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Parabolic Subgroups with Abelian Unipotent
Radical as a Testing Site for Invariant Theory
Dmitri I. Panyushev

Abstract. Let L be a simple algebraic group and P a parabolic subgroup with Abelian unipotent radical Pu.
Many familiar varieties (determinantal varieties, their symmetric and skew-symmetric analogues) arise as
closures of P-orbits in Pu. We give a unified invariant-theoretic treatment of various properties of these orbit
closures. We also describe the closures of the conormal bundles of these orbits as the irreducible components
of some commuting variety and show that the polynomial algebra k[Pu] is a free module over the algebra of
covariants.

Introduction

Let L be a simple algebraic group over an algebraically closed field k of characteristic zero
and P a parabolic subgroup with Abelian unipotent radical (= with aura). In this case
Lie L = l admits a Z-grading with only three nonzero parts:

l = l(−1)⊕ l(0)⊕ l(1).

Such a grading is said to be short. Here Lie P = l(0) ⊕ l(1) and exp l(1) is the Abelian
unipotent radical of P.

In this paper we consider several invariant-theoretic problems related to the representa-
tion of G := L(0) on l(1). As is well known, G has finitely many orbits in l(1). Let Oi be one
of them, Oi its closure, and Ei the closure of the conormal bundle of Oi . Since l(−1) is G-
equivariantly identified with the dual space l(1)∗, we have Ei is a subvariety in l(−1)⊕ l(1).
Our principal results are the following:

• We give a unified construction of a G-equivariant resolution of singularities for Oi and
Ei . In all cases, the covering smooth variety is a homogeneous bundle G ∗R V , where R
is a parabolic subgroup of G and V is a completely reducible R-module.
• It is proved that L · l(1) ∩

(
l(1) ⊕ l(−1)

)
=
⋃

i Ei and it is the variety of pairs (x, y)
(x ∈ l(1) , y ∈ l(−1)) such that [x, y] = 0. A relationship between the double coset
space G \ L/P and the G-orbit structure of L · l(1) ∩

(
l(1)⊕ l(−1)

)
is investigated. This

provides some link to results in [12].
• Let U be a maximal unipotent subgroup of G. The (well-known) description of the

algebra of covariants k[l(1)]U will be obtained as a consequence of “a restriction theorem
for U -invariants” [7]. We prove that k[l(1)] is a free k[l(1)]U -module. In our context, it
is equivalent to that the quotient map πl(1) : l(1)→ l(1)//U is equidimensional.
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Parabolic Subgroups 617

• Actually, to derive the previous result, we prove a sufficient condition for the quotient
map πX : X → X//U to be flat, where X is an affine G-variety. As a by-product, we
classify the irreducible representations of simple algebraic groups with this property.
The main part of the list consists of representations arising from parabolic subgroups
with aura.

The proofs are based on properties of the partition of the root system ∆ determined by
the short grading. We work with two specific sequences of orthogonal long roots in ∆(1)
(see notation below). We call them respectively lower and upper canonical strings. The
construction of them is not new, it goes back to Harish Chandra. It seems however that a
systematic utilization of their properties given by Lemma 1.2 constitutes some novelty.

It is quite typical for parabolic subgroups with aura that many problems for them can
be solved in a case-by-case fashion. For instance, this is true for resolution of singularities
of G-orbits in l(1). Indeed, we meet as the orbit closures the determinantal varieties, their
symmetric and skew-symmetric analogues, and quadrics, if l is classical. Associated to
l = E7, one obtains a 27-dimensional representation of E6 and in this case resolutions
of singularities were constructed in [3, Section 2]. Finally, the E6-case is simple enough.
Our approach to this problem gives a unified description of resolutions and then a proof
working for all simple Lie algebras. The same can be said about all other proofs in the
paper. We never use case-by-case arguments and do not distinguish between the “tube” or
“non-tube” case.

Acknowledgements I would like to thank T. Springer for drawing my attention to para-
bolic subgroups with aura. This work was done during my stay at the University of Poitiers
and at the MPI (Bonn). I am grateful to both Institutions for hospitality and support.

Notation and conventions

Lie algebras of algebraic groups are denoted by the corresponding small Gothic letters. l is
a simple Lie algebra equipped with a short grading l = l(−1)⊕ l(0)⊕ l(1); g := l(0).

T is a maximal torus in G and hence in L.
∆ is the root system of (l, t).
∆ = ∆(−1) ∪∆(0) ∪∆(1)—the partition corresponding to the short grading.
We fix a Borel subgroup B in G, containing T. This choice determines a set of positive

roots∆(0)+ in∆(0) and also in∆: ∆+ = ∆(0)+ ∪∆(1); γ is the highest root in∆+.
Π is the set of simple roots in∆+ and Π(0) = Π ∩∆(0).
W (resp. W (0)) is the Weyl group of l (resp. g) with respect to t.
For α ∈ ∆, we let wα denote the corresponding reflection in W , α∨ = 2α/(α, α) the

corresponding coroot, and eα a nonzero element in the root space lα ⊂ l.
For r ∈ N, let [1, r] := {1, 2, . . . , r}.
#M is the cardinality of a finite set M.

1 Canonical Strings of Roots and Their Properties

We begin with recalling some properties of short gradings. Since l is simple, the representa-
tion of g on l(1) is faithful and irreducible. Therefore the centre of g is one-dimensional, P
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618 Dmitri I. Panyushev

is a maximal parabolic subgroup, and #Π(0) = #Π−1. Thus, there is a unique simple root
in ∆(1). Call it β. Then β is the unique lowest weight of the g-module l(1). The longest
element in W (0) takes β to the highest weight of l(1), i.e., to γ. Hence β is long. This also
proves that the β-height of γ, i.e., the coefficient nβ in the sum γ = nββ +

∑
α∈Π(0) nαα, is

equal to 1. Therefore the β-height of any root in∆(1) is equal to 1.
We shall consider two strings of pairwise orthogonal roots in ∆(1). Both strings are

defined inductively. The lower canonical string (l.c.s.) is the cascade up from β1 = β within
∆(1): at each stage, βi+1 is the minimal root in ∆i(1) = {α ∈ ∆(1) | (α, β1) = · · · =
(α, βi) = 0}. The process terminates when∆i(1) is empty. The construction is originally
due to Harish Chandra and is well known nowadays. The following lemma is included for
completeness and convenience of the reader.

Lemma 1.1 The above procedure is well-defined, i.e., at each stage∆i(1) contains a unique
minimal element. All the roots in the string are long.

Proof It goes by induction on i. Consider∆i = {α ∈ ∆ | (α, β1) = · · · = (α, βi) = 0}.
Then ∆i = ∆i(−1) ∪ ∆i(0) ∪ ∆i(1). This partition corresponds to a short grading of a
reductive subalgebra li ⊂ l. It is easy to see that ∆i(1) 6= ∅ if and only if γ ∈ ∆i(1) and
in this case γ is the unique maximal element in∆i(1) (as an element of∆i). Therefore the
unique minimal element in∆i(1), which is W (0)-conjugate to γ, is long.

The upper canonical string (u.c.s.) is the cascade down from γ1 = γ within ∆(1): at
each stage, γi+1 is the maximal element in ∆i(1), where ∆i = {α ∈ ∆ | (α, γ1) = · · · =
(α, γi) = 0}. The process terminates when∆i(1) becomes empty. Obviously, the longest
element in W (0) takes the lower canonical string to the upper canonical one. Hence, the
latter is well-defined and both strings have the same cardinality, say r. From now on, β =
β1, β2, . . . , βr and γ = γ1, . . . , γr are respectively the l.c.s and the u.c.s.

Remarks 1. It is easily seen that the l.c.s. and u.c.s. are sequences of orthogonal long roots
of maximal length. Moreover, one can prove that if a sequence of strongly orthogonal roots
has the maximal length, then all the roots in it are long.

