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ON STOCHASTIC OPTIMAL CONTROL LAWS
MAKIKO NISIO

§ 1. Introduction. Let us begin by recalling the existence of optimal
controls for a class of stochastic differential equations

1.1 dX(®) = g, X(s),s < ¢, U@)B®) + at, X(s),s < ¢, UE)dt, >0,

with given initial condition X(0) = x, where B is an n-dimensional
Brownian motion and the control U is a stochastic process. As ad-
missible controls, let us allow all non-anticipative process U(f)
= U®), -+ U,(t)) eI’ where I' is a compact subset of R*. We call I'
a control region. Assume that the matrix valued functional 8 and the
n-vector valued « satisfy a Lipscitz condition in X and some growth
condition. Then we have a unique solution XV for an admissible con-
trol U.

We shall consider the minimization problem for the expectation of
cost functional &(XV,U). If B does not depend on U and « is linear in
U, i.e

=
Fleming and Nisio [4] consider the existence of an optimal control U,
(open loop control), in the case where @(X, U) is non-negative and lower

semi-continuous on X and V(t) = j&U(s)ds. But in many problems of

controls, we would like to minimize E@(XY, U) subject the condition that
the control U(%), selected at time ¢, should depend only on the observed
data up to time ¢t. Let us suppose that the system X of (1.1) is com-
pletely observable. Thus an admissible control will be a function
%; [0 00) X C, — I', which satisfies the non-anticipative condition. If B
=1 and a(tfI) is convex (Roxin’s condition), then Bene$ [2] proved
the existence of an optimal control %, (control based on a complete
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observation), in the case where the cost functional @ is given by an
integral form.

We shall remark, in § 5, that an optimal control based on a complete
observation turns out to an optimal open loop control under some con-
ditions. This means that the synthesis problem is decided, i.e. an
optimal open loop control will be determined as a function of data of
the system X. In §§3~5, we assume that g does not depend on U.
The existence of an optimal open loop control will be proved under the
Roxin’s condition, (A 6) and (A 7), in §3. Moreover when j§ is uni-
formly positive definite, we shall consider the correspondence between
the laws of response of open loop controls and controls based on a com-
plete observation. Namely, let & and Q be set of all laws of response
of open loop controls and controls based on a complete observation res-
pectively. Then we show that # = @, in §5. When g depends on U,
the existence of optimal controls and the synthesis problem will be
discussed in §6. In §7, we discuss controls of diffusion type processes.
We shall sketch the Krylov’s work [9], i.e. when the cost functional @
is given by an integral form, an optimal control is attained by a
Markovian policy, under some conditions. But, when @ is not an integral
form, we have a little counter example.

Let us now introduce some preliminary definitions and notations.

Given a stochastic process X(t),t > 0, 9B,(X) denotes the least o-
algebra generated by {X(s),s < t}.

The n-dimensional Brownian motion is denoted by B(t) = (B,(?),
-+« B,(t),t > 0, and we normalize it by B(0) = 0. %B,,(dB) denotes the
least s-algebra generated by {B(s) — B(z),t <t < s < v}.

C, denotes the space of all R"-valued continuous functions defined
on [0 c0), with the usual metric p,

= 1 SUPLS®) — 9@

(f; g) == ’ f’ g¢e Cn
o 2o 1% sup [ 7 (®) — (0]
where | | means the Euclid norm of R”. Let S, be the o¢-algebra

generated by {f(s),s < t}. According to Benes [1], we define the g-algebra
G, on [0 o) X C, as follows, a Borel subset £ of [0 ) X C, is in G,,
if and only if

(i) every t-section of E is S,-measurable, for te[0o0), and

(ii) every f-section of E is a Borel set of [0 o), for feC, .

https://doi.org/10.1017/5002776300001583X Published online by Cambridge University Press


https://doi.org/10.1017/S002776300001583X

OPTIMAL CONTROL 3

Let X(®),t > 0, be a R™valued stochastic process with continuous
simple paths. Define z;[0 c0) X 2 — [0 o0) X C,, by n(tw) = (t X(w)). We
denote = Y(G,) by &,.

Let the control region I' be a compact subset of R™. A process
U@),t > 0, is called an admissible control if, with probability 1,

(i) Uel', 0<Lt, andif

(ii) $8B,(U, B) is independent of 8B,.(dB) for every t > 0.

To be more precisely (B, U) is called an admissible system. We denote,
by U, the set of all admissible systems.

Let a(tfu) and p(tfw) be an n-vector and an n X n matrix valued
G, X B,,(I)-measurable function, defined on [0 ) X C, XI'. Then the
equation (1.1) can be understood as

dX(t) = gt X U@)AB(t) + «(t X U(t))dt .

By a solution of (1.1), we mean a stochastic process (X(&)B@®)U %)), t
> 0, defined on a suitable probability space (we may assume the Lebesgue
space [0 1]), such that
(i) X has continuous paths,

(ii) (BU) has the same law as the given admissible system (BU),
(ii) B,(XB0) is independent of B,.(dB) for any t > 0, and, with pro-
bability 1,

(iv) X)) =2 + I:ﬁ(s XU (s))dé(s) - J:a(s X U(s)ds s for any ¢t > 0.

For simplicity, we call X a solution of (1.1), or a response to the con-

trol U.
§2. Existence and uniqueness of solution. Let us impose following
assumptions

(A1) «a(tfu) and B(tfuw) are G, X B,(/)-measurable,
(A.2) there exists a bounded measure dM on (—oo 0], such that

2la@fuw) — a(tgw)f + 2318t fu) — Bi(tgu) P

<[ 176+ — g6 + OF aM©

and
(A.3) there exists a increasing function L(t), such that

Slat 0wp + X[yt 0w < L&),  vuel .
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THEOREM 1. Under assumptions (A 1) (A 2) and (A 3) there exists
o solution of (1.1) uniquely. Moreover, this solution X(t) is B,(UB)-
measurable and has the following moments,

@.1) E|X®)F <Kk, T), fort<T, k=1,2...
2.2) E|X{@) —XO'< KD -9+ (E—99, for t,s < T,

where K(k,T) and K(T) are independent of an admissible control U and
increasing in T.

