
ENUMERATION OF BICOLOURABLE GRAPHS 

FRANK HARARY1 AND G E E R T PRINS 

In a previous paper (2), one of us has derived a formula for the counting 
series for bicoloured graphs.2 These are graphs each of whose points has been 
coloured with exactly one of two colours in such a way that every two adjacent 
points have different colours. 

In this paper we first enumerate bicoloured graphs without isolated points 
and connected bicoloured graphs. This leads us to corresponding problems for 
bicolourable graphs. Such a graph has the property that its points can be 
coloured with two colours so as to obtain a bicoloured graph. The enumeration 
of connected bicolourable graphs and bicolourable graphs without isolated 
points solves a problem proposed to us by Pôlya. 

In (3), an outline for a programme to attempt to settle the four-colour 
conjecture by enumeration was presented. This involves the derivation of 
generating functions for all planar graphs and for planar four-colourable 
graphs, followed by the confrontation of these two counting series. Thus the 
present paper may be a small step in this project. Recently Tutte (9) has 
counted the number of triangulations of a triangle, thereby making a beginning 
towards the enumeration of planar graphs. 

1. Introduction. A graph G consists of a finite set of points vi, v2l . . . , vp 

and a collection of q lines each of which joins two distinct points, with at 
most one line joining the same pair of points. Two points of G are adjacent 
if they are joined by a line. Two graphs are isomorphic if there is a 1-1 corre
spondence between their sets of points which preserves adjacency. A bicoloured 
graph, or more briefly, a bigraph, is a graph each of whose points has been 
assigned one of two colours so that every two adjacent points have different 
colours. Two bigraphs G and H are isomorphic if there exists an isomorphism 
0 from G onto H (as ordinary graphs) with the property that d(vi) and 6(v2) 
have the same colour in H if and only if V\ and v2 have the same colour in G. 

Consider two bigraphs G and H having the same two colours. Then G and 
H are colour-isomorphic if there exists an isomorphism 0 from G onto H (as 
ordinary graphs) such that for every point v of G> 6(v) has the same colour 
as v. 

The colour image of G is obtained by changing the colour of every point 
of G. Thus G is isomorphic to its colour image. If G and its colour image are 
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colour-isomorphic, then G is called symmetric. If G has an equal number of 
points of each colour but is not symmetric, we say that G is non-symmetric. 
Figure 1 shows a symmetric bigraph; Figure 2, a non-symmetric one. In these 
two figures the letters r and g placed near the points stand for the colours 
red and green respectively. Every bigraph in this paper will be understood 
to have colours red and green. 

FIGURE 1 FIGURE 2 

2. Counting series for bigraphs. We now develop the notation required 
for the counting formulas to be derived. Let bijk be the number of non-iso-
morphic bigraphs with i lines, j points of one colour, and k points of the 
other colour, 0 < j < k, k > 0, and let 

B(x,y,z) = Y,bij1cXiyj z* 

be the counting series for these graphs. A formula for B(x, y, z) may be 
obtained by a routine modification of the results in (2). This formula makes 
use of Pôlya's counting theorem (6), and of the cartesian product A X B 
and exponentiation BA of two permutation groups A and B. The meanings 
of these operations and the proof of equation (1) may be found in (2). The 
definition of the cycle index Z(A) of the permutation group A is given in (1) 
and (6). As usual, Sn denotes the symmetric group of degree n. 

The counting series for non-isomorphic bigraphs is given by 

(1) B(x, y,z)= £ Z(Sm X Sni 1 + x)ymzn 

l<m<n 

+ E Z{Sn
s\ 1 + x)ynzn + £ z\ 

Let bijk be the number of colour-non-isomorphic bigraphs with i lines, j 
green points, and k red points. Let 

B* (x, y,z) = X) b% xlyjzk. 

LEMMA 1. Let G and H be isomorphic bigraphs. Then either G and H are 
colour-isomorphic or G and the colour image of H are colour-isomorphic. 

It follows immediately from this obvious but useful result that the number 
of colour-non-isomorphic bigraphs with m red points and n green points, 
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m < ft, is equal to the number of colour-non-isomorphic bigraphs with m 
points of one colour and n points of the other colour, and hence is counted by 

Z(SmXSn, 1 + x)ymz\ 

In the proof in (2) of Formula (1) we incidentally obtained the counting 
series for colour-non-isomorphic bigraphs with the same number n of points 
of each colour. This series is Z(Sn X Sn, 1 + x)ynzn. Hence we may state 
the next result. 

