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Abstract

This paper addresses problematic behaviors of Markov chain Monte Carlo (MCMC) methods for finite
mixture models due to what we call degenerate nonidentifiability. We discuss the reasons for these
behaviors, propose diagnostics to detect them, and show through simulations that using more infor-
mative priors than the vague defaults can mitigate the problems in growth mixture models (GMMs).
Our motivating example is an application of GMMs to data from the National Longitudinal Study
of Youth (NLSY) to examine heterogeneity in the development of reading skills in children aged 6 to
14. Additionally, we suggest ways of describing and visualizing within-class heterogeneity in GMMs,
provide a literature review of likelihood identification and Bayesian identification, propose a viable
definition of Bayesian identification for latent variable models based on the marginal likelihood (in-
tegrated over the latent variables), and give a brief didactic description of Hamiltonian Monte Carlo
(HMC) as implemented in Stan.

Keywords: degenerate nonidentifiability, distinguisahbility index, finite mixture model, Hamiltonian
Monte Carlo, identification, latent class model, Stan.
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Bayesian Identification and Estimation of
Growth Mixture Models

1 Introduction

The ability to read is fundamental for learning and for effective participation in society and the
workplace. It is therefore not surprising that research has been concerned with the development of
children’s reading skills over time. In this paper, we will use data from the National Longitudinal
Study of Youth (NLSY) to address the question of whether children fall into subgroups characterized
by different types of learning trajectories for reading recognition.

The standard approach for addressing such research questions is the use of growth mixture models
(GMMs) which are finite mixtures of growth curve models (e.g., B. O. Muthén, 2002; B. O. Muthén
& Muthén, 2000; B. O. Muthén & Shedden, 1999). In GMMs, each subpopulation or class has its own
mean growth trajectory, often linear or quadratic in time, with intercepts and slopes that vary between
individuals. The covariance matrix for intercepts and slopes is usually also class-specific although an
equality constraint is sometimes imposed to address convergence issues (e.g., McNeish & Harring,
2020). Individuals’ class membership and the values of their intercepts and slopes can be viewed as
latent variables, and we will use the term “marginal likelihood” to refer to the likelihood obtained by
marginalizing over these latent variables.

Bayesian estimation is increasingly used for GMMs, with researchers employing tools such as
Mplus (L. K. Muthén & Muthén, 1998-2017) or general Bayesian languages such as BUGS or 0penBUGS
(Lunn, Jackson, Best, Thomas, & Spiegelhalter, 2012), JAGS (Plummer, 2017), and Stan (Stan Devel-
opment Team, 2024). In this paper, we use the popular Stan software which implements Hamiltonian
Monte Carlo methods (HMC, Betancourt & Girolami, 2015; Hoffman & Gelman, 2014).

Similar to other finite mixture or latent class models, estimation and inference are challenging for
GMDMs. For Bayesian estimation, the existing literature has addressed issues such as label switching
(e.g., Diebolt & Robert, 1994) and multimodality (e.g., Yao, Vehtari, & Gelman, 2022), but to our
knowledge there is no general treatment of identifiability issues and their implications for estimation.

We will argue that Bayesian identifiability is essentially the same as likelihood identifiability and
provide an overview of different kinds of likelihood identifiability, such as global, local, weak, and
empirical identifiability. Importantly, we will show that the marginal likelihood is appropriate for
investigating identifiability in latent variable models.

Special identifiability issues arise for finite mixture models such as GMMs. Labeling nonidentifia-
bility is due to the invariance of the marginal likelihood to permutations of the component/class labels
and has been thoroughly addressed in the literature because it leads to label switching. The other
issues are related to degeneracies whereby a K-class model becomes equivalent to a model with fewer
than K classes. Such degeneracies are due to parameter vectors satisfying certain constraints. Several
parameter vectors, each satisfying a distinct set of constraints that lead to degeneracy, can be observa-
tionally equivalent in the sense that they produce the same marginal likelihood, leading to degenerate
nonidentifiability. Additionally, the model is locally nonidentified at degenerate parameter values.
This can happen in two ways. First, when one or more class probabilities (or mixing proportions) are
zero, the class-specific parameters for the corresponding class or classes are not identified. Second,
when the parameters of two (or more) classes are identical, the corresponding class probabilities are
not separately identified — only their sum. The first issue turns out to be problematic for MCMC
estimation because it is self-perpetuating in the sense that sampling a tiny class probability will lead
to sampling of arbitrary class-specific parameters for that class, which in turn will lead to sampling of a
tiny class probability when these class-specific parameters are incompatible with the data. We refer to
such sequences of persistent sampling of tiny class probabilities as “stuck” sequences when the sampled
values remain unchanged and as “miniscule-class” sequences when the class-probability parameter(s)
fluctuate just above zero with a small variance.

The main contributions of the paper are as follows: (1) using GMMs to analyze and classify
development of children’s reading recognition based on NLSY data and proposing methods to vi-
sualize and describe within-class heterogeneity in such models, (2) providing a review of the lit-
erature on Bayesian identification and proposing a viable definition for latent variable models, (3)

https://doi.org/10.1017/psy.2025.11 Published online by Cambridge University Press


https://doi.org/10.1017/psy.2025.11

giving a brief didactic description of HMC estimation methods, (4) demonstrating problematic be-
havior of MCMC methods due to identifiability issues, (5) suggesting diagnostics and demonstrating
their usefulness for detecting problematic behavior, and (6) recommending the use of weakly infor-
mative priors to mitigate the problems and investigating their performance through a simulation
study. Data and code for generating the graphs and diagnostics presented here are available on
https://github.com/DoriaXiao/BayesianIdentification.

In the next section, we analyze data from NLSY to motivate and introduce GMMs and interpret
estimates as preparation for subsequent sections on identifiability, estimation, and convergence issues.

2 Bayesian growth mixture modeling of reading recognition

2.1 Goals of analysis

Our goal is to identify subpopulations of children characterized by distinct mean growth trajectories
of reading recognition and distinct types of heterogeneity in their growth trajectories from age 6 to 14.
Applications of growth mixture modeling to reading include Kaplan (2002), Bilir, Binici, and Kamata
(2008), Boscardin, Muthén, Francis, and Baker (2008), Pianta, Belsky, Houts, and Morrison (2008),
Grimm, Ram, and Estabrook (2010), and Grimm, Mazza, and Davoudzadeh (2017).

Some of these studies focus on narrower age ranges than ours and are therefore less comparable to
our study. For example, Bilir et al. (2008) considered older students in 6th to 9th grade (ages 12 to
15), whereas Kaplan (2002) and Boscardin et al. (2008) considered early reading development over a
1.5-year and 2-year period, respectively, starting at the end of kindergarten/beginning of first grade
(about 6 years old).

More similar to our study, Pianta et al. (2008) analyzed reading scores from the National Institute
of Child Health and Human Development (NICHD) Study of Early Child Care and Youth Development
(SECCYD) for children aged 54 months (4.5 years) in Wave 1 and followed up in first, third, and fifth
grade (11 years old). Pianta et al. (2008) fitted a two-class GMM and identified “fast readers” (30% of
children) whose average trajectory grows fast initially and then decelerates and “typical readers” (70%
of children) who start lower, on average, and grow approximately linearly, remaining below fast readers
through 5th grade. Similar average latent trajectory curves were found by Grimm et al. (2010) who
analyzed data from the Early Childhood Longitudinal Study — Kindergarten (ECLS-K) on children
from the end of Kindergarten to the end of eighth grade, but only 6% of children fell in their “early
reader” class, with the remainder in the “normative” class. That paper used nonlinear (Gompertz)
growth curves, whereas a subset of the same data is analyzed using classic GMMs by Grimm et al.
(2017). Their 3-class solution identified a class (54% of students) whose mean trajectory starts at
the lowest point among the classes at the end of Kindergarten and shows steady growth through fifth
grade followed by a slight deceleration. The trajectory of the smallest class (11% of students) starts
higher and is nearly parallel to that of the largest class, whereas the mid-sized class (35% of students)
starts only slightly higher than the largest class and grows considerably faster initially, catching up to
the smallest class by about 3rd grade.

2.2 Subjects and measures

We use data from the National Longitudinal Survey of Youth (NLSY) provided by Curran (1997)
and previously analyzed by Curran, Bauer, and Willoughby (2004), Bollen and Curran (2006), McNeish
and Harring (2020), and others. The sample includes one child per mother, aged between 6 and 8
years in the first wave in 1986 and with complete data in 1986 for the variables considered by Curran
(1997). The children were assessed every two years for four waves of data until 1992. Our analysis
focuses on the scores from the reading recognition subtest of the Peabody Individual Achievement
Test (PIAT). This subtest assesses word recognition and pronunciation ability which are considered
essential components of reading ability. There were 405 children in wave 1. Among them, 221 children
had reading recognition scores at all four waves, and the average number of reading scores per child
was 3.21.

As described by Curran (1997), the reading recognition score in the data is the total raw score on
the reading recognition subtest of the PIAT divided by 10. According to the NLSY documentation, the
interviewer showed children words to read aloud and rated the pronunciation as correct or incorrect.
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The same 84 items, sorted in order of increasing difficulty (e.g., item 19 is “run”, item 50 is “guerilla”
and item 84 is “apophthegm,” and the first 18 items are simply numbers and letters, like “1” and “N”),
were used for all ages. Which item was first shown to the child (starting item) depended on the child’s
PIAT math score. The basal item was established as the lowest item of the highest five consecutive
correct responses (proceeding backward from the starting item if necessary). The ceiling item, which
was also the last item administered, was the highest item of the lowest seven consecutive responses
containing five incorrect responses or errors (in some years the lowest five with consecutive errors).
Assuming that children would respond correctly to items lower than (and therefore easier than) the
basal item and incorrectly to items higher than the ceiling item, the total raw score was calculated as
the ceiling item minus the number of errors between basal and ceiling items.

2.3 Bayesian growth mixture model (GMM)
2.3.1 A GMM for the reading data

The model can be specified by introducing a categorical latent variable w; that represents which of
K latent classes subject j belongs to and is sampled from a multinomial distribution with probability
parameters {\F)}E = (A AL

w; o~ Multinomial(l,{)\(k)}kK:l).

Then the conditional density of the response y;; for child j at occasion %, given class membership wj,
a random intercept r1;, and a random slope 7o is

k
Yijlwj =k, 115,725 ~ N(ng)702)~

The conditional mean is modeled as a function of the age ¢;; of the child (centered at 6 years old),
k k k k
/‘z(‘j) = (5 )+r1j)+( ; )+sz)tij+ﬂ§ )t?ja (1)

where B%k), ﬁék), and Bék) are the mean intercept and slopes of age and age-squared for class k.
The random intercept and random slope of age are assumed to have a bivariate normal distribution
(rij,re;) |w; =k ~ N(0, ™) with class-specific covariance matrix £*). We include a quadratic
term in the conditional mean because we expect the rate of growth in reading recognition to decline
as children become more proficient. However, allowing the coefficient of the quadratic term to vary
between children would introduce another three variance-covariance parameters for each class and
seems overly ambitious because there are at most four observations per child.

The specification so far is sufficient for maximum likelihood estimation. The Bayesian model
further has a Dirichlet prior for the class probabilities, with concentration parameters a*). We set
these parameters constant across classes, aM=...=q) =aq,

{AENE -~ Dirichlet(a, ..., a).

The concentration parameter can be roughly interpreted as adding K x a subjects to the data and
treating their class membership as known, with « individuals belonging to each class. The greater «,
the stronger our prior belief that the class probabilities are equal. (Gelman et al. (2014, p. 536) refer
to K X « as the “prior sample size.”)

