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LOCAL CHARACTER EXPANSIONS
FOR SUPERCUSPIDAL REPRESENTATIONS OF U(3)

FIONA MURNAGHAN

ABSTRACT.  The topic of this paper is the relationship between characters of irre-
ducible supercuspidal representations of the p-adic unramified 3 x 3 unitary group and
Fourier transforms of invariant measures on elliptic adjoint orbits in the Lie algebra. We
prove that most supercuspidal representations have the property that, on some neigh-
bourhood of zero, the character composed with the exponential map coincides with the
formal degree of the representation times the Fourier transform of a measure on one
elliptic orbit. For the remainder, a linear combination of the Fourier transforms of mea-
sures on two elliptic orbits must be taken. As a consequence of these relations between
characters and Fourier transforms, the coefficients in the local character expansions are
expressed in terms of values of Shalika germs. By calculating which of the values of the
Shalika germs associated to regular nilpotent orbits are nonzero, we determine which ir-
reducible supercuspidal representations have Whittaker models. Finally, the coefficients
in the local character expansions of three families of supercuspidal representations are
computed.

1. Introduction. Let F be a p-adic field of characteristic zero. Suppose 7 is an ir-
reducible supercuspidal representation of GL,(F). Let ®, and d() be the character and
the formal degree of , respectively. In [Mu2], under the assumption that the residual
characteristic p of F is greater than n, it was shown that d(r)~'@®, coincides with the
Fourier transform of an elliptic Ad GL,(F)-orbit on some neighbourhood of zero. More
precisely, there exists a regular elliptic element X in the Lie algebra such that if figy )
is the Fourier transform of the orbital integral associated to the orbit O(X;),

(1.1 Or(exp X) = d(m)Aox,)(X)

for X regular and close to zero. It is natural to ask whether (1.1), or some similar result,
holds for irreducible supercuspidal representations of G = G(F), where G is a con-
nected reductive group defined over F. Detailed information about the inducing data for
supercuspidal representations (the explicit realization of supercuspidal representations
as representations induced from open compact mod centre subgroups) was required to
prove (1.1) for GL,(F). Thus we consider those groups G for which inducing data for
supercuspidal representations has been found. For general G, it is conjectured that all
irreducible supercuspidal representations are induced from representations of open com-
pact mod centre subgroups.
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In the case G = SL,(F), p > n, it was found ([Mu3]) that (1.1) holds for most super-
cuspidal representations of G. However, if n is prime and divides ¢ — 1, g being the order
of the residue class field of F, then there exist irreducible supercuspidal representations
m of G such that (1.1) does not hold for any X;.. Such a representation 7 is a component of
a reducible supercuspidal representation for which (1.1) holds, but there does not appear
to be a natural way to relate ®, to Fourier transforms of elliptic Ad G-orbits.

Let G = G(F), where G is the 3 X 3 unitary group defined relative to an unramified
quadratic extension of F. The residual characteristic of ' will be assumed to be odd.
Moy ([Mo]) proved that the irreducible supercuspidal representations of G are induced
from open compact mod centre subgroups and Jabon ([J]) obtained explicit inducing
data using Moy’s results. Filtrations of parahoric subgroups by open normal subgroups
are used to construct inducing data for supercuspidal representations. A fundamental
difference between G and GL,(F) is that the types of filtrations of parahoric subgroups
occurring in the inducing data are more general for G than for GL,(F). For GL,(F),
the filtrations arise from powers of the Jacobson radical of the hereditary order which
stabilizes the lattice chain given by powers of the prime ideal in some degree n extension
of F. For G, the filtrations do not always arise this way. Also, one of the filtrations is not
a canonical filtration defined by height functions on affine roots. That is, a non-str
filtration {I? };>1 (see Section 4) of the Iwahori subgroup of G occurs in the inc sit:
data for certain supercuspidal representations of G.

In this paper, we determine which irreducible supercuspidal representations 7 of G
have the property that there exists an elliptic, not necessarily regular, X; in g such that
(1.1) holds. Furthermore, the remaining irreducible supercuspidal representations are
equivalent up to twisting by a one-dimensional representation of G, and we show that
there exist regular elliptic elements X, ; and X,,» such that, for any of these representa-
tions,

(1.2)  OnlexpX) =d(m)(q (g + D fiow,n®) ~ 4 (¢ — ¢+ Do, (X)) /3,

if X is regular and close to zero.
Let (Ag) be the set of nilpotent Ad G-orbits. Harish-Chandra’s local character expan-
sion of 7 at the identity is the equality

Ox(expX) = > co(MpioX),
Oe(Ng)

where X is regular and in some neighbourhood of zero. (1.1) and (1.2) can be used to
relate the coefficients ¢ () to values of Shalika germs. Given O in (Aj), let T be the
Shalika germ associated to O. If (1.1) holds and X is regular, then

co(n) = d(mMToXy), O € (N)
and, if (1.2) holds, then

co(m) =d(m)(g (g +1PToXu)) — ¢~ (¢ — g+ Dlo(Xu2)) /3, O € (Ap)-
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The paper begins with a summary of some of the notation used throughout the paper
(Section 2) and information about elliptic Cartan subgroups and subalgebras (Section 3).

Properties of certain integrals which are related to Fourier transforms and to the in-
ducing data for supercuspidal representations are proved in Section 4.

In Section 5 properties of the inducing data for 7 are used to define the X, of (1.1),
and the X,,; and X, of (1.2). Proposition 5.1, which relates certain integrals of matrix
coefficients of 7 to the integrals considered in Section 4, is an essential part of the proof
of Theorem 6.4. The main results of the paper are Theorem 6.4 and Corollary 6.6, in
which we prove (1.1), (1.2), and the above results expressing values of the coefficients
in the local character expansion in terms of values of Shalika germs.

Section 7 is devoted to determining which irreducible supercuspidal representations
have a Whittaker model. This is done by finding out whether the associated values of
Shalika germs are nonzero.

For certain 7, we compute all of the coefficients ¢ g(r) in the local character expansion.
This appears in Section 8.

Results of the type obtained in Sections 4-6 of this paper have also been proved in a
later paper ([(Mu4]) for supercuspidal representations of classical (symplectic, orthogonal
and unitary) groups, using inducing data for those families of supercuspidal representa-
tions obtained by Morris ([M1-2]). Therefore there is some overlap between the results
of this paper and those of [Mu4]. It is worth noting that in this paper we deal with all
supercuspidal representations of G. In [Mu4], for technical reasons, some supercuspidal
representations were excluded. In particular, we did not deal with those representations
whose inducing data involved cuspidal unipotent répresentations of reductive groups
over finite fields. Also, it is not known whether the constructions of Morris yield all su-
percuspidal representations of classical groups. There is no analogue of the results of
Sections 7 and 8 in [Mu4].

2. Notation. Let F be a a p-adic field of characteristic zero and F the algebraic
closure of F. If L is a finite extension of F, let Oy and p; denote the ring of integers
and maximal ideal in the ring of integers. If q; is the order of O, /p; and w; is a prime
element in py, a choice of norm | - |, on L is fixed by the requirement that |w |, = g7 "
In the case L = F, the subscript may be dropped, that is, the notation ¢, w and | - |
may be used. N,/ denotes the norm map from L to F, and Res; /r Testriction of scalars.
Throughout the paper, we assume that g is odd.

Choose an element ¢ in OF whose image in Op/pr ~ F, generates F,*. Let £ =
F(/€). SetE' = {x € E* | Ng/p(x) = 1}.1fx = a+by/e,a,b € F,definex = a—by/e.
If x = (x;) is a matrix with entries in E, £ = (£;). The notation tr will be used for the
trace map on 3 x 3 matrices with entries in E. Fix a character v on F which is trivial on
Or but non-trivial on @' OF. Define Y = yrotrg /F>» Where trg p(x) = x +x forx € E.

Let G = U(3) be the 3 x 3 unitary group defined relative to the quadratic extension
E of F. Then G = G(F) can be realized as {x € GL3(F) | xJ's = J}, where ‘x is the
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0 01
J=(0 1 O).
1 00

In other words, G is the group of fixed points of the automorphism o.(x) = J%'J of
GL3(E). If L is a finite extension of £, G(L) = GL3(L). There is one isomorphism class
of 3 X 3 unitary groups with respect to £/ F ([R2], Section 1.9).

The isomorphism classes of 2 X 2 unitary groups with respect to £/ F' are parametrized
by F* /Ng JF(E™) ([R2], Section 1.9). Let Hy, be the 2 x 2 unitary group defined relative

t0.Jy = (‘1’ (1)) That is Hys = Hgs(F) = {x € GLy(E) | xJs'% = Jjs }. Let Hy, be the

transpose of x, and

2 X 2 unitary group defined relative to J,, = ( (l) g), and let H,, = H,,(F). It is easily

verified that H,, is quasi-split over F' and H,, is anisotropic over F. Thus these groups
represent the two isomorphism classes of 2 X 2 unitary groups.

The notation Gig and gy Will be used to denote the regular subsets of G and the Lie
algebra g of G, respectively. For definitions, see [HC2].

Let A be the nilpotent subset of g, and (A;) the set of nilpotent Ad G-orbits in g.

The bilinear form

(X, ) = trgp(tr(XY))

is a non-degenerate bilinear form on g. If §) is a subalgebra of g, let h* be the orthogonal
complement of ) in g.

Suppose X in g is such that det(1 +X) is nonzero. Then the Cayley transform c(X) of
X is the element of G defined by:

cX)=(1-X1+X)"

3. Elliptic Cartan subgroups and subalgebras.

LEMMA 3.1 ([R2] SECTION 3.6).  An elliptic Cartan subgroup of G is isomorphic to
one of the following:

(1) Resgy jp(kerNg ), where L is a cubic extension of F

(2) E' X E' X E!

(3) E' x Resg /r(kerNgy 1), where L is a ramified quadratic extension of F

Let Ty, be a Cartan subgroup of G which splits over an unramified cubic extension
of E and is contained in G(OF). Let Ty, be the Lie algebra of Tyy,.
To a ramified cubic extension L of F, we associate the Cartan subgroup 7y, ¢ having

Lie algebra
a\/e NN
Tramy¢ = {( welc  aye  —b )
wlby/e —welc ay/e

where ¢ € O} is chosen so that Tran ¢ is isomorphic to Resgy, / r(ker Ngp /L)

a,b,cEF},
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Next we define two Cartan subgroups T, and T, which split over E. Their Lie
algebras are, respectively:

ayJe 0  bye
4
bye 0 afe
ayJe 0 wlby/e
‘:’E,z = {( 0 C\/E 0 )
why/e 0 a\/e

Let § be one of w and ew. Given 0, fix A € Og such that A\ = e /2w. (Such \’s
exist because |0e /2w| = 1 (p # 2).) Let Ty, and Ty, be Cartan subgroups which split
over E(v/0) and have Lie algebras:

ay/e 0 byfe
E
0b/e 0 ae

a,b,cGF}

a,b,cEF}.

a,b,c € F}
and

wAb ay/e —Ab
w(c—a)/e/2 —wAb  (a+c)/e/2

Fix a, b and ¢ in F such that both b and (a — ¢)?> — b? are nonzero. Let Xg,1 and Xg»
be the corresponding elements of 7z | N Greg and T2 N Greq, respectively (given in the
definitions of Zg; and 7y ;). Define two additional elements Xz 3 and Xg 4 in T2 M QGreg
by:

(a+c)/e/2 A w e —a)/E/2
o |

a,b,cEF}.

