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Abstract

We study generalized and degenerate Whittaker models for reductive groups over local

fields of characteristic zero (archimedean or non-archimedean). Our main result is the

construction of epimorphisms from the generalized Whittaker model corresponding to

a nilpotent orbit to any degenerate Whittaker model corresponding to the same orbit,

and to certain degenerate Whittaker models corresponding to bigger orbits. We also

give choice-free definitions of generalized and degenerate Whittaker models. Finally, we

explain how our methods imply analogous results for Whittaker–Fourier coefficients

of automorphic representations. For GLn(F) this implies that a smooth admissible

representation π has a generalized Whittaker modelWO(π) corresponding to a nilpotent

coadjoint orbit O if and only if O lies in the (closure of) the wave-front set WF(π).

Previously this was only known to hold for F non-archimedean and O maximal in

WF(π), see Moeglin and Waldspurger [Modeles de Whittaker degeneres pour des groupes

p-adiques, Math. Z. 196 (1987), 427–452]. We also express WO(π) as an iteration of

a version of the Bernstein–Zelevinsky derivatives [Bernstein and Zelevinsky, Induced

representations of reductive p-adic groups. I., Ann. Sci. Éc. Norm. Supér. (4) 10 (1977),

441–472; Aizenbud et al., Derivatives for representations of GL(n,R) and GL(n,C),

Israel J. Math. 206 (2015), 1–38]. This enables us to extend to GLn(R) and GLn(C)

several further results by Moeglin and Waldspurger on the dimension of WO(π) and on

the exactness of the generalized Whittaker functor.
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1. Introduction and main results

1.1 General results

Let F be a local field of characteristic zero, G a reductive group defined over F, g its Lie algebra

and g∗ the dual space to g. A Whittaker pair is an ordered pair (S, ϕ) ∈ g × g∗ such that S is

semi-simple with eigenvalues of the adjoint action ad(S) lying in Q, and ad∗(S)(ϕ) = −2ϕ. Note

that ϕ is necessarily nilpotent and given by the Killing form pairing with a (unique) nilpotent

element f = fϕ ∈ g. Following [MW87] we attach to (S, ϕ) a certain smooth representationWS,ϕ

of G called a degenerate Whittaker model for G.

Two classes of Whittaker pairs and the corresponding models will be of special interest to

us. If S is a neutral element for fϕ (see Definition 2.2.2 below), then we will say that (S, ϕ) is a

neutral pair and call WS,ϕ a neutral model or a generalized model (see [Kaw85, MW87, Yam86,

GZ14]). The second class consists of Whittaker pairs (S, ϕ) where S is the neutral element of a

principal sl2-triple in G; in this case fϕ is necessarily a principal nilpotent element for a Levi

subgroup of G, and we will say (S, ϕ) is a PL pair, and WS,ϕ is a PL model or a principal

degenerate model (see [Zel80, MW87, BH03, GS13]).

We will now sketch the definition ofWS,ϕ, referring to § 2.5 below for more details. Let u ⊂ g

denote the sum of all eigenspaces of ad(S) with eigenvalues at least 1. Note that u is a nilpotent

subalgebra and let U := Exp(u) ⊂ G be the corresponding nilpotent subgroup. Fix an additive

character of F. Suppose first that 1 is not an eigenvalue of ad(S). Then the restriction of ϕ to u is

a character of u, which defines a character χϕ of U . The degenerate Whittaker model is defined

to be the Schwartz induction of this character: WS,ϕ := indGU χϕ. If 1 is an eigenvalue of ad(S),

then consider the anti-symmetric form on u given by ωϕ(X,Y ) := ϕ([X,Y ]) and let n denote the

radical of this form. Let n′ := n ∩ Kerϕ, and let N ′ := Exp(n′). It is easy to show that N ′ is a

normal subgroup of U and U/N ′ is isomorphic to a (generalized) Heisenberg group, of which ϕ

defines a central character χϕ. Let σϕ denote the oscillator representation of U/N ′ with central

character χϕ. Consider σϕ as a representation of U and define WS,ϕ := indGU σϕ.

If (S, ϕ) is a neutral pair, then the generalized Whittaker modelWS,ϕ does not depend on the

choice of a neutral S, and will thus be denoted Wϕ. Since conjugate nilpotent elements give rise

to isomorphic generalized Whittaker models, we will also use the notation WO for a nilpotent

coadjoint orbit O.

We denote by GSϕ̃ ⊂ g∗ the closure of the orbit of ϕ̃ under the coadjoint action of the

centralizer of S in G.

Theorem A (See § 3). Let (S, ϕ̃) be a Whittaker pair and let ϕ ∈ GSϕ̃. Then there is a

G-equivariant epimorphism of Wϕ onto WS,ϕ̃.

In particular, taking ϕ̃ = ϕ we see that the generalized Whittaker model maps onto any

degenerate Whittaker model corresponding to the same ϕ. In fact, we prove a more general

result (Theorem 3.0.1) on epimorphisms between pairs of degenerate Whittaker models, which

enables one to define a preorder on the pairs (S, ϕ). If we fix fϕ to be a regular nilpotent element

for a Levi subgroup of G, then the minimal elements under this preorder are the PL Whittaker

pairs (see § 3.3). The corresponding principal degenerate Whittaker models are inductions of

(possibly degenerate) characters of the nilradicals of minimal parabolic subgroups.

The above results have applications to the study of Whittaker functionals on representations

of G. Following [GZ14] we briefly recall the necessary background.
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LetM(G) denote the category of smooth admissible1 (finitely generated) representations of
G (see [BZ76, Cas89, Wal92]). For π ∈M(G) and a nilpotent orbit O ⊂ g denote

WO(π) := HomG(WO, π∗). (1)

The study of Whittaker and generalized Whittaker models for representations of reductive
groups over local fields evolved in connection with the theory of automorphic forms (via their
Fourier coefficients), and has found important applications in both areas. See for example [Sha74,
NP73, Kos78, Kaw85, Yam86, Wal88, Gin06, Jia07, GRS11]. From the point of view of
representation theory, the space of generalized Whittaker models may be viewed as one kind
of nilpotent invariant associated to smooth representations. Another important invariant is the
wave-front cycle:

WFC(π) =
∑

O⊂g∗
nilpotent

cO(π)[O], (2)

defined by Harish-Chandra in the non-archimedean case and by Howe and Barbasch–Vogan
in the archimedean case ([How81, BV80]; see also [Ros95, SV00]). Recently, the behavior of
the wave-front set and the generalized Whittaker models under θ-correspondence was studied
in [GZ14, LM15b].

For F non-archimedean, Mœglin and Waldspurger [MW87] have established that WFC(π)
completely controls the spaces of generalized Whittaker models of interest, namely, the set of
maximal orbits in WFC(π) coincides with the set of maximal orbits such that WO(π) 6= 0, and
for any orbit O in this set we have

cO(π) = dimWO(π).

In [MW87] it is assumed that the residue characteristic is odd. This assumption was recently
removed in [Var14]. In [Moe96], the main result of [MW87] is used in order to prove that for
classical groups, the maximal orbits in the wave-front set of a tempered representation are
distinguished, and the maximal orbits in the wave-front set of any admissible representation are
special. The latter was recently generalized in [JLS14]. Partial analogs of these results hold also
for archimedean F, see [Har12] for the former and [BV82, BV83, Jos80] for the latter.

For archimedean F, the correspondence between the wave-front set and non-vanishing of
degenerate Whittaker models is not yet (fully) understood, except for several special cases
including the representations with the largest Gelfand–Kirillov dimension [Vog78, Mat92] and
unitary highest weight modules [Yam01]. For the latter, the wave-front set was computed earlier
in [Prz91]. In [Mat87], it is shown in full generality that every orbit O with WO(π) 6= 0 lies in
the Zariski closure of some orbit in WFC(π). The paper [GS15] proves an expected existence of
non-zero maps from principal degenerate Whittaker models to admissible representations, and
by Proposition 3.3.4 below, any other degenerate Whittaker model corresponding to the same
orbit is mapped onto a principal degenerate Whittaker model. Let WF(π) denote the closure in
the local field topology of the union of all of the orbits in WFC(π). In § 3.3 we review the results
of [Mat87, GS15] and deduce, using Theorem A, the following theorem.

Theorem B (§ 3.3). Let G be a complex reductive group and let π ∈ M(G). Let (S, ϕ) be a
Whittaker pair such that ϕ is given by Killing form pairing with a principal nilpotent element
of the Lie algebra of a Levi subgroup of G. Then

WS,ϕ(π) 6= 0⇔ ϕ ∈WF(π).

1 If F is archimedean then by admissible we mean admissible Fréchet representation of moderate growth.
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If G is classical, then the set WF(π) is uniquely determined by its intersection with the set
of ‘principal Levi’ nilpotents ϕ; see [GS15, Theorem D]. A result related to Theorem B is proved
by Matumoto in [Mat90]. Namely, let G be a complex reductive group and let π ∈ M(G) have
regular infinitesimal character. Let (S, ϕ) be a Whittaker pair and assume that the orbit of ϕ
is dense in WF(π), and also that it contains a dense subset of the nilradical of the parabolic
subgroup defined by S. Then 0 < dimWS,ϕ(π) <∞. Matumoto also proves the vanishing of the
corresponding higher homology groups.

For F = R a weaker version of Theorem B holds, see Corollary 3.3.7 below.
In § 5 we give choice-free definitions of degenerate Whittaker models. These definitions use

the Deligne filtration instead of the Jacobson–Morozov theorem and thus might be suitable for
local fields of positive characteristic.

In the global case, instead of degenerate Whittaker models one considers explicit functionals
on automorphic representations defined by integration against a character of a nilpotent
subgroup. Such functionals are called Whittaker–Fourier coefficients and denoted WFS,ϕ(π).
In § 6 we give the definitions and explain how to adapt our arguments to the global case and
deduce the following theorem.

Theorem C (See § 6). Let K be a number field, let G be the group of adelic points of a reductive
group defined over K and g be its Lie algebra. Let π be an automorphic representation of G.
Let (S, ϕ) ∈ g × g∗ be a Whittaker pair. Suppose that WFS,ϕ(f) 6= 0 for some f ∈ π. Then
WFϕ(f ′) 6= 0 for some f ′ ∈ π.

1.2 Further results for GLn(F)
For Gn := GLn(F) we show that Theorem A allows one to compare degenerate Whittaker models
corresponding to any nilpotent orbits O,O′ ⊂ g∗n := gl(n,F)∗ such that O ⊂ O′. To that end we
prove the following geometric theorem.

Theorem D (§ 4.2). Let O,O′ ⊂ g∗n be nilpotent coadjoint orbits with O ⊂O′. Then there exists
a Whittaker pair (S, ϕ̃) such that ϕ̃ ∈ O′ and O intersects GSϕ̃. Moreover, S can be chosen to
be diagonal with integer eigenvalues and ϕ̃ can be chosen to be given by the trace pairing with
a matrix in Jordan form.

Remark 1.2.1. An analogous statement holds for some pairs of nilpotent orbits O ⊂ O′ in other
classical groups (see Remark 4.3.2 below), but not in general. Indeed, it can be shown that if
GSϕ̃ intersects a distinguished orbit O, then O = O′.

Using Theorem B [Mat87] and Corollary 3.3.7 for archimedean F, and Theorems A and D,
together with the results of [MW87, Var14] for non-archimedean F we deduce the following
theorem.

Theorem E (§ 4.3). Let π ∈M(Gn). Let O ⊂ g∗n be a nilpotent orbit. Then we have

WO(π) 6= 0⇔ O ⊂WF(π). (3)

Remark 1.2.2. It would be interesting to know to what extent this theorem holds for other
reductive groups. For archimedean F, Theorem B and Corollary 3.3.7 provide a partial extension.
In the non-archimedean case, the failure of Theorem D for general groups, as noted in
Remark 1.2.1, represents the main obstacle for extending our approach.
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In § 4.4 we give a precise description of the generalized Whittaker spaces in terms of certain
functors Ek introduced in [AGS15a, AGS15b] in connection with the generalization of the theory
of Bernstein–Zelevinsky derivatives to the archimedean setting. We will also use related functors
Ik that go in the other direction. We refer to § 4.4 below for the precise definitions of both
functors.

Theorem F (§ 4.4). Let λ = (λ1, . . . , λk) be a partition of n and Oλ ⊂ g∗n be the corresponding
nilpotent orbit. Then

WOλ ' I
λ1(· · · Iλk(C) · · ·), (4)

where C denotes the one-dimensional representation of the trivial group G0, and for π ∈M(Gn)
we have

WOλ(π) ' (Eλk(· · ·Eλ1(π) · · ·))∗. (5)

Let O ⊂ g∗n be a nilpotent orbit. Let M6O(Gn) denote the Serre subcategory of M(Gn)
consisting of representations with wave-front set inside the closure of O and let M<O(Gn)
denote the Serre subcategory ofM6O(Gn) consisting of representations with wave-front set not
containing O. Let MO(Gn) :=M6O(Gn)/M<O(Gn) denote the quotient category.

Using the main results of [AGS15a, AGS15b, GS13, GS15] we obtain the following corollary.

Corollary G (§ 4.5). (i) The functor π 7→ WO(π) defines an exact faithful functor from
MO(Gn) to the category of finite-dimensional vector spaces.

