REFINEMENT OF A ONE-LAYER TRICLINIC CHLORITE

Key Words-Cation ordering, Chlorite, Crystal structure, X-ray diffraction.

Chlorite minerals commonly exhibit stacking disorder. Among those with ordered arrangements, the one-layer triclinic IIb-4 structure is most abundant. The IIb-4 structure was first determined by film methods (Steinfink, 1958) and subsequently refined from X-ray diffraction data by Phillips *et al.* (1980) and Zheng and Bailey (1989) and from neutron diffraction by Joswig *et al.* (1980).

The X-ray diffraction structure of the triclinic II*b*-4 chlorite presented here is the base for a comparison of the structural details of this polytype with a coexisting monoclinic II*b*-2 chlorite (Joswig *et al.*, 1989).

EXPERIMENTAL

A single crystal of II*b*-4 polytype was chosen from a sample from the Achmatow mine, Ural Mountains, U.S.S.R., which contained disordered and semi-ordered chlorites, several one-layer triclinic, two onelayer monoclinic, one two-layer triclinic, and one twolayer monoclinic polytypes of very poor quality. Microprobe analyses at eight positions in a single grain: average (in wt. %) SiO₂, 29.31; Al₂O₃, 18.50; MgO, 31.32; MnO, 0.13; K₂O, 0.04; Na₂O, 0.11; and TiO₂, Cr₂O₃, PO₄, and CaO, <0.05; and by wet-chemical analysis: FeO, 3.34 and Fe₂O₃, 2.52. The calculated chemical formula on the basis of 28 positive charges is: $(Mg_{4,54}Al_{0.97}Fe^{2+}_{0.28}Fe^{3+}_{0.18}Mn_{0.01})(Si_{2.85}Al_{1.15})O_{10}$ (OH)₈ and indicates that these chlorites are clinochlore (Bayliss, 1975).

The crystal of the triclinic IIb-4 polytype had dimensions of $0.4 \times 0.18 \times 0.05$ mm and was of good quality (i.e., no streaks parallel to c*). A NONIUS CAD4 diffractometer was used for data collection. Unitcell constants were refined from 25 reflections as follows: a = 5.325(2), b = 9.234(5), c = 14.358(6) Å, α = 90.33(4), β = 97.38(3), γ = 90.00(4)°. Altogether, 2459 reflections—to $\sin\theta/\lambda = 0.7027$ —were collected with MoK α radiation monochromatized by pyrolytic graphite. After an empirical psi-scan absorption correction, the data set was averaged to 1966 reflections. For the refinement, 1900 reflections ($F_0 > 5\sigma$) were used, and a weighting scheme $\omega(F_0) = [5\sigma + 0.0001 \cdot$ $F_0^2 + 0.5]^{-1}$ was employed. All atomic coordinates, anisotropic temperature factors of the nonhydrogen atoms, and an isotropic extinction parameter were refined with 143 variables. A final reliability factor R =0.047 and a weighted $R_w = 0.057$ was achieved in space group $C\overline{1}$.

The parameters are given in Table 1 and the bond-lengths in Table 2.

Table 1. Atomic coordinates and thermal parameters ($U_{ij} \times 10^{-2}$) of clinochlore, Achmatow mine, U.S.S.R.

