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ABSTRACT

In a previous paper, Jewell and Sundt showed how to approximate a distribution
of total losses from a large, fixed, heterogeneous portfolio, using a recursive
algorithm developed by Panjer for the distribution of a random sum of random
variables (a single casualty contract). This paper extends the approximation
procedure to large, dynamic heterogeneous portfolios, in order to model either
a portfolio of correlated casualty contracts, or a future portfolio, whose composi-
tion is not known with certainty.

0. INTRODUCTION

The problem of finding the distribution of y = xx + x2 + x2 + • • • +xN, where the
(jCj) are a fixed and large set of independent, nonidentically distributed, integer-
valued random variables was considered in JEWELL and SUNDT (1981)
(hereinafter referred to as JS). Although, in theory, the discrete density of y is
just the N-fold convolution of the individual densities, this computation is very
time-consuming, and various forms of approximation must be used; moreover,
in many risk applications, the use of a normal approximation gives very bad
results, even for large N, because of the skewness and long tails of the density.
However, if the probability pt = Pr {x, = 0} is significant for most i = 1,2,..., N,
it turns out that a very good approximation can be obtained using newly-developed
procedures for the related problem of calculating the distribution of the sum of
a random number of independent and identically distributed random variables.

In many risk applications, especially in insurance and investment management,
there are an ever-changing number of risks of different types, and it is of interest
to predict the distribution of a portfolio whose future composition is not known
with certainty. This paper develops a general model for this situation, and shows
how the approximation procedure described in JS can be extended.

1. THE DYNAMIC PORTFOLIO MODEL

Let i = 1,2,..., N index a number of different risk classes (insurance policies
or types of investment) in a given portfolio, and let n, e [0,1,...] be the random
number of independent risks of type i, giving a grand total number of risks in
the portfolio

(1.1) «r= I n,

i = l
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Risks of type i are similar, in the sense that, if x,-, is the random monetary
gamble from the jth risk of type i, then its discrete density, /,°(x), is the same
for all j , i.e.:

(1.2) Pr{xs = x}=/,°(x), (i = l , 2 , . . . , N ) ( j = l , 2 , . . . , n 1 ) .

We shall only consider discrete gambles, with the common range of the (jcy) as
[ 0 , 1 , 2 , . . . , R]. As mentioned above, we assume for the moment that the (xy-)
are statistically independent of each other and the («,-), but we do not assume
that the («*) are independent. (But see Appendix A.)

The total monetary gamble for all risks of type i is then the sum of a random
number of random variables:

: . . r ( i i ,2, . . . ,AD
[xl7 +x,-2 + • • • + *,•„-., (n, > 0),

and the grand total monetary risk is then the fixed-term random sum:

(1.4) y = xx+x2 + - • -+xN.
Note that the (x,-) are now dependent random variables, if the (nf) are.

If g(y) and 7r(n,, n2,..., nN) are the discrete densities of the total risk sum
and the number of risks of each type, respectively, we have then the discrete
density of y as:

(y = o, 1,2,.. .)

which, of course, is a lengthy and laborious computation. (In JS, the special case
of (iif) deterministic was considered.)

2. INTERPRETATIONS

Before describing a method of approximating (1.5), we give some possible
practical interpretations of the model.

In insurance applications, the simplest interpretation is that i refers to different,
distinguishable types of insurance policies in a given portfolio; for instance,
similar policies in personal lines of insurance could refer to ordinary life insurance
policies with the same face values issued to persons of the same age. For the
current year, we know exactly the number of policies of type i and hence,
following JS, can find an approximation to the current g(y). However, an
approximation to (1.5) would be necessary to predict total portfolio risk for next
year, after some policies are withdrawn, some policies have paid out benefits, or
new policies have been added, and still others have shifted type. By specifying
the stochastic law governing this "drop-add" mechanism, we can get
v(nu n2,..., nN) for next year. Possible reasons for leaving correlation between
the («j) are that we may have a precise idea of how new sales are distributed
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among the different types of policies, but may be uncertain about the total new
business; or, the new business total may be accurately estimated but the distribu-
tion may be uncertain; or, there may be an uncertain number of policies which
are shifting type (as in aging of life insurance insured); etc.