The class-specific random-intercept and random-slope standard deviations, agk) and Uék), each
have a half-normal or half-Cauchy prior (see, e.g. Gelman, 2006); these are distributions with mean
parameter equal to zero and standard deviation or scale parameter 7 set to a value greater than zero
that have been truncated on the left at zero. A small T represents a strong belief that the standard
deviation is close to zero, whereas a large 7 corresponds to a vague prior. The correlation matrix of
the random intercepts and slopes is assigned an LKJ (Lewandowski, Kurowicka, & Joe, 2009) prior
which is proportional to the determinant of the correlation matrix raised to the power n — 1, where
n is the shape parameter. In two dimensions with correlation p*), this corresponds to p*) = 2v — 1,
where v has a Beta(n, ) distribution on the (0, 1) interval. With a shape parameter n = 2, this prior
slightly favors correlations close to zero.

The class-specific mean intercept and slopes of time and time-squared for class k£ have normal priors

with zero means and the following variances (written as squared standard deviations): ;k) ~ N(0,10?),
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Bék) ~ N(0,5%), and Bé}k) ~ N(0,52). Finally, the residual standard deviation, constant across classes,
has prior o, ~ Exponential(1).

In this paper, we will use different values of a and different priors for ng) and agk) (half-Cauchy
versus half-normal and different parameters 7) and keep all other priors as described here.

We are aware of only one other paper that applies GMMs to these data, namely McNeish and
Harring (2020) who use a frequentist approach. Instead of modeling reading as a function of age, they
use the survey wave as their time variable even though children’s ages varied between 6 and 8 years
old in Wave 1. They also constrained the covariance matrices to be constant across classes, =*) = 3,
to achieve convergence for their three-class model. Finally, they only present estimates of the mean
growth trajectories and do not provide any information on within-class heterogeneity.

2.3.2 Visualizing and describing within-class heterogeneity

The model allows development trajectories to vary between children within the same class, and
the nature of this variation is of scientific interest. However, in papers applying GMMSs, typically only
the estimated class-specific means are discussed, and variance-covariance parameters for the random
effects are often not even reported (see e.g., McNeish and Harring (2020) for a discussion).

Here we introduce some ways to visualize and describe the model-implied within-class heterogeneity.
For notational convenience, we drop (k) superscripts here, but all results refer to the parameters of a
specific class. We also write expressions as if the parameters were known, acknowledging that estimates
will be substituted in these expressions.

Let vr denote the standard deviation of the trajectories for a given class at time ¢;; = T, given by

v = \/o% +2poi09T + o512

We suggest plotting the mean trajectory together with “50% mid-range” intervals of £®~1(0.75)vr
that are expected to contain 50% of the middle trajectories at each time-point (where ®~1(-) is the
inverse standard normal cumulative distribution function).

To convey how the slopes vary, we suggest making statements about the slopes for given values of
the intercept. We therefore write the slope for subject j as a linear regression on the intercept for the

same subject as

o2p
roj = —71j + uy,
g1

where

uj ~ N(0,(1—p%)0o3).

Assuming that ¢;; = 0 is a starting point of interest, we might then consider individuals who initially
deviate from the class-specific mean trajectory by r1; = ip and report how much such individuals would
be expected to deviate from the mean trajectory at a later time of interest, ¢;; = 7. The expectation
of the slope for these individuals is o2pig/01 and the expected deviation at time T is ig 4+ o2pioT/07.
To avoid specifying an initial deviation, we suggest reporting the percentage change in deviation
(conditional on initial deviation) as 100% X o2pT/oy.

We can also consider these deviations from the mean trajectory at times 0 and T in standard
deviation units (and possibly report the corresponding percentiles within the distributions), with initial
standardized deviation given by zy = ip/o; and the expected standardized deviation at time T' given
by zr; = (0120 + 02p20T)/vr. Finally, we can express how likely it is that someone with initial
standardized deviation zy has a positive random slope,

PI‘Ob(’I’Qj > 0|’I”1j = 200'1) =& <P7«'0> .

V1—p?

2.4 Results

Initially, we used D2C5 priors (Dirichlet with o = 2 for class probabilities and half-Cauchy with 7 =
5 for the standard deviation parameters) but encountered problematic behavior, such as a probability
parameter being stuck at zero in some chains. Finding that these issues were related to identifiability
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inspired the work presented later in the paper. In this section, we focus on the model and its application,
and choose weakly informative priors to avoid convergence problems.

Specifically, we chose a D10N50 prior combination (Dirichlet with o = 10 for class probabilities
and half-normal with standard deviation 7 = 50 for random intercept and random slope standard
deviation parameters), and ran five chains in CmdStan (version 2.30, Stan Development Team, 2021),
the shell interface to Stan. Each chain comprised 1,000 iterations after a warmup of 1,000 iterations.

Table 1 shows the Watanabe-Akaike information criterion (WAIC; Watanabe, 2010) and the Pareto-
smoothed importance sampling leave-one-out (LOO) estimate, —2ELPD _LOO, of the same target
quantity, computed using the loo package (Vehtari, Gelman, & Gabry, 2016, 2017). As advocated
by Merkle, Furr, and Rabe-Hesketh (2019), we base these information criteria on the mized predictive
distribution (Gelman, Meng, & Stern, 1996) which is marginal over the latent variables, here the class
membership indicators and the random intercepts and slopes. With this choice, the criteria assess
how predictive the models would be for future children like this. See also Xiao (2025) for a discussion
and evaluation of these and other information criteria for GMMs. Here both criteria prefer the 3-class
solution, and we therefore select this solution.

Table 1: Information criteria for GMMs with 1 to 4 classes with D10N50 priors (smallest value for
each criterion in italics)

Number of classes

Information criterion 1 2 3 4
WAIC 2988.74 2919.56 2897.10 2924.42
—2ELPD LOO 2988.74 2919.74 2898.96 2908.58

Figure 1 shows class-specific mean trajectories, together with shaded areas representing the 50%
mid-range intervals (+0.674vr), as explained in Section 2.3.2. Boxplots of the observed reading scores
are also shown. Table 2 presents parameter estimates for this model.

3

Mean trajectories

Class 1
= = Class 2
» == Class 3

&

Reading recognition

w

Class 1: 13.89 %
Class 2: 35.30 %
Class 3: 50.81 %

6 7 8 9 10 1" 12 13 14
Child age

Figure 1: Class-specific mean trajectories with shaded 50% mid-range and box-plots of reading scores.
Class 1 is “Early Bloomers,” Class 2 is “Rapid Catch-Up Learners,” and Class 3 is “Steady Progressors.”

We interpret the trajectory classes as follows:

1. Early Bloomers (14%): This class starts with a high mean score at age 6, exhibiting positive
and roughly linear mean growth over time. The latent growth curves vary more at age six than
for the other two classes, and there is substantial variation in the slopes (not apparent from
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the figure) with a negative correlation between intercepts and slopes (estimated as -0.742). To
elaborate on the within-class heterogeneity as recommended in Section 2.3.2, students whose
latent growth curve is 2 standard deviations below the mean at age 6 have an 88% chance of
growing faster than average, and by age 14, these students are on average only 0.226 standard
deviations below the mean. Similarly, 2 standard deviations above the mean at age 6 corresponds
to an 88% chance of growing more slowly than average and an average of only 0.226 standard
deviations above the mean by age 14. Based on their intercepts, students are predicted to deviate
73% less from the mean at age 14 than at age 6.

2. Rapid Catch-Up Learners (35%): Starting with a lower mean trajectory than the Early Bloomers
at age 6, on average this class grows rapidly initially, outperforming Early Bloomers for a few
years, and then decelerates to become similar to Early Bloomers by about age 13 (the slight
decline is a likely artifact of using a quadratic function to approximate the mean growth curve
which is unlikely to decline.). There is a small amount of heterogeneity in the latent growth tra-
jectories at age 6, and these trajectories tend to diverge due to the positive correlation between
intercepts and slopes (estimated as 0.399) which implies that there is an 81% chance of growing
faster (slower) than average for those whose trajectories lie 2 standard deviation above (below)
the average at age 6. Based on their intercepts, students are predicted to deviate 147% more
from the class mean at age 14 than at age 6, i.e., the deviation is predicted to be about 2.5 times
as great.

3. Steady Progressors (51%): Characterized by the lowest mean scores at age 6, this group show-
cases an approximately linear growth pattern. While the average gap between class 1 and 3
is approximately constant, the relatively large random slope standard deviation (estimated as
0.159) and slope-intercept correlation (estimated as 0.485) results in a fanning out of growth
trajectories, leading to considerable overlap with the other two classes by age 14. Based on their
intercepts, students are predicted to deviate 605% more from the class mean at age 14 than at
age 6, i.e., the deviation is predicted to be about 7 times as great.

In terms of the mean growth trajectories and class membership probabilities, our estimates are
perhaps most similar to the three-class solution of Grimm et al. (2017) who did not name the classes.
Our steady progressors (Class 3) seem to be similar in nature to the “typical readers” found by Pianta
et al. (2008), whereas our rapid catch-up learners (Class 2) resemble their “fast readers”. Pianta
et al.’s “fast readers” experienced most of their growth from age 4.5 to 6 years, whereas our study
begins at age 6 (first grade). Consistent with Pianta’s findings, the rapid catch-up readers grow
fastest in the earliest years we observed. Our early bloomers (Class 1) have a mean trajectory that is
approximately parallel to that of the steady progressors but simply starts higher, similar to the “fast
reading development” class found by Kaplan (2002). Perhaps our early bloomers could be combined
with our steady progressors to form a class similar to Pianta et al.’s “typical readers” because students
in these classes all grow approximately linearly with class-specific mean curves that are approximately
parallel, and the combined class would be only a little more heterogeneous than the early bloomers
alone. Furthermore, the combined group includes 65% of the students, similar to the 70% found
by Pianta et al. (2008) and the 72% found in the “normal development” group by Kaplan (2002).
Unfortunately neither Kaplan (2002) nor Pianta et al. (2008) report within-class heterogeneity, making
more formal comparison with their solutions difficult.
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Table 2: Estimates for preferred 3-class GMM with D10N50 priors

Class Parameter Posterior  Posterior Cred. interval I3
mean SD  2.50% 97.50%

A 0.139 0.056  0.043  0.260 1.010

B 2.668 0628 1.927 4215 1.011

% 0.648 0.260 -0.003  1.024 1.011

1 B -0.015 0.028 -0.059  0.053 1.008
oM 1.269 0.447 0.785  2.293 1.006

oM 0.156 0.110 0.050  0.298 1.009

oD -0.742 0.226 -0.970 -0.141 1.004

A2 0.353 0.063 0235  0.479 1.003

B 1.765 0085 1595  1.930 1.003

% 1.329 0071 1.196  1.475 1.003

2 B -0.094 0.009 -0.113  -0.077 1.003
o 0.258 0.085 0.078 0421 1.003

o 0.119 0.020 0.083  0.162 1.000

p® 0.399 0281 -0.178  0.884 1.000

AG) 0.508 0.057 0.397  0.619 1.003

) 1.597 0.054 1494  1.703 1.004

B 0.685 0.040 0.585  0.778 1.002

3 () -0.024 0.005 -0.034 -0.013 1.002
o 0.102 0.057 0.008  0.218 1.001

o{¥ 0.159 0015 0.129  0.189 1.001

p® 0.485 0338 -0.384  0.928 1.001

. 0.462 0014 0436 0490 1.001

Other researchers have used the occasion numbers (0,1,2,3) as time variable (e.g., Bollen and Curran
(2006, ch.2) and McNeish and Harring (2020)), and we therefore also present the results for this time
scale in Web Appendix C.