(@+b)/e

(a—b+c)/e/2 0 w i (—a+b+c)/e/2
XE,3=( 0 0 )
w(—a+b+on/E/2 0 (@—b+e)E)2

(a—b)/e 0
w(—a—b+c)y/E/2 0 (@+b+c)n/E/)2

Now fix a, b, and c in F such that b is nonzero. Let Xj ; and X}, be the corresponding
elements of Ty | M greg and Ty, M gireg, Tespectively.

Two elements x; and x; of G are stably conjugate ([R2], Section 3) if there exists y €
GL;(F) suchthaty~!x;y = x,. The same terminology will be used for elements of g. That
is, elements X; and X in g are stably conjugate whenever Ady~!(X)) = y~ X1y = X,
for some y € GL3(F). Given X in g, the set of elements in g which are stably conjugate
to X will be called the stable orbit of X.

(a+b+c)/c/2 0 w(—a—b+c)/e/2
XE‘4= ( 0 )

LEMMA 3.2. Let T be a Cartan subgroup of G.

(1) Let X € Qreg. If X € Tunr or a Cartan subalgebra of the form Ty ., the stable
orbit of X consists of the Ad G-orbit of X.
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(2) If T is isomorphic to Resgy. / rlker Ngp /1) Jor some cubic extension L of F, then
T is conjugate to Tun if L is unramified, and T is conjugate to Trym for some
¢ € OF, if L is ramified over F.

(3) Xg1, Xg2, X3 and Xg 4 are stably conjugate. Their Ad G-orbits are distinct, and
make up a stable orbit.

(4) If T is isomorphic to E' X E' x E', then T is conjugate to one of T, and Tk 5.

(5) For a fixed § (w or ew), Xy, and Xy, are stably conjugate. Their Ad G-orbits do
not coincide, and these two orbits make up a stable orbit.

(6) If T is isomorphic to E' x Resg. jr(kerNgg /1), L = F(\/9) then T is conjugate
to one of Ty, and Ty .

PROOF. (1) and (2) follow from Proposition 3.5.2 of [R2].

That the elements Xg;, 1 <j < 4 are stably conjugate is immediate, because they have
the same eigenvalues. A simple calculation shows that the Weyl groups W(Tg) ~ S;
and W(Tg2) ~ Z/2Z, and no two of the Xz,’s are conjugate. Apply Proposition 3.5.2
and remarks on p. 29 of [R2] to get (3) and (4).

Xy, and X, have the same eigenvalues and so are stably conjugate. By Proposi-
tion 3.5.2 of [R2], their stable orbit consists of two Ad G-orbits, so it suffices two show
that Xj ; and X, do not lie in the same Ad G-orbit. (5) and (6) now follow. n

4. Filtration subgroups and vanishing of certain integrals. The topic of this sec-
tion is properties of integrals of the form

@.1) X, Y:C) = /C wE(tr(XAdx"(Y)»dx

for various semisimple elements X and open compact subsets C of G, where Y is in
Ng. These types of integrals appear in formulas for Fourier transforms of measures on
elliptic adjoint orbits in g. The results of this section will be used in Section 5 to relate
these integrals to character values of inducing data for supercuspidal representations of
G.

To begin, parahoric subgroups and filtrations are defined as in [Mo] and [J]. Let
K = G(Of). The Iwahori subgroup  of K consists of those matrices in K whose en-
tries below the diagonal lie in pg. The remaining conjugacy class of parahoric subgroups
of G contains the normalizer L of / in G. To each of K and L there is associated one
filtration, and there are two filtrations associated to /.

Given i € Z, let f; be the set of 3 x 3 matrices with entries in pL,andletf; = fiNng.
SetKo=KandK; = (1 +f)NG,i> 1.

Define .
N O Op pg N be Or Ok
lo=4| pe O O Li=4qlpe pe Og
pe ve O P Pe b

and f2,-+j = w‘fj for i any integer,andj € {0, 1}.Set [; = iNg,i€Z Ly=L=1,NG,
andL; = (1+1)NG,i> 1.
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The first filtration associated to I (the standard filtration ) is given by Iy = I, and
I;=(1+1)NG,i>1,where

) O Op Og ) e Or O 3 pe pe O
i = {( pe Or Og nw=q|be pr O b=<|pr Pr PE
be Pe O P b bE p: PE bE

and i~3,v+j- = w'i; fori € Zandj € {0,1,2}. Set i; = iiNg.
The other filtration associated to / (the non-standard filtration) is Iy = I, I} =
(1+ f}’)ﬁ G,i > 1, where

5 Op Op O 3 pe O Og
it ={|ve Op O it ={|pe ve Og
be be O Pe PE PE

N pe pe O - Pe PE PE
ir={(ve pr b& i3 =<q|be DPE bE
Pe PE PE D% P PE

and ﬂ{w = wifjb fori € Zandj € {0,1,2,3}.Seti’ =i’ Ng.
Given any lattice [ in g, let [* = {X € g | tr(XY) € O VY € [}.

LEMMA4.2. Leti € Z. For the given Cartan subalgebra‘T (notation as in Section 3)
and lattice m;,
(T + mu)N(m; — mu)NANG = 0.
(1) T=TyeorTgy, andm; =1
2) T="T,andm; =1}
(3) T =Ty, or Igy and m; = |;
(4) T = ‘Z;am,( and m; = i,‘

PROOE. (1) Suppose X € (7 + ) N (E; — fir1), where T = Ty or T = ‘I
Then the image of @w'X in t;/f;; ~ g(F,) lies in an elliptic Cartan subalgebra, so
is semisimple. If X € (g, then the image of @ 'X in g(F,), which by assumption is
nonzero, is nilpotent. But a nonzero element of g(F,) cannot be both semisimple and
nilpotent.

(2) Suppose X € ié’. ThenX € Y+ iIL’, where

A4 0 0
Y:(O C\/g 0), A € Og, b € Op.
0 0 -4
If X € NG, then X* = 0, which implies ¥* € i}, thatis, 4 € pz and b € pr. Thus
X € iy, and (i —i7)NAG = 0. Since i}, = @/if, (2) holds for i divisible by 4.
It is easily seen that Ty, Ni? C i} and Ty, N1 C i2. Therefore (2) holds for i of
the form 4/ + 1 or 4j + 3.

IfX € (Tp) +i5)Ni], then X € Y +1}, where

0 0 aye
Y=( 0 0 0), a € Of.
wa/e 0 0
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If X € NG, then ¥* € i}, that is, a® € b, or a € pr, which is equivalent to X € i. (2)
now holds fori =4j+2,j € Z.
The proofs of (3) and (4) are omitted as they are similar to the proof of (2). .

Let Xp1, Xp2, and Xz, be defined as in Section 3.

LEMMA 4.3. Assume Y € Ng.

(1) Suppose X € t_;_y, i > 0, has the property that the image of w'*'X in to /¥, ~
g(F,) is regular and elliptic. Then J(X, Y; K) = 0 whenever Y ¢ ;.

(2) Let X = Xy, be such that |a|, |c| < ¢ and |b| = ¢'*', i > 1. Then J(X,Y;1) = 0
whenever Y ¢ i}._,.

(3) Let X = Xy, be such that |a|, |c| < ¢ and |[b| = ¢!, i > 1. Then J(X,Y;L) = 0
whenever Y ¢ [5;_,.

(4) LetX = Xg besuchthat|al, |c| < ¢*',i > 0,and |b| = |(a—c) —b?|'/? = ¢'*.
Then J(X,Y;L) = 0 whenever Y ¢ 15;.

PROOF. For each of (1)(4), we will use the notation m;, j € Z, for the lattices
defining a particular filtration. For (1), m; = {;, for (2), m; = i }’, and for (3) and (4),
m; = [j.

Given X, let 7 be the Cartan subalgebra containing X. In (1), 7 is Ty, or g Set

m;=m;NTand m* =m;NT".
Moy ([Mol, p. 190, p. 200) has shown that
. / 1L
“4.4) m; = m; +m;
and the map induced by taking commutators is onto:

(4.5) X, Ty /ey —» g o

Here s = 0 in cases (1) and (3), and s = —1 in cases (2) and (4).

Letd = 1,4,2 and 2, in cases (1)—(4), respectively. In each case, wm; = mgy;,j € Z.
Let P; = c(m;), forj > 1, and let P be the associated parahoric subgroup. Then we must
show that J(X, Y; P) = 0 whenever ¥ ¢ m(_1yy_+1.

Define the integer r by ¥ € m, — m,y;. Assume that » < (i — 1)d — s, that is,
Y ¢ mg_1yss.Let £ = (i — 1)d — s + 1 — r. The integral J(X, Y;P) is a nonzero
multiple of

fp /p 1/’E(“(X Ad(kh)"(Y))) dh dk.

Fix k € Pandset Z = Adk~'(Y). If h € P, then h = c(H) for some H € m,, and
Adh~Y(Z) — (Z - 2[Z,H]) € myp, C M(i—1)4—s+2. The relation ([J], p. 32)

(4.6) m = m g

together with X € m_,41,_, implies that tr(Xm_1)4_s+2) C Of.

https://doi.org/10.4153/CJM-1995-032-x Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1995-032-x

614 FIONA MURNAGHAN

Using these facts, we see that the inner integral J(X, Z; P,) equals
[, ve(r(X@ ~ 202, HD) ) dH = e(wX2) [ be(tr(-20X. 218D) dH.

Since mj = m_;_g4, this integral vanishes unless [X, Z] € m_,_4, because otherwise
the character of m, in the integral is non-trivial.

Now, using (4.4), write Z = Z' + Z*, where Z' € m/ and Z* € m/*. Choose n > r
suchthat Z € m/t —m'L . By (4.5), [X,Z1] € m"%y, s — M Sy, Assume [X, Z] =
[X,Z"1€ m_;_4¢1. Then —id+n+s> —0 —d+ 1, thatis,n > r+1.

Since Z € Ng and n > r+ 1, Lemma 4.2 implies that Z € m,;. But m, is
Ad P-invariant, so Y € m,+;, which is a contradiction. Thus [X,Z] ¢ m_,_4 and
J(X,Z;P,) = 0 for every k € P. Therefore J(X, Y;P) = 0. n

LEMMA 4.7.  Suppose Y € Ng. Let Trum be as defined in Section 3. If X € Tiam N
(i—i — i—i1), for some i > 1 which is not divisible by 3, then J(X, Y;I) = 0 whenever
Y ¢is.

PROOF. Argue as for Lemma 4.3, with m; = i;,j € Z,P = l,and { =i —r — 3.
Because the residual characteristic may equal 3, (4.4) does not apply. In place of (4.4),
apply Lemma 3.5 of [C] to see that

X, Adk ' (V)] €15 = i i1 = AdKI(Y) € Toame + im0, kEL .
Leti > 1. Define
a/e 0 0 .
4.8) oc=< 0 cy/e O ), a,c €F, lal,|c| <la—c|=4¢"".
0 0 aye
The stabilizer G’ of « in G is isomorphic to Hy, X E'. Let g’ be the Lie algebra of G. If

A is a subset of g, 4’ denotes 4 N g’, and 4L is 4 N g"*+. Next we define certain regular
elliptic elements in g’:

aI\/E 0 b\/g ) )
4.9) pB= ( 0 caye O ), ai,b,ci €F, |b| = ¢, |ai],|ei| < ¢,
b\/g 0 al\/E
a1\/§ 0 w"'b\/g
(4. 9ii) 8= ( 0 cyve O )
wb\/g 0 al\/E
al,b,Cl EF, 'blzlbz_a%ll/zzqfﬂ, ‘Cl‘ Squ,
(4. 9iii)

al\/g 0 b\/g
o

0 cve O ), ay,b,cy €F, |b| = ¢*, |ai],|c1| < ¢, 0 € {w, cw}.
0by/e 0  aj\/e

The next lemma is concerned with J(X, Y; P) for X of the form X = « + 3, where
B € t_;Ng’is as in (4.9), and P is a parahoric subgroup. We will refer to 3 given by
(4.91), (4.9ii), and (4.9iii) as cases (i), (ii), and (iii), respectively.
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LEMMA 4.10. Let o be as in (4.8), B as in (4.9), and Y € Ng. Forr € Z, let
m, =1, [, and irl’ , in cases (i)—(iii), respectively. Let P, = c¢(m,) for r > 1, and let P
be the associated parahoric subgroup. Setd = 1, 2, and 4 in cases (i)—(iii), respectively.
Then wm, = My, in every case.

