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Spectra of infinite graphs via freeness with
amalgamation

Jorge Garza-Vargas and Archit Kulkarni

Abstract. We use tools from free probability to study the spectra of Hermitian operators on infinite
graphs. Special attention is devoted to universal covering trees of finite graphs. For operators on
these graphs, we derive a new variational formula for the spectral radius and provide new proofs of
results due to Sunada and Aomoto using free probability.

With the goal of extending the applicability of free probability techniques beyond universal
covering trees, we introduce a new combinatorial product operation on graphs and show that, in the
noncommutative probability context, it corresponds to the notion of freeness with amalgamation.
We show that Cayley graphs of amalgamated free products of groups, as well as universal covering
trees, can be constructed using our graph product.

1 Introduction

In the present work, by a graph, we mean a locally finite undirected graph allowing
loops and multi-edges, unless otherwise specified. Given a graph G, we denote its
vertex set by V(G) and its edge set by E(G). Although we will only be considering
undirected graphs, it will be convenient to view E(G) as a set of directed edges, where
each f ∈ E(G) will have a source σ( f ) ∈ V(G) and a target τ( f ) ∈ V(G), and E(G)
will be equipped with the involution ˇ∶ E(G) → E(G) which to each edge f assigns its

reversed edge f̌ . Given any vertex u ∈ V(G), it will prove useful to define the sets
σ(u) ∶= { f ∈ E(G) ∶ σ( f ) = u} and τ(u) ∶= { f ∈ E(G) ∶ τ( f ) = u}.

O�entimes, we will be working with graphs G that are endowed with edge weights and
a vertex potential. Formally, the edgeweights will be given by a function a ∶ E(G) → R

1

that is symmetric in the sense that a f = a f̌ for all f ∈ E(G), and the vertex potential

will be given by a function b ∶ V(G) → R.
�e adjacency matrix, the graph Laplacian matrix, and transition matrices for

symmetric random walks all fall under the umbrella of so-called Jacobi matrices on
graphs [ABS20]. �ese are bounded Hermitian operators associated with weighted
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1We are slightly deviating from the standard definition of edge weight, which requires the a f to be

strictly positive, since in this work allowing negative coefficients sometimes simplifies our exposition.
Moreover, in the important case of universal covering trees, this is not an actual discrepancy, since gauge
invariance allows one to “turn” negative weights into positive ones without affecting the spectrum.
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1634 J. Garza-Vargas and A. Kulkarni

graphs with vertex potential. More specifically, if G is a graph with edge weights a and
vertex potential b, then the Jacobi matrix on G is the bounded operator AG acting on
H ∶= ℓ2(V(G)) by

(AGξ)(u) = bu ξ(u) + ∑
f ∈σ(u)

a f ξ(τ( f )).(1.1)

When working with Jacobi matrices on graphs (which will be the main focus of this
paper), it is convenient to consider the spectral measures associated with the vertices of
the graph. To be precise, given a vertexu ∈ V(G), one can define the state φu ∶ B(H) →
C as

φu(X) ∶= ⟨δu , Xδu⟩, ∀X ∈ B(H),(1.2)

where δu ∈ ℓ
2(V(G)) denotes the indicator function of the singleton {u}. �en, since

AG is self-adjoint, its spectrum Spec(AG) is contained in R, and by the functional
calculus φu induces a probability measure µAG ,u supported on Spec(AG) with the
property that

∫
R

xkdµAG ,u(x) = φu (Ak
G)

for all k ∈ Z≥0. �roughout this work, we refer to µAG ,u as the spectral measure of
AG with respect to the root u ∈ V(G). In terms of functional analysis, µAG ,u is the
composition of the usual projection-valued spectral measure of AG with φu .

�e spectra and spectral measures of operators on infinite graphs have been
extensively studied in the last several decades in different contexts. However, despite
significant progress in the area, current mathematical tools are still unable to answer
simple fundamental questions.

Since our goal is to provide a new perspective on problems of current interest, the
content of this paper is a combination of new results, new proofs of existing results,
and new tools for the analysis of infinite graphs, all through the lens of free probability.

Our discussion includes the following families of graphs.

Cayley graphs

Let G be a finitely generated group, and let S ⊂ G be a finite symmetric generating
set; i.e., we assume that if s ∈ S, then s−1 ∈ S. We denote by Γ = Γ(G , S) the le� Cayley
graph of G with respect to S. Note that since S is symmetric, Γ is undirected, and
by definition of Γ, any symmetric weighting a ∶ S → R (i.e., a(s) = a(s−1)) induces a
symmetric weighting on the edges of Γ in the obvious way. Typically, in this context,
vertex potentials are not considered; that is, one takes the constant function b ≡ 0.�e
canonical measure associated with AΓ is the spectral measure of Γ with respect to the
identity e ∈ G. Both Spec(AΓ) and µΓ,e have been studied thoroughly in the context
of random walks on groups [CS86, Kes59, McL88, Woe86, Woe87]. However, several
basic spectral questions about some natural Cayley graphs remain open [KFSH19].

�e amalgamated free product of groups inspired the notions of free independence
and freeness with amalgamation [Voi85], and since Voiculescu’s seminal work it
became apparent that tools from free probability can provide important insights
into the spectral theory of certain Cayley graphs. In this work, we focus on a new
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connection, namely the role of freeness with amalgamation in the study of universal
covering graphs, which are not always Cayley graphs.

