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Abstract. Results of some simple 'thermodynamic' experiments on self-gravitating /i-body systems are 
reported for a variety of boundary conditions. Systems placed in specularly reflecting enclosures did not 
show any unusual behavior, even though a variety of conditions was tried in an attempt to start a 
'gravothermal castastrophe'. Similarly, there was no tendency to transfer energy between 'hot' and 'cool' 
subclosures within a given cluster. However, systems in isothermal' enclosures gave up energy to the 
enclosure at a surprisingly high rate, and sustained the energy-transfer rate as long as the experiment was 
continued. An explanation of these different behaviors was sought and found in an examination of the 
premises that underlie certain attempts to construct a thermodynamics for self-gravitating systems. Con
ventional application of the //-theorem implies violations of the w-body equations of motion and predic
tions not consistent with observation. Both the 'gravothermal catastrophe' and the experiments in an 
'isothermal' enclosure share this violation of the equations of motion. A new formulation that allows for 
all the interactions in an «-body system shows that isolated w-body systems need not form binaries or 
condense into other subaggregates. The virial theorem follows as an ensemble average over the micro-
canonical ensemble. 

1. Introduction 

The work reported here represents a different approach to the study of systems of 
self-gravitating mass points from the mathematical methods you have heard so nicely 
described at this symposium by Moser and Pollard, among others. The mathematical 
approach is an attempt to describe all solutions of the n-body equations of motion; 
it must be capable of treating anything an n-body system can do, and it founders on 
the technicalities presented by singular cases. The methods of statistical mechanics 
provide an alternative approach by means of which it is possible to sidestep measure-
zero effects like the singularities that plague the mathematical approach. This is ac
complished by averaging over the parameter space (or phase space) in such a way 
that measure-zero effects are unimportant. The methods promise an overview without 
requiring detailed solutions. But the usual price is paid - equilibrium situations are 
stressed, or for nonequilibrium systems, the best that can be done is to describe the 
approach to equilibrium. Many of the obvious questions cannot be answered within 
this framework. 

Not only does statistical mechanics seem to be a tool that should be useful in 
stellar dynamics, but stellar dynamics can provide a useful testing-ground for some 
unsolved problems in statistical mechanics. Galaxies, clusters of galaxies, and star 
clusters, are not uniform; they are groups of stars or galaxies that stand well separated 
from their neighbors. Under the presumption that what we see is some kind of equi
librium state, it is clear that equilibrium of a stellar dynamical system is not the 
uniform state of maximum entropy that characterizes equilibrium in most cases that 
we know how to treat by statistical mechanics. But many naturally occurring systems 
are nonuniform; when we look about us, very few of the systems that we see in nature 
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are uniform. Biological systems, especially, are nonuniform. (For an interesting dis
cussion of the statistical mechanics of biological systems, see Prigogine et a/., 1972). 
Thus stellar systems provide a challenge: they represent what is quite likely the 
simplest kind of naturally occurring system for which the equilibrium state is not 
uniform; they are certainly the simplest one-component system that is known to 
display this property. The study of stellar dynamical systems promises to provide 
clues, not only to the understanding of the beautiful objects we see in the sky, but 
also of things closer to home in which nonuniformity seems to be one of the principal 
attributes. 

Unfortunately, the statistical approach turns out (for systems of negative total 
energy) to emphasize an uninteresting state in which the energy is concentrated in 
a binary with all the remaining (n — 2) particles at infinite separation, a situation that 
is not of much interest for stellar dynamics. The statistical method founders on a 
different technicality from the mathematical approach. The arguments leading to this 
conclusion will be reviewed in this paper. 

2. N-Body Calculations 

This program started from an attempt to study the 'thermodynamics' of a self-grav
itating M-body system by using that system as the 'thermodynamic fluid' in a Carnot 
engine. The technique of numerical experiments was used, in which n-body systems 
were simulated in a computer. There are many respects in which the concepts of 
thermodynamic systems and of stellar dynamical systems are incompatible; these 
gave rise to technical difficulties that will not be gone into here. The essence of a 
Carnot engine is that the system must be placed in an enclosure whose walls can be 
made adiabatic or isothermal. 

