦) d𝐹 (𝑦),

and

(A𝜋 − 𝛿)(𝜂𝑚, 𝑣)(𝑦 𝜖 ) = 𝑐𝑣′(𝑦 𝜖 ) − (𝜆 + 𝛿)𝜂𝑚 (𝑦 𝜖 ) + 𝜆
∫ 𝑦𝜖

0
𝜂𝑚 (𝑦 𝜖 − 𝑧) d𝐹 (𝑧) + 𝜆

∫ ∞

𝑦𝜖

𝜋(𝑦 𝜖 − 𝑧) d𝐹 (𝑧),

which are the operators used in an equivalent formulation of viscosity solution comparing to Definition
3.1, (see e.g. [2] Remark 3.3).

By the definition of 𝑢 and 𝑣, we have

𝑢′(𝑥𝜖 ) = 𝑣′(𝑦 𝜖 ) = 𝜖 (𝑥𝜖 − 𝑦 𝜖 ) + 2𝑛
(𝜖 (𝑦 𝜖 − 𝑥𝜖 ) + 1)2 .

On the other hand, since
𝐻𝜖 (𝑥𝜖 , 𝑥𝜖 ) + 𝐻𝜖 (𝑦 𝜖 , 𝑦 𝜖 ) ≤ 2𝐻𝜖 (𝑥𝜖 , 𝑦 𝜖 ),

one has

𝜉 (𝑥𝜖 ) − 𝜂𝑚 (𝑥𝜖 ) + 𝜉 (𝑦 𝜖 ) − 𝜂𝑚 (𝑦 𝜖 ) − 4𝑛
𝜖

≤ 2
(
𝜉 (𝑥𝜖 ) − 𝜂𝑚 (𝑦 𝜖 ) − 𝜖2 (𝑥𝜖 − 𝑦 𝜖 )

2 − 2𝑛
𝜖2(𝑦 𝜖 − 𝑥𝜖 ) + 𝜖

)
.

Rearranging the above inequality and using (4.10), one arrives at

𝜖 (𝑥𝜖 − 𝑦 𝜖 )2 ≤ 𝜉 (𝑥𝜖 ) − 𝜉 (𝑦 𝜖 ) + 𝜂𝑚 (𝑥𝜖 ) − 𝜂𝑚 (𝑦 𝜖 ) + 4𝑛(𝑦 𝜖 − 𝑥𝜖 )
𝜖 (𝑦 𝜖 − 𝑥𝜖 ) + 1

⇒ 𝜖 (𝑥𝜖 − 𝑦 𝜖 )2 ≤ 2𝑛|𝑥𝜖 − 𝑦 𝜖 | + 4𝑛(𝑦 𝜖 − 𝑥𝜖 )

⇒ |𝑥𝜖 − 𝑦 𝜖 |
(
1 − 4𝑛

𝜖

)
≤ 2𝑛
𝜖
.
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Then, we have for 𝜖 sufficiently large such that 4𝑛/𝜖 < 1,

0 ≤ |𝑥𝜖 − 𝑦 𝜖 |
(
1 − 4𝑛

𝜖

)
≤ 2𝑛
𝜖
. (4.13)

Hence, let (𝜖𝑛)𝑛≥1 be an increasing sequence such that (𝑥𝜖𝑛 , 𝑦 𝜖𝑛 ) → (𝑥, �̃�) when 𝜖𝑛 → ∞, then
according to (4.13), we must have 𝑥 = �̃�.

Case 1: Assume M𝜉 (𝑥𝜖 ) − 𝜉 (𝑥𝜖 ) ≥ 0. Since M𝜂𝑚(𝑦 𝜖 ) − 𝜂𝑚 (𝑦 𝜖 ) ≤ −𝜅/𝑚, select 𝜈 > 0 and �̂� ≥ 0
such that 𝜉 (𝑥 + �̂�) − 𝑘 − 𝜙�̂� + 𝜈 >M𝜉 (𝑥), then we have

𝑀 ≤ lim inf
𝜖→∞

𝑀𝜖

= lim inf
𝜖→∞

(
𝜉 (𝑥𝜖 ) − 𝜂𝑚 (𝑦 𝜖 ) − 𝜖2 (𝑥𝜖 − 𝑦 𝜖 )

2 − 2𝑛
𝜖2(𝑦 𝜖 − 𝑥𝜖 ) + 𝜖

)
≤ lim inf

𝜖→∞

(
M𝜉 (𝑥𝜖 ) −M𝜂𝑚(𝑦 𝜖 ) − 𝜅

𝑚
− 𝜖

2
(𝑥𝜖 − 𝑦 𝜖 )2 − 2𝑛

𝜖2(𝑦 𝜖 − 𝑥𝜖 ) + 𝜖

)
= M𝜉 (𝑥) −M𝜂𝑚(𝑥) − 𝜅

𝑚

< 𝜉 (𝑥 + �̂�) − 𝑘 − 𝜙�̂� + 𝜈 − 𝜂𝑚 (𝑥 + �̂�) + 𝑘 + 𝜙�̂� − 𝜅

𝑚

= 𝜉 (𝑥 + �̂�) − 𝜂𝑚 (𝑥 + �̂�) + 𝜈 − 𝜅

𝑚

≤ 𝑀 + 𝜈 − 𝜅

𝑚
,

which is a contradiction when 𝜈 is sufficiently small.
Case 2: Assume M𝜉 (𝑥𝜖 ) − 𝜉 (𝑥𝜖 ) < 0, we must have{

(A𝜋 − 𝛿)(𝜉, 𝑢)(𝑥𝜖 ) ≥ 0,
(A𝜋 − 𝛿)(𝜂𝑚, 𝑣)(𝑦 𝜖 ) ≤ − 𝜅

𝑚
.

Then in the following, we derive contradiction from inequality

(A𝜋 − 𝛿)(𝜉, 𝑢)(𝑥𝜖 ) > (A𝜋 − 𝛿)(𝜂𝑚, 𝑣)(𝑦 𝜖 ).

By noting that 𝑢′(𝑥𝜖 ) = 𝑣′(𝑦 𝜖 ), one has

(𝜆 + 𝛿)(𝜉 (𝑥𝜖 ) − 𝜂𝑚 (𝑦 𝜖 )) < 𝜆
∫ 𝑥𝜖

0
𝜉 (𝑥𝜖 − 𝑧) d𝐹 (𝑧) − 𝜆

∫ 𝑦𝜖

0
𝜂𝑚 (𝑦 𝜖 − 𝑧) d𝐹 (𝑧)

+ 𝜆
∫ ∞

𝑥𝜖

𝜋(𝑥𝜖 − 𝑧) d𝐹 (𝑧) − 𝜆
∫ ∞

𝑦𝜖

𝜋(𝑦 𝜖 − 𝑧) d𝐹 (𝑧).