As mentioned above, we used priors for which estimation is stable so that we could introduce the
application and model before discussing convergence issues. The rest of the paper is structured as
follows: We discuss Bayesian identification and estimation in Sections 3 and 4, respectively, before
describing different kinds of problematic behavior and their diagnosis in Sections 5 and 6, respectively.
Section 7 investigates strategies to detect and avoid the behaviors in a simulation study.

3 Bayesian identification

In Section 3.1, we define Bayesian identification in terms of likelihood identification based on a
brief literature review. We then apply these concepts in Section 3.2 where we define specific types of
nonidentifiability for finite mixture models, and Section 3.3 where we discuss consequences of these
issues for estimation.

3.1 Bayesian versus likelihood identification

Loosely speaking, identification of parametric models concerns the existence of unique estimates of
the model parameters by a given method (e.g., maximum likelihood estimation, or Bayesian estimation)
for all possible data generated by the model.

Early work includes the expository article by Koopmans (1949) on identification of structural pa-
rameters in (non-Bayesian) linear simultaneous equation models. Interestingly, Koopmans and Reiersgl
(1950) and Reiersgl (1950) also considered exploratory factor models, the latter in Psychometrika. The
basic idea was that statistical inference regarding model parameters could be made in two steps: (1)
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inference from data to the reduced form parameters (e.g., variances and covariances) of the joint den-
sity of the data, and (2) inference from reduced form parameters to the structural parameters of the
model representing the data-generating mechanism.

Inspired by this early work, Rothenberg (1971) and others have derived a number of identification
results for general non-Bayesian parametric models. Let p(y; ) represent the likelihood of the data
y in a model with fixed parameter vector ¥ € A. Rothenberg provides several useful definitions for
likelihood identifiability, including:

e Two parameter points ¥, and V5 are observationally equivalent if Vy (where ¥V means “for all”):
p(y; 1) = p(y; ¥2).

e A parameter point 9y € A is globally identified if there is no other ¥ in the parameter space
A which is observationally equivalent. This form of identification is currently often called point
identification (e.g., Lewbel, 2019).

e A parameter point ¥ is locally identified if there exists an open neighbourhood of ¥y in which
there is no other ¥ in A which is observationally equivalent. In this case, there may be several
observationally equivalent parameter points but they are isolated from each other. See Bechger,
Verhelst, and Verstralen (2001) on the distinction between global and local likelihood identifia-
bility in a psychometric setting.

For a given parameter point, local identification can in general be investigated by checking the
rank of the information matrix at that point (Rothenberg, 1971). If applicable, local identification
can alternatively be investigated by checking the rank of the Jacobian of the transformation from
structural to reduced-form parameters (Wald, 1950).

The seminal work on Bayesian identification also occurred in the setting of linear simultaneous
equation models, motivated by a desire to use priors to avoid imposing exact identifying restrictions
(e.g., Dréze, 1974; Zellner, 1971). A general perspective on Bayesian identification problems was
provided by Dawid (1979) in his investigation of the notion of conditional independence in statistics.
Dawid lets Bayesian non-identifiability of certain random parameters mean that the posterior of these
parameters is the same as the prior, i.e., that the data provides no information on the parameters. His
argument can be summarized as follows: Let ¥ now represent a random parameter vector which can
be decomposed into # and ¢, a pair of (possibly vector-valued) parameters. Then ¢ is not identified if
0 is a sufficient parameter in the sense that

p(yl0, ¢) = p(ylo). (2)
This is because, in this case, SOPlo)
_ p(9l0)p(yl0)

so that, “once we have learned about # from the data, we learn nothing new about ¢ over and above what
we knew already” (Dawid, 1979, p.4). Because (2) implies that any two values of ¢ are observationally
equivalent as defined by Rothenberg and others, this form of Bayesian non-identifiability is a special
case of classical likelihood non-identifiability, where some parameters are redundant.

Poirier (1998) points out that it is useful to distinguish between conditional uninformativeness,
defined in (3) and marginal uninformativeness, defined as

p(¢ly) = p(9). (4)

Marginal uninformativeness follows from conditional uninformativeness if and only if ¢ and 6 are a
priori independent so that what we learn about 6 from the data does not provide information on
¢. Lack of independence can arise either from the conditional prior distribution p(¢$|0) # p(¢) or
from 6 and ¢ not being variation-free, i.e., their parameter space not being the product space. When
p(dly) # p(), there is Bayesian learning according to Kociecki (2013). Gustafson (2005) uses the term
indirect learning when p(¢|y) # p(¢) and learning about ¢ occurs only because of learning about 0, as
in (3).
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As an example, Poirier (1998) considers a hierarchical model where p(y|f) defines the likelihood in
stage 1, 0 has a prior p(f|¢) in stage 2, and the hyperparameter ¢ has a hyperprior p(¢) in stage 3, so
that the joint posterior is

(0, 0ly) < p(y|0)p(0]¢)p(¢). (5)

For example, in a variance-components model, § would include the vector of random intercepts and ¢
could be the random-intercept variance. Marginalizing over the “direct parameters” or latent variables
0, the marginal posterior becomes

p(oly) o< plyl)p(), (6)

where p(y|¢) is the marginal likelihood used for likelihood inference in variance-components models
(not the fully marginal likelihood as used in Bayes factors). Here the data are marginally informative
about ¢, but they add no information on ¢, given 6, because (2) holds. If the random intercepts were
known, the variance ¢ would be estimated by their sample variance, and the data would not provide
further information.

In their discussion of model complexity, Spiegelhalter, Best, Carlin, and van der Linde (2002)
distinguish between two ways of viewing a hierarchical model in terms of the parameters in focus. If ¢
is in focus, the hierarchical model in (5) can be reduced to a non-hierarchical model as shown in (6),
and if 0 is in focus, it can be reduced to an alternative non-hierarchical model,

p(0ly) o< p(yl0)p(0), (7)

where p(6) is the marginal prior, integrated over ¢.

We argue that Bayesian identifiability of hierarchical models should be considered either for the
parameters 6 or ¢ by integrating over the other parameters to obtain a non-hierarchical model. Such
an approach would address Swartz, Haitovsky, and Yang’s (2004) criticism of using likelihood identi-
fiability as the definition for Bayesian identifiability. Swartz et al. (2004) present a hierarchical model
for which p(y|6, ¢) = p(y|6, ¢') does not imply that ¢ = ¢'. Even though “there is no practical problem
with this model” in that the marginal posterior means of 6 and ¢ depend on the data, the model is
not likelihood identified based on the likelihood p(y|6, ¢). This apparent contradiction is resolved by
considering the marginal likelihood p(y|¢), a natural choice because likelihood inference for the model
would be based on this likelihood (see also Appendix A).

Another reason to prefer the marginal likelihood is that it represents the sampling model or data-
generating mechanism of interest in most situations. For example, in a variance-components model
for clustered data, repeated samples would include new clusters, and the model is meant to have good
predictive performance for out-of-sample clusters. Merkle et al. (2019) therefore argue that information
criteria such as the Deviance Information Criterion (DIC, Spiegelhalter et al., 2002) and WAIC should
be based on the marginal likelihood, and Gelman et al. (1996) refer to the corresponding predictive
distribution as the mized predictive distribution.

The important paper by Dawid (1979) discussed above considers a special case of Bayesian non-
identifiability, where some parameters are redundant given the other parameters, but does not define
identifiability. In contrast, Kociecki (2013) formally defines Bayesian identifiability, and we propose
using the marginal likelihood in his definition when the model is hierarchical. Starting from the concept
of identifiability of the sampling model (p(y|¢) for hierarchical models) and viewing ¢ as random with
support Aprior = {¢ € A | p(¢) > 0}, Kociecki (2013) applies Bayes theorem, p(y|¢) = p(é|y)p(y)/p(¢)
to define:

e A Bayesian model is globally identified at ¢1 € Aprior if and only if, Voo € Aprior:

(p(¢1y) p(daly)

o~ ) = =

Likelihood identifiability and Bayesian identifiability are then equivalent if the prior has support on
the full parameter space A. However, when the support is restricted, Aprior C A, there are instances
where the Bayesian model may be identified even though the sampling model is not identified, for
example if a prior restricts a parameter to be positive.

In the remainder of this paper, we will define Bayesian identifiability as equivalent to marginal like-
lihood identifiability, and in the following subsections, we therefore focus on the latter, often referring
to the non-Bayesian literature.
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3.2 Identification in finite mixture models

Even if the models for the mixture components are globally identified, finite mixture models are
not globally identified because for any parameter point 9, all parameter points that correspond to
permutations of the class labels are observationally equivalent, a phenomenon referred to as labeling
nonidentifiability by Redner and Walker (1984). Since these observationally equivalent points are not
in each other’s neighborhoods, permutation invariance does not violate local identification. We assume
that permutation invariance has been taken care of, for instance by labeling the classes in order of
increasing class size. Generic nonidentifiability of finite mixture models refers to the existence of
several observationally equivalent parameter points that do not correspond to different permutations
of class labels (see Frithwirth-Schnatter, 2006, Section 1.3.4).

Lewbel (2019) requires local or global “point” identification to hold at all possible parameter points
Yo because it should hold at the true parameter values which are unknown to us. Finite mixture
models are then only set identified because point identification does not hold everywhere — at some
parameter points there is a set of parameters that are observationally equivalent. In our setting, for a
parameter point ¥¢ with one or more class probabilities equal to zero, all parameters that differ from 9,
only in terms of the class-specific parameters for the classes with zero probability are observationally
equivalent to ¥y — they are in what Lewbel (2019) calls the “identified set.” Similarly, when the
parameters of two (or more) classes are identical, all parameter points for which the class-probabilities
for the indistinguishable classes have the same sum are in the identified set. Both types of parameter
points can be referred to as degenerate because the model reduces to a mixture with fewer mixture
components. We therefore say that finite mixture models are not locally identified at degenerate
parameter points.

The idea of parameters being locally nonidentified in parts of the parameter space is discussed by
Andrews and Cheng (2012). They consider the situation where the parameter vector can be written
as (8, ¢, m) and  is identified if and only if 8 # 0, whereas ( is not related to the identification of 7
and (6, ¢) are always identified. When £ is close to zero, 7 is weakly identified. A finite mixture model
is clearly an example of this situation with the smallest class probability, A(!), corresponding to 3, the
class-specific parameters for class 1 corresponding to 7w and the remaining parameters to (. Another
example is a confirmatory factor model with two common factors, each measured by two variables.
Here, the model is identified except at parameter points with zero covariance between the factors (e.g.,
Kenny, 1979, p.178 and Skrondal & Rabe-Hesketh, 2004, p.148-149).

Another problem with a degenerate parameter point v is that there is it at least one other degen-
erate parameter point ¢; in a different part of the parameter space that is observationally equivalent,
and this is another violation of global identification, similar to labeling nonidentifiability. We will
call this kind of violation degenerate nonidentifiability, a term used by Kim and Lindsay (2015). This
notion was previously discussed in the context of specifying more than the actual number of classes
(e.g. Crawford, 1994; Rousseau & Mengersen, 2011) and referred to as “nonidentifiability due to over-
fitting” by Crawford (1994). An example of degenerate nonidentifiability given by Kim and Lindsay
(2015, p.748) and Lindsay (1995, p.74) is a two-component mixture model that degenerates to a one-
component mixture if one of the class probabilities is zero or if the component-specific parameters
are equal. Hence, a one-component mixture cannot be distinguished from these different versions of a
two-component mixture. For a three-component model, there are more than two ways of degenerating
to a two-class model, namely one class probability is zero, the first (e.g., smaller) class of the two-class
model is represented by two classes with equal class-specific parameters or the second (e.g., larger)
class of the two-class model is represented by two classes with equal class-specific parameters.