Universal covering graphs

Let G be a connected graph with n vertices. One can form its universal covering graph2

(also called universal covering tree or universal cover), denoted here by T(G), or
simply by T when G is clear from the context. Recall that T is an infinite tree if G
has at least one cycle or loop and is G itself when G is a tree. In this context, we will
o�en refer to G as the base graph.

�e universal covering graph comes with a covering map Ξ ∶ T → G. So, when G

is equipped with edge weights a and vertex potential b, one can use Ξ in the obvious
way to li� a and b to functions on E(T) and V(T), respectively, and with this equip
T with (periodic) edge weights and vertex potential. �e corresponding Jacobi matrix
AT can then be viewed as a pullback of AG, and it is referred to as a periodic Jacobi
matrix with period n [ABS20] or a pulled-back local operator [AFH15].

It is standard to associate with AT a set of spectral measures as follows. For any
u ∈ V(G), we fix any representative ũ ∈ V(T) in the fiber Ξ−1(u) and consider the
spectralmeasure µu ∶= µAT ,ũ .We can then associated the following canonicalmeasure
with AT :

µAT
∶= 1

n
∑

u∈V(G)

µu ,

which is referred to as the density of states of AT in accordance with the physics and
spectral theory literature.

It is a well-known fact that T is the limit, in the Benjamini–Schramm sense, of
random li�s of G (see Section 2.2). Hence, AT can be regarded as a limit of random
matrices. A bit of thought from the free probability perspective shows that in fact AT

can be viewed as an operator-valued matrix with free entries (see Section 4). �is is
the starting point of the present work.

Previous results give an explicit description of Spec(AT) and µAT
when G has a

particular structure [FTS94, GM88, Kes59, McK81]. Others have made some progress
in the case when G is an arbitrary graph [A+88, ABS20, Aom91, SS92, Sun92].
However, as we discuss in the last section, many fundamental questions remain open
(also see [ABS20]).

Amalgamated free product for graphs

As mentioned above, since generic universal covering graphs are not Cayley graphs,
the emergence of freeness with amalgamation in this context might seem somewhat
fortuitous. Here, we clarify this connection by introducing a graph product that
corresponds to the notion of freeness with amalgamation.

Here is some context. Inspired by the combinatorial description of Cayley graphs
of free products of groups, Quenell [Que94] introduced the free product of graphs.

2See Section 2.1 for a precise definition and a subtlety involving covers of loops.
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Only later it was understood by Accardi, Lenczewski, and Sałapata [ALS07] that this
graph product is equivalent to Voiculescu’s free product of Hilbert spaces [VDN92]
and that free probability can be used to compute the spectra of graphs arising from
Quenell’s graph product. We refer the reader to Section 2.4 for a detailed and more
precise discussion.

In the spirit of [ALS07, Que94], in this paper, we define a combinatorial graph
product and show that the machinery of freeness with amalgamation can be used to
compute the spectra of graphs arising from this product. In particular, universal cov-
ering trees and Cayley graphs of amalgamated products of groups can be constructed
using our product.

Bibliographic Note

A�er posting the first version of this article to the arXiv, we became aware of the
work of Avni, Breuer, and Simon [ABS20] posted 6 weeks prior. Upon reading their
work, we have revised our article in a few ways. First, in place of our previous notion
of “adjacency operators on weighted graphs,” we have adopted their terminology of
Jacobi matrices on graphs, both to provide consistency in the literature and because it
provides a useful distinction between diagonal elements bv and loops (which behave
differently upon taking covers). Second, our theorem on the number of bands in
the spectrum was demonstrated in [ABS20] to be implicit in the work of Sunada
[Sun92], which we had not realized. Both our independent proof and the proof given
in [ABS20] argue that the Jacobi operator of a universal cover can be viewed as a
specific element of a matrix C∗-algebra, and then use a standard K-theory argument
which relies on a theoremof Pimsner andVoiculescu.However, these two proofs differ
in the way in which the connection with the C∗-algebra is made.�e proof we present
here uses random li�s and the fact that independent randompermutationmatrices are
asymptotically free (an idea that has previously been exploited in [BC19] for different
purposes), whereas the proof in [ABS20] deals directly with the Jacobi operator on a
concrete Hilbert space. Given the relevance of this result, we have decided to keep our
alternative argument in this work, but we no longer state the result as ours. Finally, as
we are able to answer some questions le� open in [ABS20], we include these answers
in Appendix A of this revision.

To the best of our knowledge, other thanwhat ismentioned in the above paragraph,
there is no further overlap between our work and [ABS20].

1.2 Results

1.2.1 Universal covers

In this section, we will consider a finite graph Gwith n vertices, universal cover T, and
covering map Ξ ∶ T → G.�e base graph G will be equipped with edge weights a and
vertex potential b, and T will be equipped with the induced periodic edge weights and
vertex potential.

Roughly speaking, the proofs of the results in this section use free probability in
two different ways.
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(1) Free probability techniques are used to argue that periodic Jacobi matrices on
T can be represented as n × n matrices with entries in a certain C∗-algebra. For
different applications, it is convenient to use different C∗-algebras.

(2) Once a given periodic Jacobi matrix AT is viewed as an element of a matrix C∗-
algebra, we argue that such an element can be decomposed as a sum of simpler
operators that are free with amalgamation over the algebra Mn(C) (see Section
3 for precise definitions). �is decomposition allows the use of tools from free
probability to understand the spectrum of AT .