Atom	x	у	z	U ₁₁	U ₂₂	U33	U ₁₂	U ₁₃	U ₂₃
M,(1)	0.00	0.00	0.00	0.48(5)	0.47(5)	0.96(5)	0.05(4)	0.09(4)	0.04(4)
$M_{t}(2)$	0.00127(16)	0.33382(9)	0.00003(6)	0.44(4)	0.52(4)	0.98(4)	-0.02(3)	0.12(3)	0.06(3)
T(1)	0.23211(15)	0.16809(8)	0.19257(6)	0.59(4)	0.51(4)	0.93(4)	-0.02(3)	0.13(3)	0.05(3)
T(2)	0.73204(15)	0.00138(8)	0.19252(5)	0.59(4)	0.55(4)	0.88(4)	0.01(3)	0.14(3)	0.01(3)
O(1)	0.1925(4)	0.1679(2)	0.0770(1)	0.78(9)	0.82(9)	1.14(9)	-0.08(7)	0.20(7)	0.02(7)
O(2)	0.6927(4)	0.0008(2)	0.0769(1)	0.82(10)	0.82(9)	1.13(9)	0.02(7)	0.12(7)	0.05(7)
O(3)	0.2081(5)	0.3348(3)	0.2337(2)	1.92(12)	1.29(10)	1.54(10)	-0.04(9)	0.30(8)	0.01(8)
O(4)	0.5146(4)	0.1033(3)	0.2341(2)	1.01(10)	1.80(11)	1.59(10)	0.38(9)	0.19(9)	-0.07(8)
O(5)	0.0153(4)	0.0664(3)	0.2338(2)	1.24(11)	1.93(11)	1.62(10)	-0.37(9)	0.10(8)	0.12(8)
O(6)	0.6919(4)	0.3338(2)	0.0733(2)	1.06(10)	1.02(10)	1.12(9)	0.12(8)	0.25(7)	0.11(7)
H(1)	0.717(11)	0.340(6)	0.135(4)	2.00					
$M_{\rm b}(1)$	-0.00044(17)	0.16666(9)	0.49994(6)	0.66(4)	0.69(4)	1.44(4)	-0.04(3)	0.18(3)	0.06(3)
$M_{\rm b}(2)$	0.00	0.50	0.50	0.33(5)	0.38(5)	1.01(5)	-0.09(4)	0.12(4)	0.05(4)
O(7)	0.1528(5)	-0.0007(3)	0.4301(2)	1.69(11)	1.66(11)	1.20(10)	-0.30(9)	0.12(8)	0.12(8)
O(8)	0.1374(5)	0.3370(3)	0.4302(2)	1.95(12)	1.84(11)	0.96(10)	-0.14(9)	0.15(8)	0.01(8)
O(9)	0.6382(4)	0.1617(3)	0.4306(2)	1.20(10)	1.82(11)	1.12(10)	0.64(9)	0.08(8)	-0.13(8)
H(2)	0.128(11)	-0.001(7)	0.369(4)	2.00					
H(3)	0.125(12)	0.335(6)	0.375(5)	2.00					
H(4)	0.613(11)	0.151(7)	0.369(5)	2.00					
			·						

Copyright © 1990, The Clay Minerals Society

Tetrahedra			
T(1)-O(1)	1.646(2)	T(2)-O(2)	1.647(2)
-O(3)	1.657(2)	-O(4)	1.659(3)
-O(4)	1.659(2)	-O(5)	1.659(2)
-O(5)	1.657(3)	-O(3)	<u>1.662(3)</u>
Mean:	1.655	Mean:	1.657
Octahedra			
$M_{t}(1)-O(1)$	$2.089(2) \times 2$	$M_t(2)-O(1)$	2.082(2)
-O(2)	$2.088(2) \times 2$		2.085(2)
-O(6)	$2.061(2) \times 2$	-O(2)	2.080(2)
Mean:	2.079		2.084(2)
		-O(6)	2.066(3)
			2.066(2)
		Mean:	2.077
$M_{\rm b}(1)-O(7)$	2.062(3)	$M_{h}(2)-O(8)$	1.994(3) ×2
	2.060(3)	-O(7)	1.987(2) ×2
-O(8)	2.055(3)	-O(9)	1.992(2) ×2
	2.061(3)	Mean:	1.991
-O(9)	2.050(2)		
	<u>2.052(3)</u>		
Mean:	2.057		

Table 2. Interatomic distances (Å) of clinochlore, Achmatow mine, U.S.S.R.