The system was placed in a box, which worked as follows. After each integration 
step, each particle was checked to see if it were outside the box. Any particle outside 
the box was reprojected into the box with a new kinetic energy randomly chosen to 
have an exponential distribution with mean value T. Changes in kinetic energy (and 
the change in angular momentum) were tallied. The particle was reprojected from 
the location it had when it was discovered to be outside the box. A cubic box, with 
boundaries at ± 1 in all three directions, was used. The box was endowed with a 
'temperature', 7, that governed the mean kinetic energy of the reprojected particles. 
It was also endowed with a 'heat capacity', according to which its temperature can 
change in proportion to the net energy interchange between the stellar system and 
the box. Most experiments were run with a rather large heat capacity, and the re
sultant temperature changes (for the box) were negligible. This approximated the 
isothermal enclosure. 

It would be possible to design an adiabatic enclosure for these systems; however, 
adiabatic enclosures were not used for the experiments reported here. 

A particularly simple condition results if the box temperature is zero. Any particle 
that ventures outside the boundary is stopped, its kinetic energy removed, and the 
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particle is then released to fall from the point at which it was caught. This practically 
assures that the particle will fall back through the most dense part of the cluster, 
where it can interact very strongly with the remaining cluster members. This 'cold 
box' condition produced the interesting results shown in Figure 1, where the energy 
delivered to the box by the stellar system is shown as a function of time. The kinetic 

Fig. 1. Energy transfer from a 32-body system to a cold enclosure. The total initial kinetic energy was 
about 250. The time units on the abscissa were nearly a crossing time of the initial state. The two tracks 

represent two distinct calculations. 

energy of the 32-body initial state was about 250, the potential energy about - 500, 
and the total energy about — 250. The time units of the abscissa were about one 
crossing time of the initial cluster. 

The remarkable features of Figure 1 are the rate at which energy is given up to 
the box and the fact that the rate does not diminish appreciably as the process con
tinues, even though the total amount of energy transferred is quite large (four times 
the total kinetic energy in the initial state). The solid curve represents one calculation 
- the dashed curve was another calculation from similar starting conditions for com
parison purposes. The two curves give some idea of the reproducibility of the results 
from experiment to experiment. 

The situation is qualitatively the same with the box at other temperatures: in 
Figure 2, the box temperature was about twice the mean kinetic energy of particles 
in the initial cluster. After a short dip, in which the cluster received energy from the 
box, the energy transfer began, and continued much as it did with the cold box, but 
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at about half the rate. Apparently, the box prevents the potential energy of the cluster 
from becoming much larger (it is always negative, so a larger potential energy means 
that the particles are farther apart), while the hotter box increases the mean kinetic 
energy of the particles. After some time, the box and the cluster have about the same 
temperature, and then the transfer begins. It is not clear what determines the rate of 
energy transfer, once it has begun. 

A different set of experiments was carried out in which the cluster was confined 
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Fig. 2. Energy transfer from a 32-body system to an enclosure with nonzero temperature. The time units 
on the abscissa are nearly a crossing time of the initial state. 

to a specularly reflecting spherical enclosure. No example tried has shown a behavior 
like that associated with the energy transfers of the cases run in the isothermal en
closure. The specular boundary condition prohibits energy (and angular momentum) 
transfer to the enclosure, but the transfers in the isothermal enclosure were associated 
with a shrinking of the cluster and an increase in kinetic energy that would be easy 
to identify if they did occur in the specular enclosure. Nothing surprising happened 
in the runs with the specular enclosure, except for the sharp contrast shown with the 
earlier runs with the isothermal box. 

A third set of experiments was carried out in which the members of a given cluster 
were arbitrarily assigned to one of two subclusters for certain summaries such as 
total kinetic energy, total potential energy, and so on. The mechanism by which 
'negative specific heat' is argued to lead to the formation of core-halo structures in 
the 'gravothermal catastrophe' (Lynden-Bell and Wood, 1968) is based on energy 
transfers between 'hotter' and 'cooler' subsets of particles within a given cluster. The 
terms 'hotter' and 'cooler' refer to particles with high and low kinetic energy respec
tively. One way to mimic these notions in a machine calculation is to separate the 
particles of an ordinary calculation into two classes according to their kinetic energy. 
This set of experiments makes use of a normal calculation for a star cluster, and is 
free of the unnatural boundary conditions of the other experiments. Whenever a 
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fairly complete summary of cluster properties is run, the particles are sorted into two 
subsets according to kinetic energy. Along with the usual cluster properties, the ki
netic and potential energy of each subcluster is tallied as if the rest of the particles 
did not exist; the potential energy of interaction of the two subclusters is also tallied. 
A given particle may move freely from one to the other of the two subsets. The sep
aration applies only to the tallies; no distinction is made for the integration. This 
model appears to be very much in the spirit of discussions on 'negative specific heat' 
and of the 'gravotherrrial catastrophe'. 