3.3 Degenerate estimates and degenerate draws from the posterior

The classical treatment of identification in parametric models concerns the identification at true
but unknown parameter points. However, work has also been concerned with identification at the
parameter estimate, called empirical identification (see Kenny (1979, p.49-50) and Rindskopf (1984)).
In structural equation models, empirical local identification has been assessed by checking the rank
of the estimated information matrix at the maximum likelihood estimates (McDonald & Krane, 1977;
Wiley, 1973). In latent class models, Goodman (1984) discusses local identification and local empirical
identification at the maximum likelihood estimates by investigating the rank of the Jacobian of the
transformation from the model parameters to the cell probabilities of the contingency table (i.e., the
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reduced form parameters).

Somewhat related but different from empirical identification, we will be concerned with identifi-
cation at draws from the posterior during MCMC estimation. Drawing degenerate parameter vectors
can lead to estimation problems. For example, when a draw of A(Y) is zero or close to zero, the
class-1-specific parameters are only weakly identified in that region of the parameter space and will be
approximately drawn from their priors. Draws of class-1-specific parameters can then be incompatible
with the data so that, locally, the posterior will strongly favor A1) equal to or close to zero. This way,
miniscule-class sampling becomes self-perpetuating. We refer to this phenomenon as “self-perpetuating
sampling of near-degenerate parameters.”

A different problem described by Gelman et al. (2014, p.393) can also be viewed as self-perpetuating
sampling of near-degenerate parameters. They consider a hierarchical model (equivalent to a t¢-
distribution) where the variances V; of the units have a scaled inv-x? distribution with scale pa-
rameter o. Parameter draws with o close to 0 are near-degenerate because the model degenerates to
a non-hierarchical model when ¢ = 0. For such draws, Gelman et al. (2014, p.295) write that “the
conditional distribution [of V; given o] will then cause the V;’s to be sampled with values near zero,
and then the conditional distribution of o will be near zero, and so on.” In other words, the behavior
is self-perpetuating.

There does not appear to be a similar mechanism that would cause the other kind of degeneracy
in finite mixture models to be self-perpetuating, where two or more “twinlike” classes have (nearly)
identical class-specific parameters. However, when a model with K classes is specified and a degenerate
version equivalent to a model with K — 1 (or fewer) classes corresponds to a mode of the posterior,
twinlike behavior may persist for many iterations. In this case, several different degeneracies can be
(nearly) observationally equivalent, each corresponding to a different posterior mode. It is then possible
that one chain remains near one of the modes, for instance, with two classes having (nearly) identical
parameter values, while another chain remains near another mode (that is nearly observationally
equivalent), with one class probability (nearly) equal to zero. If such behavior occurs, posterior means
of parameters across chains will no longer be meaningful, unless appropriate reparameterization is
performed before averaging. This phenomenon, due to degenerate nonidentifiability, is similar to
the label switching problem, due to labeling nonidentifiability. These types of nonidentifiability are
generally not a problem for maximum likelihood estimation which tends to converge to one of several
observationally equivalent parameter points as long as they are in different parts of the parameter
space.

4 Bayesian estimation in Stan

4.1 Brief overview of Hamiltonian Monte Carlo (HMC)

In Markov chain Monte Carlo (MCMC), new parameter values 6° are sampled in iteration ¢ con-
ditional on current parameter values #'~! in such a way that (1) the time series of parameter values
becomes stationary after a “burn-in” or “warmup” period, and (2) the stationary distribution is the
required posterior distribution, p(f]y). To achieve (2), the transition probabilities are such that, if the
marginal posterior probability density of =1 (given y) is the target distribution, then the marginal
density does not change and therefore the marginal density of §° is also the target density.

Metropolis-Hastings algorithms proceed by generating a proposal 8* (“Proposal Step”) and deciding
whether to accept the proposal, i.e., whether to set 8° = §*, according to a rule that ensures convergence
of the distribution to the target distribution (“Acceptance Step”). In HMC (e.g., Betancourt, 2018;
Neal, 2011), the proposals 6* are generated using Hamiltonian dynamics, briefly described below,
with the advantage over traditional methods, such as Metropolis and Gibbs sampling (implemented
in OpenBUGS, JAGS, and Mplus), that the parameter space tends to be sampled more efficiently, in
terms of the number of iterations (e.g. Betancourt & Girolami, 2015). We give a brief overview of
HMC, synthesizing descriptions by Betancourt and Girolami (2015), Gelman et al. (2014), and the
Stan Reference Manual (Stan Development Team, 2024).

Proposal Step: To generate the proposal §* for iteration ¢, the current parameter values 6! are
treated as the initial coordinates of a particle whose movements are governed by Hamiltonian dynamics,
a system of differential equations whose solution describes motion, for instance of a particle in a physical
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system. To simplify notation, we will use # without any superscript to denote the coordinates along
the trajectory that are initially set to 8°~! and whose value after some amount of time is used as the
proposal 6*.

To visualize the dynamics in three dimensions, we assume that the two-dimensional parameter vec-
tor 0 represents coordinates on a horizontal plane, along the left-to-right and back-to-front dimensions.
A possibly misshapen bowl situated above this plane contains a particle whose third coordinate, its
height, is determined by the surface of the bowl. This height is given by —Inp(f|y), where p(f]y) is
the posterior probability density function of the parameters 6 given the data y, which is the target
distribution we aim to sample from. This height represents the potential energy due to gravity, i.e.,
the amount of energy needed to lift the particle to that height (potential energy would actually be
height times mass times acceleration due to gravity). The basic idea here is that the particle will tend
to fall “down” into regions of the bowl where the posterior density is greater.

The reason the particle does not fall to the bottom and stay there, which would mean that the full
parameter space would not get explored, is that it also has speed and momentum. Specifically, for each
model parameter (or particle coordinate on the horizontal plane), there is an auxiliary random variable
that represents the momentum of the particle in the corresponding direction. The initial value of the
momentum vector, denoted v¢~!, is sampled from a multivariate normal distribution with zero means
and covariance matrix M, and the corresponding density is denoted f(-). As the location changes, so
does the momentum, and we use « without a superscript to denote the evolving momentum. Due to
its momentum, the particle has kinetic energy given by —log f(v). According to the laws of physics for
frictionless motion, the particle follows a deterministic trajectory that conserves the total amount of
energy (potential plus kinetic), [—log p(0]y)] + [— log f(v)] = —logp(7,8ly) and hence keeps the joint
posterior density p(7y, f]y) constant. As the particle loses height, it loses potential energy — log p(0|y)
and correspondingly gains kinetic energy —log f(y) and hence gains speed and momentum, allowing
it to gain height again (if the surface of the bowl rises in the direction of its motion) at the expense
of losing momentum. You may find it useful to play with the following animation created by Chi
Feng to get a better understanding of the dynamics (as well as the no-U-turn idea described below):
https://chi-feng.github.io/mcmc-demo/app.html.

In order to compute the trajectory of the particle based on differential equations (the Hamiltonian
equations), the position and momentum vector of the particle are updated at time-intervals, or “steps”
of size e. Specifically, the increase in momentum depends on the decrease in potential energy along
the trajectory, and this is approximated by treating the downward slope of the bowl (i.e., the gradient
of the log posterior) as constant along the path for duration e. The momentum after half the time
interval €/2 is computed as

e dlogp(fly)
v o= 7+ 5 a0 .

Having updated the momentum, it is treated as constant from the beginning to the end of the interval
to compute the next location (i.e., the parameter values) along the path. After a full time interval e,
the location becomes

0 «— O+eM 1y,

where M 15 is the velocity (rate of change in position per time interval, or derivative of position
with respect to time) and M is sometimes called a Euclidean metric or a mass matrix, the latter
because momentum equals mass times velocity. The momentum at this full-step is then updated
before proceeding with the next time interval. This method for computing the dynamics is called a
“leapfrog integrator.”

The smaller €, the more accurate the trajectory at the cost of increased computation time. Steps
that are too large can result in errors due to assuming that +y is constant and that the height —log p(0|y)
changes linearly during the time interval e. These errors can be quantified by comparing the total
energy at a point on the trajectory with the initial energy. When the difference becomes pronounced,
a “divergent transition” is said to occur.

Acceptance Step: The location and momentum vectors after L time intervals become the proposals,
denoted 0* and v*. Then 6* is accepted with probability r = p(0*|y) f(v*)/(p(0*|y) fF(v*1)) if r < 1
and with probability 1 otherwise. Note that r = 1 if the total energy is conserved, i.e., the marginal
posterior distribution does not change. This will happen when there are no errors of approximation to
the true trajectory or when € approaches 0. If #* is not accepted, the next 6 is " = !, For the next
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iteration, a new momentum vector is drawn, leading to a new proposal as described in the proposal
step above.

4.2 No U-Turn Sampler (NUTS) and HMC parameters

If the “integration time” eL is too small, the chain moves too slowly through the parameter space,
and if it is too large, the particle may “loop back and retrace its steps” (Hoffman & Gelman, 2014).
Hoffman and Gelman therefore proposed NUTS. Briefly, the simplest form of NUTS involves building a
tree of evaluations of the trajectory. At treedepth (or tree height) j (starting with j = 0) the dynamics
are computed forward in time or backward in time (direction chosen randomly) for 27 leapfrog steps
until the next step would result in a decrease in the distance between the position of the particle and
its starting point, called a “U-turn.” Then 6* and ~* are sampled from among all points computed.

During warmup, the mass matrix M and step size e are adapted (see Stan Development Team,
2024, for details). Essentially, M is an estimate of the posterior covariance matrix of 6, and the step
size is adapted to achieve a target Metropolis rejection rate denoted delta in Stan, with default value
0.8. Users have the option to define the initial step size for the HMC sampler, which acts as a starting
point for adapting the step size and is not necessarily the one used in the first warmup iteration (Zhang,
2020).

Users can set the target acceptance rate delta and a value greater than the default of 0.8 will
result in smaller step sizes. While this enhances the effective sample size, it may also extend the time
required per iteration (Stan Development Team, 2024). Additionally, users can specify the maximum
treedepth for NUTS, which defaults to 10 in RStan (Stan Development Team, 2023).

4.3 Known challenges for HMC and Stan diagnostics

A challenge with any MCMC algorithm is ensuring that the stationary distribution was reached
within the designated warmup period. A useful diagnostic procedure is to start several Markov chains
with different starting values (e.g., randomly drawn). Once all these chains have reached the same
stationary distribution, they should have the same properties and should “mix” in the sense that
the traceplots occupy the same region. Then the total variance across the chains (the within-chain
variance plus the between-chain variance) should not be greater than the pooled within-chain variance.
The traditional R diagnostic (Gelman & Rubin, 1992) is therefore roughly the total variance divided
by the within-chain variance. R should be close to 1 and a value greater than 1.10 for any of the
parameters is often considered a sign that the stationary distribution has not been reached. Vehtari,
Gelman, Simpson, Carpenter, and Bilirkner (2021) proposed using the maximum of the rank-normalized
split- R and the rank-normalized folded-split- R which we use here and simply denote as R for short.
Briefly, the rank-normalized split- R is obtained by rank-normalizing the parameter draws so that they
approximately follow a standard normal distribution and treating the first and second half of each
chain as separate chains before applying the traditional formula for R. The rank-normalized folded-
split-R is obtained by transforming parameter draws to their absolute deviation from the median and
then applying the computations for the rank-normalized split-R.