2. By [12, 2.8], W (0) is transitive on the set of sequences, of a fixed length, that consist
of orthogonal long roots in∆(1).

3. The number r is an important invariant of the short grading. For instance, it is the
rank of the symmetric variety L/G or the Krull dimension of the algebra k[l(1)]U or the
number of nonzero G-orbits in l(1).

Given α ∈ ∆, consider two sequences of rational numbers:

(α, β1), . . . , (α, βr),(∗)

(α, γ1), . . . , (α, γr).(∗∗)

Lemma 1.2

(i) Let α ∈ ∆(0). Then both (∗) and (∗∗) contain at most one positive and one negative
term. Moreover, α ∈ ∆(0)+ if and only if the first nonzero term (if any) is negative in
(∗) and positive in (∗∗);
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(ii) Let α ∈ ∆(1). Then (∗) and (∗∗) contain at most two nonzero terms, which are neces-
sarily positive;

(iii) The nonzero terms in (∗) and (∗∗) have the same absolute value 1
2 (γ, γ).

Proof (i) Since the proofs for (∗) and (∗∗) are similar, we consider only the second se-
quence. If (α, γi) > 0 and (α, γ j) > 0 for i 6= j, then γi − α ∈ ∆(1) and (γi − α, γ j) < 0.
But this is impossible, because the sum of two elements in ∆(1) is never a root. For
α ∈ ∆(0)+, the first nonzero term is positive by the very definition of the u.c.s. As each
root is either positive or negative, the converse is also true.

(ii) & (iii) Left to the reader.

Corollary 1.3 For any α ∈ ∆(0)+ and m ∈ [1, r], we have (α, β1 + · · · + βm) ≤ 0 and
(α, γ1 + · · · + γm) ≥ 0. Moreover, γ1 + · · · + γm is also dominant with respect to∆+.

Take an α ∈ ∆(0)+ such that (α, βi) < 0 for some i. By Lemma 1.2, there is at most
one j > i such that (α, β j) > 0. The question arises whether such a j exists and is there a
relationship between i and j? The next result says that compensation in case of simple roots
occurs as soon as possible. This plays a crucial rôle in Section 4, in the proof of flatness of
the quotient map πl(1).

Theorem 1.4

1. Let (α, βi) < 0 for some α ∈ Π(0) and i < r. Then (α, βi+1) > 0.
2. Dually, if (α, γ j) > 0 for some j < r, then (α, γ j+1) < 0.

Proof The second claim follows from the first one by the application of the longest element
in W (0). So, we consider only the l.c.s.

Replacing ∆ by ∆i−1, we may assume that i = 1. If r = 1, then there is nothing to
prove. Suppose r ≥ 2. By definition, (β2, β1) = 0 and β2 is the minimal root in∆(1) with
this property. Since β2 is not simple, there is µ ∈ Π(0) such that β2 − µ ∈ ∆(1). Then
(β2−µ, β1) > 0. Hence (µ, β1) < 0 and µ, β1 are adjacent simple roots. Now, assume that
(α, β1) < 0 and (α, β2) = 0. Since (β2, µ) > 0, we have α 6= µ. Thus, we have detected a
fragment of the Dynkin diagram:

e e e . . .. . .
α β1 µ

(At the moment, nothing is claimed about the length ofα and µ.) In particular, (α, µ) = 0.
Consider the support1 of β2 − µ − β1 ∈ ∆(0)+. Since (β2 − µ − β1, α) > 0, we have
α ∈ supp(β2−µ−β1). The support of any root is connected, hence µ /∈ supp(β2−µ−β1)
and even (µ, β2 − µ − β1) = 0. The latter equality implies (µ∨, β2) = −(µ∨, β1) = 1,
i.e., µ is long and β2 − µ − β1 is also long. Next, β2 − µ − β1 − α ∈ ∆(0)+ ∪ {0} and
(β2 − µ − β1 − α, β∨1 ) = 1 − 2 + 1 = 0. Hence α /∈ supp(β2 − µ − β1 − α). There are
then two possibilities and we shall see that either of them leads to a contradiction.

(a) β2 − µ− β1 = α. Then α is long and 0 = (α∨, β2) = (α∨, α + µ + β1) = 2− 1, a
contradiction.

1If ν =
∑
α∈Π nαα, then supp(ν) = {α | nα 6= 0}.
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(b) β2 − µ− β1 − α 6= 0. The support of this positive root must then contain a simple
root adjacent to α, i.e., (β2 − µ− β1 − α, α) < 0. That is, (α, α) + (β1, α) > 0 and hence
α is long. Therefore α + β1 + µ is a long root in ∆(1) and (α + β1 + µ, β1) = 0. Thus,
α + β1 + µmust be equal to β2, which is again a contradiction.

Let ϕ be the fundamental weight of L corresponding to β1, i.e., (ϕ, β1) = 1
2 (β1, β1) and

(ϕ, α) = 0 for all α ∈ ∆(0).

Proposition 1.5 The following conditions are equivalent:

1. βr+1−i = γi for i = 1, . . . , r;
2. βr = γ1;
3. 2ϕ = β1 + · · · + βr;
4. The element w̃ :=

∏r
i=1 wβi ∈W takes∆(1) to∆(−1).

Proof 1⇒ 2. Obvious.
2 ⇒ 3. We have (α, βr) ≥ 0 for all α ∈ Π(0). It then follows from 1.2 and 1.4

that the number of βi ’s that are not orthogonal to such an α is either 0 or 2. Therefore
(α, β1 + · · · + βr) = 0 and hence β1 + · · · + βr = cϕ. Then clearly c = 2.

3 ⇒ 4. It follows from (3) that w̃.ϕ = −ϕ. Therefore w̃ takes ∆(0) to ∆(0). Hence
w̃.α belongs to either ∆(−1) or ∆(1) for any α ∈ ∆(1). The assumption w̃.α ∈ ∆(1)
clearly implies that w̃.α = α, i.e., α is orthogonal to all the βi ’s. But this contradicts the
maximality of the l.c.s.

4⇒ 2. If βr 6= γ1, then w̃.γ1 = γ1 − βr ∈ ∆(0).
3⇒ 1. We have (α, β1 + · · ·+ βr) = 0 for all α ∈ ∆(0)+. Then Lemma 1.2 implies that

the number of βi ’s that are not orthogonal to α is either 0 or 2. Therefore the first nonzero
value (if any) in the sequence (α, βr), . . . , (α, β1) is positive. Since also (βi , µ) ≥ 0 for all
µ ∈ ∆(1), we have βr = γ1 and each βi is the highest root in {ν ∈ ∆ | (ν, βr) = · · · =
(ν, βi+1) = 0} ∩∆(1). It remains to note that this is just the definition of u.c.s.

Remarks 1. The equivalent conditions of 1.5 characterize the case, where the Hermitian
symmetric space G/P is of tube type (for k = C) and/or the prehomogeneous vector space(
G, l(1)

)
is regular.

2. The list of equivalent conditions can easily be extended. If one sticks to those that
concern only the root system, the condition ϕ = −wo.ϕ should be mentioned (here wo ∈
W is the longest element). It is not hard to deduce it from, say, condition 4. But I do not
know a direct proof for the converse.

2 Resolution of Singularities of the Closures of G-Orbits in l(1)

It follows from a result of Vinberg [15, Section 2] that the number of G-orbits in l(1) is
finite. An explicit classification has been obtained by Muller et al. [5] (see also [12]). Their
description can be stated as follows.

Theorem 2.1 Let µ1, . . . , µr be an arbitrary maximal sequence of orthogonal long roots in
∆(1). Then {

∑i
j=1 eµ j | 1 ≤ i ≤ r} ∪ {0} is a system of representatives of the G-orbits in

l(1). In particular, the total number of orbits is r + 1.
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We let Oi denote the G-orbit which contains the elements of the form
∑i

j=1 eµ j . Because

µ1, . . . , µr are linearly independent, it immediately follows that Oi ⊂ O j if and only if
i ≤ j. (This is also a result in [5].) To construct an equivariant resolution of the Oi ’s, it
will be convenient to deal with the representatives given in terms of the u.c.s. Define the
point xi ∈ Oi by xi =

∑i
j=1 eγ j . Recall that∆(0) is the root system of G and b is the Borel

subalgebra of g that determines∆(0)+.