The counting series for colour-non-isomorphic bigraphs is given by 

(2) B*(x, y, z) = £ y" + £ Z(Sm XSn,l + x)ymz" + £ zn. 
w>l wi,n>l n> l 

Let E(x, yj z) be the subseries of B(x, y, z) which counts those bigraphs 
with an equal number of points of each colour, and let E* (x, y, z) be the corre
sponding subseries of B*(x, y, z). It follows from equations (1) and (2) that 

(3) E(X9 y,z)=Z z(sn
s\ i + *)yv\ 

W>1 

(4) E*(x, y, z) = £ Z(S„ X Sn, 1 + x)ynzn. 
n>l 

Now let M(xy y y z) and M{x, y y z) be the counting series for symmetric 
and non-symmetric bigraphs respectively, with the same number of points 
of each colour, so that 

M(Xy y y z) + M(Xy yy z) = E(xf yy z). 

LEMMA 2. The counting series for symmetric and non-symmetric bigraphs are 
given by the formulas: 

(5) M(xy yy z) = £*(*, y, z) - E(x, y} s), 

(6) M(Xy yy z) = £*(*, y, 2) - 2M(x, y, 2) = 2E(x, y, z) - £*(x, yf 0). 

3. Colour-non-isomorphic bigraphs with no isolated points. By 
adding a red point to any bigraph G, we obtain a bigraph with at least one 
isolated red point. Similarly, we can add a green point to G to obtain a bigraph 
with at least one isolated green point. Therefore, the series 

y{\ + B*(xy yf z)) + z(l + B*(Xl y, z)) 

counts all colour-non-isomorphic bigraphs with at least one isolated point. 
However, some bigraphs are counted twice by this series, namely those that 
have both a red and a green isolated point. As these bigraphs are counted by 
the series 

yz(l +B*(XyyyZ))y 

we obtain the following formula. 
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THEOREM 1. The counting series I*(x, y, z) for colour-non-isomorphic bigraphs 
without isolated points is given by 

(7) 1 + I*(x, y, z) = (1 - y - z + yz) (1 + B*(x, y, z)). 

4. Connected graphs and indecomposable figures. In order to 
enumerate in the next section those colour-non-isomorphic bigraphs which 
are connected, we need a well-known formula which counts connected graphs 
in terms of all graphs. This result was first reported by Riddell and Uhlenbeck 
(7) and also appears in Riordan (8, p. 147) and in Harary (1). 

Let g(x, y) be the counting series for all graphs and let c{x, y) be the counting 
series for connected graphs: 

(8) l+g(x,y) = Z(Sw,c(x,y)), 

where, following (4), 
CO 

Z(Sœ,c(x,y)) = X) Z(Sn,c(x,y)) 

and by definition Z(So,c(x,y)) = 1. 
In Section 7, we shall need the following generalization of equation (8). Let 

$ be a collection of sets <j>it which in analogy with the presentation in Pôlya 
(6) we call "figures." It is assumed that the content of a figure <j> is an ordered 
w-tuple (ii, Î2, • • • , in) of non-negative integers. We stipulate that if </>i, </>2 6 $ 
are disjoint and </>i VJ <j>2 £ <ï>, then the content of <t>\ \J <t>2 is the vector sum 
of the contents of <j>i and of <£2. Let fiU..in be the number of figures in $ 
whose content is the w-tuple (ii, . . . , in). Then the figure counting series of 
the figure collection $ is defined to be 

(9) / (* ! , . . . , Xn) = Ë /«!...*. Xi" • • • Vu*"-
H *n=0 

Let $ be a figure collection satisfying the above conditions which does not 
contain the empty set as a figure. The figure <£ is indecomposable if <f> is not the 
union of two disjoint figures. 

THEOREM 2. Let $ be a figure collection which does not contain the empty set 
and is closed under the union of disjoint figures. The counting series c(xi, . . . , xn) 
of all the indecomposable figures in the figure collection can be obtained recursively 
from the identity 

(10) 1 + / ( * i , . . . , * » ) = Z(Sœ, c(xi, . . . , *„)). 