Proof. The method of proof is just a repeat of Sect. 2 of [4]. To
show the existence of a solution, we shall use the well-known successive
approximation. Let us define a sequence of approximate solutions
X.,n=0,1,..., as follows,

X)) =2

Xyl =@ + j 86 X, Us)AB(s) + j al(s X, Uls))ds .

Then the following inequality will be proved by induction;

23) DE[Xn ) - Xy pp < TOECET D gy g9
3 m
where 7, is a constant determined by |M||[(=M(—oc0,0]) and r(t) is
independent of m and increasing in f.
Therefore, we have
P( sup| X (5) — Xy (5)] > 2)

0<s<t

< P(J:;ai(fxm_lzj(f)) — (e X, U@ de > e)

+ P( sup

0<s<t

5 [ [ X U@ = Bus(eX VB,

)

< et j B e X U®) — e X, U@) e

+ e Y [B1pueXa V@) — pueXn Ve
< E~2n Tl(t)‘lv;n_ltm(t + 1)m HM” .
m !

Setting ¢ = 2™, we get

> P(suple () — Xoora(9)] > 2~m+1) < oo
0<s<t
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Therefore, by Borel-Cantelli’s lemma, we see that, with probability 1,
Xn(8) =u + ;1 [X(8) — X;14(8)]

converges uniformly on [0 t], and so, on every bounded subinterval of

[0, ©). Hence the limit process X has continuous paths. Applying an

usual method, it is easy to see that X is a solution. In order to prove
(2.1) we may assume that k is even.

X5 ut) < 3t + ([ aeXo UGNd:)
@2.4) + (z [ :ﬁi,-(er_lU(r))dBm)"]
ot s {3 (o)

Putting &(t) = Jbﬁi,-dBj, we shall evaluate its k-th moment. Let o, be
0

the first passage time of & to (—A,A)°. From a formula on stochastic
differentials [6], we get

(2.5) BEL(t) = i“(’“T—llj:Egg—z(s)ds

where &,(t) = &t A o, and B, = Xcoo B4 Hence by Hoélder’s inequality,
we get

Byt < M D[ mese) - @py(s)ds
Since (2.5) implies that E¢%(¢) is increasing in ¢, we have
Bt < =D @esoye-or | @ppreds
namely,
Beit) < (M- [ mpyayrar)”
< Kyt j :Eﬁfi(S)ds :

From (A 2) and (A 3),
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< K01+ [ 176 + ran) .

Hence, setting d,,(t) = sup EX¥(s), we have
0<s<t
i=1em

E&(t) < lim BE(0) < Kl t)(l + j :dm_l(s)ds> .
Therefore, by virtue of (2.4), we can easily see

EXE (1) < K (K, t)(l + ﬁdm_l(s)ds> i=1,mm=1,2....
where K,(k,T) is independent of U and increasing in ¢. So we have

2.6) d,(t) < Kk, t)(l + J:dm_l(s)ds) .

On account of d, < oo, this (2.6) implies (2.1).
In order to prove (2.2) we can apply a similar calculation. Since

Xi(t) — Xi(s) = jtcz,-(r X U + 3 j‘ﬁ“(z X U()dB,() ,
we have
X0 — X(s) < 33[(t - s)sf:a;df +n3 (I:,si,dBjy] .
From (A 2) and (2.1) we see
Ef:agdr <K(T)t—s), forts<T,

where K,(T) is independent of U. Putting &(f) = ft Bi;dB; and using same

notation as above, we have

Eey(t) = 6£Eez(r)ﬁi(r>df

1

< gy | FEEE + 180 = 9 Bp e

Since F&i(t) is increasing in t, we get

E&(t) < 36(t — s)rE’,Bjdr .
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Hence from (A 2) and (2.1), we have

Bt < lim BE(0) < K(T)(E — 9)* .

A—

Therefore (2.2) holds.

Let Y be a solution with bounded second moment. Recalling that
X () is 8B,(U, B)-measurable, we shall evaluate Y(¢) — X(¢). In a routine,
we can show

This completes the proof of Theorem 1.

§ 3. Existence of optimal controls for g(tf). Let us introduce follow-
ing assumptions
(A 9 Bt = BEs)
(A 5) pB(tfw) is continuous in (tfw)
(A 6) a(tfw) is continuous in (tfu)
(AT afl) is convex, for each (tf).
For an admissible system (BU), we denote a solution of (1.1) by X7.
THEOREM 2. Let @ be lower semi-continuous on C,, with 0 < @(f) < oo.
Then, under the assumptions (A 1)~(A T), there exists an admissible
system (U,B,) such that

EQ(XV) < EQ(XY) , vBU)e¥

Setting 6Y(t) = I:a(s XYU(s))ds and IM = {(XY,B,6Y), (B,U) U}, we
can see, from (2.2)

LEMMA 1. Under assumptions (A1) (A 2) and (A 3), M is L-totally
bounded.

Hereafter we suppose that (A 1)~(A 7) hold.

LEMMA 2. Let X be the solution for (B U) of A. Then there exists
a G,,-measurable function v; [0 o) X C,, — I', such that with probability 1,

Gl X® =2+ J:ﬁ(s X)dB(s) + f:a(s Xv@sXB)ds, vt>0

Proof. Let (2BP) be a probability space on which (XBU) is defin-
ed. For simplicity, we may suppose that X(tw) and B(tw) are continuous
in ¢, for all we 2. Let us define 7;[0 ©) X 2 - [0 ) X C,, by =n(tw)
= (¢t X(»0) B(w)) and endow the g-algebra & = z7Y(G,,) on [0 o) X 2. &
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is the completion of & by the product measure, Lebesque measure X P.
Since

3.2) 0ot = X(t) — x — j ‘8(s X)dB(s)

6V is @-measurable. Moreover «(t X U(t)) is a (Radon-Nikodym) derivative
of the right side of (3.2). So, a(t X U(t)) is ®-measurable. Put &(t wu) =
a(t X(w) w). Then & is continuous in # and «(t X(») U(tw)) € @(twl’). Hence
an implicit function theorem [1] guarantees the existence of a ®&-meas-
urable V¢ [0 o) X 2 — I', such that

a(t X()U (tw)) = a(t o V(tw)) .
Since there exists a ®-measurable modification V of V, i.e.
Vito) = V(tw) ,  V(to),
we have, with probability 1,

09 (tw) = f”a(s X) Viso)ds, VE>0.