Similarly, consider the sequence (𝜖𝑛)𝑛≥1 such that (𝑥𝜖𝑛 , 𝑦 𝜖𝑛 ) → (𝑥, 𝑥) as 𝜖𝑛 → ∞, then one arrives at

(𝜆 + 𝛿)(𝜉 (𝑥) − 𝜂𝑚 (𝑥)) < 𝜆
∫ �̃�

0
[𝜉 (𝑥 − 𝑧) − 𝜂𝑚 (𝑥 − 𝑧)] d𝐹 (𝑧) ≤ 𝜆𝑀

∫ �̃�

0
d𝐹 (𝑧),

then,

𝑀 ≤ lim inf
𝜖→∞

𝑀𝜖 ≤ lim
𝑛→∞

𝑀𝜖𝑛 = 𝜉 (𝑥) − 𝜂𝑚 (𝑥) < 𝜆

𝜆 + 𝛿 𝑀,

which is a contradiction. Finally, we complete the proof by noting that the above derivations are still
valid when 𝑚 → ∞. �
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According to Proposition 3.2 and the above comparison principle, we are able to characterize the
value function 𝑉 as the viscosity solution of (3.3) with the smallest value at 0, that is we define

𝑉 (0) = inf{𝑢(0) | 𝑢 is a viscosity solution to the HJBQVI and 𝑢 ∈ LB 𝜋 (R)}.

Proposition 4.3. The value function we characterized above is the unique viscosity solution of the
HJBQVI (3.3) within the class LB 𝜋 (R).

Proof. Let ℎ ∈ LB 𝜋 (R) and 𝑔 ∈ LB 𝜋 (R) be two viscosity solutions of (3.3) with smallest value at
zero. On the one hand, let ℎ be the subsolution and 𝑔 be the supersolution of (3.3) with ℎ(0) ≤ 𝑔(0),
then according to Proposition 4.2 and Definition 3.1, we have ℎ ≤ 𝑔. On the other hand, let 𝑔 be the
subsolution, ℎ be the supersolution and 𝑔(0) ≤ ℎ(0), then we arrive at 𝑔 ≤ ℎ. Hence, we have ℎ = 𝑔. �

Note that, Proposition 4.1 directly provides a verification result for the optimal strategy.

Corollary 4.1. Consider an admissible strategy 𝜃 ∈ Θ and the associated performance function 𝑉𝜃
such that 𝑉𝜃 ∈ LB 𝜋 (R), and 𝑉𝜃 is a supersolution of the HJBQVI (3.3), then 𝑉𝜃 = 𝑉 and 𝜃 is in turn
an optimal strategy.

Proof. According to Proposition 4.1, we have 𝑉𝜃 ≥ 𝑉 ; however, since 𝜃 is an admissible strategy, by
definition of the value function, 𝑉𝜃 ≤ 𝑉 . Hence, we have 𝑉 = 𝑉𝜃 . �

5. Construction of the optimal strategy

In this section, we discuss the general structure of the optimal strategy for the optimal singular dividend
and capital injection problem with affine penalty payment at ruin. It has been showed in the literature
that the candidate optimal strategy is in band-type, which can be represented using several abstract sets
(see e.g. [1,3,18]). To be specific, the general optimal strategy can be described through the following
four sets:

𝒟1 = {𝑥 ∈ (0,∞) : (A∗
𝜋 − 𝛿)𝑉 (𝑥) < 0 and 𝑉 ′(𝑥) = 1},

𝒟2 = {𝑥 ∈ [0,∞) : (A∗
𝜋 − 𝛿)𝑉 (𝑥) = 0},

𝒩 = {𝑥 ∈ (𝒟1 ∪𝒟2)𝑐 : 𝑉 (𝑥) >M𝑉 (𝑥)},
𝒞 = {𝑥 ∈ (𝒟1 ∪𝒟2)𝑐 : 𝑉 (𝑥) = M𝑉 (𝑥)},

where

(A∗
𝜋 − 𝛿)𝑉 (𝑥) = 𝑐 − (𝜆 + 𝛿)𝑉 (𝑥) + 𝜆

∫ 𝑥

0
𝑉 (𝑥 − 𝑦) d𝐹 (𝑦)

+ 𝜆
∫ ∞

𝑥

𝜋(𝑥 − 𝑦) d𝐹 (𝑦) = 0. (5.1)

Note that 𝒞 represents the area where immediate capital injection is optimal, and the set 𝒩 represents
the area with no dividend payments and capital injections. 𝒟1 and 𝒟2 represent the areas with lump
sum and continuous dividend payments at the rate equal to premium rate. To begin, we first state a local
version of Proposition 4.1, and introduce an auxiliary function 𝑈𝑦 (𝑥) for 𝑦 > 0 in the following, and
then provide some technical lemmas on the relationship between the𝑈𝑦 and value function 𝑉 .

Lemma 5.1. For some 𝑥 > 0, if either (A∗
𝜋 − 𝛿)𝑉 (𝑥) = 0 or 𝑉 ′(𝑥) = 1, and ℎ̄(𝑥) ∈ LB 𝜋 (R) is a

viscosity supersolution of (3.3) for 𝑥 ∈ [0, 𝑥), then we have ℎ̄(𝑥) ≥ 𝑉 (𝑥) for all 𝑥 ∈ [0, 𝑥]. Furthermore,
let Θ�̂� be the set of admissible strategies such that the controlled surplus process 𝑈 𝜃

𝑡 ≤ 𝑥 for all 𝑡 ≥ 0,
and let 𝜃 ∈ Θ�̂� be an admissible strategy such that the performance function 𝑉𝜃 (𝑥) ∈ LB 𝜋 (R), and is
a viscosity supersolution of (3.3); then 𝑉𝜃 (𝑥) = 𝑉 (𝑥) for all 𝑥 ∈ [0, 𝑥].
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Proof. The proof can refer to Proposition 5.7 and Theorem 5.8 in Azcue and Muler [2], where our
capital injection and penalty payment at ruin make no difference in the analysis. �

For any 𝑦 > 0, define

𝑈𝑦 (𝑥) =
{
𝑉 (𝑥), 𝑥 ≤ 𝑦,
𝑥 − 𝑦 +𝑉 (𝑦), 𝑥 > 𝑦.

(5.2)

Lemma 5.2. Consider 𝑥 > 0 such that (A∗
𝜋 − 𝛿)𝑉 (𝑥) < 0 or 𝑉 ′(𝑥) = 1. Then for any 𝑦 < 𝑥, if 𝑈𝑦 is a

viscosity supersolution of (3.3) in (𝑦, 𝑥], then𝑈𝑦 (𝑥) = 𝑉 (𝑥) for all 𝑥 ∈ [0, 𝑥].

Proof. We follow the proof in Proposition 5.10 of Azcue and Muler [2]. First, we show that𝑈𝑦 (𝑥) ≥ 𝑉 (𝑥)
for 𝑥 ∈ [0, 𝑥]. According to the definition of𝑈𝑦 (𝑥) in (5.2) and Lemma 5.1, we only need to show that𝑈𝑦

is a viscosity supersolution of (3.3) at 𝑦 < 𝑥. Note that,𝑈 ′
𝑦 (𝑦+) = 1, and according to Azcue and Muler

[4] Definition 3.2 (see also [2] Remark 3.5), and the fact that 𝑉 ′(𝑥) ≥ 1, then there exists a test function
(say 𝜑) such that𝑈𝑦 is a viscosity supersolution only when 𝑈 ′

𝑦 (𝑦−) = 𝑉 ′(𝑦−) = 1, then 𝜑′(𝑦) = 1, and

(A𝜋 − 𝛿)(𝜑,𝑈𝑦)(𝑦)

= 𝑐 − (𝜆 + 𝛿)𝑈𝑦 (𝑦) + 𝜆
∫ 𝑦

0
𝑈𝑦 (𝑦 − 𝑧) d𝐹 (𝑧) + 𝜆

∫ ∞

𝑦

𝜋(𝑦 − 𝑧) d𝐹 (𝑧)

= 𝑐 − (𝜆 + 𝛿)𝑉 (𝑦) + 𝜆
∫ 𝑦

0
𝑉 (𝑦 − 𝑧) d𝐹 (𝑧) + 𝜆

∫ ∞

𝑦

𝜋(𝑦 − 𝑧) d𝐹 (𝑧) ≤ 0,

since 𝑉 is a viscosity supersolution of (3.3) at 𝑦. And

M𝑈𝑦 (𝑥) −𝑈𝑦 (𝑥)
= sup

𝑧≥𝑥
{𝑈𝑦 (𝑧) − 𝑘 − 𝜙(𝑧 − 𝑥)} −𝑈𝑦 (𝑥)

= sup
𝑧≥𝑥

{𝑧 − 𝑦 +𝑉 (𝑦) − 𝑘 − 𝜙(𝑧 − 𝑥)} −𝑈𝑦 (𝑥)

= 𝑥 − 𝑦 +𝑉 (𝑦) − 𝑘 −𝑉 (𝑦) − 𝑥 + 𝑦 = −𝑘 < 0.