Another issue with any MCMC algorithm is that the parameter draws are not independent so that
the number of iterations cannot be viewed as the sample size when estimating Monte Carlo errors for
estimates of the posterior means. The effective sample size (ESS) can be estimated (see, e.g. Gelman
et al., 2014, Section 11.5). When the ESS is much smaller than the number of iterations, this signals
that the chain is moving very slowly through the parameter space and may be encountering problems.

As mentioned in Section 4.1, a divergent transition is said to occur in HMC when the Hamiltonian
(sum of kinetic and potential energy) at a point along the computed trajectory becomes too different
from the initial Hamiltonian, implying that the computed trajectory has diverged from the true trajec-
tory. The Stan Reference Manual (Section 15.5) explains that “positions along the simulated trajectory
after the Hamiltonian diverges will never be selected as the next draw of the MCMC algorithm, poten-
tially reducing Hamiltonian Monte Carlo to a simple random walk and biasing estimates by not being
able to thoroughly explore the posterior distribution.” Divergent transitions (or divergent iterations)
can occur when eM 1! is too large in some direction(s) for the linear approximations of the leapfrog
integrator to hold, due to what Betancourt (2020) describes as “neighborhoods of high curvature.”
Stan flags iterations for which divergent transitions occurred.
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The maximum treedepth is reached when no U-turn is encountered after computing 27 leapfrog
steps for each treedepth j from 0 to the maximum. According to the Stan Reference Manual (Stan
Development Team, 2024), a treedepth equal to the maximum may be a sign of poor adaptation of
the tuning parameters (e.g., mass matrix M and step size ¢), may be due to targeting a very high
acceptance rate delta, or may indicate a difficult posterior from which to sample.

The Stan Reference Manual states (Section 15.5): “The primary cause of divergent transitions ...
is highly varying posterior curvature, for which small step sizes are too inefficient in some regions and
diverge in other regions. If the step size is too small, the sampler becomes inefficient and halts before
making a U-turn (hits the maximum treedepth in NUTS); if the step size is too large, the Hamiltonian
simulation diverges.”

Betancourt (2016) introduced the estimated Bayesian fraction of missing information (E-BFMI) to
assess the efficiency of the momentum resampling at the beginning of each HMC iteration. The E-BFMI
is the ratio of the variance of changes in the Hamiltonian between adjacent MCMC iterations (due
to the kinetic energy changing when the momentum is resampled) to the variance of the Hamiltonian
itself (due to changes in both kinetic and potential energy). Betancourt (2018) states that, empirically,
values below 0.3 have been proven problematic.

4.4 Growth mixture modeling
4.4.1 Implementation in Stan

When finite mixture models are estimated by MCMC, it is common to sample the discrete latent
variable w; that represents class membership along with the model parameters and any continuous
random effects or latent variables. However, HMC works only with continuous parameters and the
likelihood must therefore be specified marginal over the discrete latent variable. Demonstrations of
how to specify such marginal likelihoods in Stan can be found in Betancourt (2017), the finite mixture
model example in the Stan User’s Guide (Stan Development Team, 2021), and the tutorial by Ji,
Amanmyradova, and Rabe-Hesketh (2021), as well as Appendix B.

We also marginalize over the random intercept and slope instead of treating these random effects
as model parameters. This approach, although unconventional, is also employed in blavaan (Merkle,
Fitzsimmons, Uanhoro, & Goodrich, 2021; Merkle & Rosseel, 2018). One reason is potential computa-
tional efficiency gains due to sampling far fewer parameters (Merkle et al., 2021). Another reason is that
model assessment based on predictive distributions is more meaningful if mized posterior predictive
distributions, based on marginal likelihoods, are used (Merkle et al., 2019).

As shown in (1), the class-specific models for our GMM are linear mixed models, with a random
intercept and random slope of time. Therefore, for a given class k, the marginal joint density of the
responses y,; for a subject is multivariate normal with means 5§’“) + Bék)tij + Bék)tfj and covariance
matrix

z;xWMZ +o%I,,, (8)

where Z; is the design matrix for the random effects with a column of n; ones for the random intercept
and a column of time-points ¢;;, ¢ = 1,...,n;, for the random slopes, and I, is a n; x n; identity
matrix. This multivariate density can be evaluated directly as E;-k) = f(y;1Z;,w; = k) instead of
conditioning on the random effects as is typically done in MCMC estimation of (generalized) linear

mixed models. The likelihood for the entire dataset then becomes

L=T]> awe. 9)
ik

The priors for the model parameters are as discussed in Section 2.3.1. We used random starting
values for these parameters generated by Stan. Specifically, draws are obtained from Uniform(-2,2)
distributions and, if needed, transformations are applied to satisfy parameter bounds, such as the
exponential to obtain non-negative standard deviations and the softmax function to obtain probabilities
on a simplex.

The complete Stan code for estimating our GMM is included in Appendix B.
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4.4.2 Addressing label switching by relabeling

Label switching occurs because the likelihood and posterior are invariant to permutations of the
latent class labels as mentioned in Section 3.2. Latent class labels can differ between chains for
any MCMC algorithm that uses random starting values. Within-chain label switching can also occur.
Interestingly, this is unlikely when the class labels w; associated with the units j are sampled along with
the model parameters as in Gibbs sampling. All these labels are unlikely to switch simultaneously from
one iteration to the next (e.g. Celeux, Hurn, & Robert, 2000; Kamary, 2016; Lee, Marin, Mengersen,
& Robert, 2009). When between-chain or within-chain label switching occurs, posterior means of
class-specific parameters are no longer meaningful.

A common solution to the problem is to impose an order constraint on one of the class-specific
parameters, such as the mean intercept ng), so that the posterior is no longer invariant to label
permutations. However, the approach relies on finding a parameter that takes on sufficiently different
values across classes and is often ineffective (e.g., Celeux et al., 2000; Marin & Robert, 2007, p. 163-164;
Stephens, 2000).

In Mplus, label switching between chains is addressed by introducing a preliminary stage of 50
iterations (by default) during which all chains are identical so that the chains are likely to have a
common labeling in the second stage (Asparouhov & Muthén, 2023). This approach does not protect
against within-chain label switching and could undermine Rasa convergence diagnostics because this
statistic is based on independent chains with different starting values. Asparouhov and Muthén (2023)
also point out that the joint posterior mode can be used instead of posterior means. However, interval
estimation is then precluded and the point estimates are likely to be unstable (e.g., Celeux, Forbes,
Robert, & Titterington, 2006).

Here we do not use any of the strategies discussed above. Instead, we relabel the parameters
after MCMC sampling is complete using the Kullback-Leibler algorithm (or “algorithm 2”) developed
by Stephens (2000). Loosely, this algorithm finds permutations of the labels for each iteration to
make the corresponding posterior classification probabilities of the n individuals across the K classes
as similar as possible across iterations. The algorithm is available in the label.switching package
(Papastamoulis, 2016) in R. This package implements various relabeling algorithms, provides post-
relabeling convergence diagnostics, such as }A%, and provides a measure of similarity between label
permutations from different relabeling algorithms. Ji et al. (2021) offer both the rationale and code
for addressing label switching in latent class models using the label.switching package. The GitHub
given in the Introduction includes the PP_sss function for extracting the original posterior draws from
a GMM Stan object and restructuring these draws so they can be passed to the post_processing
function for relabeling.

5 Problematic estimation behavior

The analysis of the NLSY data reported in Section 2.4 showed no problematic behavior when using
D10N50 priors. In this section, we alter the priors and show some of the problematic behavior that
can occur. We will use the same model as described in Section 2.3.1 but with ¢;; equal to the occasion
number (0,1,2,3) instead of age because researchers employing software for balanced longitudinal data
can then compare their results with ours. See Web Appendix C for the estimates for this time variable
based on D10N50 priors.

To assess potential shrinkage towards equal probabilities of 1/3 due to the Dirichlet prior with
a = 10, we also obtained maximum likelihood estimates from the flexmix (version 2.3-19, Grin &
Leisch, 2008, 2023) package in R. The posterior mean estimates are 0.267, 0.286, and 0.447, and they
are closer to 0.333 than the maximum likelihood estimates of 0.214, 0.213, and 0.574, but the latter
fell within the 90% credible intervals of the former (not shown). No local maxima were found after
running flexmix with 1,500 different sets of starting values, suggesting that the likelihood is unimodal
(apart from the label permutation invariance).

In this section, we specify « = 2 and « = 4 as vague/diffuse and mildly informative options for the
Dirichlet distribution and o = 10 to moderately favor equal class probabilities (denoted D2, D4, and
D10, respectively). For the intercept and slope standard deviation parameters, we specify half-normal
priors with scale parameter 7 = 500 and 7 = 50 (denoted N500 and N50, respectively) and half-Cauchy
priors with scale parameter 7 = 5 (denoted C5).
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For some combinations of these priors (D2C5, D4N100, and D2N500) and the three-class GMM,
we ran twenty chains with 1,000 warmup iterations and 1,000 post-warmup iterations for each set of
priors. After relabeling as described in Section 4.4.2, we inspected traceplots and other summaries of
the results to find evidence of problematic behavior.

Figure 2 shows a traceplot for the class probabilities for Chain 6 with D2N500 priors, where the
draws of the class-1 probability, A1) are persistently close to 0. As expected because the class-1
parameters are only weakly identified when A()) is close to 0, we found that these parameters were
approximately sampled from their prior distributions (see Figure 3 for examples). These samples are
not likely to be compatible with the data, so that A(Y) remains close to zero for all 1,000 iterations.
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Figure 2: Traceplot for Chain 6 for D2N500 priors where the class-1 probability A(") is persistently
close to 0
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Figure 3: Q-Q plots of mean slope and random-intercept standard deviation parameter draws for class
1 compared with their priors for Chain 6 with D2N500 priors

Chain 5 with the D2C5 priors exhibits even more problematic behavior as shown in the traceplot
in Figure 4. Here, A\() and A(®) are both close to zero, and the chain is completely stuck. As shown in
Figure 5, the mean trajectories for classes 1 and 2 (implied by the posterior draws of the corresponding
parameters in Chain 5) are mostly outside the range of the data, forcing the probability parameters
to remain close to zero.
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We have therefore found evidence for self-perpetuating sampling of near-degenerate parameters
that can manifest in two ways. We will use the term “miniscule-class” behavior to denote when the
probability parameter(s) of one or more classes fluctuate around a near-zero value with a small standard
deviation and the terms “stuck-sequence” and “stuck-chain” behavior when the chain is completely
stuck for a sequence of consecutive iterations or remains stuck for the entire chain with one or more
class-probabilities near zero.

We were not able to find highly problematic behavior due to class-specific parameters being equal,
or “twinlike-class behavior,” either for the NLSY data or for the simulations reported in Section 7.2.
Web Appendix D shows an example with D4N100 priors where the posterior means of the class-specific
parameters for classes 1 and 2 are very similar. However, these parameters were never extremely close
in a given iteration. Apart from slightly smaller ESS compared with a chain for D1I0N50 where the
posterior means were less similar, there were no signs of problematic behavior.

6 Diagnostics for problematic behavior

In Section 6.1 we introduce some new diagnostics designed specifically for detecting the problematic
behavior discussed in this paper and recommend steps for diagnosing these behaviors. The next
subsection applies the diagnostics to the NLSY data and presents results. All functions referred to
here can be found in the GitHub given in the Introduction.