RESULTS AND DISCUSSION

Joswig et al. (1989) reported the neutron diffraction refinement of a coexisting monoclinic IIb-2 polytype. Both the IIb-2 and the IIb-4 polytypes showed a similar ordering pattern in the 2:1 layer and the interlayer sheets; the octahedral cations in the 2:1 layer were disordered ($M_t(1)-O = 2.079 \text{ Å}; M_t(2)-O = 2.077 \text{ Å}),$ whereas Al^{vI} predominantly occupies the $M_b(2)$ site $(M_{h}(1)-O = 2.057 \text{ Å}; M_{h}(2)-O = 1.991 \text{ Å})$ compared with $M_{h}(1)-O = 2.055$ Å and $M_{h}(2)-O = 1.997$ Å of the coexisting monoclinic polytype, where the subscript t and b represent the 2:1 layer and brucite-like sheet, respectively. Thus, as a consequence no significant difference within experimental error was found between the coexisting monoclinic IIb-2 and the triclinic IIb-4 polytypes, in contrast with the finding of Zheng and Bailey (1989) for intergrown monoclinic and triclinic polytypes. The two independent T sites were found to be disordered: T(1)-O = 1.655, T(2)-O= 1.657 Å. This result is identical to the neutron diffraction refinement of a triclinic IIb-4 penninite (Joswig et al., 1980).

The refined hydrogen positions in the triclinic polytype were nearly the same as determined by neutron diffraction of a penninite sample (Joswig *et al.*, 1980). Therefore, the same hydrogen bonding pattern must be present. The high estimated standard deviations, however, prevent a detailed discussion. As noted by Phillips *et al.* (1980), the ordering of a trivalent cation in the M(4) (= $M_b(2)$) site increased the angle α of the lattice constants. Table 3 gives the dependence of the angle α from the degree of ordering in the two independent octahedral positions of the interlayer sheet.

Institut für Kristallographie	Werner Joswig
und Mineralogie	HARTMUT FUESS
Universität Frankfurt/Main	
6000 Frankfurt	
Federal Republic of Germany	

REFERENCES

Bayliss, P. (1975) Nomenclature of the trioctahedral chlorites: Canadian Mineral. 13, 178-180.
Joswig, W., Fuess, H., and Mason, S. A. (1989) Neutron

Table 3. Angle α in triclinic IIb chlorite samples as an indicator of cation ordering in the interlayer sheet.

	α (°)	M _b (1) (Å)	M _b (2) (Å)	Δ (Å)
Penninite (Joswig et al., 1980)	89.95(1)	2.045	2.023	0.022
Clinochlore (this work)	90.33(4)	2.057	1.991	0.066
Chromian clinochlores (Phillips et al., 1980)	90.45(3)	2.069	1.963	0.106
	90.53(6)	2.075	1.960	0.115
Clinochlore (Zheng and Bailey, 1989)	90.48(2)	2.078	1.956	0.122

diffraction study of a one-layer monoclinic chlorite: *Clays* & *Clay Minerals* (in press).

- Joswig, W., Fuess, H., Rothbauer, R., Takéuchi, Y., and Mason, S. A. (1980) A neutron diffraction study of a onelayer triclinic chlorite (penninite): *Amer. Mineral.* 65, 349– 352.
- Phillips, T. L., Loveless, J. K., and Bailey, S. W. (1980) Cr³⁺ coordination in chlorites: A structural study of ten chromian chlorites: *Amer. Mineral.* 65, 112–122.
- Steinfink, H. (1958) The crystal structure of chlorite. II. A triclinic polymorph: Acta Crystallogr. 11, 195–198.
- Zheng, H. and Bailey, S. W. (1989) The structures of intergrown triclinic and monoclinic IIb chlorites from Kenya. *Clays & Clay Minerals* 37, 308-316.

(Received 23 September 1988; accepted 25 July 1989; Ms. 1834)