Hence, 𝑈𝑦 is a viscosity supersolution of (3.3) at 𝑦. Next, we show that 𝑈𝑦 (𝑥) ≤ 𝑉 (𝑥) for 𝑥 ∈ (𝑦, 𝑥].
Consider any 𝜖 > 0, and an 𝜖-optimal strategy 𝜃 such that 𝑉 (𝑦) ≤ 𝑉𝜃 (𝑦) + 𝜖 . Then, for initial surplus
𝑥 > 𝑦, consider another strategy 𝜃𝑥 , where the amount of 𝑥 − 𝑦 is payout as dividend immediately and
follow strategy 𝜃 thereafter; hence, 𝜃𝑥 is an admissible strategy as well. Then, we have for any 𝜖 > 0
and 𝑥 > 𝑦,

𝑈𝑦 (𝑥) − 𝜖 = 𝑉 (𝑦) + 𝑥 − 𝑦 − 𝜖 ≤ 𝑉𝜃 (𝑦) + 𝑥 − 𝑦 = 𝑉𝜃𝑥 (𝑥) ≤ 𝑉 (𝑥),

by letting 𝜖 → 0, we arrive at𝑈𝑦 (𝑥) ≤ 𝑉 (𝑥) for 𝑥 > 𝑦. Hence,𝑈𝑦 (𝑥) = 𝑉 (𝑥) for 𝑥 ∈ [0, 𝑥]. �

Lemma 5.3. For any 𝑦 > 0 if 𝑈𝑦 (𝑥) as defined in (5.2) is a viscosity supersolution of (3.3) for
𝑥 ∈ (𝑦,∞), then𝑈𝑦 (𝑥) = 𝑉 (𝑥) for all 𝑥 ≥ 0.

Proof. The proof is similar to the proof of Lemma 5.2, we omit the detail here. �

Finally, we provide the topological structures of the above-defined abstract sets, and propose the
candidate optimal band-type strategy.

Proposition 5.1. (i) 𝒟2 is closed.
(ii) 𝒟1 is left-open, and the lower limit of any connected components of 𝒟1 belongs to 𝒟2. There

exists 𝑥∗ which is large enough satisfying (𝑥∗,∞) ⊂ 𝒟1.
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(iii) 𝒞 is closed.
(iv) 𝒩 is right-open, and the connected components of 𝒩 is bounded, the upper limit of any

connected components of 𝒩 is in 𝒟2.

Proof. The proof follows the similar steps in Azcue and Muler [2], Albrecher and Thonhauser [1] and
Xu and Woo [18].

(i) Given that the claim size distribution 𝐹 is continuous, (A∗
𝜋 − 𝛿)𝑉 (·) is also continuous, therefore

𝒟2 is closed.
(ii) Consider any 𝑥 ∈ 𝒟1, then we have (A∗

𝜋 − 𝛿)𝑉 (𝑥) < 0 and 𝑉 ′(𝑥) = 1. Let us consider the
auxiliary function defined in (5.2)𝑈�̂�−ℎ for each small ℎ > 0, then we have for any 𝑥 ∈ (𝑥 − ℎ, 𝑥)

(A∗
𝜋 − 𝛿)𝑈�̂�−ℎ (𝑥)

≤ 𝑐 − (𝜆 + 𝛿)𝑈�̂�−ℎ (𝑥 − ℎ) + 𝜆
∫ �̂�

0
𝑈�̂�−ℎ (𝑥 − 𝑦) d𝐹 (𝑦) + 𝜆

∫ ∞

�̂�

𝜋(𝑥 − 𝑦) d𝐹 (𝑦)

≤ 𝑐 − (𝜆 + 𝛿)𝑉 (𝑥 − ℎ) + 𝜆
∫ �̂�

0
𝑉 (𝑥 − 𝑦) d𝐹 (𝑦) + 𝜆

∫ ∞

�̂�

𝜋(𝑥 − 𝑦) d𝐹 (𝑦)

= (A∗
𝜋 − 𝛿)𝑉 (𝑥) + (𝜆 + 𝛿)(𝑉 (𝑥) −𝑉 (𝑥 − ℎ)),

where the second last inequality holds true since 𝑉 (𝑥 − 𝑦) −𝑉 (𝑥 − ℎ) ≥ (𝑥 − 𝑦) − (𝑥 − ℎ) for
𝑦 ∈ (0, ℎ) from Lemma 2.1. Then, since 𝑉 is continuous, there must exist a sufficient small ℎ̂ > 0
such that (A∗

𝜋 − 𝛿)𝑈�̂�−ℎ̂ (𝑥) < 0 for all 𝑥 ∈ (𝑥 − ℎ̂, 𝑥). In addition,

M𝑈�̂�−ℎ̂ (𝑥) −𝑈�̂�−�̂� (𝑥)
= sup

𝑦≥𝑥
{𝑈�̂�−ℎ̂ (𝑦) − 𝑘 − 𝜙(𝑦 − 𝑥)} −𝑈�̂�−ℎ̂ (𝑥)

= sup
𝑦≥𝑥

{𝑦 − (𝑥 − ℎ̂) +𝑉 (𝑥 − ℎ̂) − 𝑘 − 𝜙(𝑦 − 𝑥)} −𝑈�̂�−ℎ̂ (𝑥)

= 𝑥 − (𝑥 − ℎ̂) +𝑉 (𝑥 − ℎ̂) − 𝑘 −𝑉 (𝑥 − ℎ̂) − 𝑥 + (𝑥 − ℎ̂) = −𝑘 < 0,

for all 𝑥 ∈ (𝑥 − ℎ̂, 𝑥). Therefore,𝑈�̂�−ℎ̂ is a viscosity supersolution of (3.3) in (𝑥 − ℎ̂, 𝑥). Hence,
according to Lemma 5.2, we have𝑈�̂�−ℎ̂ = 𝑉 in [0, 𝑥), therefore (𝑥 − ℎ̂, 𝑥) ∈ 𝒟1, i.e. 𝒟1 is left-open.
To prove that the lower limit of any connected components of 𝒟1 is in 𝒟2, one need to show for
any sufficiently small ℎ > 0 such that (𝑥, 𝑥 + ℎ) ⊂ 𝒟1 and 𝑥 ∉ 𝒟1, then 𝑥 ∈ 𝒟2. Note that if
𝑥 ∉ 𝒟2, it must in 𝒩. However, since 𝑉 (𝑥) is a viscosity supersolution of (3.3), if 𝑥 ∈ 𝒩, we have
(A∗