6.1 Procedure

Step 1: Initial Screening based on R

Begin by examining whether any parameter exceeds the commonly recommended threshold of
1.10 for the R statistic. If such instances are identified, record the number of parameters exceeding
this threshold and calculate the mean R for all relevant parameters.

However, relying solely on R may be insufficient. Even if R does not exceed 1.10, proceed to
Steps 2 to 4 to detect “stuck-sequence” (Step 2), “twinlike-class” (Step 3), and “miniscule-class”
(Step 4) behavior discussed in Section 5.

Step 2: Stuck-sequence diagnostic

To detect when parameter draws do not change for several consecutive iterations, we suggest
computing the moving standard deviation for one of the parameters, such as the smallest class
probability parameter A(!). For a window size of A, the moving standard deviation of A(") at
iteration ¢t > A is defined as

t

1 1 t 2
_ Wr _ L (Wyr
SA(t) A—1 Z <)\ Arzt_%_’_l)\ > ’

r=t—A+1

where A" is the draw of A(") in iteration r. If the moving standard deviation remains at zero
for ¢ consecutive windows, this means that the chain is stuck for g+A — 1 consecutive iterations.
We suggest recording the number of such stuck sequences and the lengths of these sequences.

We provide the stuck_by_chain function that allows users to customize the window size for the
moving standard deviation and the minimum length that defines a stuck sequence. This function
informs users about which chains exhibit stuck sequences, how many chains are affected, where
these sequences are detected, the lengths of the stuck sequences, and which chains are stuck
persistently.

Longer stuck sequences can also be detected in traceplots. In addition, we expect a high Rin

situations where there are minimal changes within a chain or if a chain persistently remains stuck.

This is because the contribution of such a chain to the within-chain variance in the denominator

approaches zero. The limited number of distinct draws will also be reflected in a small ESS.
Step 3: Twinlike-class diagnostic

To detect when class-specific parameters for a pair of classes are nearly indistinguishable, we
propose a distinguishability index (DI) that can be calculated for any iteration of the chain.
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If the parameters for classes k and [ are identical, then the class-specific joint densities of the
oo,
defined in Section 4.4.1. If, additionally, A\(*) = X()| the posterior probabilities of belonging to
classes k and [ will be identical for all subjects. Our index therefore starts with the conditional
posterior probability of belonging to class k, given that the individual belongs either to class k
or [ and under “prior ignorance” (A(®) = A1),

K, k k 1
P = 6 (e gy,

responses for any subject j should be the same for both classes, i.e., K;k) = where é;k) is

To summarize how close to 0.5 these probabilities are across subjects, we use the corresponding

average conditional entropy, defined as —% Zj [p;k’l) In pg»k’l) +(1 —p§k’l)) In(1 —pg-k’l))], which takes

the value 0 if pgk’l) equals 0 or 1 (no classification uncertainty) and the value In(2) if pgk’l) = 0.5,
corresponding to (;k) = (;l) for all subjects j (greatest classification uncertainty). We then define
the DI as

DI%D = 100¢ 1+

1 kD) 1. (kD) (k,1) (k,1)
JIn(2) XJ: {pj lnpj +(1 —Dj )In(1 — pj ) )

which takes the value 0 if p§-k’l) = 0.5 for all j (indistinguishable classes) and the value 100 if

p§k’l) equals 0 or 1 for all j (most distinguishable classes).

We provide the DI function to calculate DI and the twinlike_classes function to produce
traceplots of class probabilities for all classes and DI plots for all class pairs, aligned vertically
for comparison. This function also returns detailed information about chains where the DI is
below a certain threshold, indicating twinlike behavior.

Step 4: Miniscule-class diagnostic

To identify sequences of iterations in which the smallest class probability fluctuates (with small
variance) near zero, we suggest inspecting the traceplot of the smallest class probability, A,
along with its moving average and moving standard deviation.

In instances where the chain alternates between normal behavior and fluctuating-near-zero be-
havior, we can apply a clustering algorithm, such as K-means, to the moving averages and
moving standard deviations. If the smaller centroid (both for the moving average and moving
standard deviation) is close to (0,0), iterations in that class exhibit miniscule-class behavior. To
be conservative in the classification, the iterations with moving average values above a given per-
centile (such as the top 10%) in that class can be removed. We suggest reporting the frequency
of sequences of consecutive iterations with miniscule-class behavior and the durations of these
sequences.

Additionally, when miniscule-class behavior occurs for class 1, the class-1-specific parameters
are approximately drawn from their priors and are not likely to be compatible with the data.
Consequently, the posterior probability of belonging to class 1 will be close to zero for most
subjects and hence the DI, defined in Step 3, will be close to 100 when comparing class 1 with
any of the other classes. We propose using the DI as another diagnostic for minuscule-class
behavior.

Our diagnostics_graphs function can be used to assess miniscule-class behavior visually, with
customization options for users’ needs. This function produces traceplots, moving average and
standard deviation plots, and DI plots, aligning them vertically. Additionally, the function
offers detailed warnings and information regarding the chains where miniscule-class behavior is
observed.

6.2 Using the diagnostics

The diagnostic process is illustrated by applying it to sets of 20 chains of 1,000 warmup and 1,000
post-warmup MCMC draws, for the NLSY data. We use different combinations of priors (D1C5,
D2N500, D4N100, and D6N500) for which we expect problematic behavior to occur. No evidence of
twin-like behavior was found, but we illustrate the other types of problematic behavior below.
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6.2.1 Persistently stuck chains

With D2C5 priors, the moving standard deviation of A(Y), with a window size of A = 10 remains
at zero for each entire chain (and changes by a tiny amount between chains), implying that the chains
are persistently stuck, as shown in Figure 6.

When employing the summarise_draws function in the posterior package (version 1.5.0, Biirkner,
Gabry, Kay, & Vehtari, 2023; Vehtari et al., 2021) in R, the R values are flagged as Inf (infinite) in
this case. This is due to the within-chain variance being 0 because all chains are stuck. However,
the monitor function in Stan reports an R value of 1 when all chains are persistently stuck, which
is misleading. Regarding the ESS, the summarise_draws and monitor functions in Stan both provide
two estimators, the bulk-ESS and the tail-ESS. Whereas the summarise_draws function reports NA for
both, which indicates that the draws are constant, the monitor function in Stan incorrectly reports
1,000 for both, which is misleading.
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Figure 6: Persistently stuck chains for D2C5 priors

6.2.2 Miniscule-class sequences

The top panel of Figure 7 is a traceplot of the latent class probabilities for all 20 chains for the
D4N100 priors. Out of the 21 parameters, ten have R values exceeding 1.10 and the mean R for
all parameters is 1.182. The stuck-sequence diagnostic identifies one stuck sequence of length 11 at
iteration 16554 (chain 17).

The middle panel in the figure shows the moving averages and moving standard deviations, color-
coded according to the classification of the K-means algorithm, where black represents miniscule-class
sequences, pink is normal behavior, and blue means not classified (largest 10% of values classified as
miniscule by K-means algorithm). In total, 11,761 out of 200,000 iterations are classified as minuscule
class behavior. The DI-plot in the bottom panel of Figure 7 supports this miniscule-class behavior.
Specifically, when A(!) is near zero, DI®? and DI tend to be extremely large, typically exceeding
75 and often approaching 100. This is expected as the class-1 trajectory parameters are drawn ap-
proximately from their priors and are therefore not likely to be compatible with the data, leading to
close-to-zero posterior probability of belonging to class 1 for most subjects.

See Web Appendix E for another example and corresponding diagnostic plots.
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Figure 7: Miniscule-class behavior for D4N100 priors

6.2.3 Miniscule-class chains

The top panel of Figure 8 shows a traceplot of the latent class probabilities for the D2N500 priors.
We found that 3 parameters have R > 1.10 and the average R for all parameters is 1.051. Our stuck-
sequence diagnostic identified 17 stuck sequences (6 in Chain 1, 2 in Chain 8, and 5 in Chain 18), all
but one shorter than 40 and one in Chain 1 of length 353. The moving average and moving standard
deviation plots in the middle panel of Figure 8 and the DI plot in the bottom panel of the figure
suggest that miniscule-class behavior persists for entire chains and for long sequences in other chains.

7 Simulation study of strategies to detect and avoid problem-
atic behavior

7.1 Simulation design

We simulated a new set of 4 responses for each of the 405 children in the NLSY data using parameter
estimates from the well-behaved three-class solution with occasion number (0,1,2,3) as time variable.
By simulating data instead of using real data, we can estimate the correct model so that we know
that any degenerate nonidentifiability is not due to overfitting. Moreover, simulation ensures that our
findings are not driven by some feature in the data (e.g., outliers) that we are unaware of.

The parameter values used for the simulation are in Sim_design.code.R and the code for simulating
the data is in SimCode. source.R, both in the Simulation study folder of the GitHub repository. Priors
and Stan parameters were varied as described below, while keeping the dataset the same to reduce
variability.

The priors for ng), ék), ﬂék), p*) and o, were as specified in Section 2.3.1, whereas the other priors
were varied to discourage abnormal behavior to different degrees. One strategy to prevent miniscule-
class and stuck-sequence behaviors is to discourage very small draws of A(!). This can be accomplished
by using a weakly informative Dirichlet prior with concentration parameter « larger than 2 to steer
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Figure 8: Miniscule-class behavior for D2N500 priors

the class probabilities towards equality (1/3 here). Three values of the concentration parameter were
therefore considered, a = 2,6, 10.

While specifying half-Cauchy distributions for standard deviation parameters is common practice
in hierarchical models, this can lead to excessively large draws, such as 1,350,770 and 25,839,500 for
the D2C5 priors, when A approaches zero. This, in turn, can cause the chain to become stuck,
as observed in the persistently stuck example in Figure 6. Consequently, we recommend adopting
half-normal priors for the random-intercept and random-slope standard deviations, with sufficiently
large scale parameter 7 to avoid being overly informative but sufficiently small 7 to avoid excessively
large draws of the standard deviation parameters. For the simulation study, we compared the half-
Cauchy distribution with scale parameter 7 = 5, denoted C5, with half-normal distributions with scale
parameters 7 = 1,5, 50, 100, denoted N1, N5, N50, and N100.

The Stan step size € was set to 1 (the default) and to 0.01, using the argument step_size of the
$sample method for CmdStan model objects.

For each combination of the three concentration parameters «, five prior distributions/scale pa-
rameters 7 for the standard deviation parameters and two step sizes €, we ran 100 chains on the same
dataset. The chains can be viewed as replicates because they are independent.

We expect problematic behavior to be less likely as « increases and as 7 decreases, and generally
less likely for a half-normal than a half-Cauchy distribution. For each value of «, we use the standard
deviation priors in the order of “most difficult” to “least difficult”; i.e., C5, N100, N50, N5, and N1. If
no problematic behavior is observed for N5, say, we do not consider the less difficult condition N1.

7.2 Simulation results

The step size specified for Stan did not appear to make any difference to the average step size used
in the chains. The average step sizes used across the 100 chains for each condition ranged from 0.036 to
0.123, were sometimes larger when the small step size was specified than for the default for a given set
of priors and never differed by more than 0.008 for a given set of priors. We also compared diagnostic
results for small and default step sizes for each set of priors and found no systematic differences. We
therefore pooled the results across step sizes, giving 200 chains per set of priors.
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7.2.1 Prevalence of problematic behaviors

Table 3 shows the impact of different priors on the prevalence of problematic behaviors according
to our diagnostics and the prevalence of Stan warnings.