Regarding step (1), it is worth noting that once one has represented the Jacobi operator
as an specific element of a matrix C∗-algebra, one might be able to find elementary
proofs that show that such a representation is correct. However, one should appreciate
that it is not clear a priori that this connection with C∗-algebras exists, and neither is
it easy to “guess” what the correct representation of the Jacobi operator on a given C∗-
algebra is. It is for this reason that we decided to include the free probability arguments
for step (1), since we believe that they provide a conceptual way to arrive at the C∗-
algebra representations.

Spectral radius

Let m be the number of undirected edges in G, and let Γm be the discrete group
obtained by taking the free product ofm copies of Z2. Using our combinatorial graph
product, which is discussed in Section 1.5.2, we show that periodic Jacobi operators on
T can be represented as elements inMn(C) ⊗ C∗red(Γm) (see Section 3 for definitions).
We then use a theorem of Lehner [Leh99] to prove the following min-max formula
for the spectral radius (actually, both spectral edges) of AT .

�eorem 1.1 (Formula for the spectral radius) Let G be a graph with vertex set [n],
edge weights a, and vertex potential b. Let T be its universal cover with the induced
periodic edge weights and vertex potential. If ρr(AT) denotes the right edge (i.e.,
maximum element) of Spec(AT), then

ρr(AT) = inf
y1 , . . . ,yn>0

max
i∈[n]
[b i + 1

2y i
(2 − deg(i) + ∑

f ∈σ(i)

(1 + 4a2f yσ( f )yτ( f ))1/2)],
(1.3)

where deg(i) is the degree of the vertex i in G. Moreover, the infimum can be restricted to
those n-tuples (y1 , . . . , yn) for which the n expressions inside themax symbol are equal
to each other.

Remark 1.2 (Le� edge and spectral radius) Using the fact that −AT is also a periodic
Jacobi matrix on T, one may obtain a similar expression for the le� edge ρ l of
Spec(AT). Furthermore, to compute the spectral radius spr(AT), use the trivial
observation spr(AT) =max{ρr ,−ρ l}.
Remark 1.3 (�e symmetric case) In the case where bv = 0 for all v ∈ V(G), the
spectrum of AT is symmetric about zero, because T is a bipartite graph. So, in this
case, the spectral radius equals ρr = ρ l .
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Remark 1.4 (Algebraic expressions) One can use Lagrange multipliers on the above
variational problem to find an explicit algebraic description of ρr(T) from equation
(1.3) (see Corollary 6.6).

Aomoto’s equations

For u ∈ V(G), recall that µu denotes the spectral measure of AT associated with a
vertex in Ξ−1[u]. We may then form the Cauchy transform of this measure:

wu(z) ∶= ∫
R

1

z − x dµu(x).(1.4)

�e Cauchy transform is also known as the Stieltjes transform, and is closely related to
the Green function or resolvent (z − AT)−1, as well as to the walk generating function
Qu(z) = 1

z
wu(1/z), which counts weighted closed walks on T based at a fixed ũ ∈ Ξ. It

is a standard fact in analysis that the spectral measure µu can be fully recovered from
wu(z) via the Stieltjes inversion formula.

Using the operator-valued version of Voiculescu’s R-transform, we recover
Aomoto’s system of equations for the wu(z) presented in�eorem 1.5.

�eorem 1.5 (Aomoto [A+88]) Using the above notation, the following system of
equations holds:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

wu(z) = 1

2(z − bu)⎛⎝2 − deg(u) + ∑f ∈σ(u) (1 + 4a2fwσ( f )(z)wτ( f )(z))1/2⎞⎠ ∀u ∈ V(G)(1.5)

for all z ∈ C in a neighborhood of infinity and for all real z outside the convex hull of the
spectrum Spec(AT).3
Remark 1.6 Since in �eorem 1.5 we are restricting z to be in a neighborhood of
infinity and Cauchy transforms vanish at infinity, the expressions inside the radicals
of (1.5) are always on the right side of the complex plane, and hence the square roots
are globally defined. Moreover, by analyzing the behavior of thewu(z) at infinity, one
sees that one should take the principal branch for each square root for the system of
equations to hold.

�e above system of equations was first discovered by Aomoto [A+88] using
techniques from the literature of random walks on groups. See [KLW13, Sections 5
and 6], [KLW15, Section 4], and [ABS20, Section 6] for a survey of similar results
related to algebraicity of Cauchy transforms. In particular, see [ABS20, Section 6] for
a discussion of the role of algebraicity in showing that AT has no singular continuous
spectrum.

In [Aom91], Aomoto used (1.5) to obtain necessary conditions on G for the
existence of point spectrum in Spec(AT). Here, in Appendix B, we take a brief detour
to show that (1.5) can be used to establish a connection between the behavior of the

3Here, deg(u) denotes the degree of the vertex u in G, where whole loops contribute twice in the
count.
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density of states at the right edge of Spec(AT) and the growth rate of T. We prove the
following.