(ii) If π ∈ M6O(Gn) is an irreducible unitarizable representation, or a monomial
representation, and π /∈M<O(Gn) then WO(π) is one-dimensional.

This corollary is new only in the archimedean case, since over p-adic fields exactness is
well-known and finiteness of dimension is shown in [MW87]. It is also shown in [MW87] that
WO(π) is one-dimensional for all irreducible π ∈ MO(Gn). Over archimedean fields, WO(π) is
clearly not one-dimensional for any irreducible π of finite dimension bigger than one.

Let us also comment that for any irreducible π ∈ M(Gn), WF(π) is the closure of a
single nilpotent orbit. Over archimedean fields this follows from [BB82, Jos85] and over non-
archimedean fields this is proven in [MW87]. More generally, it follows from [Jos85] that for any
real reductive group G and any irreducible π ∈ M(G), all of the maximal orbits in WF(π) lie
in a single complex nilpotent orbit. An analogous statement is conjectured over p-adic fields but
not proven yet.

We conjecture that the functor π 7→ WO(π) is exact for all reductive groups, and we hope
to prove this in the future, generalizing the technique of [AGS15b].

1.3 The structure of our proofs
Let us first describe the idea of the proof of Theorem A in the case ϕ = ϕ̃. We first show that
S can be presented as h + Z, where h is a neutral element for ϕ and Z commutes with h and
ϕ. Then we consider a deformation St = h + tZ, and denote by ut the sum of eigenspaces of
ad(St) with eigenvalues at least 1. We call a rational number 0 < t < 1 regular if ut = ut+ε for
any small enough rational ε, and critical otherwise. Note that there are finitely many critical
numbers, and denote them by t1 < · · · < tn. Denote also t0 := 0 and tn+1 := 1. For each t we
define two subalgebras lt, rt ⊂ ut. Both lt and rt are maximal isotropic subspaces with respect
to the form ωϕ, rt contains all of the eigenspaces of Z in ut with positive eigenvalues and lt
contains all of the eigenspaces with negative eigenvalues. Note that the restrictions of ϕ to lt
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and rt define characters of these subalgebras. Let Lt := Exp(lt) and Rt := Exp(rt) denote the
corresponding subgroups and χϕ denote their characters defined by ϕ. The Stone–von Neumann
theorem implies

WSt,ϕ ' indGLt(χϕ) ' indGRt(χϕ).

We show that for any 0 6 i 6 n, rti ⊂ lti+1 . This gives a natural epimorphism

WSti ,ϕ
' indGLti

(χϕ)� indGRti
(χϕ) ' WSti+1 ,ϕ

.

Altogether, we get

Wh,ϕ =WSt0 ,ϕ
�WSt1 ,ϕ

� · · · �WStn+1 ,ϕ
=WS,ϕ.

If ϕ 6= ϕ̃, we identify g ' g∗ using a non-degenerate invariant form and complete ϕ to an
sl2-triple (e, h, ϕ) such that h commutes with S. Then we show, using the Slodowy slice, that
the conditions imply that ϕ̃ is conjugate under GS to ϕ+ ϕ′ with ad∗(e)(ϕ′) = 0. We finish the
proof by a deformation argument similar to the case ϕ = ϕ̃.

For Theorem B, the implication WS,ϕ(π) 6= 0⇒ ϕ ∈WF(π) follows from [Mat87]. To prove
the other direction, we show that WS,ϕ maps onto some principal degenerate Whittaker model
WS̃,ϕ. Thus the theorem follows from the non-vanishing of WS̃,ϕ(π) (under the condition ϕ ∈
WF(π)), which was shown in [GS15]. The same argument gives Corollary 3.3.7: an analogous
statement for quasisplit real reductive groups.

For the proof of Theorem D we identify g∗n with gn using the trace form, and parameterize
nilpotent orbits by partitions. Then we prove the theorem for partitions of length two by an
elementary matrix conjugation argument. We finish the proof by induction. The induction
argument, however, is not so easy since the statement is not ‘transitive’. For any pair of partitions
λ 6 µ (where 6 refers to the natural order on partitions which corresponds to the closure order
on orbits), we consider two pairs of partitions of two smaller numbers that add up to a number
bigger than n. Then we take S′ and S′′ corresponding to the two pairs of partitions and force
them to coincide on the joint block by adding a scalar matrix to one of them. In this way we
obtain a diagonal matrix S ∈ gln(Z) that satisfies the requirements of the theorem.

For archimedean F, Theorem E follows from Theorem B [Mat87] and Corollary 3.3.7. For
non-archimedean F, it was shown in [MW87] that WS,ϕ̃(π) 6= 0 for any Whittaker pair (S, ϕ̃)
such that the orbit of ϕ̃ is a maximal orbit in WFC(π). If O ⊂ WF(π), then O ⊂ O′ for some
maximal orbit O′ ∈ WFC(π). Pick (S, ϕ̃) that correspond to O,O′ by Theorem D. Then, by
Theorem A, WS,ϕ̃(π) embeds into WO(π) and thus WO(π) 6= 0.

We prove Theorem F by induction on k. We let λ′ := (λ2, . . . , λk), and by the induction
hypothesis obtain

WOλ′ ' I
λ2(· · · Iλk(C) · · ·).

Thus, in order to prove (4) we have to show that

WOλ ' I
λ1(WOλ). (6)

We note that both sides of the formula are isomorphic to inductions of the same character
from two nilpotent subgroups that differ only in the last λ1 columns. Then we prove (6) by
a deformation argument similar to the proof of Theorem A. Finally, (5) follows from (4) by a
version of Frobenius reciprocity.

Corollary G follows from (5) using the properties of archimedean prederivatives proven
in [AGS15a, AGS15b, GS13, GS15].
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The proof of Theorem C is analogous to the proofs of Theorems A and D. The only
difference is that we cannot apply the Stone–von Neumann theorem since in the global case we
consider Whittaker–Fourier coefficients, that are some explicit functionals on an automorphic
representation. We replace it by Lemma 6.0.2, that is proven by an explicit integral transform
followed by a Fourier transform on a compact abelian group. This lemma is in the spirit
of [GRS11, Propositions 7.2 and 7.3].

If F is archimedean, one can consider more general models, and analogs of Theorems A–F
will remain valid for them, see Remark 2.5.4.

2. Preliminaries

2.1 Notation
For a semi-simple element S and a rational number r we denote by gSr the r-eigenspace of the
adjoint action of S and by gS>r the sum

⊕
r′>r g

S
r′ . We will also use the notation (g∗)Sr and (g∗)S>r

for the corresponding grading and filtration of the dual Lie algebra g∗. For X ∈ g or X ∈ g∗ we
denote by gX the centralizer of X in g, and by GX the centralizer of X in G. We say that an
element h ∈ g is rational semi-simple if its adjoint action on g is diagonalizable with eigenvalues
in Q.

If (f, h, e) is an sl2-triple, we will say that e is a nil-positive element for h, f is a nil-negative
element for h and h is a neutral element for e. For a representation V of (f, h, e) we denote
by V e the space spanned by the highest-weight vectors and by V f the space spanned by the
lowest-weight vectors.

From now on we fix a non-trivial unitary additive character

χ : F → S1 (7)

such that if F is archimedean we have χ(x) = exp(2πi<(x)) and if F is non-archimedean the
kernel of χ is the ring of integers.

2.2 sl2-triples
We will need the following lemma which summarizes several well-known facts about sl2-triples.

Lemma 2.2.1 (See [Bou75, § 11] or [Kos59]).

(i) Any nilpotent element is the nil-positive element of some sl2-triple in g.

(ii) If h has a nil-positive element, then e is a nil-positive element for h if and only if e ∈ gh2
and ad(e) defines a surjection gh0� gh2 . The set of nil-positive elements for h is open in gh2 .

(iii) If e is nilpotent, then h is a neutral element for e if and only if e ∈ gh2 and h ∈ Im(ad(e)).
All such h are conjugate under Ge.

(iv) If (f, h, e) and (f ′, h, e) are sl2-triples, then f = f ′.

(v) If (f, h, e) is an sl2-triple and Z commutes with two of its elements, then it commutes
also with the third one.

It is easy to see that the lemma continues to hold true if we replace the nil-positive elements
by nil-negative ones (and gh2 by gh−2).

Definition 2.2.2. We will say that h ∈ g is a neutral element for ϕ ∈ g∗ if h has a nil-positive
element in g, ϕ ∈ (g∗)h−2, and the linear map (g∗)h0 → (g∗)h−2 given by x 7→ ad∗(x)(ϕ) is an
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epimorphism. Note that if we identify g with g∗ (in a G-equivariant way) this property becomes
equivalent to ϕ being a nil-negative element for h, or −h being a neutral element for ϕ. We also
say that 0 ∈ g is a neutral element for 0 ∈ g∗.

2.3 Schwartz induction
Definition 2.3.1. If G is an l-group, we denote by Rep∞(G) the category of smooth
representations of G. If H ⊂ G is a closed subgroup and π ∈ Rep∞(H) is a smooth representation
of G, we denote by indGH(π) the smooth compactly supported induction as in [BZ76, § 2.22].

If G is an affine real algebraic group, we denote by Rep∞(G) the category of smooth nuclear
Fréchet representations of G of moderate growth. This is essentially the same definition as
in [dCl91, § 1.4] with the additional assumption that the representation spaces are nuclear (see
e.g. [Tre67, § 50]). If H ⊂ G is a Zariski closed subgroup, and π ∈ Rep∞(H) we denote by
indGH(π) the Schwartz induction as in [dCl91, § 2]. More precisely, in [dCl91] du Cloux defines a
map from the space S(G, π) of Schwartz functions from G to the underlying space of π to the
space C∞(G, π) of all smooth π-valued functions on G by f 7→ f where

f(x) =

∫

h∈H
π(h)f(xh) dh,

and dh denotes a fixed left-invariant measure on H. The Schwartz induction indGH(π) is defined
to be the image of this map.

From now until the end of the subsection let G be either an l-group or an affine real algebraic
group, and H ′ ⊂ H ⊂ G be (Zariski) closed subgroups.

Lemma 2.3.2 ([BZ76, Proposition 2.25(b)] and [dCl91, Lemma 2.1.6]). For any π ∈ Rep∞(H ′)
we have

indGH′(π) ' indGH indHH′(π).

Corollary 2.3.3. For any π ∈ Rep∞(H) we have a natural epimorphism indGH′(π|H′)� indGH(π).

Lemma 2.3.4. Let ρ ∈ Rep∞(H), π ∈ Rep∞(G) and let π∗ denote the dual representation,
(endowed with the strong dual topology in the archimedean case). Then

HomG(indGH(ρ), π∗) ∼= HomH(ρ, π∗∆−1
H ∆G),

where ∆H and ∆G denote the modular functions of H and G.

The non-archimedean case of this lemma follows from [BZ76, Proposition 2.29]. We prove the
archimedean case in Appendix A. We will only use this lemma in the case when G is reductive,
π ∈M(G), H is nilpotent and ρ is one-dimensional.

2.4 Oscillator representations of the Heisenberg group
Definition 2.4.1. Let Wn denote the 2n-dimensional F-vector space (Fn)∗ ⊕ Fn and let ω be
the standard symplectic form on Wn. The Heisenberg group Hn is the algebraic group with
underlying algebraic variety Wn × F with the group law given by

(w1, z1)(w2, z2) = (w1 + w2, z1 + z2 + 1/2ω(w1, w2)).

Note that H0 = F.
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Definition 2.4.2. Let χ be the additive character of F, as in (7). Extend χ trivially to a character
of the commutative subgroup 0⊕ Fn ⊕ F ⊂ Hn. The oscillator representation $χ is the unitary
induction of χ from 0⊕ Fn ⊕ F to Hn. Define the smooth oscillator representation σχ to be the
space of smooth vectors in $χ.

Lemma 2.4.3. We have σχ = indHn0⊕Fn⊕F(χ).

Proof. In the archimedean case we apply the characterization of smooth vectors in a unitary
induction given in [Pou72, Theorem 5.1]. By this characterization σχ can be identified with the
space

{f ∈ C∞((Fn)∗) |xif (j) ∈ L2((Fn)∗) ∀i, j}.

This space coincides with the Schwartz space S((Fn)∗), which in turn can be identified with
indHn0⊕Fn⊕F(χ).

In the non-archimedean case let us prove a stronger statement: indHn0⊕Fn⊕F(χ) = IndHn0⊕Fn⊕F(χ),

where Ind denotes the full smooth induction. Indeed let f ∈ IndHn0⊕Fn⊕F(χ), and let f ′ be the
restriction of f to (Fn)∗⊕ 0⊕ 0. Since f is smooth, i.e. fixed by an open compact subgroup K of
Hn, for any ϕ ∈ (Fn)∗ and v ∈ Fn ∩K we have χ(ϕ(v))f ′(ϕ) = f ′(ϕ). This implies that f ′ has
compact support, and thus f ∈ indHn0⊕Fn⊕F(χ). 2

Theorem 2.4.4 (Stone–von Neumann). The oscillator representation $χ is the only irreducible
unitary representation of Hn with central character χ.