Table 3: Percent problematic behavior according to different diagnostics and Stan warnings for different
prior combinations

Priors Proposed diagnostics Stan warnings
B Stuck Stuck Miniscule Stuck sequ. - Max. Diverg.
A o 110 . Sequ chain  class and/or Diverg. treedepth and/or max.
7 (>20 iter.) minisc. class treedepth
Ch 84.0 37.0 36.5 17.5 54.5 73.0 41.0 74.5
N100 92.0 1.5 0.0 98.5 98.5 15.0 6.0 16.0
D2 N50 96.0 3.5 0.0 95.5 95.5 11.0 9.0 20.0
N5 96.0 3.5 0.0 20.0 20.0 12.0 16.0 26.0
N1 10.0 0.0 0.0 11.0 11.0 18.0 1.0 18.0
C5h 50.0 11.5 11.0 0.5 12.0 17.0 6.0 19.5
D6 N100 86.0 6.5 0.0 40.0 41.0 4.0 14.0 20.5
N50 50.0 3.0 0.0 12.5 13.0 1.0 14.0 17.5
N5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
C5H 22.0 4.5 4.5 0.0 4.5 10.0 6.0 8.5
D10 N100 44.0 4.0 0.0 14.5 15.0 1.0 13.0 12.0
N50 0.0 0.0 0.0 0.0 0.0 0.0 5.0 3.0
Note: D2, D6, and D10 are Dirichlet(a, o, @) priors for ()\(1), A )\(3)), with a equal to 2, 6, and 10, respectively.

(k)

C5 is a half-Cauchy(5) prior and N100, N50, N5, and N1 are half-normal priors for ¢;"’ and o3, with 7 equal to 100,
50, 5, and 1, respectively. The other priors are given in Section 2.3.1.

The first two columns of Table 3 show the combinations of priors, while the other columns present
the percentage of each problematic behavior or Stan warning. Except for R, the percentages are
out of the 200 individual chains. Exact binomial 95% confidence intervals for these percentages have
half-widths (approximate margins of error) of 3 percentage points when the point estimate is 5% or
95%, 6 percentage points when the point estimate is 20% or 80% and 7 percentage points when the
point estimate is 50%. Since multiple chains are needed to compute the R diagnostic and practitioners
typically use 4 chains, the R diagnostic was calculated as the proportion of fifty 4-chain batches with
R > 1.10 for at least one parameter.

A stuck sequence was defined as no change in A(!) for at least 20 consecutive iterations, i.e. a moving
standard deviation with window-size 10 being 0 for at least 11 consecutive iterations. A special case of
a stuck sequence is a (persistently) stuck chain that is stuck for all iterations. A chain was classified as
exhibiting miniscule-class behavior if the DI was greater than 95 in at least three consecutive iterations,
excluding persistently stuck chains. The seventh column shows the percentage of stuck chains and/or
minuscule-class occurrences.

Regarding twinlike-class behavior, we observed that across the 200,000 iterations for each set of
priors, the DI was only occasionally smaller than 5. This occurred twice (0.001% of iterations) for
the D6N100 priors (smallest DI is 2.17), eight times (0.004% of iterations) for the D10C5 (smallest
DI is 1.51), and seven times (0.0035% of iterations) for D1I0N100 (smallest DI is 1.97). However,
these smallest DI values only occur for a single iteration, with neighboring iterations having larger
values ranging from 14.01 to 65.41. Therefore, there is no evidence for self-perpetuating twinlike-class
behavior. To create a situation where twinlike-class behavior is likely to occur, we simulated data from
a two-class model and deliberately overfitted the data using a three-class model. See Web Appendix
F for more information and a graph showing two kinds of twinlike-class behavior (class 1 of the data-
generating model being represented by twins versus class 2 being represented by twins), each persisting
for an entire chain. This is a good example of degenerate nonidentifiability.

Figure 9 gives a visual representation of some of the simulation results, with standard deviation
priors represented on the X-axis, Dirichlet priors in the columns, and different types of behaviors in the
rows. In the top row, the dashed lines show the percentage of 4-chain batches with R > 1.10 for at least
one parameter. For half-normal distributions, this problem becomes rarer as 7 decreases and is more
prevalent for smaller @ values. Specifically, R > 1.10 never occurred at 7 = 50 for & = 10 (D10N50)
and at 7 =5 for @ = 6 (D6N5), but occurred occasionally even at 7 = 1 for @ = 2 (D2N1). The solid
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Figure 9: Percent problematic behavior for combinations of standard deviation priors (x-axis) and
Dirichlet priors (D2, D6, D10 from left to right). Top panels: percentage of 4-chain batches with
R > 1.10 for any parameter (dashed) and percentage of chains with stuck-sequence and/or miniscule
class behavior (solid). Bottom panels: percentage of chains with miniscule class (solid), stuck chain
(dashed), and stuck sequence (dot-dash).

lines in the top panel show the percent stuck-sequence (including stuck-chain) and/or minuscule-class
behavior. Similar to large fi, this behavior becomes less frequent as « increases and 7 decreases.

As seen in the bottom row, persistently stuck chains (dashed lines) occur only for the half-Cauchy
distribution, and this problem persists when the concentration parameter is as large as a = 10 if a
half-Cauchy prior is used. Stuck-sequence (dot-dash lines) and miniscule-class (solid lines) behaviors
become less likely as 7 decreases for the half-normal distribution and as « increases.

7.2.2 Performance of proposed diagnostics

To assess the performance of the DI index in detecting minuscule-class behavior, we examined the
200,000 iterations for the D2N100 and D6N50 priors in more detail because this behavior was prevalent
for D2N100 (98.5% of chains) and occurred infrequently for D6N50 (12.5% of chains).

For D2N100, the minimum, mean, and maximum values for A(!) were <0.00, <0.00, and 0.04,
respectively for the iterations where DI > 95. Conversely, for DI < 20, the values were 0.01, 0.16,
and 0.29, with values below 0.04 occurring less than 2% of the time. We used Receiver Operating
Characteristic (ROC) curves to investigate the diagnostic accuracy of the DI for detecting A(Y) < 0.04.
The Area Under the Curve (AUC) was 0.99. Using a threshold of DI > 95 gave a sensitivity of 0.52
and a specificity of 1.00. Using this threshold to detect (') < 0.01 gave a sensitivity of 0.79 and
specificity of 0.92. For D6N50, the minimum, mean, and maximum values for A(!) were <0.00, 0.01,
and 0.05, respectively when DI > 95 and 0.22, 0.19, and 0.45 when DI < 20.

These results for D2N100 and D6N50 show that DI > 95 is associated with very small A("), irre-
spective of the frequency of minuscule-class behavior. The specificity is therefore high for detecting
A1 < 0.04 or AV < 0.01 based on DI>95 in a given iteration. Regarding sensitivity, small values of
A1) do sometimes occur when the DI < 20, and sensitivities for detecting AV < 0.04 or A(1) < 0.01
based on DI>95 are modest. However, given that miniscule-class behavior often occurs several times
in a chain and for long sequences of iterations, the sensitivity for detecting at least one occurrence of
miniscule-class behavior in the chain should be high.
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7.2.3 Performance of Stan warnings

The final three columns of Table 3 present the percentage of chains in which Stan flagged at least
once that there was a divergent iteration or that the maximum treedepth limit of 10 was reached.
Reassuringly, these warnings occurred rarely for D6N5 and D10N50 priors that exhibited none of the
problem behaviors considered. We now investigate the diagnostic accuracy of these Stan warnings for
the problem behaviors considered in this paper.

First, for diagnosing stuck chains, we consider the D2C5 priors, where the problem behavior oc-
curred most frequently across the 200 chains (36.5% of the time). The ROC curves for diagnosing stuck
chains, based on the number of divergent transitions per chain or the number of times the maximum
treedepth was reached, showed high diagnostic accuracy, with AUCs of 0.99. For example, diagnosing
a chain as stuck when the number of divergent transitions per chain exceeded 90 achieved a sensitivity
of 0.98 and a specificity of 0.95. Similarly, basing the diagnosis on at least one occurrence of maximum
treedepth reached resulted in perfect sensitivity (1.00) and a specificity of 0.94. As pointed out earlier,
large R approaching infinity and tiny ESS near zero are also excellent diagnostics.

Second, for diagnosing stuck sequences of length 20 or longer (that are not stuck chains), we
considered the D6N100 priors where this behavior occurred most often (6.5% of the time), excluding
half-Cauchy conditions where the stuck sequences were stuck chains. The Stan warnings were not
useful for detecting this problem, with AUCs of 0.51 and 0.41 for divergent transitions and maximum
treedepth, respectively.

We also assessed Stan warnings for detecting minuscule-class behavior, choosing the D6N100 priors
for which the prevalence of this behavior is 40%, suitable for obtaining good estimates of both sensitivity
and specificity. The AUCs for the number of divergent transitions per chain and the number of times the
maximum treedepth was reached were 0.53 and 0.37, respectively, suggesting that diagnostic accuracy
is no better than chance.

Finally, the E-BFMI computed by Stan is rarely below the threshold of 0.3 across the twelve
simulation conditions. This Stan warning occurs in only one chain (0.5% of the chains) for conditions
D2N5 and D2N1 and five times (2.5% of the chains) for D6N100 (not shown in the table). This warning
does therefore not appear to be useful for diagnosing the problem behaviors considered.

8 Concluding remarks

Inspired by challenges faced when applying Bayesian growth mixture models to reading recognition
data from the National Longitudinal Study of Youth (NLSY), we have investigated identifiability issues
that can lead to problematic estimation behavior.

In addition to the problems uncovered here, local maxima in both the likelihood function and
posterior can cause MCMC chains to get trapped near a mode or move between modes, with proportions
of iterations spent in each mode not representing their weights in the posterior (Yao et al., 2022). If
the modes represent qualitatively different solutions, posterior means will no longer be meaningful. As
discussed in Section 3.3 and demonstrated in Appendix F, such modes can correspond to distinct but
(nearly) observationally equivalent ways of degenerating to a solution with fewer classes.

We have also not discussed problems associated with estimating generalized linear mixed models
(GLMMSs) which clearly also affect GMMs because they are finite mixtures of GLMMs. For exam-
ple, GLMMs suffer from estimates of variance-covariance parameters being on the boundary of the
parameter space. While McNeish and Harring (2020) address this problem of GMMs by specifying
marginal covariance structures directly instead of using random effects, another approach would be
to use weakly informative priors that nudge estimates away from the boundary (e.g., Chung, Rabe-
Hesketh, Dorie, Gelman, & Liu, 2013). Constraining covariance matrices to be equal across classes,
k) = 3., also mitigates this problem. In addition, this constraint ensures that the data provide in-
formation on the variance-covariance matrix even if some class-probabilities are zero, thereby making
such (near)-degenerate sampling less self-perpetuating. However, setting the matrices equal can rarely
be justified by subject matter arguments.

Finally, we have not investigated the robustness concerns raised by Bauer and Curran (2003),
Hipp and Bauer (2006) and Bauer (2007), among others. For instance, Bauer and Curran (2003)
point out that a univariate finite mixture of normal densities is often used to approximate a non-
normal distribution, highlighting that mixture components can merely serve the purpose of relaxing
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distributional assumptions and need not correspond to distinct subpopulations.