A second insurance interpretation is the so-called casualty claim model, in
which multiple claims may occur on a policy during a given exposure year. Here
i indexes each of a fixed number of policies, /,°(x) is the individual claim
("severity") density, «, is the random number of claims ("frequency"), and x, is
now the total monetary claim on the single policy i. Of course, if the (n,) were
independent, then this application could be handled by making £ T(ni)[f?(y)]n*'
the basic density used in the procedure described in JS; but this would require
prior calculation of this compound law (see also Sections 8 and 9, below).
Moreover, external factors, such as weather and economics, often affect the
number of claims of all types of contracts in a given portfolio in the same way,
thus introducing correlation and the need for a more general model.

In most insurance portfolios, a great deal of effort is used to assure that the
(xy) are statistically independent of each other. However, there remains always
the possibility that risks of the same type i are influenced by the same exogenous
factors. In Appendix A, we consider the case when risks of the same type are
exchangeable random variables, which leads to a weak form of dependence on
the (xtj).

In investment portfolios, it is unusual to have independent risks of the same
type, i.e., requiring the same investment level, and having the same outcome
distribution; instead, we usually have a different amount of money invested in
different risks. If we let n, be the level of investment in type i and x, the net
return from this investment, then (1.3) holds only if the (x,-,) are perfectly
correlated, or what is the same, if (1.3) is replaced by xt = n,xa. Another limitation
on investment modelling is that it is usually possible to have negative net returns,
which is discussed in Section 10. It should be remembered also that our approxi-
mation is usually successful only if the problem is modelled so that the probability
of zero net return is substantial; i.e., all "sure thing" return has been eliminated.

Technological risk applications are based upon the compound law interpreta-
tion ; for instance, in reliability engineering, n, may refer to the random number
of mechanical, electrical, or thermal shocks of type i which affect a given piece
of equipment; in fire damage analysis, n, is the random number of fires of a
given type (size, type of dwelling or land classification) which occur; and so
forth. In technology applications, the primary modelling challenge is to express
damage in appropriate, additive units for situations where there is no accepted
monetary surrogate for the risk.

3. NOTATION AND MOMENTS

The success of the approximation procedure to be described depends upon the
assumption that most of the total risks, (x,), have a high probability of being
zero; this can occur either because/,°(0) is large, or because n, is often zero. We
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now change to a traditional notation (see JS) which emphasizes the distribution
of risk when it is positive. Let

(3.1) Pr {xy = 0} =/°(0) =Pi = 1 - qb (i = 1, 2 , . . . , N)(J = 1 , 2 , . . . , n,)

(3.2) / ( x ) = Pr{x9 = x |x 9 >0}=/ , 0 (x ) /* , (x= 1 ,2 , . . . ,U)

and define the first two moments of non-zero risk as:

(3.3) mi=%{xij\xij>0}=%{xij}/qi,

(3.4) v, = r{xij\xij>0} = [nxij}/qi]-pi(mi)
2.

From the joint counting density, we get the marginal densities:

(3.5) 77,(n) = Pr{n, = n}, ( i = 1 , 2 , . . . , JV)( ;= 1 , 2 , . . . , « , )

and the first two moments:

( 3 - 6 ) A l = g { " - } ' (ik-12 N)

The approximation itself is based upon moment-matching with the first two
moments of the exact density (1.5), which we now find in a straightforward
manner. First, from (1.3) and the assumptions:

so that, unconditioning, we have:

(3.8) »{x

Then, using (1.4) and notation defined above, we find the first two moments of
total portfolio risk as:

(3.10) ^ } = I A , « ,

and

(3.11) T{y} = I kAl(v, +pim
2
i) + H yuAAMm*

i=\ i=\ k=l

The (qi), (m,), and («,-) are presumed known from past portfolio statistics on
each type i, and the (A,) and (%-fe) are gotten from modelling assumptions regarding
the future composition of the portfolio; so, we shall assume that these moments
are given parameters.
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Of course, if the (nf) are statistically independent, the last term become
Z yutfml- In the static portfolio model in JS, the composition was fixed, with all
W; = 1; an equivalent, but slightly generalized model can be gotten from the above,
with nt = n, = A,, and all yik = 0.