No strong tendency to transfer energy from the 'hot' to the 'cool' subcluster is 
evident in these experiments. The low-kinetic-energy subcluster nearly obeys the 
virial theorem as if the other subcluster were not present. 

An alternative way of looking at these experiments that is free of some of the 
arbitrariness of division into two subclusters is to study the distribution of particle 
kinetic energy at various times. This distribution definitely did not show a tendency 
to segregate into extreme examples of high and low kinetic energy; high kinetic 
energies increased sharply during close encounters, but apart from this effect, no 
trend toward relatively distinct subsets of high- and low-kinetic-energy particles ap
peared. The experiments are consistent with the maintenance of an isothermal struc
ture. More complete descriptions of the experimental results have been published 
elsewhere (Miller, 1973). 

Among the various computer experiments, that with the isothermal enclosure is 
clearly the anomalous case. Both the examples with the specular reflector and those 
in which the system was regarded as if made up of two different subsystems showed 
no tendency to shrink into a small, 'hot' system that coexists with another extended, 
'cool' system (core-halo structure). We anticipate the logical chain of arguments of 
this paper to comment on the reasons for this different behavior. The essential dif
ference between the examples run with the isothermal enclosure and the other cases 
seems to be that the boundary conditions for the isothermal case are not describable 
by a Hamiltonian. Thus, there is no Liouville theorem for this case. By contrast, both 
the specular reflector and the subdivision of the particles into classes yield problems 
that are describable by Hamiltonians, and for which there is a Liouville theorem. 
This is manifestly the case for the subdivision; the specular reflector can be described 
as a Hamiltonian system by introducing an infinite (positive) potential at the po
sition of the wall. The condensation into a compact system does not occur for the 
systems describable by a Hamiltonian; there is no such constraint on the problem 
with the isothermal enclosure. Similarly, the 'gravothermal catastrophe' proceeds in 
violation of the Liouville theorem (in 6n dimensions). 

A collapse, if it is to occur, must do so on a secular (relaxation) time scale, and not 
on a dynamical time scale. Unfortunately, n-body calculations are not well suited to 
an examination of this question since the secular and dynamical time scales are not 
well separated for systems that contain fewer than about 1000 particles. The time-
scale of energy transfer to the enclosure in the experiments with the isothermal en
closure may have been dominated either by dynamical or by relaxation time-scales, 
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or by still another (undefined) time-scale. However, it is suggestive that the rate of 
energy transfer did not change with the dynamical time-scale of the cluster as the 
cluster shrunk. As the cluster got smaller in the configuration space, and the dy
namical time-scale got shorter in the units of the calculation, the rate of energy transfer 
stayed about the same. It would have decreased if measured in terms of the dynamical 
time-scale, but it would not decrease nearly as strongly if measured in terms of a 
relaxation time-scale. The energy transfer, and the shrinkage of the residual cluster, 
seems to have been dominated by the relaxation time scale, as expected. 

It was not possible, in these experiments, to define a thermodynamic temperature 
of a stellar system by the operational method of placing the system in contact with 
a foreign body, and allowing the two to reach equilibrium. No equilibrium was 
reached. Again, this can be attributed to violations of the Liouville theorem. It might 
be possible to construct the 'heat bath' in such a way that the total system is de-
scribable by a Hamiltonian; there must then be a Liouville theorem for the total 
system. But the phase volume accessible for the stellar component need not be con
served. It thus appears to be impossible to design a system that would permit an 
operational definition of 'temperature' for a stellar system. 

3. //-Theorem 

The connection between statistical and thermodynamic descriptions is usually made 
through identification of the Boltzmann H with entropy, with the subsequent as
sociation of the //-theorem with the increase of thermodynamic entropy in irrevers
ible processes; of through some other equivalent assumptions. This same connection, 
by means of the H-theorem, has been made for stellar dynamical systems (Antonov, 
1962; Lynden-Bell and Wood, 1968), although it is unlikely that there is an H-theorem 
for stellar dynamical systems. Prigogine and Severne (1966) have shown that there 
is no H-theorem for infinite, spatially uniform, self-gravitating systems, but because 
such systems are Jeans-unstable, the question is still open for finite systems (Prigogine 
and Severne made this point in their paper). 