There is a well-known combinatorial identity which facilitates computation 
of actual numbers from equation (8) or (10) : 

CO -I 

( H ) Z(Sœ,f(xh . . . , Xn)) = e x p X ) ~f(Xir> • • • > *n). 
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5. Colour-non-isomorphic connected bigraphs. A specialization of 
equation (10) readily yields the counting series C*(x,y,z) for colour-non-
isomorphic connected bigraphs. 

THEOREM 3. The counting series C*(x,y,z) is obtained implicitly in terms 
of B*(x, y, z) by the equation 
(12) 1 + B*(x, y, z) = Z(Sœ, C*(x, y, z)). 

6. Bigraphs with no isolated points. The object of this section is to 
calculate the counting series I(x, y, z) for bigraphs with no isolated points 
{isolates). This will be accomplished by introducing several additional counting 
series and manipulating these. One such counting series is that which enumer
ates bigraphs without isolates and with the same number of points of each 
colour, i.e., those bigraphs that are counted by both of the counting series 
7(x, y, z) and E(x, y, z). We denote this counting series by (E C\ I)(x, y, z) 
or more briefly by EI(x, y, z). 

Similarly, let MI(x, y, z) be the counting series for bigraphs which are 
symmetric and have no isolates and let MI(x, y, z) count bigraphs that are 
non-symmetric and have no isolates. Another counting series which is useful 
is E*I*(x, y, z), which counts colour-non-isomorphic bigraphs with the same 
number of points of each colour and without isolates. 

Our plan is to derive 7 = 7(x, y, z) by finding both summands of 

I = (7 - EI) + EL 

By definition, 7 — EI = 7(x, y, z) — EI(xf y, z) counts those non-isomorphic 
bigraphs with a different number of points of each colour. But this is precisely 
the same as the colour-non-isomorphic bigraphs with a different number of 
points of each colour. However, these bigraphs are counted by the subseries 
of 7* (x, y y z) consisting of all terms in which the exponent of y is less than 
that of z. Thus the terms of I — EI can be read off from an expansion of 
I*(x,y,z) obtained from equation (7). 

In order to find EI(x, y, z), we require the equations of the next lemma. 
These are obtained in the same manner as the equations of Lemma 2 by 
considering the series analogous to the ones occurring in equations (5) and (6) 
which emunerate bigraphs with no isolates. 

LEMMA 3. The counting series MI and MI satisfy the following identities: 

(13) MI(x, y, z) = £*7*(x, y, z) - EI(x, y, z), 

(14) MI(x, y, z) = E*I*(x, y, z) - 2MI(x, y, z). 

From these two equations we see at once that 

(15) EI(x, y, z) = h[E*I*(x, y, z) + MI(x} y, z)}. 

By equation (15), the counting series EI is known as soon as the two series 
E*J* and MI are determined. But E*I* is that subseries of 7* obtained from 
equation (7) by taking all terms in which y and z have equal exponents. 
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The counting series M = M(x, y, z) is already known by equation (6). We 
now derive an expression for the counting series MI in terms of M. 

LEMMA 4. The counting series MI satisfies the following identity: 

(16) 1 + MI(x, y, z) = (1 - yz) (1 + M(x, y, z)). 

To prove equation (16), note that if a symmetric bigraph has one isolate, 
then it has a second one of the other colour. Hence the series yz(l+M(x, y, z)) 
counts all symmetric bigraphs with at least one isolate, proving the lemma. 

On substituting the series MI obtained from equation (16) into equation 
(15), we obtain the series EI, which can then be added to the series (/ — EI) 
to yield the desired counting series I(x, y, z). 

THEOREM 4. The counting series for bicoloured graphs with no isolates is 
given by: 

I{x, y, z) = [/(*, y, z) - EI(x, y,z)] + *£*/*(*, y, z) 
+ è[(l - yz)M(x, y, z) - yz], 

where I — EI and E*I* can be read off from equation (7) and M is determined 
by equation (6). 

7. Connected bigraphs. The object of this section is to calculate the 
counting series C(x, y, z) for connected bigraphs. This replaces the incorrect 
formulas given in Section 5 of (2). We shall require four auxiliary counting 
series which are denoted in analogy with the preceding section by 

EC = EC(x,y,z), MC, MC, and £*C*. 

The first part of the derivation of series C(x, y, z) proceeds analogously 
to the derivation of the preceding section and will be presented in outline 
form. We begin by writing 

C = (C - EC) + EC. 