𝜋 − 𝛿)𝑉 (𝑥) < 0 and 𝑉 ′(𝑥) > 1 given the derivative exists. Then, assume that there exists a
sequence 𝑥𝑛 ↑ 𝑥 such that 𝑉 ′(𝑥𝑛) exists; we can show that the sequence is not in 𝒟2 since it is
closed; and the sequence is also not in 𝒟1, since if so, according to Lemma A.3 we must have
(𝑥 − ℎ0, 𝑥) ⊂ 𝒟1 for some ℎ0 > 0 and in turn 𝑉 ′(𝑥) = 1 for all 𝑥 ∈ (𝑥 − ℎ0, 𝑥) which is a
contradiction. Therefore, the sequence 𝑥𝑛 must in 𝒩 as well and there exists ℎ′ > 0 such that
(𝑥 − ℎ′, 𝑥) ⊂ 𝒩. In other words, one obtain that 𝑉 ′(𝑥−) > 1 and 𝑉 ′(𝑥+) = 1. Since 𝑉 is a viscosity
subsolution of (3.3) and 𝑥 ∉ 𝒞, then the test function say 𝜑 with 𝜑′(𝑥) = 1 should gives the
following inequality

𝑐𝜑′(𝑥) − (𝜆 + 𝛿)𝑉 (𝑥) + 𝜆
∫ 𝑥

0
𝑉 (𝑥 − 𝑦) d𝐹 (𝑦) + 𝜆

∫ ∞

𝑥

𝜋(𝑥 − 𝑦) d𝐹 (𝑦)

= (A∗
𝜋 − 𝛿)𝑉 (𝑥) ≥ 0,

which is a contradiction. Hence, one arrive at 𝑥 ∈ 𝒟2.
Finally, we show that there exists 𝑥∗ large enough such that (𝑥∗,∞) ⊂ 𝒟1. According to Lemma
5.3, we only need to show that for sufficiently large 𝑥∗ > 0, the auxiliary function𝑈𝑥∗ (𝑥) is a
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viscosity supersolution of (3.3) for 𝑥 ∈ (𝑥∗,∞). Note that𝑈 ′
𝑥∗ (𝑥) = 1 for 𝑥 ∈ (𝑥∗,∞) by definition

and M𝑈𝑥∗ (𝑥) ≤ 𝑈𝑥∗ (𝑥) holds true obviously, then we only to need show that (A𝜋 − 𝛿)𝑈𝑥∗ (𝑥) ≤ 0
for 𝑥 > 𝑥∗. Since𝑈 ′

𝑥∗ (𝑥∗) = 1, then

(A𝜋 − 𝛿)𝑈𝑥∗ (𝑥)

= 𝑐 − (𝜆 + 𝛿)𝑈𝑥∗ (𝑥) + 𝜆
∫ 𝑥

0
𝑈𝑥∗ (𝑥 − 𝑧) d𝐹 (𝑧) + 𝜆

∫ ∞

𝑥

𝜋(𝑥 − 𝑧) d𝐹 (𝑧)

≤ 𝑐 − (𝜆 + 𝛿)(𝑥 − 𝑥∗ +𝑉 (𝑥∗)) + 𝜆
∫ 𝑥

0
(𝑥 − 𝑧 − 𝑥∗ +𝑉 (𝑥∗)) d𝐹 (𝑧)

≤ 𝑐 − 𝛿(𝑥 − 𝑥∗ +𝑉 (𝑥∗)),

by noting that for each 𝑥∗ ≥ 0, 𝑐 − 𝛿(𝑥 − 𝑥∗ +𝑉 (𝑥∗)) is a decreasing function of 𝑥; hence, when
𝑉 (𝑥∗) ≥ 𝑐/𝛿, we arrive at (A𝜋 − 𝛿)𝑈𝑥∗ (𝑥) ≤ 0 for 𝑥 > 𝑥∗. Then, from (2.5), we have the lower
bound 𝑉 (𝑥∗) ≥ 𝑥∗ + (𝑐 + 𝜆(𝐾 −Φ𝜇))/(𝜆 + 𝛿), therefore, the result follows by choosing
𝑥∗ = 𝑐/𝛿 − (𝑐 + 𝜆(𝐾 −Φ𝜇))/(𝜆 + 𝛿).

(iii) From Lemmas 2.1 and 2.2, we have that 𝑉 (𝑥) −M𝑉 (𝑥) is continuous, hence 𝒞 is closed.
(iv) Consider 𝑥0 ∈ 𝒩 and a sequence 𝑥𝑛 ↓ 𝑥0, since 𝒟2 and 𝒞 are closed sets, the sequence is not in

𝒟2 and 𝒞. Assume that 𝑥𝑛 ∈ 𝒟1, since the lower limit of any connected component of 𝒟1 belongs
to 𝒟2, there must exist a subsequence 𝑥 ′𝑛 ∈ 𝒟2 such that 𝑥 ′𝑛 ↓ 𝑥0, which is a contradiction. Hence,
𝑥𝑛 ∈ 𝒩 and 𝒩 is right-open. The connected components of 𝒩 is bounded follows obviously from
the fact that there is no 𝑥 sufficient large such that [𝑥,∞) ⊂ 𝒩. On the other hand, since 𝒟1 is
left-open, then the upper limit of any connected component of 𝒩 is in 𝒟2.

�

In the following, we define a band-type dividend and capital injection strategy based on the above-
mentioned crucial sets; the optimality of such band-type strategy is proved in Proposition 5.2.

Definition 5.1. We define a band-type dividend and capital injection strategy associated with the
partition of [0,∞) = 𝒟1 ∪ 𝒟2 ∪ 𝒩 ∪ 𝒞 as follows: If the surplus level is in the set 𝒟1 pay a lump-
sum dividend immediately, such that the ending surplus level is at the lower limit of current connected
compound of 𝒟1 (which is in 𝒟2 as we showed in Proposition 5.1). If the surplus level is in 𝒟2 pay out
the incoming premium directly as dividend until the arrival of the next claim. If current surplus is in
𝒩, no action is taken. And, if current surplus is in 𝒞, an immediate capital injection is implemented,
where the injection amount is determined according to the capital injection operator given in (2.6).

Proposition 5.2. The band-type dividend and capital injection strategy given in Definition 5.1 is the
optimal strategy among all admissible ones.