Proposition 2.2 Define the subspace Vi ⊂ l(1) by Vi := [b, xi]. Then

(i) Vi =
⊕
α∈Γi

l(1)α, where Γi = {α ∈ ∆(1) | (α, γ1 + · · · + γi) = (γ, γ)};
(ii) Vi is a B-stable subspace of l(1).

Proof (i) Let Γ ′i be the subset of ∆(1) consisting of all α such that α = µ + γ j for some
µ ∈ ∆(0)+ ∪ {0} and 1 ≤ j ≤ i. Obviously, Vi ⊂

⊕
α∈Γ ′i

l(1)α. Since γ1, . . . , γi are

linearly independent, [t, xi] = l(1)γ1 ⊕ · · · ⊕ l(1)γi ⊂ Vi . Suppose α /∈ {γ1, . . . , γi}
and α − γ j =: µ ∈ ∆(0)+ for some j ∈ [1, i]. Then (α, γ j) > 0 and (µ, γ j) < 0. By
Lemma 1.2, we have (µ, γs) ≥ 0, if s 6= j. It follows that [eµ, xi] = [eµ, eγ j ] = eα ∈ Vi .
Thus, Vi =

⊕
α∈Γ ′i

l(1)α. It remains to prove that Γ ′i = Γi .

Clearly, γ j ( j ≤ i) belongs to both Γ ′i and Γi . Next, assume that α = µ + γ j with
µ ∈ ∆(0)+. By Lemma 1.2(i), the condition (µ, γ j) > 0 implies that there exists a unique
m < j such that (µ, γm) > 0. Therefore (α, γm) = (µ + γ j , γm) > 0. From Lemma 1.2(ii)
it then follows that (α, γ1 + · · · + γi) = (α, γ j) + (α, γm) = 1

2 (γ, γ) + 1
2 (γ, γ) = (γ, γ).

Thus, Γ ′i ⊂ Γi .
On the other side, suppose α ∈ ∆(1), α /∈ {γ1, . . . , γi}, and (α, γ1 + · · ·+ γi) = (γ, γ).

Since all the γ j ’s are long and (α, γ j) ≥ 0, there exist exactly two indices m,m ′ ∈ [1, i]
such that (α, γm) = (α, γm ′) > 0. Assume that m > m ′ and consider α− γm ∈ ∆(0). We
have (α − γm, γm) < 0, (α − γm, γm ′) > 0, and (α − γm, γs) = 0 for s 6= m,m ′. Then
Lemma 1.2(i) forces that α− γm is positive. Hence α = (α− γm) + γm ∈ Γ ′i .

(ii) One has to prove that ifα ∈ Γi and α+µ ∈ ∆ for some µ ∈ ∆(0)+, thenα+µ ∈ Γi .
Recall from 1.3 that (µ, γ1 + · · · + γi) ≥ 0 for each µ ∈ ∆(0)+.

(a) If (µ, γ1 + · · · + γi) = 0 and α + µ is a root, then (α + µ, γ1 + · · · + γi) = (γ, γ).
That is, α + γ ⊂ Γi as well.

(b) If (µ, γ1 + · · · + γi) > 0, then (α + µ, γ1 + · · · + γi) > (γ, γ). However, it follows
from Lemma 1.2(ii) that (ν, γ1 + · · · + γi) ≤ (γ, γ) for any ν ∈ ∆(1). Hence α + µ is not a
root in this case.

Corollary 2.3 The orbit Bxi is open and dense in Vi.

Proof One has Bxi ⊂ Vi and dim Bxi = dim Vi .

Since Vi is B-stable, its normalizer in G is a parabolic subgroup. Call it Ri . Let Ri = GiNi

be the standard Levi decomposition and∆(Gi) the root system of Gi . Define∆(Ni) to be
the set of weights of T-module Ni .

Proposition 2.4 If µ ∈ ∆(0), then µ ∈ ∆(Gi) if and only if (µ, γ1 + · · · + γi) = 0.
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Proof An equivalent formulation is that µ ∈ ∆(Gi) if and only if either all the values
(µ, γ1), . . . , (µ, γi) are equal to zero or precisely two of them are nonzero (of different
signs).

(a) Let us prove that if µ ∈ ∆(0)+ and there is a single nonzero value among {(µ, γ j) |
j = 1, . . . , i}, then e−µ does not preserve Vi .

Suppose (µ, γm) > 0, while all other products are equal to zero. Then γm − µ ∈ ∆(1)
and (γm − µ, γ j) = 0 for j 6= m. Since (γm − µ)− γ j /∈ ∆ and (γm − µ)− γm is negative,
γm − µ /∈ Γi . Thus, eγm ∈ Vi and [e−µ, eγm ] /∈ Vi .

(b) It remains to prove that if µ ∈ ∆(0)+ and (µ, γ1 + · · · + γi) = 0, then e−µVi ⊂ Vi .
Essentially, it was already shown at the end of the proof of 2.2: If α ∈ Γi and α− µ is a

root, then (α− µ, γ1 + · · · + γi) = (γ, γ) and hence α− µ ∈ Γi .

Corollary 2.5

1. ∆(Ni) = {µ ∈ ∆(0)+ | (µ, γ1 + · · · + γi) > 0};
2. The representation of Ri on Vi is completely reducible.

Proof 1. Compare 1.3 and 2.4.
2. One has to prove that Ni acts trivially on Vi . Invoking the first assertion, we see that

it was done in the proof of Proposition 2.2, part (ii)b.

The following is the principal result of this section.

Theorem 2.6 The natural mapping τi : G ∗Ri Vi → G·Vi = Oi ⊂ l(1) is a G-equivariant
resolution of singularities of Oi .

Proof It is well-known that τi is proper and G·Vi is closed (see e.g. [3]). The equality
G·Vi = Oi follows from 2.3. The only assertion that still has to be proved is that τi is
birational. In our situation, it is equivalent to the fact that Gxi ⊂ Ri .

Recall that xi = eγ1 + · · · + eγi . For each j ∈ [1, i], one may choose e−γ j ∈ l(−1) so
that {eγ j , hγ j , e−γ j} is an sl2-triple, where hγ j = [eγ j , e−γ j ]. Then α(hγ j ) = (α, γ∨j ) for any
α ∈ ∆. Set yi = e−γ1 + · · · + e−γi and hi = hγ1 + · · · + hγi . Since the γ j ’s are pairwise
orthogonal and long, [xi , yi] = hi and {xi, hi, yi} is again an sl2-triple. As is well-known,
to any nilpotent element xi ∈ l one associates the parabolic subgroup P(xi) ⊂ L such that
Lxi ⊂ P(xi). Although P(xi) depends only on xi , the most simple description of it uses
an sl2-triple containing xi (see [14, III, Section 4]): The eigenvalues of ad hi are integral
([hi , xi] = 2xi) and Lie P(xi) is the sum of the eigenspaces corresponding to nonnegative
eigenvalues. In our case, it easily follows from the definition of hi that Lie P(xi) =

⊕
µ lµ,

where the sum is taken over µ ∈ ∆ such that (µ, γ1 + · · · + γi) ≥ 0. Comparing with the
description of Ri , we see that P(xi) ∩ G = Ri . Thus, Gxi = Lxi ∩ G ⊂ P(xi) ∩ G = Ri and
the mapping τi is birational.

Since the representation of Ri on Vi is completely reducible, it follows from [3, Thm. 0]
that Oi is normal and has rational singularities. That is, our construction of a resolution of
singularities yields another proof of this well-known result.