�eorem 1.7 (Vanishing density at the right edge) Use the above notation, and assume
that a f > 0 for all f ∈ E(G). Let µAT

be the density of states of AT , and let ρr be the right
edge of Spec(AT). If G has at least two cycles, then µAT

is absolutely continuous with
respect to the Lebesgue measure in a neighborhood of ρr and its density s(x) satisfies
limx→ρr s(x) = 0.4

�e behavior of s(x) at the edge is tied to the type of singularity of the Cauchy
transforms wu(z) at z = ρr . On the other hand, the latter have been extensively
studied for many classes of infinite graphs (e.g., [GL13, Lal01, NW02, Woe00]), as an
intermediate step to understand the asymptotic behavior of transition probabilities
and escape rates of random walks. In particular, �eorem 1.7 can be deduced from
the results in [NW02, Section 2], where thewu(z) are related to an auxiliary family of
transforms, and sophisticated methods (that seek to prove stronger results) from the
theory of randomwalks on infinite graphs are used.�e argument in [NW02, Section
2] analyzes, as z varies, the evolution of the Perron eigenvalue of the nonbacktracking
matrix of G 5 with entries weighted as a function of the auxiliary transforms. In
contrast, our proof of �eorem 1.7 is short and self-contained, and uncovers a nice
relation between Aomoto’s equations and the Perron eigenvalue of AG.

Sunada’s theorem on the band structure

Let m be the number of undirected edges of G, and let Fm denote the free group on
m generators. In [BC19], large random li�s of graphs were studied in the context of
free probability. In Section 4, we recall from [BC19] how random li�s can be used to
obtain a representation of AT as elements inMn(C)⊗ C∗red(Fm).�is representation
can be combined with a theorem of Pimsner and Voiculescu [PV82] to conclude the
following result.

�eorem 1.8 (Sunada) Using the notation above, the density of states of AT assigns
a positive integer multiple of 1/n to any connected component of the spectrum of AT .
Consequently, the spectrum of AT contains at most n connected components.

Remark 1.9 (Tightness of the bound) As mentioned above, if G is a tree, then G ≅ T,
and hence ifG has distinct eigenvalues (e.g.,G is a path andAG is its adjacencymatrix),
Sunada’s bound on the number of components is tight. A more interesting example of
tightness is any finite graph with Gwith distinct bv and∑ f ∈E(G) a f <minu≠v ∣bu − bv ∣
(see [ABS20, Section 10.2]).

4Technically, the Radon–Nikodym derivative
dµAT
dx

is only defined up to a measure zero set, so
here we are claiming that there is a version of it (on a neighborhood of ρr), i.e., s(x), for which the
limit limx→ρr s(x) exists and is zero. �e existence of s(x) is ensured by the algebraicity of the wu

[ABS20,�eorem6.6] and�eorem2.9 in [AZ08], which states that up to a finite set of points, compactly
supported measures with algebraic Cauchy transforms have a beta-type density. A detailed justification
of this is provided in Appendix B.

5�e nonbacktracking matrix of G is a non-Hermitian matrix whose rows and columns are indexed
by the directed edges of G (see [ST96]).
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Once the C∗-algebra representation is obtained, the trick needed to reduce the
proof of the above theorem to the theorem in [PV82] is standard in K-theory and
in the context of graph theory it was first used by Aomoto and Kato in [AK88]. �e
upper bound on the number of bands of the spectrum of AT is implicit in the work
of Sunada [Sun92]. It was then highlighted and proved explicitly in [ABS20]. �is
technique was also used in [KFSH19] to establish an upper bound on the number of
bands for certain infinite lattices.

In relation to questions regarding the number of bands in the spectrum of AT , in
Appendix A, we discuss the phenomenon of spectral splitting and provide answers to
several questions in [ABS20] regarding possible extensions of theorems of Borg and
Borg–Hochstadt.

1.2.2 Amalgamated graph products

Inspired by a series of results of different authors [ABGO04, ALS07, Oba04] in which
it is shown that each notion of noncommutative stochastic independence corresponds
to a combinatorial graph product, we investigate the possibility of associating a graph
product with the notion of freeness with amalgamation [VDN92, Section 3.8]. Recall
that freeness with amalgamation is not an independence in the sense of Muraki
or Speicher [Mur02, Spe97], but it shares many desired properties with the five
independences.

With this purpose in mind, we consider the following setting. Let G1 , . . . ,Gn be
finite rooted graphs, and let C1 , . . . ,Cn be disjoint sets of colors. Assume that each Gi

is equippedwith an edge coloring c i ∶ E(Gi)→ Ci . LetC = ⋃n
i=1 Ci , and letG be a finite

graph with an edge coloring c ∶ E(G)→ C.
In this work, we define a graph called the free product of G1 , . . . ,Gn with amal-

gamation over G. �is product can be viewed as a procedure to construct an infinite
graph by iteratively copying the local structure of the Gi and where the way in which
these neighborhoods are combined is dictated by the structure of the graph G and by
how the colorings c i relate to c.

Now, if G is a weighted graph with vertex potential, then these can be li�ed in a
natural (periodic) way to the graphK constructed through this procedure.�e upshot
here is that the Jacobi operator AK can be written as an amalgamated free convolution
of much simpler noncommutative random variables. Hence, in this situation, much
of the machinery developed around freeness with amalgamation (e.g., [BBL19, Leh99,
Spe98, Voi95]) can be used to understand the spectral measures of AK. It turns out
that the amalgamated free product of graphs is general enough to be able to construct
both:

(1) any Cayley graph of an amalgamated free product of groups, and
(2) any universal cover of a graph.