(1) In cases (i) and (ii), assume that 0 <j < i Ifj > 1,0orj=0and Y € my, set

P(Y,ij) = {k € P| Adk™'(Y) € my 1) + Mpgijaper }»
andifj = 0and Y ¢ my, set
P(Y,i,0) = {k € P| Adk™'(Y) € m + Mgy}
(2) In case (iii), assume that 0 < j < i. Set
P(Y,i,j) = {ke€ P| Adk™'(V) € Mg/ + Mdijpe }-

Let X = a+ (. Then J(X,Y;P) = ](X, Y;P(Y,i,j)), Y € NG
PROOF.

STEP 1. Assume Y € m;. The integral J(X,Y;P) is a nonzero multiple of
Ip ](X, Ad k_l(Y);P[) dk for any integer £ > 1. Set £ = [(di + 1)/2]. Here, [-] denotes
the greatest integer function. Fix k € P and set Z = Adk~'(Y). If h = c(H) € Py,

AdIN(2) ~ Z+2(Z,H] € Mgy = M o),

the last equality following from (4.6). Also, X € m_g;) and trQX[Z,H]) =
tr(2[X, Z]H). Therefore, J(X, Z; P,) can be rewritten as

Ve((XD) [ e(tr(-20X, ZJH)) dHi

This integral vanishes unless [X, Z] € mj. A straightforward calculation shows that
m, =m.+mt,reZ Write Z = 7'+ 7,7 € m}, Z* € m/*. Define r by Z* €
m/t — m’%,. We remark that if d is even, then m5- = mjL, s € Z, so » must be even if
d = 2 or 4. Note that o € m_gg41) — M_gi+1)+1 and § € M_gg1y+1. It can be checked
that

1 [AR 1L
[, Z27] € MZygaryer — M girtyir1-

from which it follows, using (4.6), that [X, Z] € m} = m_,_g4 is equivalent to —d(i +
) +r > —€—d+1,thatis r > [di/2] + 1. Asaresult, J(X, Y; P) = J(X, Y; P(Y,)),
where

P(Y,i)={ke M| Adk'(Y)eg'+ Mg /o341 }-

The second part of Step 1 involves writing ] (X, Y; P(Y, i)) as a nonzero multiple of
a double integral and showing that the inner integral vanishes under certain conditions.
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Letm = [(dj+ 1)/2]. Observe that P(Y, i) is invariant under right translation by P, N G".
Thus 7 (X .Y, P(Y, i)) is a nonzero multiple of

f,, o 9(X, Adk™'(V); Pu N\ G') dk

1/)5( (aAd k"(Y)))j(ﬁ, AdK(Y), P, N G') dk,

)
equality holding because Ad h(a) = a forh € G'.Fixk € P(Y,i)andsetZ = Adk \(Y),
writing Z = Z' + Z* as above. Observe that
wr(BAdh(ZY)) = u(AdR(@B)ZT) =0, hel
= JB,Z,;PnNG)=9B,Z;P,NG).
Let T = T, T2, resp. Iy, in cases (i)(iii), respectively. Arguing as above, we find

that this last integral vanishes unless Z' € 7 + m/ Recall that Z1 € Mg /2p1- By

[dj/21+1-
an easy variant of Lemma 4.2,

(T + mig o + Mgiy2p) VNG = (Mg o + Mpaiy2p1) N A
Thus we have shown that (X, Y; P) = ](X, Y;P(Y, i,j)) forY € AgNm.

STep 2. Ifj = 0and Y € my, taking ¢ = [di/2]+ 1 and m = | and arguing as in
Step 1 results in J(X, Y; P) = J(X, Y; P(Y,1,0)).

STEP 3. Ifj > landY ¢ m; orj = O and Y ¢ my, then P(Y,i,j) = (. The proof
that J(X, Y; P) = O is as for Lemma 3.9 of [Mu2]. n

Leti > 0. Define
a/e 0 w 1by/e
.11) a:( 0 (a—b)/e 0 ) a,b € F, |b| =q"", |a| <q™'.
why/e 0 ay/e
An argument similar to that in [J], p. 57 shows that the stabilizer G” of « in G is isomor-
phic to H,, x E'. Let g” be the Lie algebra of G”'.

LEMMA 4.12.  Supposer > 1. Then
@+ )N — L) NAG = 0.

PROOF. Suppose X € (g” +{;)Ny. Then X € Y + [, where

/e 0 wldye
Y= ( 0 NG 0 ), c,d,e € Or.
wdy/e 0 NG
IfX € Ng, X*> = 0, which implies that ¥* € I,. It is easily seen that ¥ € [, if and only
ifc,d, e € pp, thatis, X € ;.
A similar type of argument works for X € (g” + [5) N ;. "

https://doi.org/10.4153/CJM-1995-032-x Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1995-032-x

SUPERCUSPIDAL REPRESENTATIONS 617

LEMMA4.13. SupposeY € Ng. LetX = a+fB withacasin (4.11) and 8 € ¢"NI_5;_;.
Then J(X,Y;L) = J(a,Y;L). Furthermore J(a,Y; L) = 0 whenever Y ¢ 1y;.

PROOF. Suppose Y € [, — [,4; for some r < 2i — 1. Otherwise there is nothing to
show. Set £ = 2i — r. The element « of (4.11) is slightly different from the « considered
by Moy, but is conjugate to it by an element of L, so Moy’s results still hold. Argue as in
the proof of Lemma 4.3, using results on p. 200 of [Mo], to see that J (X, Adk~N(Y); L g)
vanishes unless Adk~!(Y) € g” + [,+1, which, by Lemma 4.12 is equivalent to Y € [,+,.
Thus 7 (a, AdK~\(1); L g) = 0 for all £ € L. This implies, as in the proof of Lemma 4.3,
that (X, Y;L) = 0.

We have now shown that, independent of the choice of 3, (X, Y;L) = O unless Y €
[,;. To finish the proof, note that 3 € [_5;_; = [5; ((4.6)). Thus J(X,Y;L) = J(e, Y; L)
forY € 1,. ™

5. Definition of X;. In [Mo], Moy defined nondegenerate representations, a set of
irreducible representations of open compact subgroups of G. Up to twisting by a one-
dimensional character of G, each irreducible admissible representation of G contains a
nondegenerate representation. Using Hecke algebra isomorphisms, Moy classified the
irreducible admissible representations of G containing a given nondegenerate represen-
tation. He identified the supercuspidal representations and proved that they are all in-
duced from representations of open compact subgroups. Jabon ([J]) used Moy’s results
to explicitly determine the inducing data for each supercuspidal representation.

Suppose 7 = Ind, x for some finite-dimensional representation x of an open compact
subgroup H. Let x,; be the character of k. The function f;: G — C defined by

| xs(x), ifxe€H,
S = 0, otherwise

is a finite sum of matrix coefficients of .

Let °E(G) be the set of irreducible supercuspidal representations of G. Suppose &, is
an irreducible cuspidal unipotent representation of G(F,) (see Lemma 5.2). The repre-
sentation m, obtained by inflating «, to K and then inducing to G is irreducible ([Mo]).
Let °F,(G) be the subset of °E(G) consisting of those representations which are equiva-
lent to 7, ® x for some one-dimensional representation x of G. Since any two choices for
k, differ by a one-dimensional representation of G(F,) ([Mo]), °Z,(G) is independent of
the choice of k,,. Given X and Y in g, and an open compact subgroup K¢, let 7(X, ¥; K.)
be defined by (4.1). The goal of this section is to prove the following analogue of Propo-
sition 3.10 of [Mu2]:

PROPOSITION 5.1.  Let w € °E(G).
(1) If 7 ¢ "EG), there exists an X, € § and an open compact subgroup K, such
that

£y /K fo(K ' e(=Y/2)k) dk = I(Xr, V;Kyr), Y € NG
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(2) If m € °E(G), there exist X, and X, > € Greg Such that, if' Y € NG,

SO [ fll =Y/ 2)K) ke

_(g+1y
=5,

](Xu,l, Y,K) -

2 g+l
(—‘]—3"—+—)J(Xu,z, Y K).

REMARKS. (a) Inevery case, the centralizer of X in G is compact, but X; may not
be regular.

(b) Note that ¢(—Y/2) = exp(Y) if Y € Ag.

(c) In(2), X,,; and X, , are independent of the choice of m € °E,(G).

There are three general types of 7 to be considered, according to the properties of the
nondegenerate representations () which they contain. The first type (Lemmas 5.3 and
4) contains a nondegenerate representation Q of K or L which factors to an irreducible
cuspidal representation of K/K, or L/L;. The second type (Lemma 5.6) contains an
Q which is represented by a regular element « (see (5.5)). Finally, for the third type
(Lemmas 5.8, 5.11, 5.12), Q is represented by a singular semisimple element « of the
form (4.8) or (4.11).

LEMMA 5.2. Let k be an irreducible cuspidal representation of G(F;). Then k has
degree (g — 1)(q +1)%, (g — 1)(¢*> — g+ 1), or q(q — 1). Let Y be a nilpotent element of
g(F,), and let ¥ be a nontrivial character of F,.. Given a regular element X € g(F,), let
T be the Cartan subgroup of G(F,) such that X € T = Lie(T). Define

ok 1 =g 71" ¥ P(r(kadx'(D)),

x€G(F,)

where |T| denotes the order of T.
(1) If has degree (q — 1)(q + 1), then xx(c(V)) = QKXunr, Y) for any Xun which is
regular in §(F,) and belongs to the image of Ty N fo.
(2) Ifk has degree (q — 1)(¢* — q + 1), then X (c()_’)) = Q(Xg, ), for any Xg which
is regular in g(F,) and belongs to the image of Ir,; N fo.
(3) & is unipotent if and only if k has degree q(q — 1). In that case, X« (c(f’)) =
(Q(Xum, Y) — O(Xg, }_’))/3 where Xy and Xg are as in (1) and (2).

PROOF. For the definition of cuspidal and unipotent representations of a reductive
group over a finite field, see [DL]. Suppose T is the image of Ty, or T, in G(F,). Let 6
be a regular character of 7, that is, a character which is not fixed by any nontrivial element
of the Weyl group of T in G(F, ¢)- The virtual character R3(f) ([DL]) is, up to sign, the
character of an irreducible cuspidal representation of G(F,). The values of the character
X ¢ of this representation on the unipotent set are independent of the choice of character
6. Kazhdan ([K]) proved that, if u € G(F,) is unipotent, then x4(«) = Q(X, log u), where
X is any regular element of T. Note that, if ¥ is nilpotent, then logc(—¥/2) = Y.
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Ennola ([E]) computed the characters of G(F,). The cuspidal representations can
be identified using the properties of their characters on the unipotent set. There are
three families of irreducible cuspidal representations, of dimension (g — 1)*(g + 1),
(@ — 1)(¢* — g + 1) and g(q — 1). The members of each family take the same values
on the unipotent set. If T is the image of Ty, then |T| = ¢* + 1 because T is the set of
norm one elements in a cubic unramified extension of F,2. x4 is the character of an irre-
ducible cuspidal representation of dimension Q(Xy,r, 0) = (g — 1)(g + 1)*. Each member
« of the family of cuspidal representations having dimension (g — 1)(g + 1)? therefore
has the property that y . (#) = xg(u) for u unipotent. (1) now follows.