The series C — EC is read off from the known series C*(x,y,z) found in 
equation (12). The next three equations are immediately derived by analogy 
with equations (13), (14), and (15): 

(17) MC(x, y, z) = £*C*(x, y, z) - EC(x, y, s)f 

(18) MC(x, y, z) = £*C*(x, y, z) - 2MC(x, y, z), 

(19) EC(x, y, z) = i[E*C*(x, y, z) + MC(x, y, z)]. 

As before, the series E*C* is obtained at once from C*. Since this settles 
the term EC, we still need only to determine the counting series MC. At this 
point the procedure deviates from that of the preceding section. 

Lemma 7 will provide a recursive formula for MC. But we require two 
preliminary results for its proof, the first of which makes use of Theorem 2. 

By Theorem 2 we can immediately obtain the counting series for symmetric 
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bigraphs which are indecomposable with respect to the collection of all sym
metric bigraphs. These indecomposable bigraphs are exactly those symmetric 
bigraphs which are not the union of two disjoint symmetric bigraphs. We 
shall refer to such a bigraph briefly as indecomposable. 

Clearly, every connected symmetric bigraph is indecomposable. But Figure 
3 shows a symmetric bigraph which is not connected and is indecomposable, 
since its components are not symmetric. 

r«~ »g 

' V \ g 

f * g 

FIGURE 3 

LEMMA 5. Letf(x, yy z) be the counting series for all indecomposable symmetric 
bigraphs. Then f(x, y, z) can be obtained recursively from 

(20) 1 + M(x, y, z) = Z(SœJ(x, y, z)). 

We next require a characterization of those indecomposable symmetric 
bigraphs which are disconnected. 

LEMMA 6. A bigraph G is symmetric, indecomposable, and disconnected if and 
only if G is the union HKJ Hr of a connected bigraph H which is not symmetric 
and its disjoint colour image Hf. 

To prove the sufficiency, we first note that G is obviously disconnected 
since it has exactly two components H and Hf. Since the colour image of 
H\J H' is H' \J Hy it follows that G is symmetric. Finally, G is indecom
posable by definition since neither of its two components is symmetric. 

Conversely, let H be a component of the disconnected bigraph G. Then H 
is not symmetric because G is indecomposable. Thus the colour image H' of 
H is also a component of G and is disjoint with H.AsHVJ H' is indecomposable 
by definition, G contains no other components beside H and H'\ hence 
G = HKJH'. 

LEMMA 7. The counting series MC(x, y, z) can be determined recursively in 
terms of / (x, y, z) by the following equations: 

(21) / (* , y, z) = K*(*2 , yz, yz) - WC{x\ y\ s2) + MC(x, y, z). 

To prove this lemma we first count all disconnected indecomposable bigraphs 
using Lemma 6. Let d(x, y, z) be that counting series. By definition f(xt y, z) 
counts all indecomposable bigraphs. Hence 

(22) MC(x, y, z) = f(x, y, z) - d(x, y, z). 
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By Lemma 6 each figure \p counted by d(x, y, z) is the union of a figure </> 
(which is a connected bigraph that is not symmetric) and its colour image 
<t>''. Let the content of <j> be (i, j , k). Then the content of <j>' is (i, k, j) and 
that of ^ is (2i,j + k, j + k). The series C* — Af*C* counts twice those con
nected bigraphs which are not symmetric. Hence we see that 

(23) d(x, y, z) = |[C*(x2, yz, yz) - M*C*(x2, yz, yz)]. 

But the series MC and M*C* are the same because the number of non-iso-
morphic connected symmetric bigraphs is equal to the number of colour-
non-isomorphic connected symmetric bigraphs since the colour image of any 
symmetric bigraph is itself. Hence M*C*(x2, yz, yz) = MC{x2, yz, yz). As 
symmetric bigraphs have the same number of points of each colour, 
MC(x2, yz, yz) = MC{x2,y2, z2). Thus equation (23) becomes: 

(24) d(x, y, z) = hC*(x2, yz, yz) - \MC(x2, y2, z2). 

Combining (22) and (24) yields equation (21), proving Lemma 7. 
On substituting the series MC obtained recursively from equation (21) 

into equation (19), we obtain the series EC, which can then be added to the 
series (C — EC) to yield the desired counting series C{x, y, z). 