1.3 Structure of the paper

In Section 2, we discuss related work andmotivate the study of the spectral properties
of AT . �e latter has already been done impeccably by Avni, Breuer, and Simon in
[ABS20]. So, to minimize redundancy, we very briefly survey some of the important
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results mentioned in [ABS20], and limit our detailed discussion to topics that were
not touched upon in [ABS20]: the relevance of Spec(AT) in the theory of relative
expanders, with a particular emphasis on the right and le� edges of Spec(AT) and
the role of random li�s in this context. We also discuss the connections between
noncommutative probability and spectral graph theory and spectral results about
Cayley graphs in the context of free probability.

Section 3 contains all the machinery from the theory of free probability that will be
needed in the present work, as it is our hope that this paper be of interest to multiple
audiences. For example, the reader who is well-acquainted with free probability may
skip Section 3, but might find Section 2 informative, whereas a reader coming from
a background of spectral graph theory may want to skip Sections 2.1–2.3, review
parts of Section 3, and proceed to the sections on the spectra of universal covers
(Sections 4 and 6). �e subsequent sections draw from different parts of Section
3 and are developed in a more or less parallel fashion. For this reason, the reader
may jump straight to any of the sections that are of their interest and go back as
needed.

In Section 4, we prove �eorem 1.8 using asymptotic freeness of random permu-
tation matrices and an argument from operator K-theory. �e knowledge from free
probability required for this section is contained in Section 3.1.

In Section 5, we develop the theory behind our graph product, which we call the
amalgamated free graph product. �is discussion is based on the construction of
Hilbert bimodules given in Section 3.4, and a good understanding of the content of
Sections 3.1–3.3 is recommended.

In Section 6, we adopt an algebraic approach to the description of the spectral
measure of AT .�e analysis of this section is based on interpreting AT as an operator-
valuedmatrix with free entries.�is interpretation coincides with the framework used
by Lehner in [Leh99], and his results are used in the proofs of�eorems 1.1 and 1.5.

In Section 7, future directions are discussed.

1.3.1 Note for the free probability expert

Our contribution to the theory of free probability is the definition of the amalgamated
free product of graphs presented in Section 5.�e generality of this graph product has
the potential to allow a free probability approach in contexts that go beyond what is
discussed here.

In some sense, our construction provides a combinatorial interpretation of
Voiculescu’s amalgamated free product for Hilbert bimodules when the underlying
algebra is Mn(C). Moreover, our discussion from Section 5.3 has the nontrivial
implication that for groups G1 ,G2 with a common finite subgroup H, operators
in C∗red(G1 ∗H G2) that are free with amalgamation over C∗red(H) have explicit
copies in distribution in an algebra of the form Mn(C)⊗ B(H) where n is the
order of H. �is could facilitate numerical computations of amalgamated free
convolutions.

Sections 4 and 6 on the other hand contain applications of well-understood
tools in free probability. �eir value resides in providing a new perspective to the
independently interesting problem of understanding the spectral properties of AT .
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1.4 Definitions and conventions

Let us be precise about our notion of universal cover for graphs, which is not identical
to the standard topological notion of universal covering space. For this, letG be a finite
connected graph.

When it comes to loops in G (i.e., edges f for which σ( f ) = τ( f )), it will be useful
to follow Friedman’s distinction between whole-loops and half-loops [Fri93]. A whole-

loop is a pair of distinct directed edges f1 , f2 with f̌1 = f2 and σ( f1) = τ( f1) = σ( f2) =
τ( f2), whereas a half-loop is composed of a single directed edge f satisfying f̌ = f
and σ( f ) = τ( f ). Whole-loop corresponds to the standard notion of loop used in
graph theory. We will occasionally allow half-loops, for example, in the definition of
universal cover below, but unless explicitly stated otherwise, in this work, graphs will
not be permitted to have half-loops, and “loops” will refer exclusively to whole-loops.

A nonbacktracking walk in G is a sequence f1 , . . . , fm of edges in E(G) such that

τ( f i) = σ( f i+1) and such that f i+1 ≠ f̌ i when f i is not a loop (i.e., σ( f i) ≠ τ( f i)), and
f i ≠ f i+1 when f i is a whole- or half-loop.

Definition 1.1 (Universal cover of a graph) LetGbe a finite undirected graph, possibly
with half-loops, and fix a root v0 ∈ V(G). �e universal cover of G is the tree T(G)
constructed as follows:

(1) We place one vertex in T(G) for every nonbacktracking walk in G starting at v0
(this includes the empty walk).

(2) We connect two vertices in T(G) by an edge if the walk corresponding to one
of them can be obtained by appending an edge to the walk corresponding to the
other.

Example 1.10 (Bouquets) Let d ≥ 0.�e universal cover of a single vertexwith d half-
loops is the d-regular tree, which is a single vertex for d = 0, a single edge for d = 1,
and infinite otherwise. On the other hand, the universal cover of a single vertex with
d whole-loops is the 2d-regular tree.

One may also define the notion of covering map for graphs (see, e.g., [FK19]), and
one has that any connected cover of G is covered by T(G).

2 Motivation and related work

2.1 Density of states of operators on universal covers

Studying the density of states of periodic Jacobi matrices on universal covers is a hard
problem, and only in specific cases can explicit results be obtained. Here, we provide
a quick overview of what we consider the most relevant results in the context of this
paper. We refer the reader to [ABS20] for a broader and more detailed discussion.