In Proposition 2.2, the tangent space of Bxi at xi was described. For future use, we
compute now the tangent space of Gxi at xi .
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Proposition 2.7 Set Γ̃i = {α ∈ ∆(1) | (α, γ1 + · · · + γi) > 0}. Then

[g, xi] =
⊕
α∈Γ̃i

l(1)α and this space is B-stable.

Proof The next observations are obvious consequences of Lemma 1.2:

• if µ ∈ ∆(0)+, then the function µ 7→ (µ, γ1 + · · · + γi) may take only two values 0,
1
2 (γ, γ).

• if α ∈ ∆(1), then the function α 7→ (α, γ1 + · · · + γi) may take only values 0, 1
2 (γ, γ),

(γ, γ).

Whence Γ̃i is the subset of ∆(1) corresponding to the values 1
2 (γ, γ) and (γ, γ). Since xi

belongs to the sum of weight spaces corresponding to the value (γ, γ), we see that [g, xi] ⊂⊕
α∈Γ̃i

l(1)α. On the other side, [g, xi] ⊃ [b, xi] =
⊕
α∈Γi

l(1)α. Next, let ν ∈ ∆(1)

and (ν, γ1 + · · · + γi) =
1
2 (γ, γ). Take the unique m ∈ [1, i] such that (ν, γm) 6= 0 (i.e.,

(ν, γm) > 0). Then µ := ν − γm ∈ ∆(0) and [eµ, xi] = [eµ, eγm ] = eν ∈ [g, xi].
The second assertion easily follows from the definition of Γ̃i .

For a subspace M ⊂ l(1), we let M⊥ denote the orthogonal complement to M in l(−1).

Corollary 2.8 [g, xi]
⊥ =

⊕
α∈∆i (−1)

l(−1)α and this space is B-stable.

Proof Recall from Section 1 that∆i = {α ∈ ∆ | (α, γ1) = · · · = (α, γi) = 0}. The above
discussion about functions with at most three values implies that [g, xi]⊥ =

⊕
α l(−1)α,

where α ranges over all roots in∆(−1) such that (α, γ1 + · · ·+γi) = 0. But for α ∈ ∆(−1)
the last equality implies that (α, γ1) = · · · = (α, γi) = 0.

3 The Commuting Variety and a Double Coset Space

Define η : l(1)⊕l(−1)→ l(0) = g to be the restriction of the Lie bracket in l to l(1)⊕l(−1),
i.e., η(x + y) = [x, y] for x ∈ l(1), y ∈ l(−1). In this section we study properties of the
generalized commuting variety E := η−1(0).

It is well-known (and easy to prove) that l(−1)x, the centralizer of x ∈ l(1) in l(−1),
is nothing but [g, x]⊥. Therefore E is the union of the conormal bundles to the G-orbits
in l(1). Since any conormal bundle is of dimension dim l(1) and there are finitely many
G-orbits in l(1), E is a variety of pure dimension dim l(1) and there is a bijection between
the G-orbits in l(1) and the irreducible components of E: each irreducible component is
the closure of the conormal bundle of a unique G-orbit. By symmetry, the same is true for
G-orbits in l(−1). Consequently, there is a natural bijection (duality) between the G-orbits
in l(1) and l(−1). This is a particular case of Pyasetskii’s theorem [11]. Given an orbit
O ⊂ l(1), the dual orbit O∨ ⊂ l(−1) can directly be described as follows. For an arbitrary
x ∈ O, take [g, x]⊥ and then G·[g, x]⊥. The last set is irreducible and O∨ is the dense orbit
in it.

We use for G-orbits in l(−1) the notation similar to that for l(1). Namely, define O∗i to
be the orbit in l(−1) containing representatives of the form eµ1 + · · ·+ eµi , where µ1, . . . , µi

are orthogonal long roots in∆(−1).
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Lemma 3.1 (Oi)∨ = O∗r−i .

Proof Take xi ∈ Oi . By Corollary 2.8, the set of weights of [g, xi]⊥ is ∆i(−1). Since it
contains a sequence of orthogonal long roots of length r− i (e.g.−γi+1, . . . ,−γr), O∗r−i has
a nonempty intersection with [g, xi]⊥. Hence, denoting (Oi)∨ = O∗d(i), we have d(i) ≥ r−i.
Because this holds for all i, one must have d(i) = r − i.

Corollary 3.2 Let µ1, . . . , µi be an arbitrary sequence of orthogonal long roots in∆(1). Let
Ψ = {α ∈ ∆(1) | (α, µ1) = · · · = (α, µi) = 0} and l(1)Ψ =

⊕
α∈Ψ l(1)α. Then Or−i is

the dense orbit in G · l(1)Ψ.

Proof The argument for a part of the u.c.s. is given in the lemma (up to switching between
l(−1) and l(1)). As is easily seen, it applies to arbitrary sequences of orthogonal long roots
as well.

Define Ei to be the irreducible component of E corresponding to Oi . For instance,
E0 = l(−1) and Er = l(1). The previous lemma says the orbit in l(−1) that corresponds to
Ei is O∗r−i .

From the point of view of the G-action, E is the union of conormal bundles. The fol-
lowing is a kind of “global” characterization:

L·l(1) ∩
(

l(1)⊕ l(−1)
)
= E.(3.3)

Actually, we shall prove a more precise statement whose consequence is the above formula.
To this end, recall some results from [12] and [9]. At the very beginning, we have intro-
duced the parabolic subgroup P with aura whose standard Levi factor is G. Since l(1) is
P-stable and l(1)⊕ l(−1) is G-stable, it suffices to work with a system of representatives of
G \ L/P while studying L·l(1) ∩

(
l(1) ⊕ l(−1)

)
. The double coset space G \ L/P is finite

and a system of representatives is described in [12, Sect. 3]:
For each i let u−βi be a nontrivial element in the one-parameter unipotent subgroup

U−βi corresponding to−βi , and let wβi be the reflection in W corresponding to βi , realized

as an element of NL(T). For 0 ≤ i ≤ j ≤ r, let zi j =
∏ j

t=i+1 u−βt ·
∏i

s=1 wβs . Then
L =

⊔
i, j Gzi jP. This description is valid with any maximal orthogonal sequence of long

roots in ∆(1). For future convenience, we have stated it with the l.c.s. β1, . . . , βr . Let
Ki j = Gzi j P ⊂ L. (Our indexing and notation differ from those of [12].)

We have the irreducible decomposition E =
⋃r

i=1 Ei . Take any i, j ∈ [1, r] (i ≤ j).
By [9, 5.8], Ei j := Ei ∩ E j is irreducible and Ei j = E ∩ (Oi × O∗r− j). Moreover, if C is an

irreducible G-stable subvariety of E such that the projection of C to l(1) is Oi and to l(−1)
is O∗r− j , then C = Ei j .

Theorem 3.4 For 0 ≤ i ≤ j ≤ r, one has Ki j ·l(1) ∩
(

l(1)⊕ l(−1)
)
= Er− j,r−i .

Proof Since Ki j ·l(1)∩
(

l(1)⊕ l(−1)
)
= Gzi j ·l(1)∩

(
l(1)⊕ l(−1)

)
= G·{zi j ·l(1)∩

(
l(1)⊕

l(−1)
)
}, we need to realize what is zi j ·l(1). To simplify notation, let ui j =

∏ j
t=i+1 u−βt .
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Then zi j = ui jzii . To understand the action of zi j , let us introduce the partition of ∆(1)
corresponding to the three values of the function α 7→ (α, β1 + · · · + βi) (cf. proof of 2.7):

∆(1) =
2⊔

m=0

∆(1)i,m,

where ∆(1)i,m :=
{
α ∈ ∆(1)

∣∣∣ (α, β1 + · · · + βi) =
m

2
(β, β)

}
.