With the usual projected distribution functions normalized to unity, the functions 

HB=-\ d 3 x d V i k ) g / i , 
J (1) 

H G =-J d3nxd3nvfnlogfn9 

are the same as the definitions of 'entropy' used in discussions of information theory 
(Shannon, 1948; Khinchin, 1957). The subscripts B and G signify that these are es
sentially the Boltzmann and Gibbs //-functions of statistical mechanics. The special 
form of Equation (1) seems to have been invented to yield systems for which a vari-
ational calculation would produce Maxwellian velocity distributions. The function, 
//G, is a constant of the motion as a consequence of the Liouville theorem, and so is 
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usually regarded as not very interesting. An essential inequality is proved in books 
on information theory: 

nHB>HG, (2) 

with equality if and only if the n-particle distribution can be written as a product of 
single-particle distributions: 

f.(l,2,...%n)=Ml)-M2)-...-Mn). (3) 
It is straightforward to extend this inequality to show that increases in HB require 
increased deviation from the form of Equation (3) in the sense of requiring more 
correlation, in order to be consistent with the Liouville theorem (and thus with the 
constant value for HG). We will not go into the details here, as the argument is pre
sented in a forthcoming publication (Miller, 1974). 

There is, in general, no limit to the allowed increase in HB through increased cor
relation. In the usual problems of statistical mechanics, this increase in correlation 
appears in momentum space along with an increase in the mean square particle 
momentum (or kinetic energy). Equilibrium, as defined by the //-theorem, occurs 
when the kinetic energy of the particles has reached the maximum value attainable, 
a maximum being assured by the assumption of a finite bound to the amount of 
energy available from the potential energy (internal energy) sources available to the 
system. There is no such bound for stellar dynamical systems, so other means must 
be used to halt the process if a finite limit is to be reached. The particle correlation 
does not mean that particles are necessarily close together; rather it implies that 
knowledge of the phase of one particle tells something about where other particles 
are to be found. Even if there is no upper bound to values of //B, as is the case in 
stellar dynamics, evolution under the //-theorem should proceed toward states of 
stronger correlation, and away from uncorrelated states such as those described by 
Equation (3). If a maximum for HB can be attained, it is reached by maximizing cor
relations. 

Particle correlations make a contribution to the potential energy of a stellar system. 
With pair correlations written as an additive part to the two-particle distribution: 

/ 2 ( l , 2 ) = M l ) / i ( 2 ) + 0 ( l , 2 ) , (4) 

the total potential energy breaks up into the sum of two pieces. There is the usual 
part obtained from the/j's 

K1==-Gm2^—^ fd^'dV^/iO) [d3x<2>dV2> /i(2) 
|x(2)-x(1»i 

and a second part due to the pair correlation: 

Vc=-Gm2^—^ f d ^ ' d V 1 ' fd3x<2)dV2> g(l,2) 
t J C ( 2 ) _ J C ( l ) | " 

(5) 

(6) 
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This is not an idle exercise: real stellar systems show appreciable pair correlation, 
just as do n-body systems in a computer (Miller, 1971,1972). The contribution of Vc to 
the total energy can become quite large (half of the total potential energy or more). 

Any argument in which Vc is ignored in the bookkeeping for the energy is tanta
mount to the assumption of an n-particle distribution of the form of Equation (3). 
While it is possible to construct n-particle distributions that yield zero results for Vc, 
these distributions are sufficiently pathological that a rather strong argument is re
quired to justify ignoring the contribution of Vc to the total energy of a stellar system. 
It is not a completely trivial exercise to construct/„'s that yield negligible values for Vc. 
Arguments to the effect that the //-theorem correctly indicates evolutionary trends 
in stellar systems, but in which Vc is ignored in calculating the total system energy, 
are internally inconsistent because those arguments, on the one hand, call for in
creased particle correlation while, on the other hand, one of the principal results of 
particle correlation is ignored. 

Indications that correlations are important in self-gravitating systems are not new. 
Prigogine and Severne (1966) constructed a weak coupling kinetic theory of binary 
interactions which predicted an irreversible growth of correlational energy. Their 
model was spatially uniform and of infinite extent, and the arguments did not hinge 
on HB. Similarly, Chandrasekhar has repeatedly stressed the dependence of the po
tential energy on pair configuration distributions (Chandrasekhar and Lee, 1968; 
Chandrasekhar and Elbert, 1971). 