4. THE APPROXIMATING RISK COLLECTIVE MODEL

In the approximation, we replace the original portfolio by a homogeneous "risk
collective", that is, we assume that y is approximately:

, , n . JO, (ii« = 0)
(4 1) v = <

where ne is the random number of equivalent positive claims (w,), assumed to be
independent of each other and ne, and identically distributed, according to proto-
typical counting and individual risk densities:

( ) { c = n}, (n =0, 1, 2 , . . . ) ;

/(w) = Pr{w = w}, (w=l ,2 , . . . ) ,

leading to the usual compound law of risk theory for the density of y:

(4.3) g(y)= I TT(n)\_f{y)T-
n=0

As mentioned earlier, the rationale behind this approximation is that, in many
applications, the (*,-,) are zero with high probability; the (Wj) then represent just
the positive (xv). (See also JS and GERBER (1979).)

If the prototypical moments are:

(4.4) A = *{««}; y=T{ne},

(4.5) m=g{w}; v=T{w},

then the moments of the random sum in the approximating model will be:

(4.6)

(4.7)

For a good approximation, the moments (4.6), (4.7) must be matched as closely
as possible with the true values (3.10), (3.11). In addition, the forms of the ir(n)
and /(w) chosen may also be varied.

5. THE ADELSON-PANJER RECURSIVE ALGORITHMS

At this point, we should stop and consider whether the computation of the
compound law (4.3) can be effected in any efficient manner; otherwise, it is not
much improvement over (1.5). A traditional approximation (for the static portfolio
problem) used in actuarial circles was to make TT(H) a Poisson law; this was
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because (further) approximations to the compound law had been developed in
the early risk theory literature (see, e.g., GERBER (1979)).

However, the recent extension by PANJER (1981) of a recursive scheme of
ADELSON (1966) now provides an efficient and direct way to compute (4.3).
Essentially, if f(w) is discrete over [1 ,2 , . . . ] and the counting distribution is
chosen from a certain (a, b)-family for which:

(5.1) ir(n)

then g(y) can be calculated recursively via:

l(l-a)ia+b)/a,

~b, (a=0)
(5.2)

min(.y, R) / v\

g(y)= I (a+b-)f(x)g(y-x),
x=\ \ yi

This is clearly an efficient computational procedure, provided the (a, b)-family
is a useful one. As elaborated upon in SUNDT and JEWELL (1981), the only
members of this family, apart from the degenerate density, are:

A" e~k

(5.3a) (Poisson) TT(M)= —, ( a = 0 ; b = A);
n!

(5.3b) (Binomial) ir(n) = | I p T - p ) , (a = - p / ( l - p ) ;

(5.3c) (Negative Binomial) («) = ( a + " ~ )p"(l-p)a,

(a=p;b=p(a-l)).

These counting distributions are useful, since they are often used in modelling
compound risk laws. Furthermore, since:

(5.4) A = *{«.} = — ;
1 -a

we get:

(5.5) a = l - - ;

and:
T{ne}(5.6)

y-

h

y

r - i

y

l

a

' " ( I -

' 1 .

+ b

%{ne} A 1 - a '

The importance of the ratio (5.6) in modelling empirical counting processes is
well known. From (5.3), we see that this family covers a wide range of such
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ratios, with the Binomial giving (y/A)< 1 and the Negative Binomial (Pascal)
giving (y/A)> 1; the Poisson (7 = A) distribution is the dividing line.

Therefore, for computational simplicity, we propose to use the (a, b)-family
to model the counting distribution n(n) and the recursive procedure (5.2) to
compute the approximate density (4.3). Note that, if a<0 in (5.5), we are not
completely free in our choice of b, since M must be an integer in the Binomial
law (5.3b); however, this is not usually a serious limitation (see JS).

6. THE FINAL APPROXIMATION

Having selected ir{n) on the basis of computational convenience, we must now
choose the prototypical density,/(w). The form which will give the best approxi-
mation in all cases is not known. However, a natural way, consistent with the
interpretation given in Section 4, is to weight the individual densities (3.2) with
weights proportional to the expected number of risks with positive outcome in
the corresponding class, i.e., to fix:

(6.1) /(w)=—— = —— , (w=l,2,...,R).