Consider the respective decomposition l(1) = Vi,0 ⊕ Vi,1 ⊕ Vi,2. Then zii acts trivially
on Vi,0, zii ·Vi,1 ⊂ l(0), and zii ·Vi,2 ⊂ l(−1). For x = x0 + x1 + x2 ∈ l(1), we have
zi j ·x = ui j(x0 + zii ·x1 + zii ·x2). The unipotent transformation ui j takes x0 to x0 + y + y ′ for
some y ∈ l(0) and y ′ ∈ l(−1), zii ·x1 to zii ·x1 + v for some v ∈ l(−1), and zii ·x2 to itself.
It is easily seen that the summands lying in l(0), zii ·x1 and y, are supported by disjoint sets
of roots in∆(0); see also Figure 1. Hence the condition zi j ·x ∈ l(1)⊕ l(−1) forces x1 = 0
and y = 0. The last equality clearly implies that y ′ = 0. Then zi j ·x = x0 + zii ·x2 and the
summands commute. This already proves the inclusion “⊂” in 3.3. To prove the theorem
in full strength, one has to look more carefully at those x0 ∈ Vi,0 that are stabilized by ui j .
A straightforward calculation shows that ui j ·x0 = x0 if and only if x0 is supported by those
roots in∆(1)i,0 that are orthogonal to βi+1, . . . , β j , i.e., x0 ∈ V j,0 ⊂ Vi,0.

Thus, the previous argument proves that zi j ·l(1)∩
(

l(1)⊕ l(−1)
)

is the direct sum of the
spaces V j,0 ⊂ l(1) and V ∗i,2 := zii ·Vi,2 ⊂ l(−1). I claim that both these spaces are B-stable,

G·V j,0 = Or− j , and G·V ∗i,2 = O∗i .
(a) For V ∗i,2: Note that the set of weights of V ∗i,2 is just −∆(1)i,2 = {α ∈ ∆(−1) |

(α,−β1 − · · · − βi) = (β, β)}. Therefore for V ∗i,2 holds the analogue of Proposition 2.2:
if one takes the point yi = e−β1 + · · · + e−βi ∈ O∗i , then V ∗i,2 = [b, yi] and so on. This is
because−β1, . . . ,−βr is the u.c.s. with respect to l(−1).

(b) For V j,0: We again perform an argument that uses “dual” (or “l(−1)”) versions of
some previous results. Take y j = e−β1 + · · · + e−β j ∈ O∗j . Then [g, y j]⊥ = V j,0 and this
space is B-stable (analogue of 2.8). Therefore the dense orbit in G·V j,0 is (O∗j )∨, i.e., Or− j

(analogue of 3.1).
The various spaces involved in the proof are depicted in Figure 1. It is the real picture

for l = slN and g = slN−r × slr × k with N − r > r. The shaded strips have width j − i.
These represent the space that consists of the l(0)-components of vectors ui j ·x0 (x0 ∈ Vi,0).
Finally, the LHS in 3.4 is G·(V j,0⊕V ∗i,2). It follows from the above claims that it is a G-stable
closed subset in E and its projection to l(1) (resp. l(−1)) is the closure of Or− j (resp. O∗i ).
By a result in [9, 5.8, 5.10], which is stated just before Theorem 3.4, this means the variety
in question is Er− j,r−i .

Remarks 1. As a by-product of the proof, we have the following: if x ∈ l(1) and g·x ∈
l(1) ⊕ l(−1), then there exists a decomposition x = x ′ + x ′ ′ (x ′, x ′′ ∈ l(1)) such that
g·x ′ ∈ l(1) and g·x ′ ′ ∈ l(−1).

2. One may think of Ki j ’s as the G × P-orbits in L. By [12, 3.7], Ki j =
⋃

i≤s≤t≤ jKst .

On the other side, it was proved in [9, 5.10] that each G-orbit in E is dense in some Ei j and,

denoting such orbit Oi j , one has Oi j =
⋃

s≤i≤ j≤t Ost . Theorem 3.4 establishes thus a geo-
metric order-reversing bijection between these two posets. The respective Hasse diagrams
in case r = 5 are depicted in Figure 3.
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Taking into account the previous convention on indexing the irreducible components
of E, one sees that Oir = Oi , the orbit in l(1), and O0,r−i = O∗i , the orbit in l(−1).

The set {Oi j} has an interesting connection with some nilpotent L-orbits in l. To de-
scribe it, let us look at the short grading from another point of view. The decomposition
l = l0 ⊕ l1, where l0 = l(0) and l1 = l(1) ⊕ l(−1), is a Z2-grading. The principal results
on “orbits and invariants” associated with Z2-gradings are due to Kostant and Rallis [4].
Some complementary results, which are also valid for more general gradings, are due to
E. B. Vinberg [15]. Later, we need the following properties:

• if z ∈ l1, then dim L·z = 2 dim G·z, see [4, Prop. 5].
• if Õ ⊂ l is any L-orbit, then each irreducible component of Õ∩ l1 is a G-orbit. The same

is true for Õ ∩ l(1). (See [15, Lemma in Section 2]).

Let us start with a G-orbit Oi ⊂ l(1). It generates the L-orbit Õi = L·Oi . The question
is what is Õi ∩ l1? An immediate consequence of the aforementioned properties is that Oi
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is an irreducible component of this intersection and that dim Õi = 2 dim Oi . It is also clear
that O∗i is another component of the intersection. The complete answer is given by the
following

Theorem 3.5 Õi ∩ l1 =

i⊔
s=0

Os,r−i+s.

Proof By 3.3, the LHS lies in E. Being G-stable, it is the union of some Ost . To realize
which Ost do occur, it suffices to find out what is the dense L-orbit in L·Est . Keep the
notation of the proof of 3.4. It was shown therein that Er− j,r−i = G·(V j,0 ⊕ V ∗i,2) for
r − j ≤ r − i. Since zii ∈ L takes V ∗i,2 to Vi,2 and V j,0 to itself, we have L·Er− j,r−i =
L·(V j,0⊕Vi,2). Invoking the definition of the sets∆(1)i,m and Lemma 1.2(ii), one sees that
the set of weights of V j,0 ⊕ Vi,2, say Γi, j , is contained in the set of weights in ∆(1) that
are orthogonal to βi+1, . . . , β j . On the other side, Γi, j contains an orthogonal sequence of
length r − j + i. It then follows from 2.1 and 3.2 that Or− j+i ∩ (V j,0 ⊕ Vi,2) is dense in
V j,0 ⊕ Vi,2 and therefore Õr− j+i is dense in L·Er− j,r−i . Thus, L·Or− j,r−i = Õr−(r−i)+(r− j),
which is exactly what is needed.

Corollary 3.6 Dimension of Ei j depends only on j − i.

Proof Indeed, dim Ei j = dim Oi j =
1
2 dim Õr− j+i .

Recall that the Ei j ’s were defined as the intersection of two irreducible components of
E: Ei j = Ei ∩ E j . We have thus obtained a surprising result that dimension of the inter-
section depends only on “distance” between irreducible components. Looking at the Hasse
diagram of the poset E, we see that the components of the intersection Õi ∩ l(1) occupy the
i-th row, and the Corollary says that dimension is constant along the rows.

Our last goal in this section is to construct a G-equivariant resolution of Ei j . Since
Ei j ⊂ l(1) ⊕ l(−1) projects onto Oi and O∗r− j respectively, it is natural to suggest that
a resolution we are searching for has something to do with known resolutions of both
orbit closures. And this is really so. A resolution of Oi is constructed in Section 2 and a
resolution of O∗r− j can be described in the “dual” fashion. We reproduce the essential steps
just in order to fix the related notation. Let yr− j = e−β1 + · · · + e−βr− j ∈ O∗r− j . The string
−β1, . . . ,−βr plays the same rôle for l(−1) as the u.c.s. for l(1). Therefore the following
analogues of Proposition 2.2 and Theorem 2.6 hold: V ∗r− j := [b, yr− j] is B-stable and the

mapping τ∗j : G ∗R∗r− j
V ∗r− j → O∗r− j , where R∗r− j is the normalizer in G of V ∗r− j , is a G-

equivariant resolution of singularities. Set Ri j := Ri ∩ R∗r− j . It is a standard parabolic
subgroup of G and Vi ⊕V ∗r− j is a Ri j-module. Before stating the next theorem, it is worth
to observe a relationship between the spaces Vi , V ∗r− j that are needed for resolutions of
singularities and the spaces Vi,m depicted in Figure 1. The proofs are easy and left to the
reader.