From the definition of &, V({w) turns out to v(t X(w) B(w)) with a G,,-
measurable v. This completes the proof of Lemma 2.

This lemma 2 means that we may change U(t) to v(t X B), if we are
concerned with an event of (X, B).

LeMMA 3. Suppose that (X,B,0,) ¢ M converges to (XBH) in L-metric.
Then (XBO) is in M, 1.e. there exists a control U such that (B U) is in
A and X = XV,0 = 4.

Proof. By Lemma 2, we may assume

X = @ + [ p(s X)aBs) + [als XpsX Bo)ds
and
0,(t) = j ‘(s XwsX,B))ds .

Using Skorohod’s theorem, we can construct X ,Bﬁl) and (XB6) on the
Lebesgue space (again we denote by £2), such that

Xt =+ j:ﬂ(s X)dB, + 648,
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6, = ra(s Xw/(sX,B))ds
0

and, with probability 1, (X,(£)B,(0)d,t) tends to (X(HB®)A(t)) uniformly
on any bounded subinterval of [0 c0). Hence B is a Brownian process
adapted to B,(XB6) and, by (2.1),

(3.3) EI X< K® .

From the continuity of 5, we have
3.4) X(t) =z + f ‘s X)AB(s) + ()  t>0.
0
On the other hand, by virtue of (A 2) and (A 3), we see

16(t) — 6(s)| = lim|3,(t) — §,(s)] = lim

fa(f)"(,v,(fj“(,é,,))df < K(Tw) |t — 3|

for t,s<T.
Moreover, setting a,(tw) = a(t X(0) v,(sX (0)B,(@)), we have
)a(t) — j:a,(s)dsl
3.5) <16 — 3,0)] + U’a(s XX B)) — als Xv(s X ,B))ds

<[0@) — 0.0)| + KyTo) sup | X (s) ~ X®)],  t<T
Hence, with probability 1,
(3.6) ra,(s)ds — 0(t) , uniformly on any bounded interval .
0

For simplicity, we may assume that (X(®)B(t)d(t)) is continuous in
all » and (38.4) holds for all w. Define ;[0 c0) X £ — [0 o) X C,, by
(tw) = (t X(w) B(w)) and put & = z"%(G,,). From (3.4), we can take a
&-measurable derivative y of ¢, i.e, with probability 1,

3.7 o) = I :r(s)ds .

Therefore, by (3.6), we have, for any n-vector pe L,([0 T] x 9),
T T ~
[ a®,atnds - [ o, 1nds, Vo

Recalling (3.3), we get the following estimate,
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E] f :(77(8), (s)ds ]4/3 < T‘/3EJ0TJ>7(S) B | cri(s) Pods

< (B[ yopds) (B lawlds) < KDIple,  e=12-.

T
Therefore, by virtue of uniform integrability, EI (8, a(8))ds tends to
[1]

EJT (), y(s))ds. Consequently «, tends to y weakly in L,([0 T]1 x Q).
0

Hence a convex combination of «, can converge to y strongly. So, we
have a subsequence which converges almost everywhere. Since a(s X(w) I7)
is convex and closed, for almost all (tw),

(3.8 1) e a(s X(@) I) .

We can modify y, so that (3.8) holds for all (fw), i.e. there exists a ®-

measurable 7 such that
7(tw) = r(to) for almost all (tw) ,
and
7(tw) € a(t X(w) I Y(io) .

Again, by an implicit function theorem, we have a G,,-measurable
;[0 o0) X C,, — I', such that

1(tw) = a(t X(0) v((X(w)B(w)) V(to) .

Hence, (B v(sXB)) is an admissible system and by (8.7), with probability 1,
o(t) = f ‘w(s X v(sXB)ds, Vt>0.
[}

Recalling (3.4), we conclude that (XB6) is in IN.
Proof of Theorem 2. Let X,, be approximate optimal, i.e.

lim Fd(X,,) = inf EO(XY) .
A

Let X, be a response for (B,U,). By Lemmas 2 and 3, I is sequen-
tially compact. Hence it is enough to verify that E@(X) is lower semi-
continuous under L-convergence. If X, tends to X in L-metrie, then
Skorohod’s theorem tells us that we may assume that, with probability
1, X, (t) converges to X(£) uniformly on any bounded interval. Hence,
with probability 1,
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2(X) < limo(X,) .
By Fatou’s lemma, we have

Eo(X) < lim EQ(X,.)
which proves Theorem 2.

§ 4. Transformation of measure. Consider a stochastic differential
equation

4.1 dX(t) = p(t X)dB(t) + y(t X)dt , X0 =ux.

We assume the following conditions,

(C1 B is G,-measurable

(C 2) B(tf) is locally square integrable in ¢, for any feC,.

(C 8) there exists a bounded G,-measurable n-vector function ¢, such
that

7(tf) = BRENSES) .

Under these assumptions, we can apply the method of the so-called
transformation of measure [2]. We have the following
THEOREM 3. Suppose that a stochastic differential equation

4.2) ds@) = p(t&)dB®) ,  &0) =

has o solution and the explosion does mot occur. Then (4.1) has a
solution. Moreover if the law of the joint process (£B) is unique for
any solution & of (4.2), then the law of (X B) is unique for any solution
X of (4.1).