Proof. We denote such band-type strategy as 𝜃𝑏 , hence, we want to show that 𝑉 (𝑥) = 𝑉𝜃𝑏 (𝑥) for
all 𝑥 ≥ 0. The proof follows the fixed point argument. Let’s consider a complete metric space M of
continuous functions 𝑓 : [0,∞) → R satisfying that

𝑓 (𝑥) = 𝑥 − 𝑥∗ + 𝑓 (𝑥∗), for 𝑥 ≥ 𝑥∗,

with the metric being the supremum norm 𝑑 (·, ·) defined as

𝑑 ( 𝑓1, 𝑓2) = sup
𝑥≥0

| 𝑓1(𝑥) − 𝑓2(𝑥) |.
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We define an operator T : M→ M as

T ( 𝑓 )(𝑥) = E𝑥
[∫ 𝑇1

0
𝑒−𝛿𝑡 d𝐿 𝜃𝑏𝑡 −

∞∑
𝑖=1
𝑒−𝛿𝜔

𝜃𝑏 (𝑘 + 𝜙𝜁 𝜃𝑏𝑖 )1{𝜔𝜃𝑏<𝑇1 } + 𝑒−𝛿𝑇1 𝑓 (𝑋 𝜃𝑏
𝑇1
)
]
,

where 𝑇1 is the arrival time of the first claim. Note that, according to Proposition 5.1(ii), there exists
𝑥∗ ∈ 𝒟2 such that (𝑥∗,∞) ⊂ 𝒟1. Since 𝑉 ′(𝑥) = 1 for 𝑥 ∈ 𝒟1, then we have 𝑉 (𝑥) = 𝑥 − 𝑥∗ + 𝑉 (𝑥∗) for
𝑥 ∈ (𝑥∗,∞), hence 𝑉 ∈ M. It is also obvious that |T 𝑓1(𝑥) − T 𝑓2(𝑥) | ≤ (𝜆/(𝜆 + 𝛿))𝑑 ( 𝑓1, 𝑓2), hence,
T is a contraction mapping with modulus less than 1, i.e. T admits a unique fixed point. According to
Definition 5.1, 𝜃𝑏 is a stationary strategy, then we have T𝑉𝜃𝑏 = 𝑉𝜃𝑏 . Finally, we show that the value
function 𝑉 is also a fixed point of T , i.e. T𝑉 = 𝑉 . For 𝑥 ∈ 𝒟2, we have

T𝑉 (𝑥) = E𝑥
[∫ 𝑇1

0
𝑒−𝛿𝑡𝑐 d𝑡 + 𝑒−𝛿𝑇1𝑉 (𝑋 𝜃𝑏

𝑇1
)
]

=
𝑐

𝜆 + 𝛿 +
∫ ∞

0
𝜆𝑒−(𝜆+𝛿)𝑡

{∫ 𝑥

0
𝑉 (𝑥 − 𝑧) d𝐹 (𝑧) +

∫ ∞

𝑥

𝜋(𝑥 − 𝑧) d𝐹 (𝑧)
}

d𝑡

=
𝑐

𝜆 + 𝛿 + 𝜆

𝜆 + 𝛿

{∫ 𝑥

0
𝑉 (𝑥 − 𝑧) d𝐹 (𝑧) +

∫ ∞

𝑥

𝜋(𝑥 − 𝑧) d𝐹 (𝑧)
}

= 𝑉 (𝑥), (5.3)

where the last equation holds since we have (A∗
𝜋 − 𝛿)𝑉 (𝑥) = 0 for 𝑥 ∈ 𝒟2.

For 𝑥 ∈ 𝒟1, let 𝑥 = inf{𝑦 : (𝑦, 𝑥] ⊂ 𝒟1}, then 𝑥 ∈ 𝒟2, and from 5.3 we have

T𝑉 (𝑥) = 𝑥 − 𝑥 + T𝑉 (𝑥) = 𝑉 (𝑥).

For 𝑥 ∈ 𝒩, let us consider 𝑥 = min{𝑦 > 𝑥, 𝑦 ∉ 𝒩}, then 𝑥 ∈ 𝒟2. Let 𝑠 = (𝑥 − 𝑥)/𝑐 and �̄�(𝑡) = 𝑥 + 𝑐𝑡,
one has �̄�(𝑡) ∈ 𝒩 for 𝑡 < 𝑠. Then, we have

T𝑉 (𝑥) = E𝑥 [𝑒−𝛿𝑠𝑉 (𝑥)1{𝑇1>𝑠}] + E𝑥 [𝑒−𝛿𝑇1𝑉 ( �̄�(𝑇1) − 𝑌1)1{𝑇1≤𝑠}]

= 𝑒−(𝜆+𝛿)𝑠𝑉 (𝑥) +
∫ 𝑠

0
𝜆𝑒−(𝜆+𝛿)𝑡

{∫ �̄� (𝑡)

0
𝑉 ( �̄�(𝑡) − 𝑧) d𝐹 (𝑧) +

∫ ∞

�̄� (𝑡)
𝜋( �̄�(𝑡) − 𝑧) d𝐹 (𝑧)

}
d𝑡

= 𝑒−(𝜆+𝛿)𝑠𝑉 (𝑥) +
∫ 𝑠

0
(−𝑒−(𝜆+𝛿)𝑡𝑉 ( �̄�(𝑡)))′ d𝑡

= 𝑉 (𝑥),

where the second last equation holds true since 𝑉 (𝑥) (as an viscosity solution) is an a.e. (or weak)
solution of

𝑐ℎ′(𝑥) − (𝜆 + 𝛿)ℎ(𝑥) + 𝜆
∫ 𝑥

0
ℎ(𝑥 − 𝑧) d𝐹 (𝑧) + 𝜆

∫ ∞

𝑥

𝜋(𝑥 − 𝑧) d𝐹 (𝑧) = 0,

for 𝑥 ∈ 𝒩, see e.g. Xu and Woo [18].
Finally, for 𝑥 ∈ 𝒞, we have immediate capital injection that bring the surplus to 𝒩, then

T𝑉 (𝑥) = T𝑉 (𝑦∗) − 𝑘 − 𝜙(𝑦∗ − 𝑥) = 𝑉 (𝑦∗) − 𝑘 − 𝜙(𝑦∗ − 𝑥) = M𝑉 (𝑥) = 𝑉 (𝑥),

where 𝑦∗ ∈ 𝒩 satisfying 𝑦∗ = argmax𝑦{𝑦 ≥ 𝑥 |𝑉 (𝑦) − 𝑘 − 𝜙(𝑦 − 𝑥)} and for 𝑥 ∈ 𝒞 we have
M𝑉 (𝑥) = 𝑉 (𝑥).

Then, we have 𝑉 = 𝑉𝜃𝑏 , and 𝜃𝑏 is the optimal strategy. �
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Figure 1. Exponential claim size distribution: Benchmark example.

6. Numerical illustration

To further illustrate the explicit form of the optimal dividend and capital injection strategy, we provide
some numerical examples in this section. We first assume that the claim size follows exponential
distribution, where the resulting optimal strategy is in the form of band-type strategy with one dividend
barrier. Then, we further assume the claim size follows gamma distribution, under which the optimal
band-type strategy could have a more complicated structure based on the values of transaction costs for
capital injection and penalty payments at ruin.

6.1. Exponential distribution

Example 6.1. We first consider the case when claim size follows exponential distribution with proba-
bility density function 𝑓 (𝑥) = 𝛽𝑒−𝛽𝑥 , where 𝛽 = 1; we assume that the Poisson intensity 𝜆 = 1 and the
premium rate 𝑐 = 1.5. We set a benchmark example for the analysis, where the parameters associated
with transaction costs and penalty function are given as 𝐾 = −5, Φ = 0.7, 𝑘 = 0.1 and 𝜙 = 1.1. The dis-
count factor 𝛿 = 0.05. The numerical results of the value function, the optimal band-type strategy and
optimal capital injection amount versus initial surplus for this benchmark example are given in Figure 1.

Figure 1(i) illustrates the structure of the optimal band-type strategy, where we use 1,2,3 to denote
the “no action,” “paying dividend” (lump sum or continuously at premium rate) and “capital injection”
range, respectively. In this benchmark example, the optimal dividend strategy is 1-barrier strategy at
surplus level 6.791; when surplus level locates within the range [0, 3.392], the optimal strategy is to
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Table 1. Varying fixed transaction costs 𝑘 .