�e density of states of the adjacency matrix of the universal cover of d-regular
graphs (i.e., the d-regular tree with constant edge weights a ≡ 1 and constant vertex
potential b ≡ 0) was first computed by Kesten [Kes59] in the context of Cayley graphs,
then revisited by McKay [McK81] in the context of random graphs. Godsil derived
a formula for the density of states of the adjacency matrix of the universal cover of
bipartite biregular graphs [GM88]. In the case of d-regular graphs, but now allowing
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arbitrary edge weights (but still requiring b ≡ 0), Figà-Talamanca and Steger [FTS94]
provided a complete description of the spectrum of the li� of Jacobi matrices to the
infinite d-regular tree.

In the more general setting of arbitrary universal covers, Aomoto [A+88] (see
�eorem 1.5) derived a system of coupled equations (with square roots) for the
Cauchy transforms of the spectral measures of periodic Jacobi matrices. In a similar
spirit, polynomial coupled equations for certain transforms were then obtained by
Avni, Breuer, and Simon [ABS20] in the context of periodic Jacobi matrices on
trees, and by Keller, Lenz, and Warzel [KLW13] in the context of infinite trees of
finite cone type (which are a family of infinite trees that contains universal covers
[KLW15]).

In [Aom91], Aomoto used the coupled equations for the Cauchy transforms that he
obtained in [A+88] to show that periodic Jacobi matrices on d-regular trees have no
point spectrum. A result in a similar direction was later obtained in [KLW13], where
it was shown that under some conditions on the base graph (that allow nonconstant
degree graphs), the density of states of the adjacency matrix of the universal cover is
absolutely continuous. Certainly, this result does not apply to all universal covers, since
the density of states may contain atoms (see Table 1). A general result was obtained in
[ABS20], where it was shown that periodic Jacobi matrices on trees have no singular
continuous spectrum. Finally, we point out the work of Sunada [Sun92], which was
discussed above (see�eorem 1.8).

�e reasons for studying the spectrum of operators on universal covers have varied
from author to author. Our main motivation is that, as shown in [BC19], the spectra
of these infinite objects govern the behavior of large random li�s of finite graphs, and,
on the other hand, random li�s have been instrumental for obtaining groundbreaking
results on the existence of optimal (Ramanujan) expanders [HPS18, MSS13]. We refer
the reader to Section 2.2 for a definition and discussion of random li�s.

�at said, the complexity and variety of features that one can observe when looking
at the spectrum of different universal covers is appealing in its own right, and it is the
source of many interesting spectral problems. To exemplify this, below we include
some simulations and observations.

Observation 2.1 For simplicity, let us consider only the adjacency operator (so bv = 0
and ae = 1 for all vertices v and edges e.) Table 1 shows that even if the base graphs are
similar in some sense, the spectra of their universal cover may be quite different. In
particular, we make the following remarks:

(1) (Topological equivalence) G1 and G2 are homeomorphic and, in particular, they
have the same fundamental group. Yet, the spectra of the universal covers differ.

(2) (Eigenvalues of base graph) �e graphs G3 and G4 are cospectral (i.e., their
nonweighted adjacencymatrices have the samemultiset of eigenvalues); however,
the spectra of their universal covers possess very different features.

(3) (Perturbations) G3 is obtained by adding a leaf to G2. In this case, a gap in the
spectrum around zero is created. From experiments, it seems adding leaves or
edges can o�en cause major changes in the spectrum.

(4) (Degrees) Graphs G5 and G6 have the same degree sequence.
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Table 1: Six graphs Gi alongside the respective approximation to µTi
, the density of

states of the adjacency operator ATi
(that is, a ≡ 1 and b ≡ 0). �e approximations

presented are (scaled) histograms of the eigenvalues of a large random li� (taken as
in Section 2.2) of the respective graph. See Table 2 for the spectral radii of the Ti .
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2.2 Random lifts

A random d-li� of a graph is a random d-fold cover of the graph with a particular
choice of randomness. Recently, random d-li�s have been studied in the context
of expander graphs. For example, random 2-li�s were used by Marcus, Spielman,
and Srivastava to show the existence of Ramanujan graphs of every degree [MSS13];
these techniques were later generalized by Hall, Puder, and Sawin [HPS18] to d-li�s
for d ≥ 2.

Definition 2.1 (Random li�) Let G be a finite graph with n vertices, and let d ≥ 1.
Let U(d) be the unitary group of dimension d, and consider a random function U ∶
E(G)→ U(d) that satisfies for all f that:
(1) (Symmetry) U f̌ = U

∗
f .

(2) (Uniformly distributed)U f is a randommatrix distributed uniformly in the space
of d × d permutation matrices.

(3) (Independence) If f1 ≠ f2 and f1 ≠ f̌2, then the random matrices U f1 and U f2 are
independent.

�en, a random d-li� ofG is a randomgraphwith dn vertices, whose adjacencymatrix
is given by

∑
f ∈E(G)

∆σ( f )τ( f ) ⊗U f ,

where ∆σ( f )τ( f ) denotes the n × n matrix with a 1 in the (σ( f ), τ( f )) entry and 0
everywhere else. Moreover, if G has edge weights a and vertex potential b, then the
Jacobi matrix AG can be pulled back to the (random) Jacobi matrix Ad ,G on the li�,
given by

Ad ,G ∶= ∑
u∈V(G)

bu∆uu ⊗ Id + ∑
f ∈E(G)

a f∆σ( f )τ( f ) ⊗U f .