Proof. Put F;, = B,(Bf) and

n ¢ ¢
D) = exp 3 ([ us00dBis) — 4 gitserds) .
Then it is well-known that D is an F,-martingale. Define the probability
measure @, on (2, F;), by
4.3) dQr; = D(t)dP , T>0.

Appealing to the extension theorem of measure, we have the probability
measure @ on (2F), where F' = \/ F';. The following lemma 1 is easy.
T

LEMMA 1. Let ¢ be a bounded and F, -measurable random variable.
Then
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ECD®)|Fy) = EC/F)D(s) t>s,

where E means the expection with respect to Q. Using Lemma 1, we
shall show

LEMMA 2. W) = B(t) — J :¢(s§)ds

is a Browmnian motion adapted to F,, on (QFQ).
Proof. Put Z(t) = W()D(t). Then, using a formula on stochastic
differentials, we have

dz(t) = D®)AB(t) + D(t)W(t)él i(tE)AB (L) .

So, Z is an F,-martingale on (2FP). Therefore, by virtue of Lemma 1,
W is an F,martingale on (2QFP). Since E|W(®)}f < o, we now seek
the variation process {W,W,>(?) on (2F@Q), [10]. Put Z(¢) = W,@OW (OD(P).
Then again by a formula on stochastic differentials, we have

dZ(t) = D®)d;;dt + L)W ()dB,(t) + W (©)dB,())
+ LOWW (1) 20 $:(E£)AB(0) .

Hence, from Lemma 1, we get on (2FQ)

This implies that W is an F,-Brownian motion, on (2FQ), [10].
Let us show that the process ¢ is a solution of (4.1) on (QFQ).
According to McKean [11], we define g/ and g” by

gutn) =2 psnds and BN = gezng, ),

where [c] is the largest integer less than ¢. Then g’ is G,-measurable
and simple in ¢. Moreover, by (C 2), we see that for any feC,,

rm(sf)_ (sf)fds — 0, it m— oo and £— oo .
0

Therefore, we can take a G,-measurable function B,, which is simple in
t, so that

4.4) P([71ps8) — putsrpds > 2¥) < 2+

and
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(4.5) Q(LT; B(sE) — Bu(sE)Pds > 2—k)<2-k .

Hence there exist sets N;(eF), such that P(N,) =0 and QN, = 0.
Moreover, for we N,,

(4.6) j 8(s8)dB(s) — J ‘8(s£)dB(s),  uniformly on [0 T,
and, for we N,
@.7) j B(sE)AW(3) — rﬁ(ss)dW(s) ., uniformly on [0 T].

Since @ is absolutely continuous to P, putting N = N, U N,, we set that
Q(N) = 0 and (4.6) and (4.7) hold for we N. Because B; is simple in f,
we have

[(puts0riBes) = [ pus)aW(s) + [pusogsds .
Furthermore,
[[psptsrras — [pusnpsnds| < ). [5G — pusr)ids .
Therefore, recalling (4.5), we see that, with @-probability 1,
[{Bus00pe00ds — [‘pserpserds,  unitormly on [0 71.
Consequently, with @-probability 1,
4.8) 0 =@ + [ peaims) + j:r(ss)ds . VE>0.

Let X be a solution of (4.1) and p the probability law of (XB).
For convenience, we take the coordinate representation of (XB), i.e. we
endow the probability measure ¢ on 2 = C,,, setting X;(tw) = wi(t),7 =
1..-n, and B;(tw) = w,,(t),i=1-.-.-n. Put

D@) = exp (— b ﬂgsk(sX)dBk(s) ~13 j:qsz(sX)ds

and dy, = D(T)dy on F(=B,(XB)). Then v, can be extended to the
probability measure v on F(=\/ F;) uniquely. Repeating the same cal-
T

culations as (4.8), we see that, on (QFv), W(t) = B(t) + Ygzs(sX)ds is an
0
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F,-Brownian motion and

X =« + j:p(sX)dW(s) :

Therefore the law of (XW) is unique. Since B(f) = W(t) — f ‘6(sX)ds,
0

the law of (XB) is unique. This turns out that the law of coordinate
is unique in (2Fv). Hence v, is unique on F;. This means that p is
unique on F, since D(T) is positive. Consequently, x is unique on F.
This completes the proof of Theorem 3.

COROLLARY. Suppose that (A 8) is satisfied, besides (A 1)~(A 4),
(A 8) there exists a bounded G, X B,")-measurable n-vector function
¢, such that

a(tfu) = B )¢t u) .

Then, for any G,-measurable function v;[0 o) X C, — I, the following
stochastic differential equation

dX(t) = (it X)dB(t) + ot X v(tX))dt , X0) =2,

has o low unique solution X.
This means that (B v(tX)) is an admissible system and X is the
response.

5. Laws of solutions. Let A be the set of all G,-measurable functions
;[0 o) x C, - I'. We introduce two sets of probability measures on
C,, namely

Z = {law of XV; (BU) ¥}
and
Q = {law of X*;veA}.

THEOREM 4. Suppose that (A 9) s satisfied, besides (A 1)~(A 4)
and (A 6)~(A 8),

(A 9 PBtfuw) is uniformly positive definite, i.e.
2 Bt fweic; > Klef  with K > 0.

Then 2 = Q.
This theorem means that the response of an admissible control may
be regarded as the response of control based on a complete observation.
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From Theorems 2 and 4, we can easily see
COROLLARY. Under the conditions (A1) ~(A9), there exists a function
v of A such that X° is optimal, i.e.

Xt = + J ‘8(s X)dB(s) + J ‘o(s X v(sX))ds
and
E®(X) = inf EO(XY) .

Let X be the response for (BU). Then we have
LEMMA 1. There exists a function v of A, such that

E@tX0))/B,(X) = a(t X v(tX)) v(to) .

Proof. Let ¢(fw) be a measurable and %B,(X)-adapted version of the
conditional expectation, E(e(tXU(?))/%8B,(X)). Hence ¢ is &,-measurable
and, by (A7),

(GRY #(tw) € a(t X(w) I y(to) .