This choice is consistent with JS for the static risk portfolio model, and also
provides the greatest simplification to the formulae below. Using (3.3), (3.4) in
(6.1), we find first m and v in (4.5), then substitute into (4.6), (4.7) to find the
first two moments of the approximating model; these moments are then equated
with the exact results (3.10), (3.11), obtaining finally the^jrsf two moments of the
prototypical counting density in terms of the original parameters:

(6.2) A = »{«.}= I A*;

(6.3) T-*W>-£ A,J,-,M1 + I I '
1=1 L \mj J ,-=i k=\

where the mean prototypical severity is:

(6.4) m = %W

and the severity variance is:

, , o lA,gi(u,+m) 2(6.5) v= — — m 2 .

To summarize: In the final approximation, we would first calculate thef(x) and
the moments of Section 3 using the data, then compute/(w) from (6.1) and use
it in the approximating model (4.3), together with one of the ir{n) of Section 5,
with (a, b) selected using (5.5); the approximate density is computed recursively
via (5.2).
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In the static portfolio case considered in JS, all yik are identically zero, so that
y < A, and a Binomial counting law results. This raises the integrality problem
for M previously mentioned, and means that the resulting values of (a, b) do
not exactly match V{y} in the original and approximating models; however, the
resulting error is not serious in the example analyzed in that paper.

In contrast, the dynamic portfolio model of this study can give y/A > 1, and
hence Negative Binomial v(n), if the (yik) are large enough. To see this, consider
the case of independent, but still random, («,-). (6.3) then becomes:

However, to give more modelling flexibility, we now permit both nT and TI to
be a random scalar and random vector, respectively, but require that they be
independent of each other, for simplicity. This "collective" model dependency
gives a more complex covariance structure.

Define:

(7.4) «{nT} = A T = I A,-; V{nT} = y T = I I yik;

then, unconditioning (7.2), (7.3), we obtain the moments for use in (6.2), (6.3):

(7.5) «{!!,} = A, = AT»{^};

(6.6) y = V{ne} = I A* + L — (y,, - A().
,=, i=l\ m /

Thus, we see that, if a sufficient number of (marginal) counting densities (3.5)
have y,,/A,> 1, then also y/A > 1, a most reasonable result.

7. THE COMPOUND MULTINOMIAL COUNTING DISTRIBUTION

One natural way in which the number of risks in the different classes, n =
(nun2,..., nN), might be generated in a predictive, dynamic model is from a
Multinomial law, with given total number of risks, nT, and a set of selection
probabilities, TT = (TT,, TT2, . . . , VN), viz:

/ nT \ N

\nun2,...,nN) ,-=,

With fixed nT and IT, there are already correlations between the counts in different '
classes, as: \

(7.2) »{ii1-|«7-;w}=7r(fiT; (i = 1 ,2 , . . . , JV)

(7.3) <£{«,.; «k |nT; IT} = <
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(7.6)

+ (77—AT) »{£,

It is easy to show that these satisfy (7.4), by using £ 77,, = 1.
It seems to the author that practical modelling variations might fall into one

of two extremes: either (1) the (IT,) might be known rather precisely, and
forecasting uncertainty might be associated with the total number of risks or, (2)
there would be a relatively stable number of risks, but prediction uncertainty
would remain about their distribution over the different risk classification types.
(For the casualty claim model, only the first variation would probably be relevant.)

An interesting special case of the compound Multinomial coccurs when the
(TT,) are fixed, and yT = \T. It then follows from (7.5), (7.6) that A, = yu (i =
1,2,..., JV) and (nh nk;i^ k) are uncorrelated. This then simplifies (6.2), (6.3),
(6.6) to A = y, that is, a = 0, b = A, and a Poisson counting distribution would be
used in the approximation of Section 5! One obvious way in which this could
happen is if nT were Poisson with parameter, say n; it is then well known that
the («,-) must be statistically mutually independent, with marginal densities that
are Poisson with parameters (77,/*).

8. AN EXACT RESULT

There is one case in which the proposed procedure gives an exact result. Consider
a risk portfolio of fixed size N, with each contract i = 1,2,..., N having an
individual claim density f°(x), with parameters qt, mh vh and an independent
claim number density that is Poisson, with parameter /*,-. This is the basic model
used in casualty insurance.

Following the procedure in Sections 5 and 6, we get the same special results
described in the previous section, namely, %, = A,, y,ic = 0, (i^k) and A = y =
£ /u,,-qij. In other words, once/(w) is determined from (6.1), the recursive algorithm
(5.2) is used with the Poisson density (5.3a) to find the approximate g(y).