• Vr− j ⊂ V j,0 and these are equal if and only if the equivalent conditions of 1.5 hold.
• V ∗i,2 = V ∗i .
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Theorem 3.7 Let 1 ≤ i ≤ j ≤ r. Then

(i) The natural mapping τi j : G ∗Ri j (Vi ⊕ V ∗r− j) → Ei j is a G-equivariant resolution of
singularities;

(ii) the Ri j -module Vi ⊕V ∗r− j is completely reducible.

Proof (i) zr− j,r− j =
∏r− j

s=1 wβs takes V ∗r− j into l(1) and keeps Vi intact. (The inequality
i ≤ j is needed at this point.) Therefore Vi ⊕ V ∗r− j ⊂ E. Hence the image of τi j is a
G-stable irreducible subvariety of E. By construction, its projection to l(1) (resp. l(−1)) is
Oi (resp. O∗r− j). Thus, the image has to be equal to Ei j . Since Gxi ⊂ Ri and Gyr− j ⊂ R∗r− j ,
we have Gxi +yr− j = Gxi ∩ Gyr− j ⊂ Ri j . This inclusion guarantees us birationality of τi j , for
the G-orbit of xi + yr− j is dense in Ei j .

(ii) The unipotent radical of Ri j is the product of the unipotent radicals of Ri and
R∗r− j . By symmetry, it suffices to show that Ni , the unipotent radical of Ri , acts trivially on
Vi⊕V ∗r− j . By 2.5, Ni acts trivially on Vi . A similar argument applies to V ∗r− j : all the roots µ
corresponding to V ∗r− j satisfy the condition (µ, γ1 +· · ·+γi) = 0, while (ν, γ1 +· · ·+γi) > 0
for each ν ∈ ∆(Ni). Since (α, γ1 + · · · + γi) ≤ 0 for each α ∈ ∆(−1), we have ν + µ is
never a root.

Again, as a consequence of Kempf ’s theorem and complete reducibility, we get the as-
sertion that the varieties Ei j are normal and have rational singularities. Another proof is
found in [9].

4 The Algebra of Covariants on l(1) and Beyond

Let U be the unipotent radical of B. It is well known that the algebra of covariants k[l(1)]U

is polynomial. For instance, it already follows from the fact that l(1) is a spherical G-module
(for, the B-orbit of eβ1 + · · · + eβr is dense in l(1)). There are plenty of papers, where this
algebra is explicitly described, see e.g. [13], [2], [5]. Nevertheless, I believe Theorem 4.1
yet deserves to be stated and proved. In this section, the description of k[l(1)]U will be
obtained as a consequence of a restriction theorem (see [6, Section 2] for representations
and a general version in [7, Section 1]).

Denote by F the subspace of l(1) with basis eβ1 , . . . , eβr . Let f1, . . . , fr be the coordinates
in this basis.

Theorem 4.1 The restriction homomorphism k[l(1)]→ k[F] maps k[l(1)]U isomorphically
and T-equivariantly onto the subalgebra generated by f1, f1 f2, . . . , f1 · · · · · fr.

We postpone a bit the proof and show that the theorem immediately implies the basic
properties of k[l(1)]U .

Corollary 4.2

1. k[l(1)]U is polynomial and the weights of T-homogeneous free generators are λ1, . . . , λr,
where λi = −(β1 + · · · + βi).

2. The G-module k[l(1)] is multiplicity free and if λ =
∑r

i=1 aiλi (ai ∈ Z≥0), then the simple
G-module with highest weight λ occurs in the space of polynomials of degree

∑r
i=1 iai .
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Proof of 4.1 Roughly speaking, the restriction theorem for U -invariants applies as follows:
1. One has to find generic stabilizer for the G-module l(1) ⊕ l(−1). Of course, such a

stabilizer is determined up to a conjugation in G. We need the so-called “canonical” generic
stabilizer that can be determined via an explicit procedure. Let S be the canonical stabilizer.
It is a reductive subgroup of G, which is normalized by T.

2. Form the connected reductive group ZG(S)0. Then Ũ := U ∩ ZG(S)0 is a maximal
unipotent subgroup in it.

3. The restriction theorem says that the restriction homomorphism k[l(1)] → k[l(1)S]
maps k[l(1)]U isomorphically and T-equivariantly onto the algebra

(
k[l(1)S]Ũ

)
T

, where
T is the monoid consisting of those dominant weights of G that vanish on T ∩ S and the
subscript “T” means that one takes only weight spaces whose weights lie in T.

An inductive procedure for finding S is described in [6, Section 1]. In our case, it
amounts essentially to constructing the l.c.s. Indeed, one starts with the (unique) low-
est weight vector eβ1 ∈ l(1). Let Ĝ1 be the standard Levi factor of the parabolic subgroup
stabilizing the line 〈eβ1〉 and let l(1)1 be the Ĝ1-stable complement to [g, eβ1 ]. Then∆(Ĝ1)
consists of all roots in ∆(0) that are orthogonal to β1. A specific feature of the “Abelian”
situation is that the set of weights of l(1)1 coincide with∆1(1) (see notation in 1.1). There-
fore on the second step one has the unique lowest weight vector eβ2 and so on . . . . The
procedure terminates when one arrives at the Levi subgroup Ĝr ⊂ G and no further lowest
weight vectors are available. The root system of Ĝr is∆r(0) in the notation of 1.1. Then

S = {g ∈ Ĝr | βi(g) = 1, i = 1, . . . , r}(4.3)

Here the βi ’s are being considered as characters of Ĝr.

Lemma 4.4

(i) l(1)S = F;
(ii) ZG(S)0 is the central torus in Ĝr.

Proof (i) Since the roots of Ĝr are orthogonal to β1, . . . , βr, we have l(1)S ⊃ F. On the
other side, l(1)S∩T =

⊕
α∈M l(1)α, where M = ∆(1) ∩ (Zβ1 + · · · + Zβr) = {β1, . . . , βr}.

(ii) It suffices to prove that NG(S)0 = Ĝr . Clearly, NG(S)0 ⊃ Ĝr . Conversely, it is easy to
see that the root system of NG(S)0 is∆r(0) = ∆(Ĝr).

It follows that k[l(1)]U is isomorphic to k[F]T and it remains to realize what is T. De-
note by X(T)+ the monoid of dominant weights of G (relative to U ). It follows from
Equation 4.3 and part 3 in the exposition of the restriction theorem that T = X(T)+ ∩
(Zβ1 + · · · + Zβr).

Lemma 4.5

X(T)+ ∩ (Zβ1 + · · · + Zβr)

=

{
Z≥0(−β1) + · · · + Z≥0(−β1 − · · · − βr), if βr 6= γ,

Z≥0(−β1) + · · · + Z≥0(−β1 − · · · − βr−1) + Z(−β1 − · · · − βr), if βr = γ.
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Proof An equivalent formulation is: Let li ∈ Z. Then
∑r

i=1 liβi ∈ X(T)+ if and only if
l1 ≤ l2 ≤ · · · ≤ lr ≤ 0 in the first case or l1 ≤ l2 ≤ · · · ≤ lr in the second case.

(a) It follows from Corollary 1.3 that λi = −β1 − · · · − βi lies in T. If βr = γ, then
λr = −2ϕ is orthogonal to∆(0) (see Proposition 1.5) and in this case the coefficient of λr

can be arbitrary. This proves the inclusion “⊃” in both cases.
(b) Suppose λ =

∑
i liβi ∈ X(T)+. By the first part, λ + aλr ∈ X(T)+ for any a ≥ 0.