(2) also holds by the same argument, using the fact that if 7 is the image of 7%,
7] = g+ 1),

Suppose k;, 1 < j < 3, are cuspidal representations of G(F,) having degrees
(g—1)(g+1)%,(g—1)(¢g* —g+1)and q(g — 1), respectively. From the character tables in
[E], we find that x,(«) = (X,ﬂ () — Xx, (u)) /3 for every unipotent u € G(F,). Thus the
second part of (3) follows from (1) and (2). That the unipotent cuspidal representations
are those of degree g(q — 1) is implied by [L], Section 9. n

LEMMA 5.3. Suppose n € °E(G) contains a nondegenerate representation Q of K,
Q being trivial on K, and factoring to a cuspidal representation of G(F,) ~ K /K. Let
X1, resp. Xy, be any element of Ty N E_y, resp. Tz N E_y, such that the image of
wX,, 1, resp. wXyp, in §(F,) is regular. Then

(1) If Q has degree (¢ — 1)(q + 1)?, Proposition 5.1(1) holds with X, = X, and

K, =K.
(2) IfQ has degree (q — 1)(q* — q+ 1), Proposition 5.1(1) holds with X, = X, and
K, =K.

(3) m € “EG) if and only if the degree of Q is q(q — 1), and in that case Proposi-
tion 5.1(2) holds.

PROOF. LetY € AG.IfY ¢ to, then the left sides of the equalities are zero, because
fx is supported on K = K. The right sides vanish as a consequence of Lemma 4.3(1).
Thus we may assume that Y € f,. Observe that (3) is a consequence of (1) and (2).
IfX € t; and k € K, let X and k denote the images of X and & in g(F,) and G(F,),
respectively. In cases (1) and (2), for ¥ € Ag N ¥y,
-1 10
fu(D) /Kf,,(k o(—Y/2)k) dk
_ —1 1.
= Q(1) /KQ(k o(—Y/2)k) dk
=/ |G(Fq)|“1( ) &(u(E(;Adx—‘ Ad/é—‘(Y)))) dk
K x€G(F,)
q
_ -1 _ .
= [ ve(tr(x AdK™\ (1) ) dk = 90X, Y: .

Here we have applied Lemma 5.2 to obtain the second equality. As 1) can be taken to be
any nontrivial character of F 2, we can assume that (1) = ¥(@0), € p;". .
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LEMMA 5.4. Suppose € “E(G) contains a nondegenerate representation Q of L,
Q being trivial on Ly and factoring to an irreducible cuspidal representation of L /L, ~
Hy(F,) x U(1)(F,). There exists Xy € Tga N[5 M Greg Such that the image of wX; in
lo /1y is regular. and Proposition 5.1(1) holds with K, = L.

PROOF. Using Ennola’s character tables ([E]), and arguing as in the proof of
Lemma 5.2, we can show that there exists a regular X € Lie(Hqs(Fq)) such that

Xw(c(=7/2)) = xx(D[Hgs(F)I ™" 30 @(tr()‘(Adx—‘(Y))), Y nilpotent
x€H,(F,)
where £ is any irreducible cuspidal representation of Hy(F,).

Given Z € I, let Z denote the image of Z in [o/[,. Let Xz, € Tg, be such that
Xg, = X. Then the entries of Xz, satisfy |b| = |a® — b*|'/2 = g, and |c| < 1,50 X, €
Areg- If Y € NG N Lo, then, since Y is a nilpotent element of Lie(HqS(Fq) X U(l)(Fq)),
Y € Lie(Hy(F,)).

Set X; = Xg,. The remainder of the proof is much like the proof of Lemma 5.3,
except that Lemma 4.3(4) is used. L]

Suppose m, = f,, {4, iy, Or i}’ for some £ > 1. If « € mj,, the representation Q4
of Py = c(my) is defined by:

(5.5) Qq(c() = Yr({a,—2X)), X € my.

The nondegenerate representations appearing in the remainder of the section all have this
form.

The next case to be considered is that of m € °E(G) which contains a nondegenerate
representation Q, of Py, some £ > 1, where o € greg.

LEMMA5.6.  For each a and P, given below, if 1 € °E(G) contains a nondegenerate
representation Qo of P, (defined by (5.5)), then Proposition 5.1(1) holds, with X, = «
and K, = P.

(1) o € Iz or Tyn such that the image of w'*' o in §(F,) is regular, and Py = K;

(2) o =Xy, with |al, |c| < ¢, |b| = ¢'*', and Py = I},_,

(3) o= Xy, with |al, |c| < ¢, |b| = ¢, and Py = Ly,

(4) o = Xgy with |a|,|c| < g™*), |b| = |(a — ) — b*|'/? = ¢'*', and Py = Ly;

(5) ac q:am,( with lal' |C‘ S qi’ |bl = qiﬂ’ and PZ = 13i—l

(6) o € Toam with |al, |b] < ¢, |c| = ¢, and Py = I

PROOF. The inducing data for 7 as in (1), (2), (3) and (4) is given in Propositions 3.5,
3.8, 3.25, 3.23, and 3.27 of [J] respectively. For a description in cases (5) and (6), see
[Mo], p. 201.

Let T be the Cartan subgroup containing c¢(«). Set m = [(£ + 1)/2]. In every case,
T = Ind(T;Pm %, where & is an irreducible representation of 7Py, such that k|P(, /5., is a
multiple of a character p of Py /5, which has the property p|Pe = Q.
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IfX € Ag, then ¢(X) € TP,,r > 1, if and only if X € m,. This is a variant of
Lemma 4.2. Suppose ¥ € AG. Let k € P. Then k~'c(—Y/2)k = ¢(— Adk™(1)/2) €
TP, ifand only if Y € m,,.

Let Y € m, N Ng. Since k|P; is a multiple of Q,, it follows that

Jo (K~ e(= Y[ 2)k) = feppe (e Ad K™ (1))
Thus
£y /Pf,,(k"c(—Y/2)k) dk= (o, Y;P), Y€ N;Nm,.

By Lemmas 4.3 and 4.7,if Y € Ag and Y ¢ my, then J(a, Y; P) = 0. Therefore
to complete the proof it suffices to show that [ f; (kflc(— Y/ 2)k) dk vanishes for ¥ €
% n (mm - ml)'

Suppose ¥ € m, —m,4;, where £ —1 > r > [£/2]+1. By definition of f;, the integral
Ipfr (k"c(— Y/ 2)k) dk is a nonzero multiple of

L - Xe(W7'K (=Y /2)kh) k.
Fix k € Pand set Z = Adk~'(Y). If h = c¢(H), H € m,_,, then after verifying that
co(Z/2)h ' e(—Z/2)h € c([Z, H])Pe+y and [Z,H] € my,
the inner integral above can be rewritten as
xe(p(e(=2/2)) [ wp(~2uule, ZJH)dH

As was seen in the proofs of Lemmas 4.3 and 4.7, this last integral vanishes because
Z ¢ m,. Thus

/Pf,,(k“c(—Y/2)k) dk=0, Y€NGN(mypp — mp).

Finally, we must consider the case £ isevenand ¥ € NN (M — M ype1). In this case, &
is obtained by a Heisenberg construction, and x|P,, is the unique irreducible component
of Indf}"npm) Py P- Since the unipotent subset does not intersect (7N Py, )Pp+1 — Pps1, NO
P-conjugate of c(Y) can lie in (TNP,,)Py+1. This, together with the formula for characters
of induced representations of finite groups, implies that

fi(e(—Adk'1)/2)) = xu(e(-AdK'(0/2)) =0, keP. .

Let o be as in (4.8). We shall use notation from Section 4. Lemmas 5.8-5.13 are
concerned with those supercuspidal representations = which contain the representation
Q, of K; defined by (5.5). Before stating the lemmas, we use Q to define a character of
G, and discuss the parametrization of the representations .

We define a one-dimensional representation of G’ which coincides with (5.5) on a
subset of G’ containing K; N G'. This extension of Q, to G’, though it is not unique,
will also be denoted by Q,. Let E! = E'N(1+ pg/ 3 ). Note that the Cayley transform
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c: 1/ — (1=1/2)(1+1,/2) " maps {t/% | t € p/*""} onto E!. The map ¢q: E! XE! —
C defined by

$a(c(s/0).c(tv/7)) = Yi(—2e(as +cn), s,r€ pl
is a linear character of E] x E]. Fix an extension, also called ¢q, of ¢4 to E' X E'.

Givenx € G' =~ Hy, x E', let x; be the Hy-component of x, and x, the E'-component.
Note that detx; € E'. Set

Qa(x) = da(detxi,x2), x€G.

Suppose X € ¢’ is such that X> € fir1. Let Ay, 1 < £ < 3, be the eigenvalues of
X, A1 and )3 being the eigenvalues of the Lie(Hgs)-component of X. Let L be a finite
extension of E containing A\; and 3. Note that A, € E. Extend | - |z to | - |, on L.
Since @ 71X3 € fo, we have w7 '\} € Or, 1 < £ < 3. Thatis, |\]} < git".
Let x = c(X). Then detx; = c(A\jA3) and x, = c();). A simple argument shows that
c(A1A3) € c(Aq + A3)(1 + pit!). Thus

Paldetrr, x2) = i (~2V/E (a0 +X3) + Do) ) = (o, —2X)).
We have shown

(5.7 QX)) = Yr({ar,—2X)), X € ¢’ such that X* € fiyy.

In particular, the new definition of Q, on K; N G’ coincides with the old ((5.5)).

The supercuspidal representations containing the representation Q, of K; defined by
(5.5) are parametrized by those supercuspidal representations ' of G’ containing the
trivial representation of G'MI3; ([J], p. 42). The supercuspidal representations obtained by
Jabon in Theorems 3.12,3.14,3.17,3.19, and 3.22 of [J] are actually those which contain
Q_'. To get the ones containing Q, it suffices to replace Q' in Jabon’s theorems by
Q.

If B € ¢’ and m’ is a lattice in ¢’ which has the property that (3, (m’)?) C O, let Q4
be the representation of c(m’) defined by:

Qs(c(®) = ¥r((8,—2X)), Xew'
The different types of 7’ which must be considered are of the form n’ = Ind,G,, ', where
H and k' are as below ([J]):
(a) H = TE,IK[I(/+1)/2]’ 1 < j < i. The restriction of k' to K]' is a multiple of the
representation g, 3 as in (4.91).

(b) H = K'. k' is trivial on K| and factors to an irreducible cuspidal representation

of the finite group Hy(F,).

(¢) H = TgpLj, 1 <j <i. Therestriction of &’ to L, is a multiple of the representa-

tion Qg, 3 as in (4.9ii).

(d) H = L'. ' istrivial on L] and factors to an irreducible cuspidal representation of

the finite group L/L; ~ Hy(F,).
(€) H= Ty}, 0 € {w,ew}, 1 <j < i The restriction of &’ to I};}Lz is a multiple
of the representation Qg, § as in (4.9iii).