If actual stellar systems evolved toward increased //B, they would undergo a secular 
trend toward states characterized by a preponderance of binaries, since this is the 
easiest way to increase correlation. There is no observational evidence that cluster 
evolution proceeds in this way. Evolution towards greater values of HB also runs 
against the virial theorem. As correlation increases, the magnitude of the potential 
energy increases; the total kinetic energy, K, must also increase in order to conserve 
total energy. The ratio, — V/K, must approach 1, not the value of 2 appropriate to 
the virial theorem. Both observational data and n-body calculations seem to confirm 
the 2 of the virial theorem over the 1 of a variational calculation based on the //-
theorem. 

Evolution toward greater values of HB does not seem to provide a useful technique 
for studying stellar system's on two grounds: because HB can become infinite without 
local maxima, it does not predict stable equilibria; and the evolution predicted is not 
in agreement with observation. It also does not predict metastable equilibria, but this 
requires arguments not presented in this paper (Miller, 1973). At any rate, such evo
lution, far from being a 'catastrophe', must proceed on a secular (relaxation) time-
scale. Note that nothing has been said about those versions of the //-theorem that 
make use of coarse-graining, and that we have not shown that there is no //-theorem 
for self-gratitating systems. 
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4. The Microcanonical Ensemble 

An alternative approach to the statistical mechanics of a stellar dynamical system is 
through the construction of one of the ensembles commonly used in statistical me
chanics. The microcanonical ensemble is the only ensemble appropriate to stellar 
systems, which are presumed to obey the w-body equations of motion and to conserve 
total energy. The canonical and grand canonical ensembles are not suitable because 
the notion of a heat bath is alien to stellar systems and because the long range forces 
preclude treatment of subdivisions of the total system. The difficulties with numerical 
experiments, described in Section 2, underline these features. 

The microcanonical ensemble is a useful illustration, and brings out some un
expected features of stellar dynamical systems. The volume of (the 6n-dimensional 
phase space included in) the region between two neighboring hypersurfaces of total 
energy E and E+AE is a(E, R) d£, with 

00 

a(E,R) = CN(R) | d(-V)(-V)2-3N(E-Vy3N-s»2 = 
-E 

= const.(R3)N-2(-E) (1"3N) /2 . 

The coefficient CN(R) arises because this phase volume becomes infinite if infinite 
configuration volume is available; the R appearing in Equation (7) is a cutoff radius, 
inside which the entire cluster is presumed to lie. The integrand of Equation (7) may 
be regarded as a probability distribution function for (— V). More negative values 
of V lead to rapidly growing phase volumes in the momentum space through the 
(E— K ) ( 3 N ~ 5 ) / 2 term. Since ( — V) may become infinite by letting two or more par
ticles come close together in the configuration space, an infinite volume (at quite a 
high order infinity!) opens up in the momentum space. The discussion is usually 
terminated at this point with the observation that there is infinite phase volume be
cause of close binaries. However, the configuration volume available for such par
ticle aggregates diminishes faster than the momentum space opens up, leaving a net 
decrease in the available phase volume. The most probable values for (— V) are those 
in which the two terms just play off against each other. This yields a virial theorem. 
The details of this calculation appear elsewhere (Miller, 1973, 1974). 

The integral of Equation (7) is the leading term of a sequence of similar terms that 
arise from the calculation of the configuration volume inside a surface (— V)=con
stant. But the volume inside such a surface can be infinite because an arbitrarily large 
amount of potential energy is available by letting two particles come close together; 
all the remaining particles can then be removed to infinity. All but three particles 
can be removed to large distance, but the volume inside ( — V) = constant is infinite 
for three particles by leaving two close together and removing the third, and so on. 
The contributions of all these combinations may readily be summed. The growing 
infinity must soon overtake any finite contribution from interesting parts of the (— V) 
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surfaces near the origin; thus for large enough distances (R large), the volume as
sociated with d(— V) tends asymptotically to the form given in Equation (7). The 
remaining terms of the sequence, which have been ignored in Equation (7) are those 
with three particles near each other, with two sets of binaries, with four particles, 
and so on. Thus the phase volume in the microcanonical ensemble is dominated by 
a state with a single binary having all the energy, with the other particles at rest at 
infinite separation, the uninteresting state referred to earlier. 

The expression for phase volume in Equation (7) can be taken into one of the usual 
definitions of'entropy' through the relation exp(S) = (j(£) (see, for example, Landau 
and Lifshitz, 1969; but also note the admonitions in their Section 8 on the inappli
cability of statistical methods to problems involving gravitation). From this, a 'ther
modynamics' can be constructed, yielding a (positive) 'temperature', T=2(-E)/ 
(3N— 1), related to the total system energy and not to the kinetic energy alone. The 
specific heat associated with this temperature is negative. Other thermodynamic 
functions may be worked out as well, but that does not seem to be a fruitful under
taking. 