However, it is easy to show, using generating functions, that the exact form
(1.5) reduces to a compound Poisson law with parameter A, and a severity density
/(w). Thus, the dynamic portfolio approximation is, in fact, exact for independent
Poisson claims. This is true even if pt = 0 for all i!!

Unfortunately, the same line of proof shows also that independent Binomial
or Negative Binomial claim densities (with different parameters for each i) can
only lead to an approximation of the true g(y). However, it follows from Section
6 that the approximating law for ne would be Binomial or Negative Binomial,
respectively.

9. MODELLING WITH FIXED AND RANDOM NUMBER OF COUNTS

To highlight the differences between the model and procedure of this paper and
the static portfolio model in JS, it is instructive to re-examine how the independent
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Poisson casualty claim model of Section 8 would be handled according to the
JS procedure. We use primes to designate the equivalent parameters of this paper,
in terms of the given model parameters /*,-, qh m;, vt.

First of all, since all n, = 1 in the JS model, we would have to estimate or
calculate separately the JV individual total severity densities for each contract
risk, JC,:

7 [ / , ( * ) r .

(This could be done by N applications of the Adelson algorithm, or might be
approximated from real total severity data.)

Then, in terms of the parameters of this paper, we would get:

A ; = 1 ;

(9.2)

Thus, the static portfolio approach of JS would use the Panjer recursive algorithm
with:

(9.3) /'(w)

and a Binomial counting density with moments:

A' = I<?;<A;
(9.4)

The resulting g(y) would then only approximate the true density, which could
be obtained exactly in this case. Thus, one might be tempted to dismiss the JS
procedure in compound claims applications. However, we can imagine situations
in practice where the actuary has used empirical data to estimate the densities,
gt(x) and TT(/I,). Then the question of the best approximation procedure is still
open.

We remind the reader that, if the (n,) are, in fact, deterministic, then the
procedures of the two papers are equivalent; conversely, if the (/?,-) are correlated,
only the procedure described here applies.

10. OTHER VARIATIONS

In JS, an improved approximation for the example considered was obtained by
modifying the TJ-(O) of the Binomial (5.3b) to enable an exact match of T{y},
together with an integral value of M. This modification could be used with the
model of this paper whenever (y/A)< 1, and requires only a trivial change in
the recursive algorithm. But this refinement is not necessary in the other cases,
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as V{y} is matched exactly. Of course, one might try matching other moments
or values of the exact distribution by modifying the initial values of the prototypi-
cal counting density (see the discussion in JS).

It would also be desirable, particularly in investment applications, to extend
the range of permitted (xtJ) to negative values. The difficulty then is that the
relationship (5.2) is no longer recursive, and must be solved by other means,
such as iterative methods. This point is discussed in SUNDT and JEWELL (1981),
where possible procedures for the Binomial and Poisson cases are suggested;
exact recursion with negative values in the Negative Binomial case (y/A)>l
does not seem to be possible.

11. COMPUTATIONAL CONCLUSIONS AND ACKNOWLEDGEMENT

The limited computations carried out thus far indicate that the same general
kinds of approximation error result as in JS; in other words, the underlying
severity density should not be too "lumpy" if there are only a few risk types.
Errors also seem higher in strongly correlated cases, as expected. A future paper
will explore computational results in more detail.

The author would like to thank the referee who found several errors in the
original formulae.

APPENDIX A

DEPENDENT RISKS

In Section 1, it was assumed that the individual risk severities (xy) were statistically
independent of each other and of the counts («,). In this appendix, we consider
the modifications necessary if the risks are exchangeable random variables within
each type i, but still independent of the counts. As is well known, this weak
dependency is equivalent to assuming that, for each type i = 1,2,..., N, there
exists a random parameter, 0h such that the individual risks are independent if
Oj = 0,- is known, and depend in the same way upon #,. Thus, the basic density
(1.1) is replaced by:

(A.1) PT{xy = x\Ot}=f?(x\et), (i = 1 , 2 , . . . , AT), (7 = 1 , 2 , . . . , n()

giving a joint density within type i, given n, = n, similar risks, of:

(A.2) Pr f fl xB = Xij\n] = % ft f ^ S , ) ,

and a common marginal density for any risk of type i:

(A3) Pr {*„ = x}= Wf?(x\5t) =/,°(x).