If M is a subgroup of G, let M’ = M N G'.
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LEMMA 5.8.  Suppose € “E(G) contains the representation Qg of K;, a as in (4.8),
and the for the corresponding representation w' of G’ has inducing data as in (a), (c), or
(e). Then Proposition 5.1(1) holds with X, = a + 3, B8 as in (4.9i), (ii), or (iii)) G > 1),
and K, = K, L or I, respectively.

PROOF. Letm, =f,,[,, and i;’, LeZr=1[j/2]+1,j+1,and 2j,s = [( +1)/2],
j>and 2j,t =j,2j,and4j —2,d = 1,2and 4, T = Tj,, Tk, and Ty, in cases (a),(c)
and (e), respectively. In each case, let T be the Lie algebra of 7.

The first step in the construction of the inducing data for 7 is to define a representation
Ko Of TPPgis1) /2y Set

L 7 1
Ji = c(mg + m{di/Z],,,) and J; = c(my + m{(di+l)/2])-

Observe that since @ € m_g+1) = m* 4, Oy may be regarded as a representation of
P4 which is trivial on Py4. To extend Q, from P, to J;, set Qa|c(mfji J21 ) = 1. Recall
that Q) is already defined on TP, C G'. Note that TP’ normalizes J; and conjugation by
TP; fixes Qq|J;. Also PE aij2perdi = Praijopr and s < [(di+1) /2]. Therefore Q, extends
to TPiPii/ape1- I Ji = Jiy then TP, = TP{Pygyir1)/2) and kg is just Qq. If J; # Ji,
then a Heisenberg construction must be used to produce the representation x4 (cf. [J]).
This representation has the property that k,|J; is the unique irreducible component of

Indj: Q,. Since J; is normal in J;, this implies that
(5.9 Xu, i —Ji =0 and
Xﬂn(l)_erca i = Qq.
The representation £’| P, is a multiple of a character p of P, which coincides with Qg
on P;. Note that 2r > ¢+ 1. Because Q|7 N Pty = 1, and
A *
(TOPYATNPw))” = (T Nmgy) /(T Nomy)
~ (T )/(TOM ), (of (46)

there exists 3 € T N 'm_,_g such that p| TN P, = Q;. Furthermore, ple(TrNml) =1
([J]). 1t then follows from

P =(TNP)(T"Nm;) and Qyle(T Nmy) =1,

that p = Qj on all of P,.. Because Q4|P; = Q;3|P;, we may (and do) assume that 3 = B.

If s = r, then " = Qg. Otherwise » = s+ 1 and «'|P; is the unique irreducible
component of Indf;np_‘) p Q. Therefore, if x € P, — P, is such that no P’-conjugate of x
lies in (TN Py)P., then x/(x) = 0. In both casess = rand s = r — 1,

X/ (X)
xx(1)

7 is induced from the representation & of TP{Kj;+1 /2 = TP.J; defined by

(5.10) =Q4(x), x€P,.

klJ; = Ko @ lgime and  k|TP. = ko @K'
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Here, 14im,+ denotes the trivial representation of dimension dim .
Now we determine the values of the character y, of £ on unipotent elements in the
inducing subgroup. If Y € Ag, then

&(Y) € TPPyginry /2 <= oY) € PPyainny )2y
= Y € mg + Mgy /2)-

The details of the proof of this are similar to the proof of Lemma 4.2 and are omitted.
LetY € AgN(m.+ My(gi+1)/2))- Then, as remarked in the proof of Lemma 4.10,

Y=Y +Y" forsomeY €mjand ¥ € Mg,
A straightforward calculation shows that
c(=Ye(Y) € c(YH = [YH, Y12V Y Y +[Y'Y Y, Y DPant C ey, JPais1 C Ji.
Combining this with above remarks concerning the definition of k, and (5.9), results in

Xra (1)) Xa(c(¥)e(—Y)e(Y))
X ke ( 1) XEo ( 1)

_ {QQ(C(Y’)), if Y1 € myg o, that s, c(Y) € TPL;
0 otherwise

Now we evaluate Qa(c(Y’ )). Let @ denote the Lie algebra of 3 X 3 matrices with
entries in E. Let §' be the centralizer of o in §. For £ € Z,

iy = (i, N g + (i, NG
It follows from Y+ Y2 + Y'Y1Y' + Y2 € §'"L, Y € m,,and Y* = (Y + Y1)’ = 0, that
Y2 e (VY2 + Yt Yyt +Y?Y) + By ops C titge, C Fi

Apply (5.7) and note that (a, Y1) = 0 to conclude that Q, (c( Y’)) = Yr((a, —27)).
Suppose thats = r—1. Since ¢(Y) is unipotentand c(Y) € c(Y')P.P((i+1 /), the image

of ¢(Y’) in P; /P, ~ G/(F,) is unipotent. Thus, if ¢(¥’) ¢ P/, no P,-conjugate of (') is

in TP,. Combining this with earlier remarks about the character of k', we conclude that

Xw(c(Y)) =0 ifY € m|—m].
Recall that y,|P. is given by (5.10).
We can now conclude that for ¥ € Ng N (m] + Mgy /),
Xs(eD) _ (il 8,20, Y € 0+
xx(1) 0 otherwise.

The above formula gives values of f on TP P41y /2100(9\[6) = c((m s g1y /20
9\[G) From this and Lemma 4.10, it is now clear that Proposition 5.1(1) holds with K, =
Pand X; = o+ 0. n
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LEMMA 5.11. Suppose m € °E(G) contains the representation Qq of K;, a as in
(4.8), and the corresponding representation ' of G' has inducing data as in (b) or (d).
Then Proposition 5.1(1) holds with X, = a+ 3, B asin (4.8i) or (ii), j = 0, and K, = K
or L, respectively.

PROOF. Letm, = f,,resp.ly, £ € Z, P = K, resp. L, d = 1, resp. 2, in case (b),
resp. (d).

Let J; and J; be as in the proof of Lemma 5.8. Extend Q, to from P to P'J;. Then
produce a representation ., of P'.J; whose restriction to P{J; is a multiple of Q4.

Observe that
Hy(F,) x U(1)(F,), incase (b)

P'/P| ~ { H.n(F,) x U(1)(F,), in case (d).

P'/ P has no cuspidal unipotent representations and it can be shown, by an argument
similar to that for Lemmas 5.2 and 5.3, that if the image of Y/ € m{ in mj/m] is
nilpotent, then

e (c(Y) B
=5 =) wE(tr(ﬂ Adk (—21”))) dk,
for some (3 as in (4.91) of (4.9i1) withj = 0 in cases (b) and (d), respectively. (The measure
on P’ is assumed to be normalized so that P’ has volume one.)

= Indg, 7 where

KIP = ke ®K' and K| = ke ® lgimpr-
If J; = J;, then an argument as in the proof of Lemma 5.8 yields

xs(c(Y) _
Lx(ml = Pr({a, —2Y)) /P Vr((8,—2AdKTN(Y))) dk, Y € NGN(mg+M ey /2)-
K
If J; # J;, then the main idea of the proof is along the same general lines as for
Lemma 5.8, except that it is much longer, as the calculation of i, is more involved. We
omit the details. Proofs of analogous results for GL,(F) and classical groups appear in

Lemma 3.20 of [Mu2] and Lemma 9.2 of [Mu4]. The value of x, (c(Y)) is given by:

Xra (C(Y)) -1 /
—_— = o, Adh™ (-2 dh, Ye N(mg + myy .
Xﬁ,a(l) /;)[(diﬂ)/z] Ql)F(< ( Y)>) % ( 0 [(d+1)/2])
Combining this with the formula for x - results in
R G)) -1
—_—— = a+B,Adh™ (-2 dh.
Xn(l) /P'P[(di+1)/2] 1/)F(< ﬂ ( Y)))
The desired result now follows after an application of Lemma 4.10(1) or (2) in the case
j =0. |}

We now consider those 7 which contain a nondegenerate representation Q, of Ly;,
where « is as in (4.11).

https://doi.org/10.4153/CJM-1995-032-x Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1995-032-x

626 FIONA MURNAGHAN

LEMMA 5.12. Leti > 1 and assume o is as in (4.11). If 7 € *E(G) contains the
nondegenerate representation Qy of Ly;, then Proposition 5.1(1) holds with X; = a + (3
and K, = L, where (3 is one of the following:

(1) B=0

aiv/e 0 wlb/e

(2) B:( 0 NG 0 ),al,bl,cEF,

wbl\/g 0 ai \/E
larl, Bl lef < [(ar — ¢)? — b3['/? = ¢

0 Ac 0
3) 8= (w)\c 0 —/\c),/\EEasinSection3,c€F|c|:q’”.
0 —wie O

PROOF. The proof is similar to the proof of Lemma 5.8, so we omit the details.
Along with « as in (4.11), Jabon and Moy also consider elements « of the form

a\/e 0 w lby/e
( 0 (a+byys 0 )
wby/e 0 ay/e

Since such elements are conjugate by L to matrices of the form (4.11), we need only
consider « as in (4.11).

The centralizer G’ = H,,(F) of « in G is compact. The element 3 represents a repre-
sentation of G” which is trivial on Ly; N G”. If this representation is trivial on L; N G”,
then 8 = 0. Otherwise, 3 is given by Proposition 3.30 of [J].

Compactness of G” can be used to show that for ¥ € A, c(Y) belongs to the inducing

subgroup if and only if ¥ € [; (similar to Lemma 4.12). Furthermore it can be shown
that
- _ | JHe+B,Y;L) = I, Y;L), ifY € Ly,
/Lf"(k c(Nk) dk = { 0 ifY el —

To finish, apply Lemma 4.13. n

REMARK. In Lemma 5.12, we could have taken 3 equal to zero for all of the rep-
resentations 7 considered. However, we chose a § which reflected the inducing data for
. This is useful for expressing coefficients in the local character expansion in terms of
Shalika germs (cf. Corollary 6.6).

To conclude the proof of Proposition 5.1, we have the following lemma.

LEMMA 5.13.  Supposer € °E(G) does not contain a nondegenerate representation.
Choose a one-dimensional representation x of G such that © @ x contains a nondegen-
erate representation.

(1) If v ¢ °E.(G), then Proposition 5.1(1) holds with X = Xrgy and K, = Ky

(2) If T € “E.G), Proposition 5.1(2) holds.

PROOF. Since Y is trivial on the unipotent subset of G, it is easy to check that f;(x) =
Jrex(x) for x unipotent. n
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6. Main results. Given f in C°(g), the space of locally constant, compactly sup-
ported, complex-valued functions on g, let £ in C°(g) be the Fourier transform of f
defined relative to the character 17 and the bilinear form (-, -). That is,

&) = [ve(wom)nay,

where dY is a self-dual (with respect to ") Haar measure on g. Given Y in g, O(Y) denotes
the Ad G-orbit of Y. Let p(y) be the distribution given by integration over the orbit O(Y).
The Fourier transform fi oy, of 110y, is defined by fior(f) = o (f).f in C(g). Recall
([HC2]) that /iy can be realized as a locally integrable function on g which is locally
constant on g.;. We use the same notation fi gy, for this function.