𝑘 0.001 0.01 0.1 0.5 1 2 4

𝑥 4.472 4.190 3.392 2.205 1.460 1.460 –
𝑥 4.608 4.608 4.608 4.608 4.607 4.607 –
𝑥 6.792 6.791 6.791 6.806 6.831 6.831 6.777
𝑥 − 𝑥 0.136 0.418 1.215 2.403 3.148 3.148 –

Table 2. Varying proportional transaction costs 𝜙.

𝜙 1.01 1.05 1.1 1.2 1.5 1.8 2

𝑥 4.041 3.766 3.392 2.845 1.801 1.117 0.757
𝑥 5.700 5.189 4.608 3.854 2.557 1.756 1.346
𝑥 7.686 6.796 6.791 6.791 6.791 6.791 6.791
𝑥 − 𝑥 1.659 1.423 1.215 1.009 0.756 0.640 0.588

Table 3. Varying fixed penalty payments at ruin 𝐾 .

𝐾 −5 −4 −2 −1 −0.5 −0.1 −0.01

𝑥 3.392 3.161 2.637 2.337 2.175 2.039 2.008
𝑥 4.608 4.377 3.852 3.552 3.390 3.255 3.223
𝑥 6.791 6.563 6.051 5.697 5.535 5.443 5.412
𝑥 − 𝑥 1.215 1.215 1.215 1.215 1.215 1.215 1.215

Table 4. Varying proportional penalty payments at ruin Φ.

Φ 0.01 0.1 0.3 0.5 0.7 0.8 1

𝑥 3.235 3.256 3.302 3.348 3.392 3.415 3.458
𝑥 4.450 4.471 4.518 4.563 4.608 4.630 4.674
𝑥 6.644 6.671 6.699 6.745 6.791 6.774 6.868
𝑥 − 𝑥 1.215 1.215 1.215 1.215 1.215 1.215 1.215

inject capital and bring the surplus level to 4.608. Figure 1(iii) shows the corresponding amount of
capital injection for each surplus level. And the resulting value function for the benchmark example is
calculated and illustrated in Figure 1(ii).

Example 6.2. In this example, we show how the transaction costs and penalty payments will influence
the optimal dividend and capital injection strategy. We numerically calculate the optimal band-type
strategy by varying 𝑘, 𝜙, 𝐾 andΦ from the benchmark example, respectively (the value for the benchmark
example is highlight in bold italics). The results are given in Tables 1–4. Note that we use 𝑥 to denote
the optimal dividend barrier, 𝑥 to denote the up level of capital injection region (the bottom level of
capital injection region, if exists, is always 0 in exponential case) and use 𝑥 to denote the surplus level
after capital injection.

In Table 1, we change the fixed transaction costs 𝑘 for the capital injection from almost zero (0.001)
to a considerable large value 4. It is showed in the table that 𝑘 has critical effect on the up level of
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capital injection region but somewhat independent to the dividend barrier and surplus level after capital
injection (if exists); when 𝑘 is small, it is optimal to allow capital injection for large region above zero.
But when 𝑘 increases the capital injection region will shrink; and when 𝑘 is sufficient large (equal to 4 or
above in our example), it is no longer optimal to allow any capital injections; then, the band-type strategy
reduces to barrier strategy. Table 2 gives the corresponding optimal band-type strategies for different
values of proportional transaction costs 𝜙. Similarly, 𝜙 has very limited influence on dividend barrier, but
the capital injection region including the optimal surplus level after capital injection highly dependent
on the value of 𝜙. For a small value of proportional transaction costs (say 1%), it is optimal to allow
capital injection in a broad range above zero [0, 4.401], and the optimal capital inject amount is 1.659.
If we increase the proportional transaction costs to 100% (i.e. 𝜙 = 2), then the optimal capital injection
region shrinks to [0, 0.757] and the optimal capital injection amount also decreases from previous 1.659
to only 0.588. On the other hand, Tables 3 and 4 illustrate the optimal strategies when varying the fixed
(𝐾) and proportional (Φ) penalty payments at ruin. It is obvious that penalty payment has no effect on
the optimal capital injection amount (𝑥 − 𝑥). In addition, we can observe from the tables that the up
level of capital injection region (𝑥) is increasing with respect to |𝐾 | and Φ, which means that a higher
requirement of penalty payment when ruin occurs will result in a larger region of capital injection above
zero, in order to reduce the possibility of ruin when surplus level is low. The fixed penalty also influences
the final optimal dividend barrier, where smaller fixed penalty will generate lower dividend barrier (i.e.
more aggressive dividend strategy); but the influence from proportional penalty is rather limited.

6.2. Gamma distribution

It is interesting to further consider the optimal band-type strategy when the claim size follows gamma
distribution. According to the numerical results in Azcue and Muler [3] and Xu and Woo [18], the
optimal dividend strategy is often in the form of 2-barrier strategy in certain scenarios. Hence, in this
subsection, we numerically investigate the optimal dividend and capital injection strategy with different
values of penalty payments and transaction costs for capital injection under gamma distributed claim
sizes.

Example 6.3. We assume claim size follows gamma distribution with probability density function
𝑓 (𝑥) = 𝑥𝑒−𝑥 (i.e. Gamma(2,1)). Similar to the examples in exponential distribution, we set a benchmark
example with 𝜆 = 10, 𝑐 = 21.5, 𝛿 = 0.1, 𝑘 = 0.1, 𝜙 = 1.05, 𝐾 = −2 and Φ = 0.1. The numerical results
of the value function, the optimal band-type strategy and optimal capital injection amount versus initial
surplus are given in Figure 2.

Figure 2(i) shows that the optimal strategy for the benchmark example under gamma distribution has
two optimal dividend barriers with one at 𝑥 = 0 and the other at 𝑥 = 6.464. The optimal capital injection
region [0.229, 1.980] is located between the two dividend barriers. This optimal band-type strategy tells
that when the surplus level 𝑥 is in the set {0, 6.464}, it is optimal to pay dividend at a constant rate 21.5
(the premium rate). And the amount of 𝑥 − 0 and 𝑥 − 6.464 should be paid out immediately as dividend
if 𝑥 ∈ (0, 0.229) and 𝑥 ∈ (6.464,∞), respectively; if 𝑥 ∈ [0.229, 1.980], it is optimal to inject capital
and bring the surplus level to 4.513; finally, if 𝑥 ∈ (1.980, 6.464), no action is needed. Figure 2(ii) and
(iii) illustrates the corresponding value function and optimal capital injection amount, respectively.

Example 6.4. Similar to the exponential case, we investigate the optimal band-type strategies by
varying respectively 𝑘, 𝜙, 𝐾 and Φ from the benchmark example under gamma distribution. The results
are summarized in Tables 5–8. Note that, in the following tables, we use 𝑥1 and 𝑥2 (if it is 2-barrier
dividend strategy) to denote the “first” and “second” dividend barrier, whenever there is only 1 barrier
in the final optimal strategy we keep 𝑥1 empty and use 𝑥2 to denote the dividend barrier. In addition,
we use 𝑦1 to denote the surplus level when it is optimal to change from lump sum dividend payment
to capital injection or no action (if the final optimal band-type strategy does not have capital injection
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Figure 2. Gamma claim size distribution: Benchmark example.

Table 5. Varying fixed transaction costs 𝑘 .