Therefore we may modify ¢, so that (5.1) holds for any (f{w). This
means that there exists a ¢,-measurable ¢ such that ¢(tw) = ¢(tw) for
almost all (tw), and ®(tw) e a(t X(w) I') for all (tw). Hence an implicit
function theorem guarantees the existence of a ®&,-measurable V; [0 co)
X 2 — I, such that

F(tw) = alt X(o) V(tw)) .

Taking a &,-measurable modification of V, we have a function ve A4,
such that

$(tw) = a(t X(0) v((X(@) (o) .
This completes the proof of Lemma 1.
Put Z(t) = X(t) — x — fta(s X v(sX))ds . Then we see
LEMMA 2. Z is an Lz-vzwrtingale adapted to B,(X) and its variation
process {Z,Z;> is given by
(5.2) B2 = 3 BulsX)puy(sX)ds .

Proof. From the definition of Z,Z(t) is 9B,(X)-measurable. On the
other hand
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Z(t) = I:ﬁ(sX)ds + J:(oz(sXU(s)) — E(a(sXU(s)/B,(X)))ds

Hence Z is an L,martingale adapted to 9B,(X). Using a formula on
stochastic differentials, we have

AdZ,Z () = Z()dZ () + Z,()dZ,(t) + 2. ButX)B,(tX)dt .

Therefore Z,(0)Z,(t) — thﬁ“(sX)‘Bﬂ(sX)ds is a B,(X)-martingale. This
3 0

means (5.2).

Proof of Theorem 4. In order to show & C @, we shall apply the
method of the so-called innovation, [5]. Set 6(sf) = p(sf)~*. Then, by
(A 9), 6 is bounded, symmetric and G,-measurable. Hence, by Lemma
2, we can define the stochastic integral {(t) = (&), - - -, (),

() = [06sx0dx),

as an L,martingale adapted to 8B,(X), with
Cat) = 3 j:ﬁik(sX)d<Z,cy;>(3) i—1...m,
for any L,martingale 5 adapted to B,(X), [10]. Hence, by (5.2),
I UEDY ﬁf)ﬂ(sX)d<Z‘Zk>(s)

=3 J:Hj,(sX)ﬁgp(sX)ﬁpk(sX)ds .

Therefore,
CEp® = 3 [ 0u(6X0dZL6)
=5 :0¢k(sX)ﬁj,(sX)ﬁ,p(sX)‘Bpk(sX)ds — ot
This means that ¢ is a Brownian process adapted to B,(X).
Consider the stochastic integral &(t) = j:ﬁ(sX)dC(s). Then
CEand®) = 53 [ XA -

Since
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Em® = 32 [0,0s0aZa)® ,

we have
<o ®) = 37 [ PulsX)0,X0dZa)s) = Ziny® .

This implies that, with probability 1, Z,(f) = &,(f) for all £ > 0.
Because ¢ is a Brownian motion, Cor. of Theorem 3 implies “Z C Q.
Appealing to “Z O @, this completes the proof of Theorem 4.

§ 6. Optimal controls for 5(tf«). In this section we drop the con-
dition (A 4). An optimal control is obtained by a little different as-
sumption, i.e. (A 9) instead of (A 5). But, since the solvability of
stochastic differential equation

dX(t) = pit X v((X)dB , veA

is not yet decided, the synthesis problem is settled only in a weak sense.
Hereafter we assume (B 1) and (B 2), besides (A 1)~(A 8) and (A 9),
(B 1) atfuw and B(tfu) are continuous in w for any (¢f),
3B 2 {(‘8 @ u)) ; ueF} is convex,

a(tfu)

PropoSITION 1. Let B = (B, --- B,) be an n-dimensional Brownion
process. Suppose that e, &,y and 7 are real non-anticipative processes,
whose 4Lth moments are locally bounded, say E |p(O)' < K*®), n = e,8 71,7,
We define &€ and & by

&) = [ewaBs) + [ 1(s)ds

and

~ 2 i

&0 = [2dB,© + [7(s)ds

0 0
. — s k\  ik—1
Then, putting d,, = g(é.“n_) _ g(kzn 1) and 4, = S(W) _ 5( kzn ) ’
we have
©6.1) P(sup 6”re(s)é(s)ds ST dnd] > 2n/4) < Co-wi
t<T 0 k<tan

where o constant C depends only on T and K(T).
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Proof. Put 4,,(t) = A(t) = &) — &(c) where ¢ = (k — 1)/2" and 4(t)
similarly. Then, in the same way as (2.2) of Theorem 1, we obtain,
for t < T,

(6.2) B4 < K(T)((E — ¢ + (& — )Y

where K,(T) depends only on T and K(T). By a formula on stochastic
differentials,

6.3) A)At) = f:e(s)ﬂ(s)dBi(s) + I:é(s)d(s)dBj(s)
+ rr(S)Z(S) + 7(s)d(s)ds + 511136(8)6(8)018 .
From (6.2), we have

6.4) E

J‘r(s)j(s) + f(s)A(s)ds] < K(T) J ‘VEI(sY +vVEAG)" ds

< Kz(T)JWs “eds = 2K(T)(t — 0" .

E(re(s)ﬂ(s)dBi)z - j‘EeZ(s)Zl(sZ)ds < KZ(T)I‘JEZ(sy ds
< R;(T)j’(s — Ods = }E(T)(t — o) .

Hence, by a martingale inequality, we see

2n

6.5) P(sup 5

ST |k<ltan I(k—l)ﬂ”

e(s)ﬂ,,k(s)dBi(s)’ > 2—n/4)

<> E(f’ e(s)ﬂnk@)d&(s))zz"ﬂ — 0(2-")
kL T2n (k=1)/2n

Using (6.3) (6.4) and (6.5) we can obtain (6.1).
By virtue of Borel-Cantelli’s lemma, (6.1) implies that, with pro-
bability 1,

6.6) Hm 37 dued, = fe(s)é(s)ds uniformly

n—oo K27 [
on any bounded subinterval of [0 c0). We denote the left side of (6.6)
¢ .
by [[ae(s)az(s)

COROLLARY. Let X be a response for an admissible (BU). Then,
with probability 1,
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j:dXi(s)de(s) = I;@ik(sXU(s))ﬂkj(sXU(s))ds , vt

Hence, using a mapping = with z(tw) = (t X(w)), we see that the process
Y() = rﬁz(sX U())ds is ®,-measurable.
0

Now we shall prove the following existence theorem.