THEOREM 5. The counting series for connected bicoloured graphs is given by 

C{x, y, z) = [C(x, y, z) - EC(x, y, z)] + %[E*C*(x, y, z) + MC(x, y, z)], 

where C — EC and £*C* can be read off from equation (12) and MC can be 
obtained recursively from equation (21). 

8. Bicolourable graphs. We wish to exploit a relationship between con
nected bicoloured graphs and connected bicolourable graphs. It has been 
proved by Kônig (5, p. 170) that a graph is bicolourable if and only if every 
cycle is of even length. It is easy to see that this condition is equivalent to 
the statement that a graph is bicolourable if and only if all paths joining the 
same pair of points have odd length or they all have even length. Thus if G 
is a connected bicolourable graph, then by colouring any one point of G green, 
the colour of every point is uniquely determined. As an immediate consequence, 
we obtain the following statement. 

THEOREM 6. The number of non-isomorphic connected bicolourable graphs is 
equal to the number of non-isomorphic connected bicoloured graphs. 

It follows at once that the counting series C(x, y, y) counts connected 
bicolourable graphs, where the coefficient of xq yp is the number of non-iso
morphic connected bicolourable graphs with p points and q lines. Let 
c(x, y) = C(x, y, y) be the counting series for connected bicolourable graphs. 
Let b(x, y) be the corresponding counting series for all bicolourable graphs, 
connected or not. Then an application of equation (8) shows that the following 
equation holds. 
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THEOREM 7. The counting series for bicolourable graphs is expressed implicitly 
in terms of that for connected bicolourable graphs by the equation: 

(25) l + b(x,y)=Z(Sœ,c(x,y)). 

The only other result we shall obtain is the counting series i(x} y) for 
bicolourable graphs with no isolated points. This is obtained as an immediate 
corollary of the preceding theorem: 

(26) 1 + i(x, y) = (1 - y)(l + b(x, 30). 

In the first appendix to this article, explicit expressions will be stated for 
various counting series of bicoloured graphs and bicolourable graphs with up 
to six points. The second appendix presents the diagrams of all connected 
bicolourable graphs with up to six points. 

Appendix 1. Explicit expressions for counting series of bicoloured 
graphs and bicolourable graphs with up to six points. 

Colour-non-isomorphic bigraphs. 

B*(x, y, z) = [y + z] + [y2 + yz(l + x) + z2] + [yz + y2z{\ + x + x2) 

+ yz2(l + x + x2) + s3] + b 4 + y*z(l + x + x2 + xs) 

+ ysz2(l + x + 3x2 + x3 + x4) + yz*(l + x + x2 + x3) + z4] 
+ [y5 + y4z(l + x + x2 + x3 + x4) 

+ ;y3s2(l + x + 3x2 + 3x3 + 3x4 + x5 + x6) 
+ y2z3(l + x + 3x2 + 3x3 + 3x4 + x5 + x6) 

+ 3>z4(l + x + x2 + x3 + x4) + zb] 

+ b 6 + 3>5z(l + x + x2 + x3 + x4 + x6) 
+ 3>V(1 + x + 3x2 + 3x3 + 6x4 + 3x5 + 3x6 + x7 + x8) 
+ ;y3s3(l + x + 3x2 + 6x3 + 7x4 + 7x5 + 6x6 + 3x7 + x8 + x9) 
+ y V ( l + x + 3x2 + 3x3 + 6x4 + 3x5 + 3x6 + x7 + x8) 
+ yz5(l + x + x2 + x3 + x4 + x5) + z*]+ . . . 

Non-isomorphic bigraphs. 

B{x, y, z) = [z] + [yz(l + x) + z2] + [yz2(l + x + x2) + s3] 

+ [y2z2(l + x + 2x2 + x3 + x4) + ;yz3(l + x + x2 + x3) + zA] 

+ [y2zz(l + x + 3x2 + 3x3 + 3x4 + x5 + x6) 
+ yz*(l + x + x2 + x3 + x4) + zb] 

+ b V ( l + x + 2x2 + 4x3 + 5x4 + 5x5 + 4x6 + 2x7 + x8 + x9) 

+ y2z*(l + x + 3x2 + 3x3 + 6x4 + 3x5 + 3x6 + x7 + x8) 
+ yzb(l + x + x2 + x3 + x4 + x5) + s6] + . . . 

Symmetric bigraphs. 