Taking a � 0, one may assume that all li − a < 0. Let σ be a permutation such that
lσ(1) ≤ lσ(2) · · · ≤ lσ(r). By [12, 2.8], any permutation of the sequence β1, . . . , βr can be
achieved by some element in W (0). Take w ∈W (0) that realizes the permutation σ−1, i.e.,
w.βi = βσ−1(i). Then w.(λ + aλr) = w.λ + aλr =

∑r
i=1(lσ(i) − a)βi . It then follows from

the first part of proof that w.(λ + aλr) ∈ X(T)+. Therefore w.(λ + aλr) = λ + aλr and
hence w.λ = λ. That is, l1 ≤ · · · ≤ lr . This is enough for the second case. In the first case,
i.e., if βr 6= γ, we see that there exists α ∈ ∆(0)+ such that (α, β1) = · · · = (α, βr−1) and
(α, βr) < 0 (by the very definition of the l.c.s.). Then the condition (α, λ) ≥ 0 implies
lr ≤ 0.

Anyway, the dichotomy in the Lemma 4.5 does not affect the description of k[F]T , for
the condition lr ≤ 0 is automatically satisfied for the weights of all monomials in k[F].
Since the function fi has weight −βi , it follows that k[F]T = k[ f1, f1 f2, . . . , f1 · · · · · fr].
Thus, Theorem 4.1 is proved.

Theorem 4.6 k[l(1)] is a free k[l(1)]U -module.

Proof Obviously, the weights λi (i = 1, . . . , r) are linearly independent. Another property
satisfied by them is that if (α, λ j) > 0 for some α ∈ Π(0) and j ∈ [1, r], then (α, λm) = 0
for all m 6= j. Indeed, this follows from Lemma 1.2 and Theorem 1.4. For, (α, λ j) > 0
implies (α, β j) < 0. If j < r, then (α, β j+1) > 0 and these two inner products are the only
nonzero ones. If j = r, then one has the unique nonzero product and again everything is
clear.

An equivalent formulation of the second property is that each simple reflection wα ∈
W (0) affects at most one weight λ j : #{ j | wα.λ j 6= λ j} ≤ 1 for each α ∈ Π(0). It then
follows from Theorem 5.5 and these two properties of the λi ’s that k[l(1)] is a flat k[l(1)]U -
module. As is well known, the word “flat” can be replaced by “free” in the graded situation.

5 On Equidimensional Quotient Mappings

This section is completely independent of the previous parts. We will work with G without
an overgroup L and therefore the notation will partially be changed (simplified). Here G
is a connected reductive algebraic group and U ⊂ G is a maximal unipotent subgroup;
B = NG(U ) = TU . For an affine G-variety X, our aim is to prove a sufficient condition for
k[X] to be a flat k[X]U -module.

First, consider a special class of G-varieties. For any dominant weight λ, let Vλ de-
note the corresponding irreducible G-module and vλ ∈ Vλ a highest weight vector. Let
λ1, . . . , λr be linearly independent dominant weights. Set V =: 〈vλ1〉 ⊕ · · · ⊕ 〈vλr〉 ⊂
Vλ1 ⊕ · · · ⊕ Vλr . Then V is B-stable and its normalizer in G is a standard parabolic
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subgroup, say P. Let C := G·V ⊂ Vλ1 ⊕ · · · ⊕ Vλr . These and even more general
varieties—when λ1, . . . , λr are arbitrary—have been studied in [16]. We shall use the
result that in our case the G-orbits in C corresponds to the subsets of [1, r]. Namely,
{vJ :=

∑
j∈ J vλ j | J ⊂ [1, r]} is a set of representatives of the G-orbits. Since λ1, . . . , λr

are linearly independent, the algebra k[C]U is polynomial, of Krull dimension r. It will be
more convenient for us to work with k[C]U− , where U− is opposite to U . Denoting by
xi the coordinate in vλi for a (any) weight basis of Vλi , we have k[C]U− ' k[x1, . . . , xr].
In other words, the restriction homomorphism k[C] → k[V ] induces an isomorphism
k[C]U− ' k[V ].

Let W denote the Weyl group of G, w1, . . . ,wn the simple reflections in W , and l : W →
Z≥0 the usual length function.

Theorem 5.1 The following conditions are equivalent:

(i) πC : C → C//U− is equidimensional;
(ii) #{ j | wi.λ j 6= λ j} ≤ 1 for each i ∈ [1, n].

We need a description of the U−-orbits in G/P. It is similar with that of U -orbits, but
the presentation requires some alterations. Let I ⊂ [1, n] be the set corresponding to the
simple roots of the standard Levi factor of P. Set WI = 〈wi | i ∈ I〉 and W ′′

I = {w ∈W |
l(wwi) < l(w) ∀i ∈ I}. It is easy to see that W ′ ′

I is the set of representatives of maximal
length for W/WI . For w ∈W ′′

I , let O(w) = U−wP ⊂ G/P. Let∆ be the root system of G
and∆I the root system of the Levi factor of P. The following lemma is an easy consequence
of the well-known properties of the set of representatives of minimal length.

Lemma 5.2

1. If wo
I is the longest element in WI and w ∈W ′′

I , then wwo
I is the representative of minimal

length and l(wwo
I ) = l(w)− l(wo

I ) = l(w)− #∆+
I .

2. w ∈W ′′
I if and only if w(∆+

I ) ⊂ ∆−;
3. the natural map W ′′

I ×WI →W , (w ′′,w) 7→ w ′ ′w is bijective;
4. G/P =

⊔
w∈W ′ ′

I
O(w);

5. dim O(w) = dimU − l(w).

Proof of 5.1 Since C is a cone, equidimensionality of π = πC is equivalent to the fact that
dimπ−1π(0) = dimC − r = dim G/P. Let N = π−1π(0). Our main tool for estimating
dim N is the following diagram:

G ∗P V
τ
−→ Cy φ y π

G/P C//U−

whereφ(g∗v) := gP and τ (g∗v) := g·v. It is easily seen that τ is a resolution of singularities
of C . First, deduce a useful formula related to the diagram. It is assumed that each w ∈W

https://doi.org/10.4153/CJM-1999-028-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1999-028-9


632 Dmitri I. Panyushev

is realized as an element of NG(T). Let ḡ ∈ O(w) ⊂ G/P, where w ∈W ′′
I . That is, ḡ = ũwP

for some ũ ∈ U−. Then

φ−1(ḡ) ∩ τ−1(N) = {(ũw ∗ v) ∈ G ∗P V | x j(ũw·v) = 0 ∀ j}

= {(ũw ∗ v) ∈ G ∗P V | (w−1·x j)(v) = 0 ∀ j}.

It follows that φ−1(ḡ)∩τ−1(N) is isomorphic to a subspace in V of dimension #{ j | w.λ j 6=
λ j}. Therefore

dim{φ−1
(
O(w)

)
∩ τ−1(N)} = dim O(w) + #{ j | w.λ j 6= λ j}.(5.3)

(ii)⇒ (i). Since both the number of G-orbits in C and of U−-orbits in G/P is finite, it
suffices to prove that

dim
{
τ
(
φ−1
(
O(w)

))
∩N ∩ G·vJ

}
≤ dim G/P

for any w ∈W ′′
I and J ⊂ [1, r]. Actually, it will be proven that

dim{φ−1
(
O(w)

)
∩ τ−1(N ∩ G·vJ)} ≤ dim G/P.(5.4)

These two inequalities are equivalent for the dense G-orbit, i.e., for J = [1, r], because τ is
bijective over it, while for all other G-orbits the second inequality is stronger.