THEOREM 5. Under the assumptions (A 1)~(A 3), (A 9) (B 1) and
(B 2), we have an optimal control.

LEMMA 1. There exists a G,-measurable function v; (0 o) X C, —
I, such that for almost all (tw)

6.7 Bt X(0) U(tw)) = Bt X(w) v(tX(w)) .

Because a symmetric and positive definite root of a symmetric positive
definite matrix is unique, (6.7) means that, for almost all (fw)

Bt X(w) U(tw)) = Bt X(w) v(tX(w)) .

LEMMA 2. There exists a G,,-measurable w; [0 o) X C,, — I', such
that, for almost all (tw)

Bt X(0) U(tw)) = p(t X(0) w(tX(w)B(w)
and
a(t X(0) U(tw)) = a(t X(0) w(tX(0)B(w))
Proof. Define 7;[0 o0) X 2 —C,, by n(tw) = (t X(w) B(w)). Put Z(t)
= J:af(S X U(s))ds. Then Z(t) = X(t) — x — f:ﬁ(s X U(s))ds is also ®,,-meas-
urable by Lemma 1. Therefore «(t X U(t)) is also &,,-measurable as a

derivative of Z. Put y(te) = <£2((1;(X((wm))[[]]((t%)))) and P(tou) = (ﬁz((lgf(%%))

Then y(tw) e f(tw '), and y(--) and 7(--u) are ®&,,-measurable. So, we
have a ®,,-measurable W;[0 co) X 2 — I', such that

r(tw) = 7(t 0 W(tw)) .

Again taking a &,,-modification of W, we get a G,,-measurable function
w; [0 ) X C,, — I', such that for almost all (tw)

1(tw) = 7(t 0 w(tX(w)B(w))) .

Recalling the definitions of y and 7, we have Lemma 2, since a symmetric
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positive definite root of #* is B.
For (BU) e, we define 8V and @V by

U(t) = j’a(s X U(s))ds
and
OY(t) = fy(s X U(s))ds

where X = XY is a response of (BU). Put I = {(XY60Y),(BU) e U}.
Then, by (2.2) of Theorem 1, we can easily see the following lemma,

LEMMA 3. I 4s L-totally bounded.

LEMMA 4. Suppose that (X,0,0,) comes from an admissible system
B,U) and (X,0,0,B,) converges to (X00B) in L-metric. Then (X600) is in
m.

Proof. By Lemma 2, we may assume U,(t) = v,(tX,B,), with a G,,-
measurable function »,. Hence, using Skorohod’s theorem, we can con-
struct (X,4,6,B,) and (X66B), so that

Xt = o+ j ‘s X 0. X BB, + j ‘wsX wis X B)ds
b,(t) = f ‘(s X wsX,B,)ds
6, = ‘rﬁz(sf( ,v,;(s)? ,El))ds

and, with probability 1, (X, 8d,6)0,t)B,1t) tends to (X(®)dt)O@)B(®))
uniformly on any bounded interval.

Put £,8) = X(t) — & — 0, = j ‘(s X w0, (sX,B))dB, .

Then &, is an L,-martingale adapted to B,(X,4,). Tending £ to oo, we
can see that &(t) = X(¢) — x — 4(¢) is an L,martingale adapted to ?B,()Nfé).
Now we shall show

6.8) 6., = J:d)?i(s)d)?j(s)

Define 4, by X.(k/2") — X((k — 1)/2") and 1,, similarly for 7.
Ois(O) — 3 Ayl

sup
t<T k<ean

< sup [6,,(t) — Ouis(B)] + sup|6,is(t) — 3 A
t<T t<T

k<ltan
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tT |[k<t2n

Recalling (6.1) of Prop. 1, we have
P(@2nd term > 27" < 0274, £=12....
For any n, we can take a large ¢,(n) so that
P(3rd term > 2-7/%) < 2-™4 for £ > 4y(n)
and
P(1st term > 2-7/%) < 2774 for 4 > 4,(n) .
Hence we see that, with probability l,k;m]n Ay, tends to 6, ,(t) uniformly

on any bounded interval, namely we have (6.8). Therefore 6 is ®,-
measurable.

16:/6) — 8./ = lim |8,(t) — Bus)] = lim |[ 1, X o)tz

< 21lim f‘dz[L(r) + f 1K e + D) JZdM(z)J
t 0 ~
=2 j dT[L(T) + I 1K + 2 FdM(z)]
So, there exists a symmetric ®,-measurable H, such that
o(t) = rH(s)ds
[
Moreover, by (A 9), we see, setting V(t) = v,(tX,B,),
510, — 6,,9)eic; = lim J S8R Ve de > K [cf(t — s)
77 ¢ Js

Hence, we may assume that H is uniformly positive definite. If neces-
sary, we may take a ®,-modification of H, and & may be regarded as
®,-measurable. From

£4E,(8) — B4(t) = im (Ea(®)E,s(t) — Ous(D))
we see that &(1)&,(t) — 6,1 is a #,X0)-martingale. This means
&) = 6:,(1) .

Let vH be the symmetric positive definite root of H. The vH is
®,-measurable and we can define W by
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W = [ 4@
where 4 = vH, i.e. W is a #,(X§)-martingale with variation process
GADICED N PROVFOLENE
= 5[ 4@ 1O Ho)ds = 5.5t

Namely, W is a Brownian process. Moreover, in the same way as in
§ 5, we have

¢t) = [ VH W) .
Consequently

(6.9) Rt)=u + L VEE AW () + 6(t) .