M(x, y, z) = yz(l + x) + y2z2{l + x + x2 + x3 + x4) 
+ yzzz(l + x + x2 + 2x3 + 3x4 + 3x5 + 2x6 + x7 + x8 + x9) + . . . 
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Non-symmetric bigraphs. 

M(x, y, z) = y2z2x2 + yzzz(x2 + 2x3 + 2x4 + 2x5 + 2x6 + x7) + . . . 

Colour-non-isomorphic bigraphs with no isolates. 

I*(x, yj z) = yz(x) + [y2z(x2) + yz2(x2)] 

+ [yzz(xz) + y2z2(x2 + x3 + x4) + yzz(xz)] 

+ [y4s(*4) + yh2(xz + 2x4 + x5 + xe) 

+ y2zz(xz + 2x4 + x5 + x6) + yz4(x*)] 

+ [ybz(xh) + y*z2(2x* + 2x5 + 2x6 + x7 + x8) 
+ yzzz{xz + 2x4 + 5x6 + 4x6 + 3x7 + x8 + x9) 

+ ;yV(2x4 + 2x5 + 2x6 + x7 + x8) + :ys5(x5)] + . . . 

Symmetric bigraphs with no isolates. 

MI(x, yf z) = yz{x) + y2z2{x2 + xz + x4) 
+ ;y3s3(x3 + 2x4 + 3x5 + 2x6 + x7 + x8 + *9) + . . . 

Bigraphs with no isolates. 

J(x, y, z) = yzx + yz2{x2) + [y2z2(x2 + x3 + x4) + yzz(xz)] 

+ [y2zz(xz + 2x4 + x5 + x6) + ys4(x4)] 
+ [yzzz(xz + 2x4 + 4x5 + 3x6 + 2x7 + x8 + x9) 
+ y2z*(2x* + 2x5 + 2x6 + x7 + x8) + yzb(xb)] + . . . 

Colour-non-isomorphic connected bigraphs. 

C*(x, y, z) = [y + z] + [yz{x)\ + [y2z(x2) + yz2(x2)] 

+ [yzz(xz) + y2z2(xz + x4) + yz3(x3)] 

+ [y4s(x4) + y3s2(2x4 + x5 + x6) + y V(2x4 + x6 + x6) + yz4(x4)] 

+ [y5s(x5) + yV(2x5 + 2x6 + x7 + x8) 

+ y3z3(4x6 + 4x6 + 3x7 + x8 + x9) + yV(2x6 + 2x6 + x7 + x8) 
+ yzb(xb)] + . . . 

Indecomposable symmetric bigraphs. 

/ (x, yy z) = yz(l + x) + y2z2(xz + x4) 
+ y3s3(x4 + 2x5 + 2x6 + x7 + x8 + x9) + . . . 

Connected symmetric bigraphs. 

MC{Xy y y z) = yzx + y2z2(xz + x4) + y3z3(2x5 + 2x6 + x7 + x8 + x9) + . . . 

Connected bigraphs. 

C(x, y y z) = z + yzx + yz2(x2) + [yV(x3 + x4) + yzz(xz)] 

+ [yV(2x4 + x5 + x6) + ys4(x4)] 

+ [y3z3(3x6 + 3x6 + 2x7 + x8 + x9) 

+ yV(2x 5 + 2x6 + x7 + x8) + yz5(x5)] + • • • 
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Connected bicolourable graphs. 
c(x, y) = y + y2x + yzx2 + y*(2xz + x*) + yb(3x* + x* + x«) 

+ y«(6x5 + 5x6 + 3x7 + 2x* + x») + . . . 

Bicolourable graphs. 
b(x, y) = y + y2(l + x) + y3(l + x + x2) + y4(l + x + 2x2 + 2xs + x4) 

+ yh{l + x + 2x2 + 3x3 + 4x4 + x6 + x«) 
+ y«(l + x + 2x2 + 4x3 + 7x4 + 8xb + 6x6 + Sx1 + 2x* + x9) + ... 

Bicolourable graphs with no isolates. 
i(x, y) = y2x + y*x2 + y*(x2 + 2xz + x4) + y*(xz + 3x4 + x* + x6) 

+ y«(x* + 3x4 + 7x* + 5x« + Sx7 + 2x* + x9) + . .. 

Appendix 2* Diagrams of all connected bicolourable graphs with 
up to six points. 
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