Suppose g · vJ ∈ N for g = ũwp (ũ ∈ U−, w ∈W ′′
I , and p ∈ P), that is, x j(wp · vJ) = 0

for all j. This implies w.λ j 6= λ j for j ∈ J. However, it may happen that also w.λi 6= λi for
some i /∈ J. I claim that l(w) ≥ #{ j | w.λ j 6= λ j}+ #∆+

I . Indeed, l(w) = l(wwo
I ) + #∆+

I (see
Lemma 5.2(1)) and one still has wwo

I .λ j 6= λ j for the same set of indices j, since wo
I .λi = λi

for all i ∈ [1, r]. Now, condition (ii) implies l(wwo
I ) ≥ #{ j | w.λ j 6= λ j}. In other

words, if g·vJ ∈ N, then ḡ ∈ G/P belongs to a U−-orbit O(w) which is of codimension
≥ #{ j | w.λ j 6= λ j} in G/P. Thus, Equation 5.4 follows from Equation 5.3.

(i)⇒ (ii). Suppose (ii) is not satisfied. Then there exists a subset K ⊂ [1, n]\I such that
#K < r and w.λ j 6= λ j for all j, where w =

∏
i∈K wi . Clearly w.α ∈ ∆+ for any α ∈ ∆+

I .
Hence w ′′ := wwo

I ∈W ′′
I and l(w ′′) < r + #∆+

I . It then follows from Equation 5.3 and the
previous part of the proof that

dim{φ−1
(
O(w ′ ′)

)
∩ τ−1(N ∩ G·v[1,r])} = dimU − l(w ′′) + r > dim G/P.

Since τ is bijective over G·v[1,r], we also have

dim
{
τ
(
φ−1
(
O(w ′ ′)

))
∩N ∩ G·v[1,r]

}
> dim G/P.

Thus, dim N > dim G/P.

Remarks 1. It is not hard to realize that the above proof yields the following conclusions
as well: if π is equidimensional, then each irreducible component of N has a nonempty
intersection with the dense G-orbit in C and the number of irreducible components is
equal to the number of w ∈W such that l(w) = r and w.λi 6= λi for all i ∈ [1, r].

2. Since C//U is an affine space and C has rational singularities by [3, Thm. 0], the
equidimensionality condition is equivalent to πC being flat.

The next theorem applies to a wider class of varieties. However, it provides only a suffi-
cient condition of flatness.
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Theorem 5.5 Let X be an affine G-variety such that k[X]U is polynomial and λ1, . . . , λr

the weights of T-homogeneous free generators of k[X]U . Suppose λ1, . . . , λr are linearly inde-
pendent and #{ j | wi.λ j 6= λ j} ≤ 1 for each i ∈ [1, n]. Then k[X] is a flat k[X]U -module.

Proof By the assumptions of the theorem, k[X] is a multiplicity free G-module, i.e., X is
a spherical G-variety. In particular, k[X]G = k and X has a dense G-orbit. The following
argument uses deformation results from [10] (see also [8]). We refer to that paper for
precise definitions and generalities concerning gr X, etc.

By [10, Section 5], there exists a G-variety Y and a q ∈ k[Y ]G such that k[Y ]/(q − a) '
k[X] for any a ∈ k∗, k[Y ][q−1] ' k[X][q, q−1], and k[Y ]/(q) ' k[gr X]. One can take
the last equality as a definition of the G-variety gr X. But the meaning of this construction
is that gr X can be defined directly via a filtration of k[X] and that it enjoys a number of
nice properties. In our case, gr X = C is the variety considered above. (It stems from the
following facts: gr X is again spherical, k[gr X]U ' k[X]U , and the stabilizer of a point in
the dense G-orbit in gr X contains a maximal unipotent subgroup.) We need some details
concerning Y . One considers an ascending filtration of k[X]:

{0} ⊂ k[X](0) ⊂ k[X](1) · · · ⊂ k[X](n) · · · .

The whole description is unimportant for us now, we shall only use the fact that k[X](0) '
k[X]G, which is just k in our situation. Then k[Y ] is defined as the following subalgebra of
k[X][q]:

k[Y ] :=
∞⊕

n=0

k[X](n)q
n.

Let f1, . . . , fr be free generators of k[X]U . Define mi to be the least integer such that fi ∈
k[X](mi ). It is then easy to see that k[Y ]U ' k[q, qm1 f1, . . . , qmr fr] is a polynomial algebra,
of Krull dimension r + 1. One has the following commutative diagram:

C ' gr X ↪→ Y ↪→ X × A1y πC

y πY

Ar ' (gr X)//U ↪→ Y//U ' Ar+1y y q

{0} ↪→ A1

.

Looking at it, one sees that (N =)π−1
C

(
πC (0)

)
= π−1

Y

(
πY (0)

)
, where 0 ∈ C ∈ Y is the

unique G× k∗-fixed point in Y (k∗ acts on A1 and hence on Y by homotheties).

From Theorem 5.1, it then follows that dim π−1
Y

(
πY (0)

)
= dimY − dimY//U . The

algebra k[Y ] is Z≥0-graded and k[Y ]0 = k[X](0) = k, therefore πY is equidimensional. By
[10, Thm. 6], Y has rational singularities and in particular is Cohen-Macaulay. Hence k[Y ]
is a flat k[Y ]U -module. Taking localisation, one obtains k[Y ][q−1] ' k[X]⊗ k[q, q−1] and
k[Y ]U [q−1] ' k[X]U ⊗ k[q, q−1]. Whence, k[X] is a flat k[X]U -module.
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Appendix

Now G is a simple algebraic group and U ⊂ G is as above. We give the classification of
irreducible representations V such that k[V ] is a free k[V ]U -module. As is well known, the
last condition implies that k[V ]U is polynomial. Representations with polynomial algebras
of covariants were classified by M. Brion. Therefore our task is to look through the table
on p. 13 in [1] and to realize for which representations in it πV is equidimensional, i.e., free
generators of k[V ]U form a regular sequence in k[V ]. Brion’s table contains 19 items and
we numerate them according to their ordering in the table.

1. For items 1–3, 5–8, 10, 13, 14, 16, and 18, flatness follows by Theorem 5.5. For, V is
a spherical G × k∗-module in these cases (k∗ acts by homotheties) and the weights of the
generators are as required. Note that items 1–3, 5, 6, 10, 13, 14, and 18 arise from parabolic
subgroups with aura.

2. For all other items, free generators of k[V ]U do not form a regular sequence. Namely,
one can always find a triple of generators f1, f2, f3 ∈ k[V ]U such that f3 = d1 f2 − d2 f1

for some d1, d2 ∈ k[V ]. The argument, which applies to all cases, relies on the fact that
there exist always 2 generators of the same fundamental weight ϕi and a third generator of
weight 2ϕi − αi , where αi is the simple root corresponding to ϕi . For instance, consider
G = Sp6 and V = Vϕ3 . We exploit the following generators of k[V ]U : f1 of degree 1 and
weight ϕ3, f2 of degree 3 and weight ϕ3, and f3 of degree 4 and weight 2ϕ2. The generators
are determined, up to a scalar factor, by degree and weight in this (and any other) case. The
functions f1, f2 generate isomorphic G-submodules in k[V ]. Introduce “one level down”
vectors di := e−α3 fi (i = 1, 2) in these modules, eα being a nonzero root vector in g. Then
d1 f2−d2 f1 has degree 4 and weight 2ϕ3−α3 = 2ϕ2. Obviously, it is a nonzero U -invariant
and therefore, up to a scalar factor, it is equal to f3.

A posteriori, the classification can be stated in the following nice form:

Theorem A.1 For an irreducible representation V of a simple algebraic group G, the following
conditions are equivalent:

(1) k[V ] is a free k[V ]U -module;
(2) A generic G-orbit in V is spherical.

(It is not hard to prove that the second condition implies k[V ]U is polynomial.) How-
ever, implication (2) ⇒ (1) is no longer true for semisimple groups. For instance, let
G = SL4× Sp4 and let V be the tensor product of tautological 4-dimensional represen-
tations. The same idea as above allows us to isolate a suitable triple of generators and then
to prove that πV is not equidimensional. It is likely that (1) always implies (2), but I was
unable to find a proof.
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