1G,(8) — 0,(5)| = im |Gu(®) — Go(s)| = lim jtai(rX,V,)dr

< 21lim J:dr( f’ X e + DFAMP) + L(f))m
=2[ ([ 1X6 + wramw + L)

Hence there exists a Radon-Nykodym derivative of 4. Define =;[0 o)
X 2 — C,, by #n(tw) = (t X(w) W(w)). Then (6.9) tells us that 4 is ®,,-
measurable. So,

b — (t)j:h(s)ds

with a &,,-measurable £.
Recalling the definition of 4 and 6, we see that, with probability 1,

G,(t) = Jtﬁz(tf(eV,,)dsH rH(s)ds uniformly on [0 T]
0 0
and
4.t = ra(tX',,V,)ds - J‘h(s)ds uniformly on [0 T] .
0 0

But, from (A 2), we see
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6.,(t) — j :pzj(tXV,)ds]

<164(t) — B4y +

~ L ~
Bus(®) — [tV as|
~ ~ {3 0 ~ ~ 1/2
<165 = 6] + [as([ 1Rt + 9 — X + 9raM@) K(Tw)
where K,(Tw) depends on T and sup |)~( [t)]. Since 6, and X, converge
t<T

£=1,2-++

uniformly on [0 T1, we have, with probability 1,
I;Bz(t)?V,)ds N J':H(s)ds uniformly on [0 T1
and
ﬁa(tX’V,)ds —»j:h(s)ds uniformly on [0 77 .

Put 7 (te) = (B(XV), - - £.¢XV), atXV) -+ @,(tXV) and 7(to) =
(Hy(8), + -+ Hypy(8), () - -+ hy(8)). Then for any (n* 4 n)-vector 5 e L,[0 T]
X 2,

j:(n(s), 7(s)ds — LT(T(S), p8)ds ,  for yo.

Recalling (2.1), we get the following estimate

E U:(n(S), n(s)ds

l4/3

< T"E f S 75 s
0

2/3

< T1/3(ELTM(8) IzdS) (E‘[:[n(s) |4>1/3 < K,(D) 9|, (=1,2...

Therefore, by virtue of uniform integrability, we have
T T
lim E [ ), 7()ds = | ((5), y&)ds .

Consequently 7, tends to y weakly in L,([0 T] X 2). Hence a convex
combination of 7, can tend to y strongly. Therefore we can take a sub-
sequence which converges almost everywhere. From (B 1) and (B 2), we
have, for almost all (fw),

(6.10) (fi g:;)) e {(ﬁgf( (w‘%)) juery.

We can modify H and & on a null set, so that (6.10) holds for all (fw),
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namely there exists a ®,,-measurable H and k such that, for any (tw)

10 (o) = i) o7}

Hence, from an implicit function theorem we can take a ®,,-measurable
V;[0 c0) X 2 - I', such that

B(tX () V(tw) = H(tw)
and

a(tX () V(tw) = h(to) .

Taking a &,,-modification of V, we have a G,,-measurable function v;
[0 ©0) x C,, — [, such that, for almost all (tw),

H(tw) = pt X(o) v(tX(0)W(w)))
and
htw) = a(t X(w) v¢X(0)W(0))) .

Since (¢ X(w) v(tX (@) is the symmetric positive definite root of H(tw),
we have, from (6.9)

Xt =« + I :ﬁ(t R ot XW)AW(s) + f:a(t RotRWyds t>0

with probability 1. This means that (X60) comes from the admissible
system (W v(tXW)), namely (X46) is in .

Proof of Theorem 5. By Lemmas 3 and 4, we can apply the same
method as Theorem 2. Let X,  be approximate optimal. Since I is
sequential compact, we have a subsequence X, of X,, which converges
in M, say X =lim X,,,. The lower semi-continuity of @ induces

E®(X) < lim B6(X,,,)

This completes the proof of Theorem 5.

Concerning synthesis problems, we have

THEOREM 6. Let (BU) be an admissible system and X 1its response
i.e.

Xt =z + f :ﬁ(s X U(s)dB(s) + j:a(sX U(s)ds .

Under the assumption of Theorem 5, we have a G,-measurable function
;[0 o) X C, — I", such that
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X = + f :ﬁ(s X v(sX))de(s) + J:a(s X v(sX))ds

with, a Brownian process .

Proof. By Lemma 1 of Theorem 5, g(t X U(f)) may be regarded as
®&,-measurable 4». This fact guarantees the possibility of the method in

§5.

Let ¢(s) be a &,-measurable version of E(a(s X U(s))/%B:(X)) and put
Z(t) = X(t) — z — r;zs(s)ds. Then Z is an L,-martingale adapted to B,(X)
0

and its variation process is given by

BZY®) = 3 [valshe@ds
Set 6(s) = y(s)~! and define ¢ by
() = [0)dx(s) .
Then { is an L,-martingale adapted to B,(X) and
CE®) = 3 [ 080 Ypae)ds = Bt

Namely, ¢ is a 8,(X)-Brownian motion and

2 = j:«:f(s)das) .
Hence we have
6.12) X() =z + f:«lf(S)dC(S) + f}s(s)ds .

On the other hand, for almost almost all (tw)
E(pt X U@®)/B(X)) = Bt X(0) U(tw)) = V(o)
and
E(a(t X U®?))[®(X)) = ¢(tw) .
Therefore, by (B 1) and (B 2),

@13 G )= (G )<}

for almost all (tw). Taking a ®,-modification of * and ¢, so that (6.13)
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holds for any (ftw), we have a ®&,-measurable V;[0 o) X 2 — I', such
that, for almost all (¢ w),

P(tw) = Bt X(0) V(tw) and ¢(tw) = a(t X(0) V(ie)) .

Hence we can take a G,-measurable v;[0 o) X C, — I such that, for
almost all (tw),

vi(tw) = At X(o) v(tX(w))

and
d(to) = a(t X(0) v(tX()) .

Since +» is symmetric and positive definite, we see that, for almost all
(tw),

Y(tw) = B X(0) v(tX (o) .