Corollary 2.4.5. Let L ⊂ W be a Lagrangian subspace. Extend χ trivially to the abelian
subgroup L⊕ F ⊂ Hn. Then indHnL⊕F χ

∼= σχ.

Lemma 2.4.6. Let F be non-archimedean. Let τ be a smooth representation of Hn on which the
center acts by the character χ, and let τ̃ denote the smooth contragredient. Then (HomHn(σχ,
τ))∗ ∼= HomHn(σχ, τ̃).

Proof. Let L ⊂W be a maximal lattice such that ω(L,L) ⊂ Ker(χ). Then by Theorem 2.4.4 σχ =
indHnL×F χ. By [BZ76, 2.29] HomHn(σχ, τ̃) ∼= (τ∗)L. Since L is an open compact subgroup we get

(τ∗)L ∼= (τL)∗ and HomHn(σχ, τ) ∼= τL. 2

2.5 Degenerate Whittaker models
Definition 2.5.1. (i) A Whittaker pair is an ordered pair (S, ϕ) such that S ∈ g is rational
semi-simple, and ϕ ∈ (g∗)S−2. Given such a Whittaker pair, we define the space of degenerate
Whittaker models WS,ϕ in the following way: let u := gS>1. Define an anti-symmetric form ωϕ on
g by ωϕ(X,Y ) := ϕ([X,Y ]). Let n be the radical of ωϕ|u. Note that u, n are nilpotent subalgebras
of g, and [u, u] ⊂ gS>2 ⊂ n. Let U := Exp(u) and N := Exp(n) be the corresponding nilpotent
subgroups of G. Let n′ := n ∩Ker(ϕ), N ′ := Exp(n′). If ϕ = 0 we define

WS,0 := indGU (C). (8)

Assume now that ϕ is non-zero. Then U/N ′ has a natural structure of a Heisenberg group, and its
center is N/N ′. Let χϕ denote the unitary character of N/N ′ given by χϕ(exp(X)) := χ(ϕ(X)).
Let σϕ denote the oscillator representation of U/N ′ with central character χϕ, and σ′ϕ denote its
trivial lifting to U . Define

WS,ϕ := indGU (σ′ϕ). (9)
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(ii) For a nilpotent element ϕ ∈ g∗, define the generalized Whittaker model Wϕ corresponding
to ϕ to beWS,ϕ, where S is a neutral element for ϕ if ϕ 6= 0 and S = 0 if ϕ = 0. We will also call
WS,ϕ neutral degenerate Whittaker model. By Lemma 2.2.1 Wϕ depends only on the coadjoint
orbit of ϕ, and does not depend on the choice of S. Thus, we will also use the notation WO for
a nilpotent coadjoint orbit O ⊂ g∗. In § 5 we reformulate this definition without choosing S, but
using the Killing form.

(iii) For π ∈M(G) define the degenerate and generalized Whittaker spaces of π by

WS,ϕ(π) := HomG(WS,ϕ, π
∗) and Wϕ(π) := HomG(Wϕ, π

∗). (10)

Note that WS,ϕ(π) ∼= HomG(WS,ϕ, π̃), where π̃ denotes the contragredient representation.
In the non-archimedean case this is obvious and in the archimedean case this follows from the
Dixmier–Malliavin theorem [DM78].

Lemma 2.5.2. Let l ⊂ u be a maximal isotropic subalgebra and L := Exp(l). Let π ∈ M(G).
Then

WS,ϕ(π) ∼= HomL(π, χ−1
ϕ ).

Proof. By Corollary 2.4.5 and Lemma 2.3.2 we have WS,ϕ
∼= indGL (χϕ). Using Lemma 2.3.4 we

obtain

WS,ϕ(π)∼= HomG(indGL (χϕ), π∗)∼= HomL(χϕ, π
∗)∼= HomL(π, χ−1

ϕ ). 2

In the case when F is non-archimedean and π ∈M(G), slightly different degenerate Whittaker
models are considered in [MW87]. Namely, let U ′′ denote the subgroup of U generated by
Exp(gS>1) and the kernel of χϕ. Let π(U ′′,χϕ) denote the biggest quotient of π on which U ′′

acts by the character χϕ. Then [MW87] considers HomU (σϕ, π(U ′′,χϕ)). By Lemma 2.4.6 and
Frobenius reciprocity we have

WS,ϕ(π) ∼= (HomU (σϕ, π(U ′′,χϕ)))
∗. (11)

Remark 2.5.3. For non-archimedean F we can define WMS,ϕ to be the full induction IndGU σ
′
ϕ.

Since for L as in Lemma 2.5.2 we have σ′ϕ = IndUL χϕ, our proof of Theorem A will show
that under the under the conditions of this theorem we have a G-equivariant embedding
WMS,ϕ̃↪→WMϕ. For π ∈ M(G) one can define WMS,ϕ(π) := HomG(π,WMS,ϕ). By the
Frobenius reciprocity [BZ76, Theorem 2.28] we have WMS,ϕ(π) = HomL(π, χϕ) which by
Lemma 2.5.2 is isomorphic to WS,ϕ(π). Thus, all of the results of the paper can be reformulated
in terms of the full induction.

In order to have an analogous formulation in the archimedean case one needs a notion of full
induction of smooth Fréchet representations of moderate growth, that will satisfy transitivity
of induction, Frobenius reciprocity (as in [BZ76, Theorem 2.28]) and σ′ϕ = IndGL χϕ. A certain

full induction OM IndGH(π, V ) is defined in [dCl91, Definition 2.1.3]. It consists of functions of
moderate growth from G to V which are equivariant under H. It satisfies the first two of our
requirements but not the third. Probably in the suitable notion of full induction the definition
of function of moderate growth should take into account the action of H on V .

Remark 2.5.4. If F is archimedean, one can define WS,ϕ for any semi-simple S with real
eigenvalues in the same way, and the proof of Theorem A will be valid for this case without
changes.
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3. Proof of Theorem A

We will prove in § 3.2 the following generalization of Theorem A.

Theorem 3.0.1. Let (S, ϕ) and (S̃, ϕ̃) be two Whittaker pairs in g such that ϕ ∈ G
S̃
ϕ̃. Suppose

that gϕ ∩ gS>1 ⊂ gS̃>1 and that there exists a neutral element h for ϕ such that h commutes with

S and S̃, and S − h commutes with ϕ̃. Then there is a G-equivariant epimorphism of WS,ϕ onto
W
S̃,ϕ̃

.

In order to deduce Theorem A we will need the following lemma.

Lemma 3.0.2 (See § 3.1). Let P denote the set of conjugacy classes of Whittaker pairs in g and
let Q denote the set of conjugacy classes of pairs of elements ϕ ∈ g∗, Z ∈ gϕ such that ϕ is
nilpotent and Z is rational semi-simple.

Define a map µ : Q→ P in the following way: for any q ∈ Q choose (Z,ϕ) ∈ q, let h ∈ gZ be
a neutral element for ϕ|gZ and define µ(q) to be the class of the pair (Z + h, ϕ). Then the map
µ is a well-defined bijection.

Proof of Theorem A. By Lemma 3.0.2 there exists a neutral element h for ϕ which commutes
with S. Then we have gϕ ∩ gh>1 = 0. Theorem 3.0.1 applied to the Whittaker pairs (h, ϕ) and
(S, ϕ̃) implies now that there exists a G-equivariant epimorphism of Wh,ϕ =Wϕ onto WS,ϕ̃. 2

In the same way we obtain the following corollary of Theorem 3.0.1 for the case ϕ = ϕ̃.

Corollary 3.0.3. Let (S, ϕ) and (S̃, ϕ) be two Whittaker pairs with the same nilpotent element

and commuting semi-simple elements. If gϕ ∩ gS>1 ⊂ gS̃>1, then there exists a G-equivariant
epimorphism of WS,ϕ onto W

S̃,ϕ
.

Proof. By Lemma 3.0.2 applied to the group G
S̃−S we obtain that there exists a neutral element

h for ϕ that commutes with S̃ and S. Thus, the corollary follows from Theorem 3.0.1. 2

This corollary enables one to define a preorder on the set of models corresponding to a fixed
nilpotent element ϕ. Let us describe this preorder more explicitly. Choose a neutral element h
for ϕ and let a be a maximal split Cartan subalgebra in g that includes h. Choose a root system
Σ on a. By Lemma 3.0.2, if (S, ϕ) is any Whittaker pair, then S is conjugate to h+ Z for some
Z in the stabilizer aϕ of ϕ in a.

Definition 3.0.4. Let X,Y ∈ aϕ. We say that X >ϕ Y if for any α ∈ Σ such that α(h) 6 0 and
α(X) > 1− α(h), we have α(Y ) > 1− α(h).

Corollary 3.0.3 immediately implies the following result.

Corollary 3.0.5. If X >ϕ Y , then there exists a G-equivariant epimorphism of Wh+X,ϕ onto
Wh+Y,ϕ.

Remark 3.0.6. For ϕ /∈ Gϕ̃, the condition on the existence of h cannot be omitted in
Theorem 3.0.1. Indeed, let F be a p-adic field, ϕ̃ be a regular nilpotent element in g∗n and S̃
be a neutral element for ϕ̃. Let S = S̃. Then for any non-regular nilpotent orbit we can find
a representative ϕ ∈ G

S̃
ϕ̃. However, for any supercuspidal representation π of Gn we have

WS,ϕ(π) = 0 while W
S̃,ϕ̃

(π) 6= 0.
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Remark 3.0.7. The condition ϕ ∈ G
S̃
ϕ̃ in Theorem 3.0.1 cannot be replaced by the weaker

condition ϕ ∈ Gϕ̃. Indeed, let G := GL(4,F), where F is a p-adic field. Let S := S̃ := diag(3, 1,

−1,−3). Let ϕ, ϕ̃ ∈ (g∗)S̃2 be defined by trace pairing with nilpotent elements in lower-triangular
Jordan form with block sizes (2, 2) and (3, 1) in correspondence. Then ϕ ∈ Gϕ̃ but f /∈ G

S̃
ϕ̃.

Let χ be a character of GL(2,F), σ be an irreducible cuspidal representation of GL(2,F) and
π := χ×σ ∈M(G) be their Bernstein–Zelevinsky product. Then the spacesWS,ϕ(π) andW

S̃,ϕ̃
(π)

can be expressed through the Bernstein–Zelevinsky derivatives (see [BZ77]) in the following way:
WS,ϕ(π) = D2(D2(π)) and W

S̃,ϕ̃
(π) = D1(D3(π)). We have

D1(σ) = 0, D2(σ) = C, D1(χ) = χ|GL(1,Qp), D1(D1(χ)) = C, D2(χ) = 0,

and by the Leibnitz rule for Bernstein–Zelevinsky derivatives

D2(π) = χ, D2(D2(π)) = 0, D3(π) = χ|GL(1,Qp), D1(D3(π)) = C,

and thus W
S̃,ϕ̃

(π) = C while WS,ϕ(π) = 0.

3.1 Proof of Lemma 3.0.2
We will need the following lemma.

Lemma 3.1.1. Let (f, h, e) be an sl2-triple in g, let L be its centralizer in G and let l be its
centralizer in g. Let Z1, Z2 ∈ l and suppose that h+ Z1 is conjugate to h+ Z2 by an element of
Gf . Then Z1 is conjugate to Z2 by an element of L.

Proof. Note the Levi decomposition Gf = LU , where U is the nilradical of Gf . It is enough to
show that if u ∈ U, X ∈ gh and ad(u)X ∈ gh, then ad(u)X = X. This holds since u = Exp(Y )
for some Y ∈ (gf ) ∩ gh<0 and [Y,X] ∈ gh. 2

Proof of Lemma 3.0.2. We choose a non-degenerate conjugation-invariant symmetric bilinear
form on g and use it to identify g with g∗. Thus, instead of ϕ ∈ g∗ we will consider f ∈ g.

To see that µ is well-defined, let Z, f ∈ g. Let (f, h, e) be an sl2-triple in gZ . Note that any
two choices of such a triple are conjugate by GZ ∩ Gf . Note also that for any g ∈ G, (ad(g)f,
ad(g)h, ad(g)e) is an sl2-triple in gad(g)Z , and (ad(g)h + ad(g)z, ad(g)f) = ad(g)(h + z, f) ∈ P.
Thus µ is well-defined.

To see that µ is onto, let c ∈ P and (S, f) ∈ c. Fix an embedding g ⊂ gl(V ). Let us show
that there exists a basis for V in which S is diagonal and f is in Jordan form. First of all let
{λi}ki=1 be all the eigenvalues of S, ordered such that λj = λi − 2 only if j = i + 1, and let
{Wi}ki=1 be the corresponding eigenspaces. Then f(Wi) ⊂ Wi+1, and thus {Wi}ki=1, {f |Wi}

k−1
i=1

form a representation of a type A quiver. By [Gab72] (see also [BGP73, Theorem 3.1(2)]), any
such representation is a direct sum of indecomposable representations in which all of the spaces
have dimensions 0 or 1. Each of these representations gives a Jordan chain for f . Then the union
of these chains is the required basis. With respect to this basis f is in Jordan form and S is
diagonal. Thus there exists a diagonal neutral element −h′ for f in gl(V ), which then commutes
with S. Since g is reductive, there exists a g-module projection p : gl(V )� g. Let h := p(h′).
Then [h, S] = 0. Moreover, [h, f ] = −2f and h ∈ Im(ad(f)) and thus, by Lemma 2.2.1, −h is a
neutral element for f . Thus, c = µ(S − h, f).