Let Y be a semisimple element in g. Choose a Cartan subgroup 7 such that Y belongs
to the Lie algebra of 7. Suppose that the stabilizer Gy of Y in G is compact modulo the
split component 4 of T. This is always the case if Y is regular, since Gy = T. Choose an
open compact subgroup K, of G, and normalize Haar measure on K, so that the volume
of K. equals one. Then the integral

oY) = [ g [K C wg(tr(YAd(kx)"(X))) dk dx

converges ([HC2], Lemma 18). Furthermore, if dx is normalized so as to correspond to
Ko(y)» then ((HC2], Lemma 19)

©.1) flom@) = O : 1)

Harish-Chandra stated the result for Y regular, but it generalizes to the situation above.
Note that the centre of G is compact, so the split component of an elliptic Cartan subgroup
of G is trivial.

LEMMA 6.2. Suppose © € “E(G). Define f, and K, as in Section 5. Assume that
Haar measure dh on K is normalized so that the volume of K, is one.
(1) Supposer ¢ °E,(G). Let X, be defined as in Section 5. Let X € Greg andy € Greg.
Then

DX Xy) = /G /K c [ /K ” ¢E(tr(x,, Ad(kxh)"(X))) dh] dk dx

(2) LetX,j, j = 1, 2 be defined as in Section 5. Then the conclusion of (1) holds with
X replaced by X,,j, j = 1 or 2.
(3) ©:(y) = D 5 Ji. [Jx, S (Gexh) = yhoch) dh| dk dx
REMARK. The proof of Lemma 6.2 is the same as for Lemma 4.2 of [Mu2]. (3)
follows from Harish-Chandra’s character formula ([HC1], p. 60):

_ dm
(D)

®, does not depend on a choice of measure on G. In order for (3) to hold, the formal
degree d() of m must be taken relative to the measure dx on G.

0.(y) [ /K C Jo (o)™ yhx) dk di.

https://doi.org/10.4153/CJM-1995-032-x Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1995-032-x

628 FIONA MURNAGHAN

LEMMA 6.3. Ifx € Gand X € ¥, for some { > 1, then Adx(X) € f, + A.

PROOF. This lemma is due to Howe in the case of the general linear group. For
G, the proof works the same way. Given x € G, x = kyak, for some ki, k, € K, and
some diagonal matrix a having diagonal entries w”, 1, and ™", where r is a non-negative
integer. Conjugating the element Ad k> (X) of f, by a is easily seen to produce an element
which is a sum of an upper triangular element in Aj; and an element in f,. It is now
immediate that Ad x(X) € A + t,, as AdK leaves both A and {, invariant. u

Foreachr € OE(G), let Vy, = t,, where £ = £(r) is defined as follows:
(i) If 7 contains a nondegenerate representation, and K, = K or I, resp. L, choose £
so that X € ¥}, resp. X € [5, ,.
(i) If 7 ® x contains a nondegenerate representation, where  is a non-trivial one-
dimensional representation of G, let £ = £(7) = max{{(7r®x), m}, where where
m is chosen so that  is trivial on K.

THEOREM 6.4. Let 7 € YE(G). Suppose X € Vi N Greg.
(1) If 7 ¢ “EL(G), then Ox(c(=X[2)) = d(m)iou,)X).
(2) If v € °E(G), then

Or(c(=X/2)) = {(@— g+ 1) fiop, )X — (¢ = D(@* — g+ Didow, X} /3.

REMARK. ¢(—X/2) may be replaced by exp X if X is sufficiently close to zero (see
the proof of Corollary 6.6).

PROOF. Assume that 7 contains a nondegenerate representation. Suppose that = ¢
0F,(G). Then (6.1) and Lemma 6.2 imply that it suffices to show

(6.5) I(Xr, Adx™ (X Kor) = fr(1)7 /K ﬁ,(h"c(— Adx—‘(X)/z)h)dh

forany x € G. Fixx € G. By Lemma 6.3, we can write Adx ' (X) = Y+Z, with Y € Ag
andZ € V;. IfK, = Korland h € K,, Adh~'(Z) € V. IfK, = Land h € L, since
f, C Ly, Adh~Y(Z) € 15,_;. Therefore,

ve (X AdBT\(Y +2)) ) = i (w(X AdHT (1)), h €Ky

This implies that the left side of (6.5) equals J(X;, ¥; K;).
Leth € K,. Set Y, = Adh~!(Y) and Z, = Adh~'(Z). Suppose K, = K or I. It
can be shown that if ¥; ¢ f, then neither ¢(—Y,/2) or c(——(Yl + Z,)/2) is in K, so

f,,(c(——Y./Z)) = f,r(c(—(Yl + Zl)/2)) = 0.If Y| € fo, then it is easy to see that
c(=Y1/2) € e(—(Y1 +Z1)/2)K,. Also K is in the support of fy. Thus f;(c(=¥1/2)) =
fw(C(—(Yl +Zl)/2))'

If K, = L, argue as above, replacing fy by [y, and K, by Ly,_,, to conclude that

ﬁr(c('_(Yl +Zl)/2)) = fr(c(=11/2)).
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We have shown that the right side of (6.5) equals fx(1)™" Jx, fr(h~'c(~Y/ 2)h) dh.
Since Y € A, by Proposition 5.1(1), this integral equals J(X,, Y; K,), which, as seen
above, equals the left side of (6.5). This completes the proof of (1) in the case where 7
contains a nondegenerate representation.

The proof of (2) is omitted, as it is the same as the proof of (1), except that Proposi-
tion 5.1(2) is used.

Suppose ™ ® x, x a one-dimensional representation of G, contains a nondegenerate
representation. To prove the theorem for 7, use @,(x) = X”(x)@,@x (®), x € Greg. Note
that  is trivial on V. =

Given O € (Ag), let Tp: greg — R be the Shalika germ ([HC2]) associated to O.
Then, if f is in C2°(g) and X is regular and sufficiently close to zero,

o= 2 To@rol)
Oe(Np)
Let co(m), O € (Ng), be the coefficient of i in the local character expansion of 7 at
the identity (Section 1).

COROLLARY 6.6. Let O € (Ng) and 7 € *E(G).

(1) Ifr ¢ E(G) and X, € Greg, then co(m) = d(m)I o(X7).

2) If ¢ °E(G) and Xy & Greg, then co(m) = d(m)T o(Xy + Z) for any Z € g which
commutes with Xy, is sufficiently close to zero, and is such that X, + Z € Qycg.

(3) If v € °EG), then

co(m) = {(g — g+ 1’ Tou)) = (@ — G — g+ Dl o(Xu2)} /3.

REMARKS. (a) In case (2), some twist of of 7 by a one-dimensional representation
of G is as in Lemma 5.12, and X, = «, where « is given by (4.11). More generally,
if X, = o+ 3 with a given by (4.11), it follows from the proof of (2) that cp(n) is
independent of 3.

(b) In Section 7, we will determine whether the coefficient ceg(7) corresponding to
the regular nilpotent orbit is nonzero. Also, in Section 8, for certain 7 € °E(G), the
coefficients co(m) will be computed for all O € (Ag).

PROOF (COROLLARY 6.6). Harish-Chandra ((HC2], Lemma 21) showed that:

DX X)) = Y ToX)ioX))
Oe(Ns)

for Xi, X € grg contained in certain subsets of g. Assume 7 is as in (1). Arguing as in
the proof of Theorem 4.4 of [Mu2], we see that there exists an open neighbourhood W, of
zero in g such that the above relation holds with X, = X, as longas X| = X € W;MN@yre,.
Applying Theorem 6.4(1) results in

®7r(c(_X/2)) = d(ﬂ') Z FO(XW)/:LO(X), Xe Greg NWzN V.
0e(No)
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There exists an open neighbourhood W, C V¥, such that if X € W, N g, and
x € G,Adx'(X) = Y+ Z, with Y € A\ and Z € W, exp is defined on W, and
f,,(h‘l exp(Y + 2)h) = f,,(h"(exp Y)h) for every h € K,. To see this argue as in the
proof of Theorem 4.3 of [Mu2]. In fact, the proof is much the same as the proof in The-
orem 6.4 that f;, <h“c(—(Y+ Z)/2)h) = fr(h~'c(=Y/2)h), except that it is necessary
to work on a smaller neighbourhood of zero on account of the exponential map. Since
Y € Ng, in particular Y*> = 0, ¢(—Y/2) = exp Y. So we have

f,,(h_l exp(Y + Z)h) =f,,(h_l(exp Y)h)
= fi(h'e=Y/Dh) = fi (W e(~(r + D)/ 2)h).

It now follows from Lemma 6.2(3) that ®,(exp X) = O, (c(—X / 2)) for X € W M Greg.

To finish the proof, compare the above expression for O, (c(—X / 2)) with the local
character expansion of 7 around the identity:

O:(expX) = ) co(mMioX),
Oe(Np)

X € Greg near zero. Note ((HC2]) that the functions fip, O € (Ag) are linearly indepen-
dent on any open neighbourhood of zero intersected with greg.
Suppose 7 is as in (2). Then X; = «, where « is given by (4.11). Suppose [, Z] = 0,
a+Z € greg, and Z € [_»;_;. Then, by Lemma 6.2(1) and Lemma 4.13,
o) = Ao(a+z)-

Combining this with Proposition 5.1(1), we get

Or(c(—X/2)) = d(m)fio(arz/X)

for X € greq close to zero. Now proceed as for (1).
The proof of (3) is like that of (1), except that Theorem 6.4(2) is used. [

7. Whittaker models. In this section we determine which of the representations in
OE(G) have Whittaker models (Theorem 7.13 and Corollary 7.16). We begin with a few
remarks about nondegenerate characters and Whittaker models. Let U be the unipotent
radical of the upper triangular Borel subgroup of G. An element u of U has the form

1 B bye—BB/2
u=(0 1 —B ) BEE bEF.
0 0 1

Given 7 € E, define a character x, of U by:

Xr(4) = Ye(™B), ueU.
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Any linear character of U is trivial on the commutator subgroup of U and therefore is
equal to x, for some 7 in E. As follows from the definition ([Sh, p. 191]), x, is nonde-
generate (or generic) if and only if 7 is nonzero. This use of of the term nondegenerate
is not the same as Moy’s nondegenerate representations in [Mo].

A smooth admissible representation 7 of G has a x.-Whittaker model, or is x.-generic,
if there exists a linear functional ) on the representation space ‘V of  satisfying

7.1 Mm(w)yw) = x,(Iv), ueU veV.

LEMMA 7.2. Let € °E(G). The dimension of the space of linear functionals on the
representation space of w satisfying (7.1) is either zero or one.

PROOF. The result is stated and proved in [Sh] for irreducible unitary admissible
representations of GL,(F). However, as remarked in the introduction of [Sh], the result
holds for quasi-split groups. Note that since the centre of G is trivial, every m € *E(G)
is unitary. =

In the case of a general reductive group, a representation may have a Whittaker model
with respect to one nondegenerate character, but not with respect to another (nonconju-
gate) nondegenerate character. However, this will not happen for G because all nonde-
generate characters of U are conjugate by elements of the diagonal Cartan subgroup 7,
of G. In fact, if x € T, has diagonal entries 7!, 1, and 7, then x,(xux"') = x(«). Thus
we say that 7 has a Whittaker model if 7 has a x,-Whittaker model for some (hence all)
T € E*. Otherwise we say that m does not have a Whittaker model.

There is one regular nilpotent orbit Oz in g ([R2]). The notations I'reg, fireg, and
Creg(m) will be used in place of I'g, 1o and co(m) if O = Okg. Recall that cp(r), O €
(Ag), is the coefficient of /i in the local character expansion of  at the identity.

LEMMA 7.3. Suppose n € “E(G) — °E.(G) and Xy € Greg. Then m has a Whittaker
model if and only if T'reg(Xr) # 0.