Recalling (6.11), we complete the proof.

§ 7. Diffusion type processes. In this section, we assume that p(tfuw)
= o(f(t) w) and a(tfu) = y(f(t) w). Namely, we treat a stochastic differ-
ential equation of diffusion type,

(7.1 dX(®) = o(X® U@)AB@®) + y(X@®) U@)dt , X0) ==x.

Suppose that ¢ and y are Lipschitz continuous in #. Then (7.1) has a
unique solution XY. When @ is given by an integral form, Krylov
proved that an optimal control can be given by a Markovian policy, i.e.
he showed the following theorem

THEOREM [9]. Let ©(X) be the hitting time of X to the boundary

of a bounded open set A. Put &(U) = r(X)F(X(s) U(s))ds, where X = XU,
0

Suppose that is uniformly positive definite and o,y and F are bounded
and continuous in u. If Bellman equation

@2 sup|4 Zau(xu)“(x’ + Sren 2~ Few| =0, o4

vx) =0 on 0A

where a = ¢*, has a continuous solution v of W,, i.e. (7.2) is satisfied
for almost all xc A, then inf EO(U) can be attained by a Markovian
policy.

We shall sketch the outline of his proof. Fix measurable version
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of derivatives of v arbitrary. Since I' is compact and coefficients are
continuous in %, the supremum is attained. From an implicit function
theorem, we take a Borel function w; A — I, such that, for almost all
xz of A,

3 20 (@ w@)v () + 3 7@ w@))v(x) — Fe wx) =0

where v; = 9v/dx; and v;; = 9*v/dx;9x,;. If it is necessary, we may extend
w to the whole R*. By virtue of uniform positivity of ¢, the stochastic
differential equation

(1.3) dY(®) = o(Y(®) w(Y(@)AB() + r(Y(®) w(Y(®))dt , YO0) =2

has a solution [7]. Moreover we have, with probability 1,

Lebesgue meas. {t; Y({ow) e N} = 0, for any null set N of R”. This
means that there exists no trouble about the ambiguity of w on a null
set of A.

From a formula on stochastic differentials [7], [8],

v(X(1) — v(x) = f:% 220 (X (8) U()vy5(X(8)) + 2] 7:4(X(s) U(s)v(X(s))ds
4+ martingale

Hence we have
o (X)
—v(®) = EL 3 204 (X (5) U(S)vy(X(s8)) + 22 74(X(8) U(s)vy(X(s))ds
o (X)
<f F(X(s) U(s)ds .
0
On the other hand,
a (Y)
(@) = Ej FY(s)w(Y(s))ds .
0
Therefore, Y is an optimal trajectory and w an optimal Markovian
policy.

APPLICATION TO LINEAR CONTROLS. Suppose that o(xu) and F(x w)
are independent of » and

T'L(xu)zzl‘)’“(x)u], 1=1.-n.
7=

So, we have the following Bellman equation,
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(7.4) Slell? [% >0 (@) + > vy u; — F’(x)] =0, on A
v»=20 on 0A .

If A is a connected and bounded open set with a smooth boundary, all
coefficients a, 7 and F' are bounded and smooth and ¢ is uniformly positive
definite, then there is a unique solution v of C(4A) N C*A), [3]. We set
the inside of the parenthesis of (7.4) by S(x u). Since S(z u) is linear in
%, we have

sup S(xu) = sup S(xu) =0, rxeA

ucl weor

namely, S can be regarded as a mapping; A X " — R!, and by an im-
plicit function theorem, a Borel function w; A — aI", such that S(z w(x))
= 0, exists. Hence we get a Bang-Bang control which is an optimal
Markovian policy.

When @ is not an integral form, we have a little example, where
any optimal control cannot be given by a Markovian policy.

ExAMPLE. Consider the 1-dimensional stochastic differential equation,

dX(t) = dB() + U@®)dt , X(0) =z .
Let a control region I" be [—1 1] and @(f) = f(1)f(2). Hence,

(7.5) Eo(X) = EX(HX@2) = EX*(1) + EX(l)rU(s)ds .

Since any non-anticipative process U(t), such that U(¢) is in I, is an
admissible control, we have

(7.6) XQ) f Vs = —XD)|

and, for U(s) = —sgn X(1), the equality of (7.6) is satisfied. Hence,
putting v = inf F@(XY), we see
A
v =inf EX*(1) — | X)) = inf E(XD)| — )’ — % .

Because the cost functional of (| f(1)| — $)* is non-negative and continuous,
an optimal control U exists by Theorem 2. Since U(f),t > 1, is irrele-
vant, the control U,, defined by

U =01, t<1, = —sgnX@) t>1,

is optimal, i.e.
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v = EXU1)XU(2) .
Suppose that a Markovian policy w satisfies
v = EX*(1)X*(2) .
Putting Y(¢t) = X¥(t), we have, from (7.6),

.7 Y(l)jfw(Y(s))ds > Y.

If the inequality of (7.7) holds with positive probability,
v > E(YQ)| — 1) — 1.
On the other hand, “v < E(Y(1)] — 1) — 1" is satisfied by the definition
of 7. Hence, we have, with probability 1,
2
(1.8) Y(l)flw(Y(s))ds - —Y().

But, Y is a diffusion whose law is mutually absolutely continuous to the
law of Brownian process. So, P(Y(1) = 0) = 0 and, for any Borel set
D with positive Lebesgue measure,

(7.9) p(txD)>0.

Hence, (7.8) means that, with probability 1,

rw(Y(s))ds — —sgnY().

Since |w| < 1, we have, for almost all o
w(Y(s)) = —sgn Y1), for almost all s of [1, 2]
Hence, for almost all s of [1, 2]
w(Y(s)) = —sgn Y(1) , for almost all o .

Appealing to (7.9), we have, w( - ) = 1 for almost everywhere and w( -)
= —1 for almost everywhere. This is absurd. Consequently we have
not a Markovian policy which can give ».
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