It is left to show that µ is injective. Let q, q′ ∈ Q such that µ(q) = µ(q′), and let (Z, f) and
(Z ′, f ′) be their representatives. Then there exist sl2-triples (f, h, e) in gZ and (f ′, h′, e′) in gZ′ ,
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and g ∈ G such that ad(g)(f) = f ′ and ad(g)(h+Z) = h′+Z ′. Note that (f ′, ad(g)h, ad(g)e) is an
sl2-triple and thus ad(g)h and h′ are conjugate by Gf . Thus, we can assume that f = f ′, h = h′,
and h+ Z is conjugate to h+ Z ′ by Gf . By Lemma 3.1.1 this implies that Z is conjugate to Z ′

by Gf and thus (Z, f) is conjugate to (Z ′, f ′). 2

3.2 Proof of Theorem 3.0.1
Let ω denote the anti-symmetric form ωϕ on g defined by ω(X,Y ) := ϕ([X,Y ]).

Our proof is based on the following lemma, which is in the spirit of [GRS99, Lemma 2.2],
[GRS11, Lemma 7.1] or [LM15a, Lemma A.1].

Lemma 3.2.1. Let l, r ⊂ g be nilpotent subalgebras such that [l, r] ⊂ l ∩ r, ω|l = 0, ω|r = 0 and
the radical of ω|l+r is l ∩ r. Then l + r is a nilpotent Lie algebra and

ind
Exp(l+r)
Exp(l) χϕ ' ind

Exp(l+r)
Exp(r) χϕ. (12)

Proof. If ϕ= 0, then ω = 0, thus l+r = l∩r, l = r and there is nothing to prove. Now suppose ϕ 6= 0
and denote k := l ∩ r ∩Ker(χϕ). Then Exp(l + r)/Exp(k) is the Heisenberg group corresponding
to the symplectic form induced by ω on the space (l + r)/(l ∩ r). Since l/(l ∩ r) and r/(l ∩ r)

are Lagrangian subspaces, the representations ind
Exp(l+r)/Exp(k)
Exp(l)/Exp(k) χϕ and ind

Exp(l+r)/Exp(k)
Exp(r)/Exp(k) χϕ are

both isomorphic to the oscillator representation σϕ of Exp(l + r)/Exp(k) with central character

defined by χϕ. Since Exp(k) acts trivially on ind
Exp(l+r)
Exp(l) χϕ and ind

Exp(l+r)
Exp(r) χϕ, we obtain that

they are both isomorphic to the trivial extension of σϕ to Exp(l + r). 2

Remark 3.2.2. By induction by stages we obtain indGExp(l) χϕ ' indGExp(r) χϕ. Observe that this

isomorphism can be realized explicitly as an integral transform: given f ∈ indGExp(l) χϕ we can

define f̌ ∈ indGExp(r) χϕ simply by setting

f̌(g) =

∫

Exp(l∩r)\Exp(r)
f(ng) dn.

Then the previous results imply that the map f 7→ f̌ defines an isomorphism between these two
spaces.

In the course of our proof we will make several choices and introduce some notation. The
reader is welcome to track those on Examples 3.2.11 and 3.2.12 below.

Let z := S − h and K := S̃ − z. Choose a symmetric bilinear non-degenerate G-invariant
form on g and let f ∈ g correspond to ϕ using this form. Let e be the nil-positive element for h
and f . Then e ∈ a := gz. Consider the embedding a∗ ↪→ g∗ corresponding to the bilinear form
on g. Let A := Gz.

Lemma 3.2.3. There exists ϕ′ ∈ ((a∗)e)K−2 such that ϕ+ ϕ′ ∈ G
S̃
ϕ̃.

Proof. Note that a∗ = (a∗)e ⊕ ad∗(f)(a∗). Since K preserves both summands we get

(a∗)K−2 = ((a∗)e)K−2 ⊕ (ad∗(f)(a))K−2 = ((a∗)e)K−2 ⊕ ad∗(aK)(ϕ). (13)

Consider the map ν : AK × ((a∗)e)K−2 → (a∗)K−2 given by ν(g,X) := g(ϕ + X). Note that the
differential of ν at the point (1, 0) is onto, and thus the image of ν contains an open neighborhood
of ν(1, 0) = ϕ. Since ϕ ∈ G

S̃
ϕ̃, the image of ν intersects the orbit G

S̃
ϕ̃. 2
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Let ϕ̃′ := ϕ+ϕ′. Let i denote the smallest of the h-weights of ϕ′. If ϕ′ = 0 we take i to be 0.
Note that i is always non-negative.

Lemma 3.2.4. If ϕ′ 6= 0, then there exists X ∈ aϕ ∩ aK2 ∩ ah−i such that ϕ′(X) = 1.

Proof. Let ϕ′i be the component of ϕ′ of weight i. There exists Y ∈ a with ϕ′i(Y ) = 1. Let
X ′ ∈ aϕ be the component of Y in the decomposition a = [e, a] ⊕ aϕ. Since ϕ′i ∈ (a∗)e, ϕ′i
vanishes on [e, a] and thus ϕ′i(X

′) = 1. Decompose aϕ to joint eigenspaces of the commuting
semi-simple operators h and K and let X be the component of X ′ in aϕ ∩ aK2 ∩ ah−i. Then
ϕ′(X) = ϕ′i(X) = ϕ′i(X

′) = 1. 2

Let Z := S̃ − S = K − h ∈ gϕ. For any rational number 0 6 t 6 1 define

St := S + tZ, ut := gSt>1, vt := gSt>1, and wt := gSt1 . (14)

Definition 3.2.5. We call t regular if ut = ut+ε for any small enough ε ∈ Q, or in other words
wt ⊂ gZ . If t is not regular we call it critical. For convenience, we will say that 0 is critical and
1 is regular.

Note that there are only finitely many critical numbers.

Lemma 3.2.6. The following results hold:

(i) the form ω is ad(Z)-invariant;

(ii) Kerω = gϕ = gf ⊂ gh60;

(iii) Ker(ω|wt) = Ker(ω) ∩wt;

(iv) Ker(ω|ut) = vt ⊕Ker(ω|wt);
(v) ws ∩ gϕ ⊂ ut for any s < t.

Proof. (i) We have ω([Z, a], b)+ω(a, [Z, b]) = ϕ([[Z, a], b])+ϕ([a, [Z, b]]〉= (ad∗(Z)(ϕ))([a, b]) = 0.
(ii) We have a ∈ Kerω ⇐⇒ ω(a, b) = 0∀b⇐⇒ ϕ([a, b]) = 0∀b⇐⇒ (ad∗(a)(ϕ))(b) = 0∀b⇐⇒

ad∗(a)(ϕ) = 0. Thus Kerω = gϕ. Since ϕ is given by pairing with f , its stabilizer gϕ coincides
with the space gf that is spanned by the lowest-weight vectors.

(iii) We have Ker(ω|wt) = wt∩Kerω since ω(wt, g
St
s ) = 0 for any s 6= −1. Now gh60∩wt ⊂ gZ>0.

(iv) This holds since ω(ut, vt) = 0.
(v) Let Y ∈ ws ∩ gϕ ∩ gZp . If p > 0, then Y ∈ ut. If p < 0, then Y ∈ gS>1. By the conditions of

the theorem we have gS>1 ∩ gϕ ⊂ gS̃>1, thus Y ∈ gS>1 ∩ gS̃>1 ⊂ ut. 2

Choose a Lagrangian m ⊂ gZ0 ∩ gS1 and let

lt := m + (ut ∩ gZ<0) + Ker(ω|ut) and rt := m + (ut ∩ gZ>0) + Ker(ω|ut). (15)

Lemma 3.2.7. (i) The spaces lt and rt are ideals in ut and [lt, rt] ⊂ lt ∩ rt.

(ii) For any t > 0, lt and rt are maximal isotropic subspaces of ut.

(iii) Suppose that 0 6 s < t, and all elements of the open interval (s, t) are regular. Then rs ⊂ lt.

Proof. (i) This follows from the inclusion [ut, ut] ⊂ vt ⊂ lt ∩ rt.
(ii) Since ω is ad(Z)-invariant, we see that lt and rt are isotropic. To show that lt is maximal

isotropic, let Y ∈ gZs ∩ ut. Let R denote the radical of ω|ut . If Y ∈ R, then Y ∈ lt. If s 6 0, then
Y ∈ lt. If s > 0 and Y /∈ R, then there exists Y ′ ∈ gZ−s ∩ ut ⊂ lt such that ω(Y, Y ′) 6= 0. Thus,
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if we enlarge lt it will stop being isotropic. Now, note that ω defines a symplectic structure on
ut/R ' wt/(wt ∩ gZ0 + wt ∩ gϕ), and the image of lt in this space is Lagrangian. The image of
rt is a complementary isotropic subspace, thus also a Lagrangian, and thus rt itself is maximal
isotropic in ut.

(iii) Note that ws ∩ gZ>0 ⊂ vt ⊂ lt. Let us show that vs ⊂ lt. Note that vs ⊂ ut, since all
elements in (s, t) are regular. Let Y ∈ vs be a joint eigenvector for ad(S) and ad(Z). If Y /∈ vt,
then Y ∈ wt and its Z-eigenvalue is negative. Thus, Y ∈ lt. Now by Lemma 3.2.6(v) we get
ws ∩ gϕ ⊂ ut ∩ gϕ ⊂ lt, and from Lemma 3.2.6(ii)–(iv) this implies Ker(ω|us) ⊂ lt. Altogether we
get rs ⊂ lt. 2

Define
l′t := lt ∩Ker(ϕ′) and r′t := rt ∩Ker(ϕ′). (16)

Lemma 3.2.8. (i) For any 0 6 s < t such that all of the numbers in the open interval (s, t) are
regular, we have r′s ⊂ l′t.

(ii) For 0 6 t < 1, both l′t and r′t are subalgebras of ut, [l′t, r
′
t] ⊂ l′t ∩ r′t and for

0 6 t < (i+ 1)/(i+ 2) we have l′t = lt and r′t = rt.

(iii) The radical l′t ∩ r′t is of ω|l′t+r′t
.

Proof. Part (i) follows immediately from Lemma 3.2.7(iii).
For part (ii) note that i > 0, ϕ′ ∈ (g∗)St>i−t(i+2) and thus Ker(ϕ′) ⊃ gSt>−i+t(i+2). Thus, for

t < 1 we have [ut, ut] ⊂ Ker(ϕ′) and for 0 6 t < (i + 1)/(i + 2) we have ut ⊂ Ker(ϕ′). Since
[ut, ut] ⊂ vt ⊂ lt ∩ rt we obtain (ii).

For part (iii) we can assume that t > (i+ 1)/(i+ 2) and ϕ′ 6= 0. Then, by Lemma 3.2.4, there
exists X ∈ gϕ ∩ ut with ϕ′(X) = 1. Thus, the image of l′t in ut/(gϕ ∩ ut) coincides with the image
of lt, and the image of r′t coincides with the image of rt. Since those images are Lagrangian, l′t∩ r′t
is the radical of ω|l′t+r′t

. 2

Lemmas 3.2.8 and 3.2.1 imply that

WS,ϕ ' indGExp(r0) χϕ ' indGExp(r′0) χϕ, indGExp(l′t)
χϕ ' indGExp(r′t)

χϕ (17)

and for s < t such that all the numbers in (s, t) are regular we have

indGExp(r′s)
χϕ� indGExp(l′t)

χϕ. (18)

We are now ready to prove Theorem 3.0.1.

Proof of Theorem 3.0.1. Let 0 < t1 < · · · < tn be the critical numbers. Note that r′tn is an
isotropic subalgebra of u1, and that it is also isotropic with respect to the form ωϕ+ϕ′(X,Y ) :=
(ϕ+ϕ′)([X,Y ]). Let q be a maximal isotropic subspace of u1 with respect to this form. It includes
v1 and thus is necessary a subalgebra. Note that

indGExp(r′tn ) χϕ = indGExp(r′tn ) χϕ+ϕ′� indGExp(q) χϕ+ϕ′ ' WS̃,ϕ̃′ ' WS̃,ϕ̃
. (19)

Thus,

WS,ϕ ' indGExp(r′0) χϕ� indGExp(l′t1
) χϕ ' indGExp(r′t1

) χϕ�

· · · � indGExp(l′tn ) χϕ ' indGExp(r′tn ) χϕ�WS̃,ϕ̃
. (20)

2
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Remark 3.2.9. Observe that, in the above proof, the map indGExp(r′ti
) χϕ� indGExp(l′ti+1

) χϕ is

simply given by integration over Exp(r′ti)\Exp(l′ti+1
). From this, and the observation given in

Remark 3.2.2, we see that the G-equivariant epimorphism promised in Theorem 3.0.1 is given
by a series of integral transforms followed, if necessary, by conjugation by an element of G.