Dynamical formation of binaries is not a preferred process in this formulation: 
systems do not tend to form many binaries because there is not a preponderance of 
phase volume accessible. The same argument applies to higher particle aggregates 
as well. The principle underlying these assertions is that situations with more phase 
volume accessible are more probable; this seems to be one principle of statistical 
mechanics that it should be possible to carry over into stellar dynamics with some 
confidence. The results quoted here apply to cases where all particles have equal 
mass. With unequal masses, there is considerably more phase volume available to 
a configuration in which the two most massive particles form a binary; the tendencies 
in this direction, as described at this meeting by Heggie, might profitably be con
sidered from this viewpoint. 

In the study of star clusters, we do not want a true ensemble average or (assuming 
ergodicity) a true time-average; either of these would only tell about the state with a 
single binary and infinite dispersion of the other particles. The desired averages are 
over systems with most of the particles near the origin. For example, the 'virial 
theorem' that can be obtained from this formulation actually results from the lack 
of interaction of the particles removed to infinite dispersion. All the energy (both ki
netic and potential) resides in the binary; the other particles make no contribution. 
But binary systems are known to obey the virial theorem, so the stated result is not 
surprising. However, the formulation also yields expressions for the probability dis
tribution of the virial ratio as a function of particle number; this is an interesting 
result. 

The development of the microcanonical ensemble does not proceed in the direction 
that would cause the most rapid increase of HB, as might be expected if the H-theorem 
were valid. The argument is based on the nature of the infinity in the phase volume. 
Larger values of HB imply that there are conditional probabilities such that some 
knowledge of the state of the system allows more precise statements to be made 
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about the total state than could be made in the absence of that knowledge. But the 
final state of the microcanonical ensemble is the antithesis of that condition: the 
preponderance of phase volume is dominated by states such that knowledge of the 
phase of one particle only carries information of order (1/w) about which particle 
should be near some other particle. While HB might become arbitrarily large with 
correlation order of (1/n), it could become much larger still with correlations of order 
unity (in the particle number). 

The microcanonical ensemble does not provide a valid counterexample to the H-
theorem. However, the //-theorem is not useful if there is no maximum to HB (so 
that no terminal equilibrium state can be predicted) and the evolution does not even 
proceed in such a way that the state of the system can be correctly predicted at later 
times by solving for a maximum of HB while HB is still finite. 

There is a vaguely unreal feeling to the arguments based on ensemble averages over 
the microcanonical ensemble, and the time averages that are equivalent if the system 
is ergodic. The arguments leading to the assertion that larger phase volumes are 
more probable imply that there is some mechanism available to permit the system 
to evolve in that direction even if it has started out in some other direction. For ex
ample, suppose the system formed two binaries at some early stage. Then the system 
begins to dissolve. The dynamics says that if all the other particles are essentially 
infinitely far apart, and if the two binaries are similarly at infinite separation, there 
is no way that the two binaries can exchange energy to reach the more probable 
terminal state with only one binary. But it is equally difficult to imagine that the 
system, while it is still relatively compact with interactions available to redistribute 
energy among the constituent parts, can know that it should arrange itself to have 
only one binary, in order to be properly prepared for future developments. Further, 
the arguments, like those of the mathematical treatment of rc-body systems, presup
pose infinite time, and so allow states of little physical interest to dominate the en
semble or time-averages. The time-scales for development of such systems is unreal-
istically long from a physical point of view. 

No equilibrium solution has been found by any of the methods used here. Some 
equilibrium solutions are known, but they represent a 'set of measure zero' relative 
to all possible configurations, so they might understandably escape detection by these 
methods. The criteria used to define equilibrium may be too strict; certainly it is not 
realistic to demand stability over times greatly in excess of the age of the universe. 
It seems likely that we are faced with a situation in which there may be no equilibrium 
in the mathematical sense, but in which the natural processes leading to the dissolu
tion of clusters are so slow that clusters represent an equilibrium in a practical sense. 
If so, we need mathematical tools that allow us to calculate the properties of inter
esting subsets of all possible systems - those with all the particles near each other, 
but without need to be preoccupied with pathological collisions. An alternative is 
that other processes (dissipation due to interstellar gas, etc.) might be more important 
than we have believed them to be, and that some other mechanism may be responsible 
for the apparent equilibria observed in natura. The challenging puzzle still stands. 
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