In this paper we have argued that likelihood identifiability is the basis for Bayesian identifiability
and that the marginal likelihood should be considered in hierarchical models. Finite mixture models
suffer from several kinds of identifiability problems. One of them is that the models are not locally
identified at degenerate parameter points. Whereas other researchers have discussed the problem of
such degeneracies for true model parameters or for parameter estimates, we are not aware of previous
work pointing out the problems that occur when posterior draws of parameters are degenerate or
near-degenerate. When near-degeneracy is due to one or more class probabilities being close to zero,
we have “self-perpetuating near-degenerate draws” that manifest as stuck sequences, stuck chains, and
what we call miniscule-class behavior, where the class probability parameter(s) fluctuate around a
mean close to zero for sequences of iterations or for the entire chain.

A simulation study showed that problematic behavior is quite common when vague priors are
used for the latent class probabilities (e.g., Dirichlet with concentration parameter 2) and for random-
intercept and random-slope standard deviations (e.g., half-Cauchy with scale parameter 5). As pointed
out by a reviewer, this behavior may be more detectable with HMC than with conventional sampling
methods such as Metropolis and Gibbs sampling because HMC tends to be better at exploring the
posterior in a given number of iterations. For our simulated dataset, larger concentration parameters
(such as 6 or 10) and half-normal instead of half-Cauchy priors for standard deviations (with scale
parameter 50 or smaller), largely prevented problematic behavior.

We recommend against specifying half-Cauchy priors for standard deviation parameters in GMMs
because this often leads to stuck-sequence and miniscule-class behavior. Instead, somewhat informative
half-normal priors can be used. Unfortunately, we cannot recommend specific values for the scale
parameter because what works best will depend on the sample size and the units of measurement of
the variables entering the model (e.g., time measured in days versus years).

The Dirichlet prior for the class probabilities should also be made somewhat informative, by choos-
ing a sufficiently large concentration parameter a. A good strategy would be to start with a small value
for o and perform diagnostics for problematic behavior. Then, if necessary, increase the concentration
parameter. However, if miniscule class behavior is replaced by twinlike behavior when « is increased,
this may indicate that the number of classes specified is greater than the actual number of classes (see
also Appendix F). As shown by Rousseau and Mengersen (2011) for a general class of finite mixture
models, such overfitting asymptotically results in classes being empty for oo < d/2 and classes merging
for large o > d/2, where d is the number of class-specific parameters.

It is important not to make the priors excessively informative to avoid undue influence of priors
on the final estimates, which can be assessed using sensitivity analyses (e.g., Depaoli, Yang, & Felt,
2017).

Several diagnostics were proposed for detecting problematic behavior. While R and ESS from the
posterior package, as well as Stan warnings regarding maximum treedepth and divergent transitions
can be indicative of completely stuck chains, these diagnostics cannot be used reliably to detect shorter
stuck sequences. The moving standard deviation is designed for this purpose, and we suggest using
it to detect stuck sequences. We also recommend computing our proposed distinguishability index
(DI) and inspecting a traceplot of this index. Although we designed the DI for detecting twinlike
behavior (when it is close to 0), it is also powerful for detecting miniscule-class behavior (when it is
close to 100). A traceplot of the smallest class probability, along with its moving standard deviation
are also useful graphs for seeing the miniscule-class sequences. We hope that the code provided on
https://github.com/DoriaXiao/BayesianIdentification will facilitate use of these diagnostics.
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Appendix A: Identifiability in hierarchical models

Swartz et al. (2004, p.3) considers the model

Yi NN(M71)7 /J’|¢NN(¢51)7 ¢|¢0 ~ N(¢071)7

where ¢ is known.

Swartz et al. (2004, p.3) point out that the model is not likelihood identified even though “there
is no practical problem with this model” in that the marginal posterior means of # and ¢ depend on
the data. The reason for this apparent contradiction is that they consider the likelihood p(y|u, ¢) for
which p(y|p, @) = p(y|u, ¢') does not imply that ¢ = ¢'.

However, we argue that the relevant likelihood is the marginal likelihood p(y|¢$), which is a normal
density function with mean ¢ and variance 2. The corresponding prior p(¢|¢p) is a normal density
with known mean ¢ and variance 1. Based on the marginal likelihood p(y|¢), the model is identified.

Alternatively, if we want to condition on y in the likelihood, we can marginalize the prior over ¢,
i.e., use the likelihood p(y|u), a normal density with mean u and variance 1, and define the prior as
p(p|¢o), a normal density with mean ¢g and variance 2.

Appendix B: Stan code for GMM

Equation (9) defined the fully marginal likelihood as
_ k) p(k)
LIy
ik

and the corresponding log-likelihood can be written as

log(L) = Z logz (exp <log(/\(k)) + log(ég-k)))>. (10)
j i

The Stan code for implementing this log-likelihood evaluation involves several steps:

First, log(ﬁgk)) for each subject 7 is computed in the mmn function, defined in the functions block
(lines 1 - 14). The arguments of this function are the parameters for a class k and the data for a
subject j, extracted using the segment function (lines 75 - 76) within the transformed parameters
block.

Second, we adapt the finite mixture model example from the Stan User’s Guide (Stan Development
Team, 2021) to our specific model. Instead of declaring one local array variable 1ps of size K, as done
in the User’s Guide, we declare a J-array of 1ps of size K (line 64) within the transformed parameters

block. The K-dimensional vector 1ps[j] has kth element equal to log(A(®)) 4 log(€§-k)), the log contri-
bution from the kth mixture component for the jth subject (lines 71 - 78).

Lastly, the Tog_sum_exp(lps[j]) function computes the logarithm of the sum of the exponentiated
elements of lps[j], thereby aggregating the likelihood across all classes for each subject j. The
marginal log likelihoods are then added directly to the log posterior via the target += statement (line
99).

The complete Stan code for our model is provided below, with comments to clarify our code and
briefly explain Stan conventions.

1 functions {
2 // Custom function for multivariate normal likelihood for a subject, conditional on class membership

3 real mmn(real beta_1, real beta_2, real beta_3,

4 vector time_seg, vector time_sq_seg,

5 matrix Sigma, real sigma_e, vector y_seg) {

6 vector[rows(time_seg)] mu_seg;

7 matrix[rows(time_seg), 2] Z_j;

8 matrix[rows(time_seg), rows(time_seg)] Cov_j;

9 mu_seg = beta_1l + beta_2 * time_seg + beta_3 * time_sq_seg; // Equation (1)
10 Z_j = append_col(rep_vector(1l.0, rows(time_seg)), time_seg);
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11 Cov_j = Z_j * Sigma * Z_j' + diag_matrix(rep_vector(sigma_e”2, rows(time_seg))); // Equation (8)

12 return multi_normal_lpdf(y_seg | mu_seg, Cov_j); // return multivariate normal log-likelihood
13 }

14 }

15

16 // Specifies the data structures and variables that will be input into the model.

17 data {
18 int<lower=1> N; // number of observations
19 int<lower=1> J; // number of subjects

20 array[N] int<lower=1, upper=J> Subject; // subject ID for each observation

21 array[J] int<lower=1> s; // subject size

22 vector[N] y; // response variable

23 vector[N] time; // time variable

24 vector[N] time_sq; // squared time variable

25 int<lower=1> K; // number of latent classes

26 int<lower=0> Dir_alpha; // concentration parameter of Dirichlet prior
27 int<lower=0> Cauchy_scale; // scale parameter of half-Cauchy prior

28 int<lower=0> Normal_scale; // scale parameter of half-normal prior

29 int<lower=0> prior; // indicator for the type of prior used for standard deviation parameters
30 real<lower=0> eta; // shape parameter for LKJ distribution

31 }

32
33 // Allows for transformations of the input data before it is used in the modeling process.

34 transformed data {

35 array[J] int pos; // position of first observation for each subject
36 int new_j = 1; // counter for new subject index

37 int curr_sub = Subject[1]; // current subject identifier

38 pos[1l] = 1; // start position for the first subject

39 // Determine positions where subjects change
40 for (n in 1:N) {

41 if (Subject[n] != curr_sub) { // check if current subject differs from previous
42 new_j += 1; // increment new subject index

43 pos[new_j]l = n; // record position where new subject starts

44 curr_sub = Subject[n]; // update current subject identifier

45 }

46 }

a7 }

48

49 // Declares the model parameters that Stan will estimate.

o parameters {

o

51 simplex[K] lambda; // class probability parameter vector

52 vector[K] beta_1; // mean intercept vector

53 vector[K] beta_2; // mean slope of time vector

54 vector([K] beta_3; // slope of squared time vector

55  array[K] vector<lower=0>[2] sigma_u; // random-intercept and random-slope sds

56 array[K] cholesky_factor_corr[2] L_Omega; // Cholesky factor of the correlation matrix
57 real<lower=0> sigma_e; // residual sd

58 }

59

60 // Defines parameters that are deterministic transformations of the primary parameters.

61 transformed parameters {

62 array[K] corr_matrix[2] Omega; // correlation matrices for random intercepts and slopes
63 array[K] cov_matrix[2] Sigma; // covariance matrices for random intercepts and slopes
64 array[J] vector[K] lps; // component contributions to log likelihood for each subject

65 // Compute correlation and covariance matrices for each class
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66 for (k in 1:K) {

67 Omega[k] = multiply_lower_tri_self_transpose(L_Omegalk]); // calculate correlation matrix
68 Sigma[k] = quad_form_diag(Omegal[k], sigma_ul[k]); // calculate covariance matrix
69 }

70 // Compute component contributions to subjects’ marginal log-likelihood contributions
71 for (j in 1:Subject[N]) {

72 lps[j] = log(lambda); // initialize with log class probabilities

73 for (k in 1:K) {

74 lps[jl[k] += mmn(beta_1[k], beta_2[k], beta_3[k],

75 segment(time, pos[jl, s[jl), segment(time_sq, pos[jl, s[jl),

76 Sigma[k], sigma_e, segment(y, pos[jl, s[jl)); // add log-likelihood for subject j, conditional on
being in class k

7 }

78 }

79 }

80

81 // Specifies the likelihood function, priors, and the increment of the log probability density.
82 model {

83 // Priors

84  for (k in 1:K) {

85 beta_1[k] ~ normal(0, 10);

86 beta_2[k] ~ normal(0, 5);

87 beta_3[k] ~ normal(0®, 5);

88 if (prior == 0) {

89 sigma_u[k] ~ cauchy (0, Cauchy_scale);
90 }

91 if (prior == 1) {

92 sigma_u[k] ~ normal(®, Normal_scale);
93 }

94 L_Omega[k] ~ lkj_corr_cholesky(eta);

95 }

96 sigma_e ~ exponential(1l);

97 lambda ~ dirichlet(rep_vector(Dir_alpha, K));

98 // Likelihood shown in Equation (9)

99 for (j in 1l:Subject[N]) target += log_sum_exp(lps[j]); // accumulate log-likelihood contributions
100 }

101

102 // Used to generate predictions or derived quantities after the model has been fitted.

1

1=}

3 generated quantities {

104 vector[J] log_lik; // log-likelihood for each subject

105 array[J] int<lower=1> pred_class_dis; // predicted class assignment for subject j
106 array[J] simplex[K] pred_class; // post. prob. of subject j in class k

107 // Compute log-likelihood, predicted class probabilities, and assignments

108 for (j in 1:Subject[N]) {

109 log_lik[j] = log_sum_exp(lps[j]); // log-likelihood contribution for subject j
110 pred_class[j] = softmax(lps[j]); // posterior class probabilities for subject j
111 pred_class_dis[j] = categorical_rng(pred_class[j]); // predicted class assignment for subject j
112 }
113 }
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