Remark 3.2.10. Let M denote the joint centralizer of ϕ, ϕ̃, S, S̃, and h. Then a central extension
M̃ of M acts naturally on the oscillator representations σϕ and σϕ̃, and thus also on the
degenerate Whittaker modelsWS,ϕ andW

S̃,ϕ̃
. It is easy to see that the constructed epimorphism

WS,ϕ�WS̃,ϕ̃
intertwines these actions.

Let us now present two examples for the elements and subalgebras defined in the course of
the proof. Let G := GL(4,F) and define ϕ by ϕ(X) := Tr(X(E21 +E43)), where E21 and E43 are
elementary matrices. Let h be the diagonal matrix diag(1,−1, 1,−1) and S := h.

Example 3.2.11. Let ϕ̃ := ϕ, K := diag(3, 1,−1,−3), z := 0. Then Z = diag(2, 2,−2,−2), St =
diag(1 + 2t,−1 + 2t, 1− 2t,−1− 2t) and the weights of St are as follows:




0 2 4t 4t+ 2

−2 0 4t− 2 4t

−4t −4t+ 2 0 2

−4t− 2 −4t −2 0


 .

The critical numbers are 1/4 and 3/4. For t > 3/4 we get the principal degenerate Whittaker
model. We have r′t = rt, l

′
t = lt for all t. The above system of inclusions of r0 ⊂ l1/4 ∼ r1/4 ⊂ l3/4 =

r3/4 is




0 − 0 −
0 0 0 0

0 − 0 −
0 0 0 0


 ⊂




0 − a −
0 0 0 a

0 ∗ 0 −
0 0 0 0


 ∼




0 − ∗ −
0 0 0 ∗
0 0 0 −
0 0 0 0


 ⊂




0 − − −
0 0 ∗ −
0 0 0 −
0 0 0 0


 .

Here, both ∗ and − denote arbitrary elements: − denotes the entries in vt and ∗ those in wt. The
letter a denotes an arbitrary element, but the two appearances of a denote the same numbers.
The passage from l1/4 to r1/4 is denoted by ∼. At 3/4 we have l3/4 = r3/4.

Let us now give an example in which ϕ and ϕ̃ are not equal and not conjugate.

Example 3.2.12. Identify g ' g∗ using the trace form and let

ϕ̃ =




0 0 1 0

1 0 0 1

0 0 0 0

0 0 1 0


 , e =




0 1 0 0

0 0 0 0

0 0 0 1

0 0 0 0


 , ϕ′ =




0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0


 .

Let S̃ := diag(0,−2, 2, 0), Z = diag(−1,−1, 1, 1). Note that w0 = w1 = 0 and the only critical
value of t is 1/2. The sequence of subalgebras from the proof of Theorem 3.0.1 is

u0 = l′0 = l′1/2 =




0 ∗ 0 −
0 0 0 0

0 ∗ 0 ∗
0 0 0 0


 ∼ r′1/2 =




0 ∗ 0 0

0 0 0 0

a ∗ 0 ∗
0 −a 0 0


 ⊂




0 ∗ 0 0

0 0 0 0

∗ ∗ 0 ∗
0 ∗ 0 0


 = u1.
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3.3 Principal degenerate Whittaker models and proof of theorem B
In the discussion below a will denote a maximal split toral subalgebra of g, we will write Σ(a, g)
for the corresponding (restricted) root system, Σ+(a, g) for a choice of positive roots, and ∆(a, g)
for the corresponding system of simple roots.

Definition 3.3.1. We say that a rational semisimple S ∈ g is principal if there exists an a
containing S, and a simple subsystem ∆ = ∆(a, g) ⊂ Σ(a, g) such that α(S) = 2 for all α ∈ ∆.
We say that a Whittaker pair (S, ϕ) is principal if S is principal. A principal degenerate Whittaker
model is the degenerate Whittaker model corresponding to a principal Whittaker pair.

We fix a non-degenerate invariant bilinear form on g, which allows us to identify nilpotent
elements in g and g∗. Thus, we may equally well apply the above terminology to ‘Whittaker
pairs’ (S, f) ⊂ g× g, such that S is rational semisimple and [S, f ] = −2f .

Note that a principal element S uniquely determines both a, and the simple system ∆ =
∆(a, g). Thus, there is a bijection between principal elements and simple systems which we denote
by S 7→ ∆S , ∆ 7→ S∆.

If (S, f) is principal, then setting ∆ = ∆S , we can write f uniquely in the form

f =
∑

α∈∆

Yα, (21)

for some Yα ∈ g−α. Conversely if f is of the form (21) for some ∆, then we will say that f is a
PL nilpotent and ∆ is compatible with f . In this case (S∆, f) is a principal Whittaker pair, and
we define the ∆-support of f to be

supp∆(f) = {α ∈ ∆ | Yα 6= 0}.

If supp∆ (f) = ∆ we say that f is a principal nilpotent element. Note that this notion is weaker
than the similar notion defined in [Bou75, VIII.11.4]. However, if G is quasi-split then both
notions are equivalent to the notion of regular nilpotent element.

Note that f is a PL nilpotent if and only if it is a principal nilpotent element for a Levi
subgroup of G. For the general linear groups, every orbit includes such an element. For complex
classical groups, all such orbits are described in [GS15, § 6] in terms of the corresponding
partitions. For complex exceptional groups, these are the orbits with non-parenthetical Bala–
Carter labels.

Lemma 3.3.2. Let (S1, f) and (S2, f) be two Whittaker pairs with the same f , and let h be
neutral for f . Then there exist g1, g2 ∈ Gϕ and Z1, Z2 ∈ gh ∩ gf such that

g1 · S1 = h+ Z1, g2 · S2 = h+ Z2, [Z1, Z2] = 0.

Proof. By Lemma 3.0.2 we can find g1, g2, Z1, Z2 satisfying all of the stated properties, except
perhaps the commutativity [Z1, Z2] = 0. Since gh ∩ gf is the centralizer of an sl2-triple, it is
reductive. Since Z1, Z2 ∈ gh ∩ gf are rational semisimple, we can move them to a common
Cartan subspace after further conjugation by elements of Gh ∩Gf . 2

Proposition 3.3.3. Let (S, f) be a Whittaker pair such that f is a PL nilpotent. Then there
exist a maximal split toral subalgebra a, and a simple system ∆ ⊂ Σ+ ⊂ Σ(a, g) such that:

(a) ∆ is compatible with f ;

(b) a contains S;
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(c) a contains a neutral element h for f ;

(d) if α ∈ Σ satisfies α(h) 6 0 and α(S) > 0, then α ∈ Σ+.

Proof. Let us first choose any simple system ∆(b, g) compatible with f . By Lemma 3.3.2 there
exists g in the centralizer Gf of f such that g · S ∈ b. Now the action of g−1 carries b to a
maximal toral subalgebra a and ∆(b, g) to a simple system ∆′ = ∆′(a, g) which satisfies parts
(a) and (b). Next note that if S′ = S∆′ , then (S′, f) is a Whittaker pair, so by Lemma 3.0.2
there is a neutral element h for f that commutes with S∆′ ; but this forces h ∈ a and thus part
(c) holds.

If supp∆′(f) = ∆′, then we set ∆ = ∆′; in this case we have h − S is central and part (d)
holds vacuously. Now suppose supp∆′ (f) ( ∆′. Then we will show how to modify ∆′ to obtain
a new system ∆(a, g) such that parts (a)–(d) are satisfied. For this let us write

Z = S − h, Z ′ = S′ − h, hε = Z + εZ ′ + ε2h,

where ε > 0 is chosen sufficiently small so that for all α ∈ Σ(a, g) we have

α(Z) > 0 =⇒ α(Z) > ε|α(Z ′)|+ ε2|α(h)|, (22)

α(Z ′) > 0 =⇒ α(Z ′) > ε|α(h)|. (23)

We claim that hε is regular in the sense that α(hε) 6= 0 for all α. If α(Z) > 0 this follows from
(22), if α(Z) < 0, we simply replace α by −α. If α(Z) = 0 but α(Z ′) 6= 0, then this follows
analogously from (23). Finally, if α(Z) = α(Z ′) = 0, then α(hε) = ε2α(h) and we must show that
α(h) 6= 0, but this follows from the regularity of S′ = h+ Z ′.

This means that we can define a positive root system as follows

Σ+(a, g) = {α ∈ Σ | α(hε) > 0}.
Let ∆ be the corresponding simple system; we will show that supp∆′(f) ⊂ ∆. This implies that
∆ is compatible with e, so that part (a) holds. To prove that supp∆′(f) ⊂ ∆ suppose α belongs
to supp∆′(f). Then we have α(Z) = α(Z ′) = 0, α(hε) = ε2α(h) = 2ε2 > 0. This means that
α ∈ Σ+(a, g) and it remains to show that we cannot write

α = β + γ (24)

where β, γ ∈ Σ+(a, g). Now if β(Z) > 0 or β(Z ′) > 0, then (24) is impossible by (22) and (23).
Thus, we may assume β(Z) = β(Z ′) = 0 and thus β(S′) = β(Z ′) + β(h) = 2 > 0, and similarly
γ(S′) > 0. But α is a simple root in the positive system defined by S′, so (24) cannot hold.

Finally we verify that Σ+(a, g) satisfies part (d). Thus suppose α ∈ Σ(a, g) satisfies α(h) 6 0
and α(S) > 0, then we have α(Z) = α(S) − α(h) > 0. By (22), this implies α(hε) = α(Z) +
εα(Z ′) + ε2α(h) > 0. Thus, we have α ∈ Σ+(a, g) as desired. 2

Proposition 3.3.4. Suppose that ϕ ∈ g∗ can be completed to a principal Whittaker pair. Then
any degenerate Whittaker modelWS,ϕ can be mapped onto some principal degenerate Whittaker
model W

S̃,ϕ
.

Proof. By Corollary 3.0.5 it suffices to find a maximally split toral subalgebra a and containing
a neutral element h for ϕ, and a principal element S̃ such that S̃ − h ∈ aϕ and S − h >ϕ S̃ − h
in the sense of Definition 3.0.4, i.e.

α(h) 6 0 and α(S) > 1 =⇒ α(S̃) > 1 for all α ∈ Σ(a, g).

Let f ∈ g be the nilpotent element corresponding to ϕ. Then (S, f) satisfies the conditions of
Proposition 3.3.3. Let a, h,Σ+,∆ be as in the proposition, and let S̃ = S∆. Then any α ∈ Σ(a, g)
with α(h) 6 0 and α(S) > 1 lies in Σ+. Since S̃ is principal, we deduce that α(S̃) > 2. 2
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3.3.1 Archimedean case. For a smooth representation π of a real reductive group G one
can define one more invariant, which we denote V(π) and call the annihilator variety of π. It
is sometimes called the associated variety of the annihilator of π. It is defined to be the set of
zeros in g∗C of the ideal in the symmetric algebra S(gC), which is generated by the symbols of the
annihilator ideal of π in the universal enveloping algebra U(gC). It follows from [Vog91, Theorem
8.4] and [SV00] that V(π) is the Zariski closure of WF(π) in g∗C. Note that if G is a complex
reductive group or G = GLn(R) we have WF(π) = V(π) ∩ g∗.

We will use the following theorems.

Theorem 3.3.5 [Mat87, Corollary 4]. Let π be a smooth representation of G, let O ⊂ g∗ be a
nilpotent orbit and suppose that WO(π) 6= 0. Then O ⊂ V(π).

Theorem 3.3.6 [GS15, Theorem B]. Let (S, ϕ) be a principal degenerate Whittaker pair for G.
Let π ∈M(G) such that ϕ ∈WF(π). Then:

(i) if G is a complex group or G = GLn(R), then WS,ϕ(π) 6= 0;

(ii) ifG is quasisplit, then there exists g ∈GC such that ad(g) preserves g andWad(g)(S),ad(g)(ϕ)(π)
6= 0.

In fact, the theorems in [Mat87, GS15] are stronger than the versions we state here.

Proof of Theorem B. Let (S, ϕ) be as in the theorem. Then ϕ can be completed to a principal
Whittaker pair, and Proposition 3.3.4 implies that the degenerate Whittaker modelWS,ϕ can be
mapped onto some principal degenerate Whittaker model W

S̃,ϕ
. By Theorem A, Wϕ maps onto

WS,ϕ. Thus, we have W
S̃,ϕ

(π)↪→WS,ϕ(π)↪→Wϕ(π). Together with Theorems 3.3.5 and 3.3.6 we
get

ϕ ∈WF(π)⇒W
S̃,ϕ

(π) 6= 0⇒WS,ϕ(π) 6= 0⇒Wϕ(π) 6= 0⇒ ϕ ∈WF(π). 2

In the same way we get the following statement for real reductive groups.

Corollary 3.3.7. Suppose that G is quasisplit and let π ∈ M(G). Let (S, ϕ) be a Whittaker
pair such that ϕ is a PL nilpotent. Suppose that ϕ ∈ WF(π). Then there exists g ∈ GC such
that ad(g) preserves g and Wad(g)(S),ad(g)(ϕ)(π) 6= 0.