(Expectations in the above are over the random values of 0,.) Exchangeable
random variables thus have the property that they have the same marginal density
(and self moments), their arguments may be permuted in any fashion in their
joint density (A.2), and they have common cross moments.
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In addition to the dependency between different types introduced by the
correlation between different counts, we will also permit the different parameters
in 6= (0,, 0 2 , . . . , dN) to be statistically dependent, with arbitrary joint d.f. t/(8).
In short, our new model substitutes for (1.5) the general form:

giy)

(A.4) - l l - L
*[f!(y\e2)Y** • • • *[f°N(y\6Nr».

Intuitively, we can think of 0> as representing exogenous factors, such as the
economy, weather, political factors, etc. that influence the random outcome of
all risks of type / jointly. This type of "collective behaviour" model is often used
in casualty insurance, where it is recognized that all risk classification schemes
are imperfect, and that residual correlations still exists among risks of a given
type due to the unexplained inhomogeneity still present within the class i. Further,
there might be common factors between the different classes, which would account
for the dependency between 0, and 6k (i^ k).

Proceeding in a manner similar to Section 3, we define the positive risk densities
fi(x\di), the probabilities p,(0,) and 9,(0,), and the first two moments, m^di) and
i>,(0,), all dependent upon the risk parameter. (3.8), (3.9) still have the same
form, except that they express only the conditional mean total risk, &{Xj|0j, and
conditional covariance of total risks between different classes, <£{:£;; xk\0t; 0k} in
terms of the conditional moments of individual risk, and the (non-8-dependent)
moments (3.6), (3.7) of the counts.

Now all that remains is to uncondition these moments, using the relationships:

(A.5) *tf}=I V*{xt\0,},
1 = 1

(A.6) T{y} = 1 1 [ » « { * , ; xk\8,; Sk} + <*?{ST{x,|§,}; £{xk\&}}].
i=\ k = l

(Innermost operators are over the total risks (x,); outermost operators are over
the risk parameters (0f).)

We define the unconditional versions of g,(0), wi,(0), u,(0) as:

(A.7) * = * { * ( » ) } ; ml = W{mt{Ol)h v, = S

By the theorem of conditional expectation, q, = Pr {x,-, > 0} is the same as in (3.1).
However, as the referee reminds us, m, and v{ are not the same as m, and u, in
(3.3), (3.4) unless the variation due to dt vanishes; hence, the different notation.
In fact, in the current notation, we see that:

(A.8) m, = »{xff|xs > 0} = m< + <€{q,(0,); m,(8,)/q,}.

In addition to correlations, we shall also need higher-order cross-moments, so
we define:

(A.9) Q,(Oi) = ql(el)-ql; Mf(0,) = m,(0,)-m,;
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and use notation like:

QiQk=*{Qi(0,)Qk(0k)}=(e{ql(6i);qk(ek)};

Q,M,Mk =
and so forth.

In place of (3.10), we have:

and, in place of (3.11), we obtain:

= X A#,-(iJ( +/7,(m,)2)

(A.12)

+ m,mfcQ,Qfc +2qimkQiMk
i k

+ 2qiQkMiMu +2miQiQkMk + QtQkM,Mk]
12

The term in braces in (A.ll) gives a correction term to the calculation of A in
(6.2) (with, of course, w, and vt replaced by m, and £>,); similarly, the terms in
braces in (A.ll) and (A.12) give two correction terms to the calculation of y in
(6.3).

In many applications, these corrections simplify because either the probability
of a claim or the moments are independent of 0,. For instance, in life insurance,
w, = fhi and v{ = v{ are the moments of the face value of policies of type i, which
do not usually change with exogenous conditions, while the expiration probability,
qi(6), would probably vary with external effects; this would eliminate all terms
in (A.ll) , (A.12) with Mh Mk, or Vt\ Conversely, in casualty insurance, the
probability of a claim, qh might be relatively fixed several years in a row, but the
severity moments, m,(0,) and u,(0,), might be relatively uncertain in view of
inflation, etc.; in this case, all terms in (A.ll), (A.12) involving Qt and Qk can
be eliminated!

A more complex model can also be developed by permitting the (n j to depend
upon 8; details are left to the reader.
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