𝑘 0.001 0.01 0.1 0.5 1 2

𝑥1 0.000 0.000 0.000 0.000 0.000 0.000
𝑦1 0.229 0.229 0.229 0.229 0.229 0.229
𝑥 3.796 3.293 1.980 0.358 – –
𝑥 4.049 4.091 4.513 6.659 – –
𝑥2 5.870 5.922 6.464 9.946 12.688 12.688
𝑥 − 𝑥 0.254 0.798 2.533 6.301 – –

region). The up level of capital injection region and the surplus level after capital injection are denoted
by 𝑥 and 𝑥, respectively.

It is quite interesting to observe that under gamma distribution we have different types of optimal
band-type strategy for different value of transaction costs and penalty payments. In particular, from Table
5, we observe that the fixed transaction costs 𝑘 is independent of first dividend barrier and first lump
sum dividend payment region, but a higher value of 𝑘 generates higher level for second dividend barrier.
Similar to the exponential case, when 𝑘 is sufficient large, it is non-optimal to allow capital injection;
however in the gamma case, the value of 𝑘 has a more significant effect on the ending surplus level after
capital injection (if exists) comparing to exponential case. The increasing value of 𝑥 when 𝑘 increases
may also explain or contribute to the increasing trend in second dividend barrier. The proportional
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Table 6. Varying proportional transaction costs 𝜙.

𝜙 1.001 1.01 1.05 1.1 1.2 1.5

𝑥1 0.000 0.000 0.000 0.000 0.000 0.000
𝑦1 0.229 0.229 0.229 0.229 0.229 0.229
𝑥 3.228 2.815 1.980 1.322 – –
𝑥 5.941 5.451 4.513 3.894 – –
𝑥2 5.984 5.856 6.464 8.014 12.688 12.688
𝑥 − 𝑥 2.714 2.636 2.533 2.572 – –

Table 7. Varying fixed penalty payments at ruin 𝐾 .

𝐾 −5 −3 −2 −1 −0.1 −0.01

𝑥1 – – 0.000 0.000 0.000 0.000
𝑦1 – – 0.229 0.848 1.387 1.447
𝑥 6.385 5.054 1.980 1.727 1.702 1.715
𝑥 9.302 7.972 4.513 4.405 4.524 4.552
𝑥2 14.757 13.367 6.464 6.610 15.679 15.421
𝑥 − 𝑥 2.916 2.918 2.533 2.678 2.822 2.836

Table 8. Varying proportional penalty payments at ruin Φ.

Φ 0.001 0.01 0.05 0.1 0.2 0.5

𝑥1 0.000 0.000 0.000 0.000 – –
𝑦1 0.772 0.731 0.538 0.229 – –
𝑥 1.997 1.989 1.966 1.980 4.729 5.189
𝑥 4.556 4.546 4.513 4.513 7.647 8.105
𝑥2 6.555 6.539 6.481 6.464 13.024 13.482
𝑥 − 𝑥 2.559 2.557 2.547 2.533 2.918 2.916

transaction costs 𝜙 plays a similar role as 𝑘 . When the proportion is large than 20%, it will be non-
optimal to allow any capital injection above zero, which is more sensitive comparing to the exponential
case where capital injection region still exists even when the proportion is 100%. Furthermore, Tables
5 and 6 also show that transaction costs of capital injection has no effect on the 2-barrier structure for
dividend in the optimal band-type strategy.

However, the fixed and proportional penalty payment do have effect on the optimal dividend structure.
In particular, from Table 7, we observe that when the fixed penalty |𝐾 | is large (say 𝐾 = −5), the optimal
band-type strategy has only 1 dividend barrier at 𝑥 = 14.757; and when |𝐾 | decreases to 2 or even
smaller, the optimal strategy will have 2-dividend barriers {0, 6.464}. We also observe that the first
lump sum dividend payment region (𝑥1, 𝑦1) is broadened; and because of the 2-barrier structure for
dividend, the capital injection region (i.e. (𝑦1, 𝑥)) is also sensitive to the value of 𝐾 . The influence to
the optimal band-type strategy from proportional penalty Φ is similar. According to Table 8, when the
proportional penalty is small (say Φ = 0.001), it is optimal to have 2-barrier for dividend payment that
is pay lump sum dividend or at premium when 𝑥 ∈ [0, 0.772) ∩ [6.555,∞). However, when Φ increases
to 20% or above, the first dividend region will diminished to none resulting in 1-barrier structure for
dividend in the final optimal band-type strategy.
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7. Conclusion

This paper aims at extending the optimal dividend and capital injection problem in Xu and Woo [18] to the
case with singular dividend payments. The asymptotic relationships between the value function (as well
as the post capital injection value function) of these two scenarios are given. Viscosity theory is applied
to show that the value function is the smallest viscosity supersolution of the corresponding HJBQVI
within certain functional class. The uniqueness of such viscosity solution can be proved by showing a
modified comparison principle, where constructing strict viscosity supersolution is applied in the proof
in order to resolve the capital injection perturbation to the standard proof of such comparison principle.
Finally, a band-type dividend and capital injection strategy is proposed based on four crucial sets and
their topological structures. The optimality of such band-type strategy are given by applying the fixed
point argument. Finally, some numerical examples are presented when the claim size follows exponential
and gamma distribution, respectively. It is observed from the numerical results that under exponential
distribution, the optimal band-type strategy is, in general, a combination of 1-barrier dividend structure
with one capital injection region and no action region, which may reduce to just barrier dividend strategy
when the fixed transaction cost is sufficient large. Under the gamma distribution, the scenarios are more
complicated, where 1-barrier and 2-barrier dividend structure are both possible; and the optimality of
certain dividend structure depends on the value of penalty payments.
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Appendix A

Lemma A.1. Let 𝑔(𝑥) ∈ LB 𝜋 (R) be an viscosity supersolution of (3.3) which is upper semi-continuous
at 0. Then, we can find a sequence of continuously differentiable function ℎ𝑛 on R with ℎ𝑛 (𝑥) = 𝜋(𝑥)
for 𝑥 < 0 such that

(a) ℎ𝑛 satisfies the growth condition (iv) of LB 𝜋 (R) class.
(b) ℎ′𝑛 (𝑥) ≥ 1 for 𝑥 ≥ 0.
(c) ℎ𝑛 ≤ 𝑔 on [0,∞).
(d) ℎ𝑛 converges to 𝑔 uniformly on compact sets and ℎ′𝑛 (𝑥) converges to 𝑔′(𝑥) a.e.

Proof. The proof follows the same steps in the proof of Xu and Woo [18] Lemma 6.1 and Azcue and
Muler [2] Lemma A.2. �

Lemma A.2. The maximizer (𝑥𝜖 , 𝑦 𝜖 ) defined in Proposition 4.2 cannot be obtained on the boundary
of 𝐴.

Proof. The proof is an analogy to the proof of Albrecher and Thonhauser [1] Lemma 2.5 and Azcue and
Muler [2] Proposition 4.2. First of all, by assumption, 𝜉 (0) ≤ 𝜂(0), then for𝑚 sufficiently large, we have

𝐻𝜖 (0, 0) = 𝜉 (0) − 𝜂𝑚 (0) − 2𝑛
𝜖
< 0,

and

𝐻𝜖 (𝑥, 𝐵) = 𝜉 (𝑥) − 𝜂𝑚 (𝐵) − 𝜖2 (𝑥 − 𝐵)
2 − 2𝑛

𝜖2(𝐵 − 𝑥) + 𝜖 ≤ 𝜉 (𝐵) − 𝜂𝑚 (𝐵) < 0.