4. General linear groups

4.1 Notation
Let us first introduce some notation. A composition η of n is a sequence of natural (positive)
numbers η1, . . . , ηk with

∑
ηi = n. The length of η is k. A partition λ is a composition such that

λ1 > λ2 > · · · > λk. For a composition η we denote by η> the corresponding partition. A partial
order on partitions of n is defined by

λ > µ if

j∑

i=1

λi >
j∑

i=1

µi for any 1 6 j 6 length(λ), length(µ). (25)

We will use the notation diag(x1, . . . , xk) for diagonal and block-diagonal matrices. For a
natural number k we denote by Jk ∈ gk the lower -triangular Jordan block of size k, and by hk
the diagonal matrix hk := diag(k − 1, k − 3, . . . , 1− k). For a composition η we denote

Jη := diag(Jη1 , . . . , Jηk) ∈ gn and hη := diag(hη1 , . . . , hηk) ∈ gn. (26)

Note that [hη, Jη] = −2Jη and (Jη, hη) can be completed to an sl2-triple.
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Identify g∗n with gn using the trace form. Denote by Oη the orbit of Jη, and also the
corresponding orbit in g∗n. By the Jordan theorem all nilpotent orbits are of this form. It is
well known that Oη ⊂ Oγ if and only if η> 6 γ>. Let Tn ⊂ Gn denote the subgroup of diagonal
matrices and tn ⊂ gn the subalgebra of diagonal matrices.

4.2 Proof of Theorem D
Let Eij denote the elementary matrix with 1 in the (i, j) entry and zeros elsewhere.

Lemma 4.2.1. For any p, q, r ∈ Z>0 with p > r there exists a diagonal matrix S ∈ tm(Z), where
m = p+ q+ r, and a regular nilpotent X ∈ gq+r such that [S, J(p+q,r)] = −2J(p+q,r) and diag(Jp,

X) ∈ (Gm)SJ(p+q,r).

Proof. If r = 0 or q = 0, we takeX := Jq+r, S := h(p+q,r) and note that diag(Jp, X) ∈ TmJ(p+q,r) ⊂
(Gm)SJ(p+q,r). Assume now q, r > 0 and let

F := J(p+q,r), S := diag(hp+q, hr + (r + q − p)Idr) ∈ gm,

g := (Idm + Ep−r+1,m−r+1)(Idm + Ep−r+2,m−r+2) · · · · · (Idm + Ep,m) ∈ Gm.

Note that Si := Sii = p + q − (2i − 1) for 1 6 i 6 p + q and Si = 2r + 3q + p − (2i − 1) for
p + q + 1 6 i 6 m. Thus, Sm−r+j = Sp−r+j for 1 6 j 6 r and thus g commutes with S. Note
also that F ′ := Ad(g)(F ) = F + Ep+1,m. Conjugating F ′ by a suitable diagonal matrix we can
obtain F ′ − (1− t)Ep+1,p ∈ (Gm)SF for any t ∈ F×. Letting t go to zero, we get that

f := F ′ − Ep+1,p = F + Ep+1,m − Ep+1,p ∈ (Gm)SF .

Finally, it is easy to see that f = diag(Jp, X) for a regular nilpotent X ∈ gq+r. 2

Lemma 4.2.2. Let λ, µ be partitions of n with λ > µ. Then there exists an index i 6 length(λ)
such that λi > µi > λi+1. Here, if i = length(λ) we take λi+1 = 0.

Proof. We prove by induction on length(λ). If length(λ) = 1 take i = 1. For the induction step,
assume length(λ) > 2 and the lemma holds for all shorter partitions. If µ1 > λ2 take i := 1.
Otherwise, consider the partitions λ′ = (λ1 + λ2 − µ1, λ3, . . .) and µ′ = (µ2, µ3, . . .). Note that
these are indeed partitions and λ′ > µ′. Thus, by the induction hypothesis there exists j such that
λ′j > µ

′
j > λ

′
j+1. If j > 1, take i := j + 1. If j = 1, then µ2 > λ3 and we also have λ2 > µ1 > µ2.

Thus, we can take i := j + 1 = 2 in this case as well. 2

We are now ready to prove Theorem D. Let us reformulate it in terms of partitions.

Theorem 4.2.3. Let λ, µ be partitions of n. Then λ > µ if and only if there exists S ∈ tn(Z)
such that [S, Jλ] = −2Jλ and (Gn)SJλ intersects Oµ.

Proof. We prove the lemma by induction on n. The base case n = 1 is obvious. For the induction
step, assume that the lemma holds for all n′ < n. By Lemma 4.2.2 there exists an index i with
i 6 length(λ) such that λi > µi > λi+1. Let

r := λi+1, q := µi − λi+1, p := λi + λi+1 − µi and m := λi + λi+1.

Now consider the partition λ′ obtained by replacing the blocks λi and λi+1 by a single block p, and
the partition µ′ obtained from µ by omitting the block µi. Note that both are indeed partitions
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of n − µi and that λ′ > µ′. Thus, by the induction hypothesis there exists S′′ ∈ tn−µi(Z) such

that [S′′, Jλ′ ] = −2Jλ′ and (Gn−µi)S′′Jλ′ intersects Oµ′ . Choose S′ ∈ tm(Z) and X ∈ gµi using
Lemma 4.2.1. Consider the matrix Z ′ formed by taking the first p elements on the diagonal of S′

and the matrix Z ′′ formed by taking the p elements number λ1+· · ·+λi−1+1, . . . , λ1+· · ·+λi−1+p
on the diagonal of S′′. Note that Z ′ − Z ′′ is a diagonal matrix that commutes with Jp and thus
equals cIdp for some integer c. Replacing S′ by S′ − cIdm we can assume that Z ′ = Z ′′ and thus
there exists S ∈ tn(Z) that includes both S′ and S′′ as diagonal submatrices.

Let us show that S satisfies the conditions of the lemma. Let a :=
∑i−1

j=1 λj and d :=
∑length(λ)

j=i+2 λj . Define an embedding of Gm into Gn by ι1(g) := diag(Ida, g, Idd). Define an
embedding of Gn−µi into Gn by

ι2

(
A B

C D

)
:=



A 0 B

0 Idµi 0

C 0 D


 ,

where A ∈ Mat(a, a,F), B ∈ Mat(a, d + p,F), C ∈ Mat(d + p, a,F), D ∈ Mat(d + p, d + p,F).
Let dι1 : gm↪→gn and dι2 : gn−µi ↪→gn be the differentials of ι1, ι2. These embeddings map the
centralizers of S′ and S′′ into the centralizer of S. Let Y := dι1(diag(0, X)) + dι2(Jλ′) ∈ gn.
Since diag(Jp, X) ∈ (Gm)S′J(λi,λi+1), we have Y ∈ (Gn)SJλ. Since (Gn−µi)S′′Jλ′ intersects Oµ′ ,
(Gn)SY intersects Oµ and thus (Gn)SJλ intersects Oµ. 2

4.3 Proof of Theorem E
In the archimedean case the theorem follows from Theorem 3.3.5 and Corollary 3.3.7. Thus, we
assume here that F is non-archimedean. Let ϕ ∈ g∗ and let ν : F× → G be an algebraic group
morphism (defined over F) such that ad∗(ν(t))ϕ = t2ϕ. Let S := dν(1) ∈ g. Following [MW87]
define Wν,ϕ :=WS,ϕ. For the following theorem see [MW87, Proposition I.11, Theorem I.16 and
Corollary I.17] and [Var14, Proposition 1 and Theorem 1].

Theorem 4.3.1. Let ϕ, ν be as above. Let π ∈M(G).

(i) If Wν,ϕ(π) 6= 0, then ϕ ∈WF(π).

(ii) If ϕ belongs to a maximal orbit O ∈WFC(π), then Wν,ϕ(π) 6= 0 and its dimension equals
the coefficient of O in WFC(π).

Proof of Theorem E. Let π ∈ M(Gn). Theorem 4.3.1 implies that if WO(π) 6= 0, then O ⊂
WF(π). Suppose now that O ⊂ WF(π), i.e. there exists O′ ∈ WFC(π) such that O ⊂ O′. Let
ϕ̃ ∈ O′ and S = diag({hi}) ∈ gln(Z) be as in Theorem D. Define ν : F× → Gn by ν(t) :=
diag(thi). Then ad∗(ν(t))ϕ̃ = t−2ϕ̃ and Wν,ϕ̃ = WS,ϕ̃. By Theorem 4.3.1 WS,ϕ̃(π) 6= 0 and by
Theorems A and D we have an epimorphism WO�WS,ϕ̃, hence WS,ϕ̃(π) embeds into WO(π),
and thus WO(π) 6= 0. 2

Remark 4.3.2. One can show that if µ is obtained from λ by taking some parts apart, or by
replacing two parts of the same parity by two equal parts, then WOµ maps onto WOλ . This
follows from Theorem A by taking S := hλ, ϕ̃(X) := Tr(XJλ) and ϕ(X) := Tr(XJµ). However,

this does not extend to arbitrary µ 6 λ. For example, if λ = (4, 1) and µ = (3, 2), then (g∗n)hλ−2

does not intersect Oµ.
For the symplectic groups one can show that if µ is obtained from λ by replacing two parts

of the same parity by two equal parts, then one can map the generalized Whittaker model
corresponding to an orbit with partition µ onto the generalized Whittaker model corresponding
to an orbit with partition λ.
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4.4 Definition of derivatives and proof of Theorem F
The notion of derivative was first defined in [BZ77] for smooth representations of Gn over non-
archimedean fields and became a crucial tool in the study of this category. In [AGS15a] this
construction was extended to the archimedean case.

The definition of derivative is based on the ‘mirabolic’ subgroup Pn of Gn consisting of
matrices with last row (0, . . . , 0, 1). The unipotent radical of this subgroup is an (n − 1)-
dimensional linear space that we denote Vn, and the reductive quotient is Gn−1. We have a
natural isomorphism Pn = Gn−1 n Vn. The group Gn−1 has 2 orbits on Vn and, hence, also
on the dual group V ∗n : the zero and the non-zero orbit. The stabilizer in Gn−1 of a non-trivial
character of Vn is isomorphic to Pn−1.

Let ψn be the standard non-trivial unitary character of Vn, given by

ψn(x1, . . . , xn−1) := χ(xn−1),

where χ is the fixed additive character of F, as in (7). We will also denote by ψn the corresponding
character of the Lie algebra vn. For all n and for all smooth representations π of Pn, we define

π(Vn, ψn) := Span{π(a)v − ψn(a)v : v ∈ π, a ∈ Vn},

and we put

Φ−(π) :=

{
π/π(Vn, ψn) if F is archimedean,

π/π(Vn, ψn) if F is non-archimedean.
(27)

If F is non-archimedean, our definition of Φ− coincides with that in [BZ76, § 5.11]. It differs
from the definition in [BZ77] by the twist by the character |det|1/2.

For a smooth representation π of Gn we define a representation Ek(π) of Gn−k by

Ek(π) := ((Φ−)k−1(π|Pn))|Gn . (28)

We call it the k th pre-derivative of π.
Define also a functor Φ+

c : Rep∞(Pn) → Rep∞(Pn+1) by

Φ+
c (π) = ind

Pn+1

PnnVn+1
(π � ψn+1), (29)

where Rep∞ denotes the category of smooth representations as in Definition 2.3.1, and Ik :
Rep∞(Gn) → Rep∞(Gn+k) by

Ik(π) := ind
Gn+k
Pn+k

((Φ+
c )k−1(ind

Pn+1

Gn
π)). (30)

Lemma 4.4.1. Let λ be a partition of n and let π ∈M(Gn). Then

HomGn (Iλ1(Iλ2(. . . Iλk(C) . . .), π̃) = (Eλk(. . . (Eλ1(π) . . .)))∗.

The proof of this lemma is analogous to the proof of Lemma 2.5.2.
If F is archimedean, then the space π(Vn, ψn) has the same closure as the space π(vn, ψn)

defined analogously using the Lie algebra action, since both closures equal to the joint kernel of
all (Vn, ψn)-equivariant continuous functionals on π. It is shown in [AGS15b] that if π ∈M(Gn),
then π(vn, ψn) is closed. Moreover, it is shown that for any i, the space (Φ−)i(π)(vn, ψn) is
closed in this case. Thus, for π ∈M(Gn) our definition of Ek coincides with the functor Ẽk used
in [AGS15a, AGS15b]. It differs from the functor Ek used in [AGS15a, AGS15b] by the twist by
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the character |det|(k−1)/2. Note though that for non-admissible smooth π our definition of Ek

might differ from the functor Ẽk used in [AGS15a, AGS15b].
Let us now start proving Theorem F. Let λ be a partition of n and η be the inverse reordering

of λ. Let f := Jη, h := hη and let e ∈ gn be the unique element such that (f, h, e) is an sl2 triple.
We will prove Theorem F by induction on k := length(η). Let Z be a diagonal matrix with
first n − ηk entries equal to zero, and last ηk entries equal to ηk + ηk−1. Define ϕ ∈ g∗ by
ϕ(X) := Tr(fX) and let ω := ωϕ. For 0 6 t 6 1 let St := h + tZ and define ut, lt and rt as in
formulas (14), (15) in § 3.2 (note though that our l′t, r

′
t differ from those in formula (16)). Let a

denote the stabilizer of the standard basis vector en−ηk+1 and define l′t := a ∩ lt, r
′
t := a ∩ rt.

Lemma 4.4.2. We have:

(i) l′t and r′t are subalgebras of ut and [l′t, r
′
t] ⊂ l′t ∩ r′t;

(ii) u0 ⊂ a and thus l0 = l′0.