It is well known (and easy to show) that as d goes to infinity, random d-li�s of a fixed
graph G converge in the Benjamini–Schramm sense [BS11] to the universal covering
graph T of G.6 In particular, this implies that the density of states of AT is the weak
limit of the mean eigenvalue distribution of the random d-li�s:

Lemma 2.2 (Limits of random li�s) Using the above notation, for every fixed p, one
has

lim
d→∞

1

d∣V(G)∣E[TrAp

d ,G] = ∫
R

x pdµAT
(x).

Recently, using tools from free probability, Bordenave andCollins viewed the limit-
ing operatorAT as an element of a certainC∗ algebra and showed that the convergence
above holds in a much stronger sense, implying convergence of the edges of the

6�emain idea is that if α is a random permutation of [d], then the size of the orbit of any element
on which α acts almost surely goes to infinity as d →∞. �is is enough to show that, for every fixed
p ≥ 1, the p-neighborhood of any given vertex of the random li� is almost surely tree-like as d →∞. A
quantitative version of this argument can then be used to show that this holds for many vertices at the
same time.
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spectrum [BC19]. In Section 4.1, we revisit in detail thisC∗-algebra representation and
use it to give a proof of Sunada’s theorem.�e theorem of Bordenave and Collins also
handles half-loops f, for whichU f is defined to be a randommatching (see [FK19] for
a discussion of related models of random li�s), and we also revisit this idea in Section
4.2 and use it obtain an extension of Sunada’s theorem in the presence of half-loops.

2.3 Spectral radii of operators on universal covers

In this discussion, we fix a finite graph G and let AG denote its adjacency matrix (that
is, a ≡ 1 and b ≡ 0), andwe denote the universal cover ofG byT.We denote the spectral
radius of AG and AT by spr(G) and spr(T), respectively.

�e quantity spr(T) is fundamental in the theory of Ramanujan graphs [LPS88].
Indeed, in general, a graph G is said to be Ramanujan if Spec(G) is contained in[−spr(T), spr(T)] ∪ {−spr(G), spr(G)} [Gre95]; and many of the results in the area
are stated in terms of spr(T). For example, the main result in [MSS13] states that any
graph G has a 2-li� G′ such that the new eigenvalues of AG′ are bounded above by
spr(T), whereas its generalization in [HPS18] shows that the same is true for n-li�s
for every n ≥ 2. Similar techniques have been used in [MO20] to obtain analogous
results for quotients of a class of infinite graphs that goes beyond universal covers,
where the results are also given in terms of the spectral radius of the given infinite
graph. We refer the reader to [HR19, SS92] for discussions on the relation between
spr(G) and spr(T).

In most cases, spr(T) is mentioned only as an implicit quantity and no quantitative
bounds on it are provided. When G is d-regular, by the work of Kesten [Kes59],

we know that spr(T) = 2√d − 1. If G is a (c, d)-biregular bipartite graph, by Godsil
[GM88] we know that spr(G) =√c − 1 +√d − 1. In the case of general graphs, Hoory
[Hoo05] proved that if davg(G) is the average degree of G, then

spr(T) ≥ 2√davg(G) − 1.(2.1)

On the other hand, an upper bound can be obtained trivially by noting that if dmax(G)
is the maximum degree of G, then T can be embedded in the infinite dmax(G)-regular
tree and hence

2
√
dmax(G) − 1 ≥ spr(T).(2.2)

�erefore, if G is a regular graph, we have davg(G) = dmax(G), so by putting together
(2.1) and (2.2), the formula of Kesten is recovered.

It is hard to find any explicit formula for spr(T) that only depends on the
adjacencies in G and not, for example, on the paths in G or the powers of AG. �is
is due in part to the fact that two similar base graphs may have universal covering
trees with fairly different spectral radii. In Table 2, we used the system of equations in
Corollary 6.6 to compute the spectral radii of the respective universal covering trees
in Table 1.
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Base graph G spr(T(G))
G1 ≈ 3.0368

G2

√
1
2(7 +√33) ≈ 2.5243

G3

√
1
2 (6 +√5 +√27 + 6√5) ≈ 2.7012

G4 ≈ 2.6589

G5 1 +√2 ≈ 2.4142
G6 ≈ 2.4461

Table 2: Using Mathematica, the system of equations in Corollary 6.6 was solved for
the graphs inTable 1. In some cases, explicit solutions in radicals were output. Previous
results on the biregular bipartite case mentioned above imply the result for G5.

Graph product Notion of independence

Cartesian Classical (tensor)

Free Free

Comb Monotone

Star Boolean

Table 3: On the le�, graph products are mentioned (see [ABGO04] for definitions).
On the right, the corresponding notions of stochastic independence are given (see
[SW97,Mur01] for definitions of Boolean andMonotone independence, respectively).