In addition, we show that the maximizer is not on the boundary when 𝑥 = 𝑦. Note that for all 𝑥 > 0,

lim sup
ℎ↓0

𝐻𝜖 (𝑥, 𝑥) − 𝐻𝜖 (𝑥 − ℎ, 𝑥)
ℎ

= lim sup
ℎ↓0

𝜉 (𝑥) − 𝜉 (𝑥 − ℎ) − 2𝑛/𝜖 + (𝜖/2)ℎ2 + 2𝑛/(𝜖2ℎ + 𝜖)
ℎ

≤ lim sup
ℎ↓0

(
𝑛 − 2𝑛

𝜖ℎ + 1
+ 𝜖ℎ

2

)
= −𝑛 < 0.

where the last inequality holds true because of (4.10). On the other hand, since 𝐻𝜖 (0, 0) < 0, then by
continuity of 𝐻𝜖 we have that for some 𝛿𝜖 > 0, 𝐻𝜖 (0, 𝑦) < 0 for all 𝑦 ∈ [0, 𝛿𝜖 ]. Lastly, for 𝑦 ∈ (𝛿𝜖 ,∞),
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one has for 𝜖 sufficiently large,

lim sup
ℎ↓0

𝐻𝜖 (0, 𝑦) − 𝐻𝜖 (ℎ, 𝑦)
ℎ

= lim sup
ℎ↓0

𝜉 (0) − 𝜉 (ℎ) + 𝜖
2 ℎ

2 − 𝜖ℎ𝑦 + 2𝑛ℎ
( 𝜖 𝑦+1) ( 𝜖 (𝑦−ℎ)+1)

ℎ

≤ lim sup
ℎ↓0

(
−1 + 𝜖

2
ℎ − 𝜖 𝑦 + 2𝑛

(𝜖 𝑦 + 1)(𝜖 (𝑦 − ℎ) + 1)

)
= −1 − 𝜖 𝑦 + 2𝑛

(𝜖 𝑦 + 1)2 < 0.

Therefore, we finish the proof that the maximizer (𝑥𝜖 , 𝑦 𝜖 ) is not obtained on the boundary of 𝐴. �

Lemma A.3. For some 𝑥 > 0 such that (A∗
𝜋 − 𝛿)𝑉 (𝑥) < 0, and there exists a sequence 𝑥𝑛 ∈ 𝒟1 such

that 𝑉 ′(𝑥𝑛) exists and 𝑥𝑛 ↑ 𝑥. Then, there exists 𝜖 > 0 such that (𝑥 − 𝜖, 𝑥) ⊂ 𝒟1.

Proof. Since (A∗
𝜋 − 𝛿)𝑉 (·) is a continuous function, there must exist ℎ0 > 0 and 𝜖 > 0 such that

(A∗
𝜋 − 𝛿)𝑉 (𝑥) < −2𝜖, for 𝑥 ∈ [𝑥 − 2ℎ0, 𝑥]

Let us assume that
ℎ0 <

𝜖

(𝜆 + 𝛿)(𝑘𝑉 + 𝑘𝑈 )
,

where 𝑘𝑉 and 𝑘𝑈 be the maximum Lipschitz constants for 𝑉 and 𝑈𝑦 , 𝑦 ≥ 0 on (0, 𝑥], respectively.
Next, for the sequence 𝑥𝑛 ∈ 𝒟1 and sufficient large 𝑛 such that 𝑥𝑛 ∈ [𝑥 − ℎ0, 𝑥], we consider the
auxiliary function 𝑈𝑥𝑛−ℎ0 (𝑥) defined in (5.2); according to Proposition 5.2, we have 𝑈𝑥𝑛−ℎ0 (𝑥) = 𝑉 (𝑥)
for 𝑥 ∈ [𝑥𝑛 − ℎ0, 𝑥𝑛] if we can show that 𝑈𝑥𝑛−ℎ0 is a viscosity supersolution of (3.3) in (𝑥𝑛 − ℎ0, 𝑥𝑛].
Note that for 𝑥 ∈ (𝑥𝑛 − ℎ0, 𝑥𝑛]

(A∗
𝜋 − 𝛿)𝑈𝑥𝑛−ℎ0 (𝑥) − (A∗

𝜋 − 𝛿)𝑉 (𝑥)

= (𝜆 + 𝛿)(𝑉 (𝑥) −𝑈𝑥𝑛−ℎ0 (𝑥)) + 𝜆
∫ 𝑥−(𝑥−ℎ0)

0
(𝑈𝑥𝑛−ℎ0 (𝑥 − 𝑦) −𝑉 (𝑥 − 𝑦)) d𝐹 (𝑦)

≤ (𝜆 + 𝛿)(𝑘𝑉 + 𝑘𝑉 )ℎ0 < 𝜖.

Hence, we have (A∗
𝜋 − 𝛿)𝑈𝑥𝑛−ℎ0 (𝑥) < (A∗

𝜋 − 𝛿)𝑉 (𝑥) + 𝜖 < −𝜖 .
On the other hand, 𝑈𝑥𝑛−ℎ0 is a viscosity supersolution of (3.3) if for any test function 𝜑 we have

𝑐𝜑′(𝑥) − (𝜆 + 𝛿)𝑈𝑥𝑛−ℎ0 (𝑥) + 𝜆
∫ 𝑥

0
𝑈𝑥𝑛−ℎ0 (𝑥 − 𝑦) d𝐹 (𝑦) + 𝜆

∫ ∞

𝑥

𝜋(𝑥 − 𝑦) d𝐹 (𝑦) ≤ 0,

and
M𝑈𝑥𝑛−ℎ0 (𝑥) ≤ 𝑈𝑥𝑛−ℎ0 (𝑥).

Note that 𝜑′(𝑥) ≤ 𝑈 ′
𝑥𝑛−ℎ0

(𝑥+) = 1, then we arrive at

𝑐𝜑′(𝑥) − (𝜆 + 𝛿)𝑈𝑥𝑛−ℎ0 (𝑥) + 𝜆
∫ 𝑥

0
𝑈𝑥𝑛−ℎ0 (𝑥 − 𝑦) d𝐹 (𝑦) + 𝜆

∫ ∞

𝑥

𝜋(𝑥 − 𝑦) d𝐹 (𝑦)

≤ 𝑐 − (𝜆 + 𝛿)𝑈𝑥𝑛−ℎ0 (𝑥) + 𝜆
∫ 𝑥

0
𝑈𝑥𝑛−ℎ0 (𝑥 − 𝑦) d𝐹 (𝑦) + 𝜆

∫ ∞

𝑥

𝜋(𝑥 − 𝑦) d𝐹 (𝑦)

= (A∗
𝜋 − 𝛿)𝑈𝑥𝑛−ℎ0 (𝑥) < −𝜖 .
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M𝑈𝑥𝑛−ℎ0 (𝑥) ≤ 𝑈𝑥𝑛−ℎ0 (𝑥) follows directly from the proof in Proposition 5.1. Therefore, we have obtained
that [𝑥𝑛 − ℎ0, 𝑥𝑛] ⊂ 𝒟1 for sufficiently large 𝑛; then,

(𝑥 − ℎ0, 𝑥) ⊂
⋃
𝑛∈N

[𝑥𝑛 − ℎ0, 𝑥𝑛] ⊂ 𝒟1.

�
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