PROOF. By Corollary 1.17 of [MW], creg(m) # 0 if and only if = has a Whittaker
model. The lemma now follows from Corollary 6.6(1). u

We now proceed to determine whether I'reg(X) is nonzero for various X in greg.

LEMMA 7.4. Let X € Qreg. If X € Tunr, Tramy, o Tg2 N (Igje1 — lyji2), j € Z, then
reg(X) # 0.

PROOF.  Since I'reg(X +Z) = I'eg(X) for Z in the centre of g ([HC2]), we can assume
thattrX = 0. Definei € Zby X € f; — f4.
Given X € Zynr M Greg, there exist B, C € pi;and b, ¢ € p} such that

0 B byE
X=(C 0 —B)
c/e —C 0
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The image X, of w'Xin fo/f; ~ g(F,) is regular and is contained in a degree 3 unrami-
fied extensionof F». If B, C € P !, then zero is an eigenvalue of X4, which is impossible.
After conjugating by the matrix J (J appears in the definition of G in Section 2) if nec-
essary, we can assume that B € pi, — pir!. After conjugating X by the diagonal matrix in
G having diagonal entries ™!, 1, and w, we obtain the matrix
0 w !B wlby/e
wC 0 —w B
wrc\/e —wC 0
which lies in the set S = Y + f;4;, where
0 w!'B w?by/e
Y= (0 0 w B |.
0 0 0
Let f € C°(g) be the characteristic function of S. Then pox)(f) # 0. Furthermore, as f
is invariant under translation by {;,, an unpublished result of Hales ([H]) implies that the
Shalika germ expansion of /' is valid on f; N g If Z € ANg NS then, since Y2 ¢ Foivn, it
follows that Z2 # 0. This implies that O(Z) is the regular nilpotent orbit. Thus the germ
expansion of 11o.x(f) is:

0 _Tl HO(X)(f) = Hreg(f)rreg(X)~

Therefore I'reg(X) # 0.
The other cases are similar. n
In [S], Shelstad derived a formula for l"rGeg(x), for x in Greg, where Fgg denotes the
Shalika germ corresponding to the regular unipotent conjugacy class in G. A simple
argument shows that if X' € g, is close enough to zero and x = exp X, then I'z(X) is a

positive multiple of F,Geg(x). Lemma 7.3 can be rephrased in the following way:

LEMMA 7.5. Suppose n € °E(G) — °E(G) and X, € Greg- Then m has a Whittaker
model if and only if TG, (exp(wz”’X,,)) # 0 for m sufficiently large.

PROOF. The lemma is an immediate consequence of Lemma 7.3, the above remarks
and the homogeneity property of I'r.; ([HC2]). =

Suppose T is a Cartan subgroup of G. Let T = T(F). The diagonal Cartan subgroup
of G will be denoted by T,. Suppose x = expX € T, X € gy is near the identity. If o is
aroot of T in G, define

a(x)'/? = exp(a(X)/2).

Let {a,} be a-data for the action of Ix = Gal(F/F) on the roots of T, as defined in
Section 2.2 of [LS]. Given a, let a" be the corresponding co-root.

a(x)l/Z _ a(x)-l/Z ]OIV

o la<0

defines a 1-cocycle of I'r in T(F) ([S]) whose class in H'(T) will be denoted by inv(x).
Let inv(T) be the image in H'(T) of the class M\(T.) defined in Section 2.3 of [LS].
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THEOREM 7.7 ([S]). T (x) # 0 if and only if inv(x) = inv(T)~".
LEMMA 7.8. ForthegivenT and h, \T(F)h™! = Ty(F). Fixt € E such that 217 = 1.

(1) T=Tg,
T 0 7
hz( 0 1 0 )
—-1/2 0 71/2
wT 0
hz( 0 1 0 )
—wr/2 0 7/2
T 0 T/\/@
h= 0 1 0
(——T\/ﬁ 0o )

(4) T = Typ, 0 € {w,ew}. Suppose X is as in Section 3, that is \\ = 0¢ [ 2w.

(T\/%/Z)\ T —T\/E_ZE/Zw)\)
h=

(2) T=Tg,

(3) T=Ty,, 0 € {w,cw}

VEm/2X 0 few/2w
—T/ew /2N T T\/ew/2w

PROOF. In each case T(F) is equal to the invertible elements in the commuting al-
gebra of 7 in the set of 3 x 3 matrices over F. To check that A”T(F)h~' = Ty(F) is
straightforward. The details are omitted. (]

Suppose X € g(F) is diagonal with diagonal entries \;, 1 < j < 3. Forj = 1 or
2, define o(X) = Aj — Ajs1. Set az(X) = (X)) + aa(X). {£a; | 1 < j < 3} are the
roots of T, in G. Let B be the upper triangular Borel subgroup of G. Given this choice
of Borel subgroup, o, 1 <j < 3 are the positive roots. Define X, j = 1 or 2, to be the
matrix whose only nonzero entry is a one in the j,j+1 position. Let X, = X4, +Xo,, and
X_o; = "Xy, This choice of F-splitting (B, Ty, {X+a, }) of G will remain fixed throughout
the section.

Given a Cartan subgroup T and an 4 in G(F) such that A”T(F)h~' = T4(F), for a Borel
subgroup of G containing T, we take 4~ BA. The roots of T in G will be identified, via
h, with those of T; in G. & will be assumed to be as given in Lemma 7.8.

LEMMA 7.9.  The following table gives a-data for some Cartan subgroupsin G. a_,
is defined to be —aq, 1 <j <3.

T aq, A, da,
T | Ve |—vE| v
TE,2 \/E —4/E w\/g—l
Toy | VB |—vE | Vem

https://doi.org/10.4153/CJM-1995-032-x Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1995-032-x

634 FIONA MURNAGHAN

PROOF. In order that the given data be a-data, a,o, = 0(aq;) must be satisfied for
every o € ['r ([LS]). This is straightforward. =

LEMMA 7.10. Let T € {Tg1,Te2,To1, T2}, 0 € {w,cw}. If inv(T) is defined
relative to the F-splitting given above and the a-data in Lemma 7.9, then inv(T) is the
trivial class in H'(T).

PROOF. Fix T. Let Q be the Weyl group of T, in G. Foreacho € I'p, letor € Q-T'r
be the action of o on T; which comes from transporting the action of o on T to T, via
conjugation by 4. Define x(o7) € T, by:

a\/

x(o7) = | | ™

{ilo~1(a)>0}
Conjugation by ho(h™!), h as in Lemma 7.8, defines an element w(o7) of Q. a; and o,
are the simple roots of T; in G. Using XiopJ = 1,2, t0 define n(oy) as in [LS], we obtain

0O 1 0 1 0 O
n(ay) = (—1 0 0), n(ay) = (0 0 1)
0 0 1 0 —1 0

As in [LS], if w(o7) is written in reduced form as a product of simple reflections corre-
sponding to the «;’s, j = 1, 2, a representative n(w(or)) for w(or) is given by taking the
corresponding product of n(a;)’s, j = 1, 2.

or +— m(or) = x(or)n(w(or))
defines a 1-cocycle of {o7 | o € T'r} in T4(F) ([LS]). A\(T) is then given by:
o+ h'm(or)o(h), o €T

With our choice of a-data and #, it turns out that A~'m(a7)o(h) = 1 for every o € [f.
Thus the 1-cocycle A(T), and hence its class inv(T), is trivial. We omit the details. =

LEMMA 7.11. Let Xgj, 1 <j <4, and Xy;, j = 1, 2, be defined as in Section 3. Let
m, n € Z be such that n > m.
(1) Supposea, b, c € Faresuch thatlatb—c|=|a—b—c| =g ™and|b| =q"
For m sufficiently large, the following are equivalent:
(a) inv(expXg,) is trivial
(b) m+niseven
(¢) inv(expXg2) is non-trivial.
Furthermore, inv(exp Xg3) and inv(exp Xg4) are non-trivial.
(2) Suppose Xy, is suchthat|b| = =™ and|a|, |c| < g™\ If m is sufficiently large,
then inv(exp Xy, ) is non-trivial.
(3) Suppose Xy, and Xy, are such that |a|, |b| < |a —c| = g ™. Then, if m is
sufficiently large, inv(exp Xy 1) is trivial and inv(exp Xy ) is non-trivial.

PROOF. LetT € {Tg,, T2, g1, Too}. Suppose x = expX € TN Greg is close to
the identity and let i), be the 1-cocycle defined by (7.6). The class inv(x) of 7, is trivial
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if and only if there exists y € T(F) such that n,(c) = yo(y~') for every o € I'r. By
setting t = hyh™! € T,(F) and taking o7 as in the proof of Lemma 7.10, we see that this
is equivalent to

(7.12) hn(@h " = tho(h ot NoWh ™ = tor(t™"), o €Tp.

If o € ['p is such that o(ay) < 0, 1 <j < 3sety; = W(x) = ((x)"/2 — o(x)"/?) / aq,
1 <j < 3. Otherwise, o(a;) > 0 for 1 <j < 3, and we take 7; = 1.

hne(o)h™" = diag(173, 7772, 15 Y, o €T,

where diag(A1, A2, A3) denotes the 3 x 3 diagonal matrix with diagonal entries };, 1 <
j < 3. Throughout the proof, we assume that ¢t € Ty(F) is of the form diag()\;, A2, A3),
)\j €F.

(1) Since Tg,; and Tk split over E, it suffices to determine whether there exists a ¢ €
T4(E) satisfying (7.12). Let o, denote the nontrivial element of Gal(E/ F). If t € Ty(E),
a simple calculation shows that, for both T'= T ; and T,

tO'EYT(t_l) = diag(\; )-\1, Az).\z, /\3)_\3).

To determine whether inv(exp X 4) is trivial, we must determine whether there exist \; €
E*,1 <j <3 suchthat

)\1)_\1 =173, )\2)-\2 = '71_172, /\3)_\3 = 72—173_1-

Note that V;(expXg,) € F, 1 <j <3,1 <i <4 NE/F(EX) consists of the set of
elements in F* of even valuation. In the case of Xz, for large m, |71"’Yz| = 1 and
|7173] = |7273] = ¢~™" The equivalence of (a) and (b) is now clear. The case of Xz,
is similar, except, due to the different a-data, |Y173| = |Y273| = ¢~ "~!, which implies
the equivalence of (b) and (c). In the cases of Xg3 and Xg4, |Y273| = ¢~?"~!, and so
V2Y3 ¢ NE/F(EX )-

The details for (2) and (3) are omitted. n

THEOREM 7.13. Let m € °E(G) — °E,(G). Leta, b, c € F.

(1) If Xy € Tune o Tram ¢, then m has a Whittaker model.

(2) Supposela+b—c|=|a—b+c|=q"" and |b| = ¢*' for integersi >j > 0. If
X is equal to Xg 1, resp. Xg 2, ™ has a Whittaker model if and only if i +] is even,
resp. odd. If X = Xg3 or Xg4, ™ does not have a Whittaker model.

(3) Suppose |b| = ¢*' and |a|, |c| < ¢, i > 1. If Xx = Xy, resp. Xpp, then T does
not, resp. does, have a Whittaker model.

(4) Suppose |a|, |b] < |a—c| = ¢, i > 1L IfX; = Xy, resp. Xy, then 7 does,
resp. does not, have a Whittaker model.

(5) If Xz ¢ Qreq, then m does not have a Whittaker model.