Proof. Part (i) follows from Lemma 3.2.7(i) and the fact that a is a subalgebra of g.
For part (ii) note that the h-weight of en−ηk+1 is the maximal weight inside the standard

representation, and thus any element of u0 annihilates it. 2

The next lemma follows from the structure of the lowest-weight vectors in a tensor product
of irreducible representations of sl2.

Lemma 4.4.3. Let σ and τ be two irreducible representations of an sl2-triple (f, h, e) with
dimσ > dim τ . Let L := HomF(σ, τ) = σ∗ ⊗ τ . Let L0 denote the annihilator in L of the
highest-weight vector in σ, and Lf denote the space spanned by all the lowest-weight vectors
in L. Then L = L0 ⊕ Lf .

Lemma 4.4.4. We have ut = ut ∩ a⊕ (ut)ϕ.

Proof. First decompose ut = (ut)
Z
60 ⊕ (ut)

Z
>0 and note that (ut)

Z
60 ⊂ u0 and thus (ut)

Z
60 ⊂ a and

(ut)
Z
60 ∩ (ut)ϕ ⊂ (u0)f = 0. Now let V denote the standard representation of gn and consider the

decomposition V = V1 ⊕ · · · ⊕ Vk, where each Vi is the subspace spanned by the basic vectors
with indices from 1 +

∑i−1
j=1 ηj to

∑i
j=1 ηj . Note that Vi is an irreducible representation of the

sl2 triple (f, h, e) of dimension ηi. Then (ut)
Z
>0 =

⊕k−1
i=1 HomF(Vk, Vi). By Lemma 4.4.3 we have

(ut)
Z
>0 = (ut)

Z
>0 ∩ a⊕ ((ut)

Z
>0)ϕ. 2

Corollary 4.4.5. The radical of the restriction ω|l′t+r′t
is l′t ∩ r′t.

Proof. By Lemma 3.2.7(ii) we have Rad(ω|lt+rt) = lt ∩ rt and thus Rad(ω|l′t+r′t
) ⊃ l′t ∩ r′t. Now,

(ut)ϕ ⊂ l′t ∩ r′t and by Lemma 4.4.4 the image of l′t in ut/(ut)ϕ coincides with the image of lt and
the image of r′t in ut/(ut)ϕ coincides with the image of rt. Thus, Rad(ω|l′t+r′t

) = l′t ∩ r′t. 2

Recall Definition 3.2.5 of regular and critical numbers.

Lemma 4.4.6. For s < t with no critical numbers in the open interval (s, t) we have r′s = l′t.

Proof. By Lemma 3.2.7(iii) we have rs ⊂ lt and thus r′s ⊂ l′t. For the inverse inclusion note that

l′t = m⊕ (vt)
Z
60 ⊕ (vt)

Z
>0 ⊕ (wt)

Z
<0.

We have m ⊂ r′s; (vt)
Z
60 ⊕ (wt)

Z
<0 ⊂ vs ⊂ r′s. Since there are no critical elements in (s, t) we also

have (vt)
Z
>0 ⊂ (us)

Z
>0 ⊂ r′s. 2
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Proof of Theorem F. Corollary 4.4.5 and Lemmas 4.4.6 and 3.2.1 imply

WGn
h,ϕ ' indGnExp(l0)(χϕ) ' indGn

Exp(r′1)
(χϕ). (31)

Let η− := (η1, . . . , ηk−1) and consider the corresponding elements hη− ∈ gn−ηk and ϕη− ∈ g∗n−ηk .
Note that

indGn
Exp(r′1)

(χϕ) ' Iηk(WGn−ηk
hη− ,ϕη−

) = Iηk(WGn−ηk
Oη ). (32)

The isomorphism (4) now follows by induction on length(η). The isomorphism (5) follows from
(4) using Lemma 4.4.1. 2

4.5 Proof of Corollary G
For non-archimedean F, exactness is well-known, the rest of part (i) follows from Theorem 4.3.1,
and part (ii) follows from [MW87, § II.2]. Thus, we assume that F is archimedean.

4.5.1 Preliminaries on pre-derivatives. The highest non-zero pre-derivative of π ∈ M(Gn)
plays a special role. It has better properties than the other derivatives. In particular it is
also admissible. The index of the highest non-zero pre-derivative is called the depth of π. As
shown in [GS13, AGS15a, GS15] the depth also equals the maximum among the first parts
of the partitions in the orbits in WF(π). The following theorem summarizes the main results
of [AGS15a, AGS15b].

Theorem 4.5.1. LetMd(Gn) ⊂M(Gn) denote the subcategory of representations of depth 6 d.

(i) The functor Ek :M(Gn) → Rep∞(Pn−k+1) is exact for any 1 6 k 6 n.

(ii) The functor Ed maps Md(Gn) into M(Gn−d).

(iii) Let n = n1 + · · · + nd and let χi be characters of Gni . Let π = χ1 × · · · × χd ∈ Md(Gn)
denote the corresponding monomial representation. Then

Ed(π) ∼= ((χ1)|Gn1−1 × · · · × (χd)|Gnd−1).

(iv) If τ is an irreducible unitary representation of Gn and τ∞ has depth d, then Ed(τ∞) ∼=
(Aτ)∞, where Aτ denotes the (irreducible, unitary) adduced representation defined
in [Sah89] (cf. [Bar03]).

For non-archimedean F, the theorem follows from [BZ77] since Ed coincides with the highest
Bernstein–Zelevinsky derivative considered in [BZ77].

For archimedean F, WF(Ek(π)) is calculated in [GS15]. In particular, [GS15, Theorem 5.0.5]
implies the following result.

Theorem 4.5.2. Let F be archimedean and let π ∈ M(Gn). Suppose that WF(π) = O(n1,...,nk)

with n1 > · · · > nk. Then depth(π) = n1 and WF(En1(π)) = On2,...,nk .

4.5.2 Proof of Corollary G. Let λ be a partition of n and Oλ be the corresponding nilpotent
orbit. Denote Wλ(π) := (Eλk(. . . Eλ1(π) . . . ))∗. We use Theorem F and identify WOλ(π) with
Wλ(π). We prove the theorem by induction on n, using Theorems 4.5.1 and 4.5.2. For the
base of the induction we note that M(G0) is the category of finite-dimensional vector spaces,
and monomial or irreducible representations of G0 are one-dimensional. For the induction
step, let µ := (λ2, . . . , λk) and note that by Theorem 4.5.1 Eλ1 is an exact functor from
M6Oλ(Gn) to M(Gn−λ1). By Theorem 4.5.2, it maps M6Oλ(Gn) to M6Oµ(Gn−λ1), and

246

https://doi.org/10.1112/S0010437X16007788 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X16007788


Generalized and degenerate Whittaker models

Eλ1(π) ∈ M<Oµ(Gn−λ1) if and only if π ∈ M<Oλ(Gn). Thus, by the properties of quotient

categories (see [Gab62, § III.1]), Eλ1 defines an exact and faithful functor from MOλ(Gn) to

MOµ(Gn−λ1). Theorem 4.5.1 also implies that if π ∈M6Oλ(Gn) is monomial, then so is Eλ1(π)

and if π is irreducible unitarizable, then so is Eλ1(π). By the induction step, Wµ defines

an exact and faithful functor from MOµ(Gn−λ1) to the category of finite-dimensional vector

spaces, and Wµ maps monomial representations and irreducible unitarizable representations to

one-dimensional spaces. Thus, so does Wλ =Wµ ◦ Eλ1 . 2

5. Choice-free definitions

5.1 Generalized Whittaker models
In this section we define the generalized Whittaker model corresponding to a nilpotent element
e ∈ g, without choosing a neutral element h. First of all, the filtration g>k (unlike the grading gk)
can be defined without choosing h. It is, in fact, called the Deligne filtration and by [Del80, § I.6]
is uniquely defined by the properties:

ad(e)(g>k) ⊂ g>k+2 and ad(e)k induces an isomorphism g>−k/g>−k+1 ' g>k/g>k+1. (33)

It is easy to see that this filtration can be defined explicitly by

g>k :=
∑

i>max(1−k,1)

(Ker(ad(e)i) ∩ Im(ad(e)i+k−1)). (34)

We will sometimes denote this also by g>k−1 or by ge,>k.

Let e⊥ denote the orthogonal complement to {e} under the Killing form 〈·, ·〉 and let

u := g>1, v := g>1, I := ad(e)2(e⊥) ∩ v. (35)

Lemma 5.1.1. We have:

(i) I is an ideal in u;

(ii) dim v/I = 1 and e /∈ I;

(iii) there exists a unique symplectic form ω on u/v such that for any a, b ∈ u we have [a, b]−ω(ā,

b̄)e ∈ I, where ā and b̄ denote the classes of a and b;

(iv) u/I is a Heisenberg Lie algebra, and its center is spanned by class ē of e.

Proof. Note that ad(e)2(g>−2) = g>2 = v and ad(e)2(g>−2) = g>2. Pick an sl2-triple (f, h, e).

Using the h-grading it is easy to see that g>k is a Lie algebra filtration.

(i) We have [u, I] ⊂ [u, v] = g>2 = ad(e)2(g>−2) ⊂ I.

(ii) Since e⊥ ∩ g>−2 has codimension at most 1 in g>−2, I has codimension at most 1 in v.

Thus, it is enough to show that e /∈ I, i.e. if e = [e, [e, c]], then 〈e, c〉 6= 0. Since ad(h) has

integer eigenvalues, 〈h, h〉 6= 0. Now [e, [e,−f/2]] = [e,−h/2] = e and 〈e,−f/2〉 = 〈[e,−h/2],

−f/2〉 = 〈−h/2, [e, f/2]〉 = −1/4〈h, h〉 6= 0. Now, c + f/2 ∈ ker(ad(e)2) ⊂ g>−1 ⊂ e⊥, thus

〈e, c〉 = 〈e,−f/2〉 6= 0.

(iii) Let c := 〈f, e〉−1f and define ω(ā, b̄) := 〈c, [a, b]〉. It is easy to see that ω is the only

anti-symmetric form satisfying [a, b] − ω(ā, b̄)e ∈ I. Let us show that ω is non-degenerate. Let

a ∈ u such that [a, b] ∈ I for any b ∈ u. This implies [c, a] ∈ u⊥ = g>−1 and thus a ∈ v.

(iv) This follows immediately from part (iii). 2
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Definition 5.1.2. We now define a character of the center of u/I by requiring it to be 1 on ē,
consider the corresponding oscillator representation of the Lie group Exp(u/I) and lift it to an
irreducible representation Se of U := Exp(u). We then define the generalized Whittaker model
associated to e by Me := indGU (Se).

The connection to the generalized Whittaker models Wf is given by the following
straightforward lemma.

Lemma 5.1.3. Let (f, h, e) be an sl2-triple and define ϕ ∈ g∗ by ϕ(x) := 〈f, e〉−1〈f, x〉. ThenMe

is naturally isomorphic to Wϕ.

Remark 5.1.4. The analogous approach in positive characteristic immediately faces two
problems: exponentials not being defined and the Killing form being degenerate. However,
for g = gn we can replace the Killing form by the trace form, and try to replace the exponential
by the map X 7→ Id + X. Then the next question is whether Lemma 5.1.1 holds. One can
show that in three cases it fails completely: if charF = 2, n > 3, if charF = 3, n > 8, or if
n > charF − 1 > 3. In these cases there exists e ∈ gn such that e ∈ g>3 and I = v. We also see
in these cases that the Deligne filtration is not a Lie algebra filtration.

In other cases we have, for any e ∈ g, e ∈ g>2 but e /∈ g>3. It is not clear whether u and v
are always Lie subalgebras or whether I is an ideal in u. However, any e ∈ gn can be completed
to an sl2-triple. Using this triple, one can show that if charF > 2 and e(charF+1)/2 = 0, then
Lemma 5.1.1 holds, Id + u forms a subgroup of G which includes Id + I as a normal subgroup,
e defines a central character of the Heisenberg group (Id + u)/(Id + I) and one can consider the
corresponding oscillator representation and Whittaker model.

5.2 Degenerate Whittaker models
Let Z be a rational semi-simple element that commutes with e. For any t ∈ Q define

ge,Z>t :=
∑

i

(
g>i ∩

∑

s>t−i
gZs

)
. (36)

Note the following straightforward lemma.

Lemma 5.2.1. If h ∈ gZ is a neutral element for e, then ge,Z>t = gh+Z
>t .

In fact, commuting e and Z is the same amount of information as the Lie algebra element
X = e+ Z. We can reformulate the filtration in terms of X. First define

gX,t>k :=
∑

i>max(−k,0)

(Ker((ad(X)− t Id)i) ∩ Im((ad(X)− t Id)i+k)). (37)

The following lemma is straightforward.

Lemma 5.2.2. We have

gX,t>k = gZt ∩ ge>k and ge,Z>t =
∑

i

∑

t>s−i
gX,t>i .