PROOF. Part (1) and the case Xj, in part (2) follow from Lemmas 7.3 and 7.4. For the
other cases where X € @y, Lemma 7.5, Theorem 7.7, and Lemma 7.10 are combined
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with the appropriate part of Lemma 7.11. If X; ¢ @rc,, then let Z be an element which
commutes with X, is close to zero, and is such that X; + Z € g, We can choose Z so
that X, + Z = Xg3 or X4 as in (2), or else X +Z = X, as in (4). By Corollary 1.17 of
[MW] and Corollary 6.6(2),  does not have a Whittaker model, since I'reg(X7+Z) = 0.m

REMARK 7.14. It can be seen from the definitions of the various X;’s in Section 5
that every m € °E(G) — °E,(G) has an X, which appears in Theorem 7.13. In fact,

(a) If m contains a nondegenerate representation of K or of L, then X; € Ty or
Xp € {Xgm| 1 <m<4},i=j=0.

(b) If 7 contains a nondegenerate representation Q, of K;, i > 1, with @'« having
regular elliptic image in g(F,), then X; € Tyor N Greg 08 X = X1, (i = ).

(c) If w contains a nondegenerate representation Q, of K;, i > 1, with « as in (4.8),
then X, € {XE’|,XE’2,X3,| (asin (4))}

(d) If 7 contains a nondegenerate representation Q, of Ly;, i > 1, e asin (4.11), then

X € {o, X3, Xp4, X (as in (4))},

and 7 does not have a Whittaker model.

(e) If mis not as in one of (a){(d), and 7 contains a nondegenerate representation Q,
such that X;; = o € gy (see Lemma 5.6), then

X € {XEm,2 <m <4,(i=)),Xg,,r=1,2(as in (3))}.

Recall that representatives for the Ad G-orbits within stable orbits of regular elements
are given in Section 3. In part(1) of Theorem 7.13, the X,;’s considered have the property
that their their Ad G-orbits are stable orbits. In each of parts (2)-4), the X, ’s are represen-
tatives for the Ad G-orbits within a stable orbit which contains more than one Ad G-orbit.
Suppose S is a finite subset of °E(G) — °E,(G) having the property that {X, | = € S}
is a set of representatives for the Ad G-orbits within the stable orbit of a regular element
(with each Ad G-orbit in the stable orbit represented once). Theorem 7.13 implies that
exactly one of the representations in § has a Whittaker model, and that representation
can be identified by the corresponding X. In fact, it can be seen from the inducing data
for the representations in °E(G), that, given elements as in Theorem 7.13(1)~(4), such
sets S exist. However, since inequivalent representations may have the same X, they are
not uniquely determined. Rogawski ([R2]) has defined a partition of the representations
of G into sets called L-packets. We expect, although it is not proved here, that if an L-
packet consists entirely of supercuspidal representations, then every 7 in the L-packet is
in °E(G) — °E,(G), and X, is regular. Furthermore, the set of X;’s corresponding to the
representations in the L-packet should consist of representatives for one stable orbit.

In Section 8, the coefficients co(r), O € (Ng), will be computed for certain 7 €
YE(G), including 7 € °E,(G). As a consequence we will obtain the following result.

COROLLARY 7.15.  If € °E,(G), 7 does not have a Whittaker model.
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8. Evaluation of coefficients. We conclude the paper by computing the coefficients
co(m), O € (Ng), for m belonging to the following families of representations:

Fi = {m € "EG) | Xr € T}
F> = {n € “E(G) | Xr = Xg, such that |a — c + b| = |b|}

F ="E(G)
LEMMA 8.1.  Assume that the measure of K in G is one.
(1) Form € Fsuchthat X, € f_;_y —t_;,i>1,d(m) = ¢*(qg — 1)(g+ 1)~
(2) Form € Fysuchthat X, € t_; | —t_;, d(r) = ¢*(q — 1)(¢* —q+1).

(3) Form € F3, d(m) = q(qg —1).

PROOF. Jabon ([J]) computed d(7) for all 7 € °E(G). If 7 € Fy or F andi = 0,
then some twist of 7 by a one-dimensional representation of G contains a nondegenerate
representation of K. If i > 1, then some twist of m contains the nondegenerate represen-
tation Q, of K;, where o« = X,.. If 7 € 73, then = is a twist of m,. The formal degrees
may be read off the table on p. 66 of [J]. m

Let O, be the regular nilpotent Ad G-orbit. The two other nontrivial nilpotent orbits,
O, and O, are represented by ([R2] Section 3.9)

0 0 e 0 0 w/e
Xi;=10 0 O and X, =10 0 0 |.
(O 0 0 ) (0 0 o0 )

For € YE(G), let creg(m), ¢1(T), co(7) and co(m), be the coefficients in the local character
expansion, corresponding to Oeg, Oi, Oy, and the trivial nilpotent orbit Oy = {0}. The
notation I'rg, I'1, 'y and I'y will be used for the Shalika germs associated to the nilpotent
orbits.

To find the values of cp(m), we will compute I'o(X,) and then apply Corollary 6.6
and Lemma 8.1. The next lemma gives a normalization of measure on each O € (Ag).

LEMMA 8.2. Let dt be Haar measure on F normalized so that O has volume one.

Iff € C2(q), let fx € C(g) be defined by fx(X) = Jxf(Adk™'(X)) dk, where dk
is normalized so that K has volume one. For each O € (Ng), the distribution defined
below is an Ad G-invariant measure on O.

(1) 0= O po(f) =1(0)

(2) 0= 0; () =q (@ +1) fny e 1tk (EX1) dt

(3) 0= O0g () =q7(¢* + l)fNE/F(E’() ||k (tX) dt

(4) O = Org, Let n be the subalgebra of strictly upper triangular matrices in g.
Assume Haar measure dX on n is normalized so that n N ¥y has volume one.

preelf) = 4@ + 1) [ S0 dX

PROOF. In each case, Ranga Rao’s formula for po(f) ([RR]) is seen to be a positive
multiple of the given formula. L]
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REMARK. By Corollary I.17 of [MW], there exists a positive constant a depending
on normalizations of measures such that, if 7 is an irreducible admissible representation
of G, a™ ! ceg(m) equals the dimension of the space of linear functionals satisfying (7.1).
We claim that with the above normalizations of the Fourier transform and of firee, @ = 1.
Choose a one-dimensional representation v of a Borel subgroup B of G which is trivial
on the unipotent radical of B and such that the representation Ind§ v is irreducible. Let
®, denote the character of the representation Indg v. then fis = ©, o exp on some
neighbourhood of zero. (This can be seen by the argument used for Lemma 5.1 of [Mu2].)
By (9), p. 444 of [MW], Ind§ v has a Whittaker model and the corresponding space of
linear functionals has dimension one. This implies that a = 1. It now follows from from
Corollary 6.6(1) and Lemma 7.2 that if 7 € °E(G) — °E,(G) has a Whittaker model and
Xr € Greg, then T (X)) = d(ﬂ)il-

If t is a nonzero element of F'and X is regular, I' o(¢X) can be expressed as a multiple of
[,0(X). (Here O denotes the nilpotent orbit obtained from O by multiplying the elements
of Obyt)

LEMMA 8.3. Let X € Qgreg. Suppose t € F*. If the valuation of t is even, then
Co(tX) = [f|9m O 6(X), O € (Ng). If the valuation of t is odd and if 11, and pi
are normalized as in Lemma 8.2,

(1) T1(tX) = 1| 2T (X)

@) Tu(tX) = || 21100

(3) Treg(tX) = |t|73rreg(X)

PROOF. The case of # a square in F is the standard homogeneity property of Shalika
germs ([HC2]). Let fo, f1, ¢o and ¢ be the characteristic functions of f, f;, iy and i3,
respectively.

For t = ¢, a comparison of the Shalika germ expansions of /" at %X and w¥eX, for
f = fo and ¢y, for j sufficiently large, and an application of the standard homogeneity
property yields the desired result.

For ¢t = w, the proof involves a comparison of the Shalika germ expansion of f; at
w?*1 X with that of f; at w¥X, and similarly for ¢o and ¢;. The details are omitted. =

THEOREM 8.4. Assume o, O € (Ng), is normalized as in Lemma 8.2. The values
of the various co(m) s for m € F; are given in the ™ row of the table below, 1 <j < 3.

Ifm € Fror T leti > 0besuchthatand X, € ¥ ;| —f_;.
00(7") (4] (77') cw(7r) Creg(ﬂ')
@) | i NN
i =D"q | (=g 1
_(qz—tlﬂ) 3 | D3 Gl ey1=3)
q*+1 2 1 2 g !
R 0 1 0
g°+1
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PROOF. LetX € {wX,; | j = 1,2}, where X, is defined as in Lemma 5.3. Let fg
and ¢¢ be the characteristic functions of ¥y and iy, respectively. Note that X € f, — f;.
By Proposition 7.1 of [Ko], forx € G,

xle(Xx € K <= x €K.
This is easily seen to be equivalent to
Adx'(X) e fy == x €K.

Thus pox)(fo) equals the volume of K in G, which equals one. If k£ € K, because the
image of Adk~'(X) in g(F,) is regular and elliptic, it cannot lie in the Borel subalgebra
of g(F,). Thus Adk~'(X) ¢ io. Therefore O(X)Nip = AdK(X)Nip = 0. An unpublished
result of Hales ([H] implies that the Shalika germ expansions of fo and ¢¢ hold on foMgre,
(because these functions are invariant under translation by ip). Evaluation of 1 (fy) and
1o(do), O € (Ng), We find that pox(fo) = 1 is equivalent to

8.5)

L= (@1 @+ D) +@ — g+ D@+ (TN +q 2 ToX) +4 3@ + D).

Also, o (¢o) = 0 is equivalent to
(8.6)

0=—(g— 1)@+ +q  (@*+1) 'Ti(X0*+g (> —g+1)(@*+1) ' To(X)+2¢ > Treg(X).

Here we have used Rogawski’s formula ([R1]) To(X) = —d(St5)~'. The formal degree
of the Steinberg (or special) representation St is ((1.9) of [Mo])

d(Stg) = (g — (g* + 1)(g* + 1) 'volumes() " = (¢ — 1)(g* + 1).

By Lemma 5.3, if 7 € ¥,/ = 1,2, is such that X;; € f_; — fo, then X, = X,;.
By Theorem 7.13, the remark following Lemma 8.2, [reg(X,,j) = d() !, and this value
is given by Lemma 8.1. By Lemma 8.3(3), I'rg(X) = @’Treg(w ' X) = ¢*Trep(Xuy)-
Substituting the value of I'¢,(X) into (8.5) and (8.6) we can solve for I'; (X) and I'(X).

Form € ¥;,j = 1,2, Lemma 8.3 can be applied to obtain I' o(X;) from I'p(@wX,,),
O € (N\g), and d(r) is given in Lemma 8.1. By Corollary 6.6(1) the coefficients c ()
are as given in the table. For m € ¥, apply Corollary 6.6(3). =

REMARKS. (a) The analogue of Theorem 8.4 was proved for GSp,(F) in Theo-
rem 8.3 of [Mul], by different methods.

(b) The choice of additive character used in the Fourier transform has an effect on the
fi0’s. For example, suppose g is replaced by 1/’ defined by v'(x) = g(wx),x € E. Then
fi1, T€SP. fl, defined using Y, becomes g 2L, resp. ¢ 2fi}, defined using 1. For the
trivial and regular nilpotent orbits, changing the character has the effect of multiplying
fio by a positive constant.

(c) If # € 73, since 7 does not have a (nondegenerate) Whittaker model, it follows
from Corollary .17 of [MW] that 7 admits a degenerate Whittaker model relative to the
orbit O, and a one-parameter subgroup defined as in [MW].
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