Now define

u := ge,Z>1 , v := ge,Z>1 , I := ad(X)2(e⊥) ∩ v, J := I + ad(X)(u). (38)

Lemma 5.2.3. The space J is an ideal in u, and the algebra u/J is isomorphic to the Heisenberg
algebra defined in § 5.1 using the element e of the Lie algebra gZ .
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Proof. Note that for any t 6= 0, we have gZt ⊂ X⊥ and ad(X) is invertible on gZt . Thus, J ∩ gZt =
u ∩ gZs .

To see that J is an ideal in u, let a ∈ u∩ gZs and b ∈ J ∩ gZt . Then [a, b] ∈ u∩ gZs+t, which lies
in J unless s+ t = 0. If s+ t = 0, then [a, b] ∈ (gZ)>2, which lies in the ideal I ′ defined by e in
(gZ)>2.

We also see that u/J = (gZ)>2/I
′. 2

Definition 5.2.4. Using the isomorphism in Lemma 5.2.3 we define an oscillator representation
of the Lie group Exp(u/I) and lift it to an irreducible representation σe of U := Exp(u). We
then define the degenerate Whittaker model associated to e and Z by MZ,e := indGU (σe).

From Lemmas 5.1.3 and 5.2.3 we obtain the following corollary.

Corollary 5.2.5. Let Z ∈ g be a rational semi-simple element and let (f, h, e) ∈ gZ be an
sl2-triple. Let ϕ ∈ g∗ be defined by pairing with 〈f, e〉−1f . Then MZ,e is naturally isomorphic
to Wh+Z,ϕ.

6. Global setting

Let K be a number field and let A = AK be its ring of adeles. In this section we let χ be
a non-trivial unitary character of A, which is trivial on K. Then χ defines an isomorphism
between A and Â via the map a 7→ χa, where χa(b) = χ(ab) for all b ∈ A. This isomorphism
restricts to an isomorphism

Â/K ∼= {ψ ∈ Â | ψ|K ≡ 1} = {χa | a ∈ K} ∼= K. (39)

Given an algebraic group G defined over K we will denote its Lie algebra by g and we will denote
the group of its adelic (respectively K-rational) points by G(A) (respectively G(K)). We will
also define the Lie algebras g(A) and g(K) in a similar way.

Given a Whittaker pair (S, ϕ) on g(K), we set u = gS>1 and n to be the radical of the form
ωϕ|u, where ωϕ(X,Y ) = ϕ([X,Y ]), as before. Let l ⊂ u be any choice of a maximal isotropic
Lie algebra with respect to this form, and let U = exp u, N = exp n and L = exp l. Observe
that we can extend ϕ to a linear functional on g(A) by linearity and, furthermore, the character
χLϕ(expX) = χ(ϕ(X)) defined on L(A) is automorphic, that is, it is trivial on L(K). We will
denote its restriction to N(A) simply by χϕ.

Definition 6.0.1. Let (S, ϕ) be a Whittaker pair for g(K) and let U,L,N, χϕ and χLϕ be as
above. For an automorphic function f , we define its (S, ϕ)-Whittaker–Fourier coefficient to be

WFS,ϕ(f) :=

∫

N(A)/N(K)
χϕ(n)−1f(n) dn. (40)

We also define its (S, ϕ, L)-Whittaker–Fourier coefficient to be

WFLS,ϕ(f) :=

∫

L(A)/L(K)
χLϕ(l)−1f(l) dl. (41)

Observe that WFS,ϕ and WFLS,ϕ define linear functionals on the space of automorphic forms.
If (π, Vπ) is an automorphic representation of G, then we will denote their restrictions to π by
WFS,ϕ(π) and WFLS,ϕ(π), respectively.
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In order to adapt our arguments to the global setting we will have to replace Lemma 3.2.1
by the following one, which is analogous to [GRS11, Propositions 7.2 and 7.3].

Lemma 6.0.2. Let (π, Vπ) be an automorphic representation of G. Then WFS,ϕ(π) 6= 0 if and
only ifWFLS,ϕ(π) 6= 0. More specifically, ifWFS,ϕ(f) 6= 0 for some f ∈ π, thenWFLS,ϕ(π(u)f) 6= 0
for some u ∈ U(K).

Proof. We assume that ϕ is non-zero since otherwise the statement is a tautology. Let f ∈ π be
such that WFS,ϕ(f) 6= 0. Define a function fχLϕ on L by

fχLϕ(l) =WFS,ϕ(π(l)f)

and observe that the function (χLϕ)−1 · fχLϕ is left-invariant under the action of N(A)L(K). In

other words, we can identify (χLϕ)−1 · fχLϕ with a function on

L(A)/N(A)L(K) ∼= (L/N)(A)/(L/N)(K), (42)

where the equality follows from the fact that L/N is abelian. Therefore, we have a Fourier series
expansion

fχLϕ(l) =
∑

ψ∈(L(A)/N(A)L(K))∧

cψ,χLϕ(f)ψ(l)χLϕ(l), (43)

where

cψ,χLϕ(f) =

∫

L(A)/L(K)
ψ(l)−1χLϕ(l)−1f(l) dl. (44)

Since
0 6=WFLS,ϕ(f) = fχLϕ(e) =

∑

ψ∈(L(A)/N(A)L(K))∧

cψ,χLϕ(f), (45)

we conclude that at least one of the coefficients cψ,χLϕ(f) is different from 0.

Now observe that the map X 7→ ωϕ(X, ·) = ϕ ◦ ad(X) induces an isomorphism between u/l
and (l/n)′. Hence, according to (39) and (42), we can use the character χ to define a group
isomorphism

(U/L)(K) −→ (L(A)/N(A)L(K))∧

u 7→ ψu,

where
ψu(l) = χ(ϕ([X,Y ])), u = expX and l = expY.

Hence, for all u ∈ U(k) and l ∈ L we have

ψu(l)χLϕ(l) = χ(ϕ([X,Y ]))χ(ϕ(Y )) = χ(ϕ(Y + [X,Y ]))

= χ(ϕ(ead(X)(Y ))) = χ(ϕ(Ad(u)Y )) = χLϕ(ulu−1).

Here we are taking again u = expX, l = expY and the middle equality follows from the vanishing
of ϕ on gS>2. But now, from formula (44) and the fact that f is automorphic, we have

cψu,χLϕ(f) =

∫

L(A)/L(K)
ψu(l)−1χLϕ(l)−1f(l) dl =

∫

L(A)/L(K)
χLϕ(ulu−1)−1f(l) dl

=

∫

L(A)/L(K)
χLϕ(l)−1f(u−1lu) dl =WFLS,ϕ(π(u)f),

for all u ∈ U(k). Since we have already seen that at least one of these coefficients is non-zero,
we obtain the result claimed in the lemma. 2
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The rest of the proof of Theorem A can be applied in the adelic setting, with the appropriate
modifications. This implies Theorem C.
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Appendix A. Schwartz induction and the proof of Lemma 2.3.4

We start with the following lemmas from functional analysis.

Lemma A.0.1 [Tre67, Theorem 50.1 and Proposition 50.1]. Let V and W be Hausdorff locally
convex complete topological vector spaces. Suppose that V is a nuclear space. Then the projective
and the injective topologies on V ⊗W agree, and we will denote the completion with respect to
these topologies by V ⊗̂W . Moreover:

(i) V ∗ is nuclear;

(ii) if W is nuclear as well, then V ⊗̂W is nuclear;

(iii) if U ⊂ V is a closed subspace, then both U and V/U are nuclear.

Here, V ∗ and W ∗ denote the strong dual.

Lemma A.0.2 [Tre67, formulas (50.18) and (50.19)]. Let V and W be Fréchet spaces. Suppose
that V is a nuclear space. Then:

(i) (V ⊗̂W )∗ ∼= V ∗ ⊗̂W ∗;
(ii) L(V,W ) ∼= V ∗ ⊗̂W .

Here, L(V,W ) denotes the space of all continuous linear maps from V to W , endowed with
the compact-open topology.

Lemma A.0.3 [dCl91, Corollary 1.2.5 and Proposition 1.2.6].

(i) Let G be an affine real algebraic group. Then S(G) is a nuclear Fréchet space and for any
smooth Fréchet representation π of G of moderate growth, we have a natural isomorphism

S(G) ⊗̂π ∼= S(G, π).

(ii) For two smooth affine semi-algebraic varieties M,N we have S(M) ⊗̂ S(N) ∼= S(M ×N).
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Lemma A.0.4. Given f ∈ S(G;π) and x, g ∈ G, we define

(R(g)f)(x) = f(xg), (Rπ(g)f)(x) = π(g)f(xg),

(L(g)f)(x) = f(g−1x), (Lπ(g)f)(x) = π(g)f(g−1x).

Then, all of the induced G-module structures on S(G;π) are isomorphic.

Proof. Given f ∈ S(G;π), let

f̃(x) = f(x−1) for all x ∈ G.

Then

(R̃(g)f)(x) = (R(g)f)(x−1) = f(x−1g) = f̃(g−1x) = (L(g)f̃)(x).

It is clear, then, that the map f 7→ f̃ defines a G-intertwining isomorphism between (R,S(G;π))
and (L,S(G;π)). Similarly, given f ∈ S(G;π), we set

f̂(x) = π(x)f(x) for all x ∈ G.

Since τ is of moderate growth, f̂ ∈ S(G;π) and

R̂π(g)f(x) = π(x)(Rπ(g)f)(x) = π(x)π(g)f(xg) = f̂(xg) = (R(g)f̂)(x),

that is, the map f 7→ f̂ defines a G-intertwining isomorphism between the spaces (Rπ,S(G;π))
and (R,S(G;π)). The other isomorphisms are similar. 2

Corollary A.0.5. Under any of the above G-module structures,

S(G;π)G ∼= π,

where S(G;π)G is the space of G-coinvariants, i.e. the quotient of S(G;π) by the joint kernel of
all G-invariant functionals.

Lemma A.0.6. We have
indGH(ρ) ∼= (S(G, ρ)⊗∆H)H .

Proof. Let Φ : S(G, ρ) → indGH(ρ) denote the surjection that defines indGH(ρ), see Definition 2.3.1.
Observe that for all h̃ ∈ H,

(Φ(Rρ(h̃)f))(g) =

∫

H
ρ(h)(Rρ(h̃))f(gh) dh =

∫

H
ρ(h)ρ(h̃)f(ghh̃) dh = ∆−1

H (h̃)Φ(f)(g).

Hence, the map Φ defines an H-invariant operator between (Rρ ⊗ ∆H ,S(G; ρ)) and indGH(ρ).
Since this operator is surjective, it should factor through a surjective map

(S(G; ρ)⊗∆H)H � indGH(ρ). (A.1)

We want to show that this map is injective. Let us fix T ∈ [(S(G; ρ)⊗∆H)∗]H . Now according
to [dCl91, Lemma 2.2.5], there exists a semi-algebraic open cover {Uk}nk=1 ofG/H and a tempered
partition of unity {γk}nk=1 subordinated to {Uk}nk=1 such that

p−1(Uk) ∼= Uk ×H, (A.2)
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where p : G −→ G/H is the natural projection. Using the above equation, we can define a
partition of unity {ηk}nk=1 subordinated to the open cover {p−1(Uk)} consisting of H-invariant
functions. Furthermore, given f ∈ S(G; ρ),

Φ(ηkf) = γkΦ(f), k = 1, . . . , n.

Therefore, we have a decomposition

T =
n∑

k=1

ηkT

and we can identify each ηkT with an element of [(S(p−1(Uk); ρ)⊗ δ−1
H )′]H . According to (A.2),

S(p−1(Uk)) ∼= S(H) ⊗̂ S(Uk)

and, hence, according to Corollary A.0.5 [(S(p−1(Uk); ρ) ⊗∆H)∗]H ∼= S(Uk; ρ)∗, that is, for all
k = 1, . . . , n, there exists T̃k ∈ S(Uk; ρ)∗ such that

ηkT (f) = T̃k(Φ(ηkf)) = T̃k(γkΦ(f)) = (γkTk ◦ Φ)(f).

But we can see γkTk as an element of indGH(ρ)′. Therefore, if we set T̃ =
∑

k γkT̃k, then

T =
∑

k

ηkT =
∑

k

γkT̃k ◦ Φ = T̃ ◦ Φ.

We have thus shown that any element of [(S(G; ρ) ⊗ ∆H)∗]H factors through indGH(ρ)∗ which
proves the injectivity of the map (A.1). 2

Proof of Lemma 2.3.4. We have

HomG(indGH(ρ), π∗) ∼= (((S(G, ρ)⊗∆H)∗)H ⊗̂π∗)G ∼= HomG×H(S(G, ρ)⊗∆H , π
∗)

∼= HomG×H(S(G, ρ) ⊗̂π ⊗∆H ,C) ∼= HomG×H(ρ ⊗̂ S(G, π)⊗∆H ,C).

Here, G acts on S(G, π) by Lπ, while H acts diagonally: on ρ⊗∆H and on S(G, π) by R. This
action is isomorphic to an action in which G acts on S(G, π) by L and H by Rπ. Under this
action we have

HomG×H(ρ ⊗̂ S(G, π)⊗∆H ,C) ∼= ((S∗(G))G ⊗̂π∗ ⊗̂ ρ∗ ⊗∆−1
H )H .

Since all left G-invariant distributions on G are proportional and right ∆G-equivariant, the latter
space is isomorphic to HomH(ρ, π∗∆−1

H ∆G). 2
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