2.4 Graph products and noncommutative probability

In recent years, different problems in spectral graph theory have been approached
from the perspective of noncommutative probability theory; we refer the reader to
the book of Hora andObata [HO07] for a unified exposition. Of particular interest for
the present work are a sequence of results [ABGO04, ALS07, Oba04] which establish a
correspondence between different combinatorial graph products and different notions
of stochastic independence in noncommutative probability (see Example 2.3). We
summarize this correspondence in the dictionary presented in Table 3. As mentioned
before, part of the motivation of this project is to extend this dictionary to include the
notion of freeness with amalgamation.7

7Graph products related to the notion of amalgamation in group theory, such as the one appearing
in [Moh06], have appeared in the past. However, these unrelated products were introduced with the
purpose of studying symmetries in graphs and it is not clear if they relate to spectral theory.
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Example 2.3 (Cartesian product) Given two graphs G1 and G2, one may form their
Cartesian product G1 ◻ G2, with vertex set and edge set as follows:

V(G1 ◻ G2) = V(G1) × V(G2),
E(G1 ◻ G2) = {{(v ,w1), (v ,w2)} ∶ {w1 ,w2} ∈ E(G2)} ∪ {{(v1 ,w), (v2 ,w)}∶ {v1 , v2} ∈ E(G1)}.

In other words, we have the relation of adjacency matrices AG1 ◻G2
= AG1

⊗ I +
I ⊗ AG2

. Using this representation, one sees that the spectrum of G1 ◻ G2 is the
Minkowski sum {λ1 + λ2 ∶ λ1 ∈ Spec(G1), λ2 ∈ Spec(G2)}. In the language of spectral
measures, this says that the density of states µ of AG1 ◻G2

is the (classical) convolution
of the density of states for the constituent graphs; that is, µ is the law of the sum of two
independent random variables distributed according to the density of states of AG1

and of AG2
, respectively.

In this work, the free graph product is of particular interest. �e connections of
this product to free probability were developed by Accardi, Lenczewski, and Sałapata
[ALS07]. �e authors pointed out that Voiculescu’s notion of free independence
introduced in [Voi85] could be used when analyzing the spectrum of free products of
graphs. As an example provided in their paper, one can recover the spectral measure
of the d-regular infinite tree, as the free convolution of d signed Bernoulli distributions
(also known as Rademacher distributions).

However, the roots of the theory of free graph products go back to Kesten [Kes59],
who studied the spectra of random walks on free groups. We survey this area in the
next subsection.

Finally, we draw attention to the additive graph product recently defined by
Mohanty and O’Donnell [MO20], who showed that X-Ramanujan graphs (a general-
ized notion of Ramanujan graph) can always be obtained by taking certain quotients
of any graph constructed via their product. In the aforementioned work, the features
of the spectrum of the resulting infinite graphs are le� as implicit quantities. Hence,
a natural complementary line of research would then be that of understanding the
spectrum of the infinite graphs arising from the additive graph product.

2.5 Random walks on groups and free probability

�e ’80s and ’90s saw a flurry of activity on the spectra of random walks on Cayley
graphs of free products of groups (see [Woe00] for a detailed exposition).�e analytic
formula relating the spectral measure of the product graph to the spectral measures
of its factors (essentially, Voiculescu’s R-transform) was discovered independently by
McLaughlin [McL88], Soardi [Soa86], and Woess [Woe86], but it was Voiculescu’s
work [Voi85] that put it into themore general context of noncommutative probability.

Interestingly, also in [Voi85], Voiculescu laid out a more general theory of freeness
with amalgamation, which extends the scalars C to an arbitrary unital algebra B.
On the other hand, in a parallel way, some progress was also made by the graph
theory community in the study of random walks on amalgams [PW85]. In particular,
Cartwright and Soardi [CS86] developed the combinatorial tools to obtain the Green
function of the Cayley graph of an amalgamated free product of finite groups, in the
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particular case in which the subgroup over which amalgamation is performed is a
normal subgroup of the groups in the product. In Section 3.3, we explain why the
tools of free probability allow one to approach this problem even if the normality
assumption is dropped.

3 Preliminaries on free probability

In this section, we describe the tools from the theory of free probability that will be
used throughout this preprint. A basic background on C∗-algebras is recommended,
but not necessary for all of the following discussion. We refer the reader to [Dav96]
for an introduction to C∗-algebras.

3.1 Free probability

Free probability was introduced by Voiculescu in his seminal papers [Voi85, Voi86].
We refer the reader to [MS17,NS06, VDN92] for a detailed introduction.�is theory is
developed in the context of noncommutative probability, in which random variables
are viewed as elements of a noncommutative algebra and the notion of expectation
from classical probability is substituted by a linear functional on the algebra.

Definition 3.1 (Noncommutative probability space) A noncommutative probability
space is a pair (A, φ) where A is a unital C-algebra and φ ∶ A→ C is a unital linear
map.

In this work, the following examples of noncommutative probability spaces are of
primary importance.

Example 3.1 �e pair (Mn(C), 1
n
Tr(⋅)) is a noncommutative probability space.

Example 3.2 Let G be a discrete group, and denote the reduced C∗-algebra of G by
C∗red(G).8 �en, the C∗-algebra C∗red(G) has a canonical state given by

φ(x) ∶= ⟨δe , xδe⟩, ∀x ∈ C∗red(G),(3.1)

where δe ∈ ℓ
2(G) denotes the indicator of the identity element e ∈ G.

AsVoiculescu showed, in noncommutative probability, there is not a unique notion
of stochastic independence.

Definition 3.2 (Free independence) Let (A, φ) be a noncommutative probability
space, and let {Ai}i∈I be a family of unital subalgebras ofA. We say that the algebras
Ai are freely independent (or just free) if φ(a1 ⋅ ⋅ ⋅ am) = 0 whenever a i ∈ A j i , j1 ≠ j2 ≠
⋅ ⋅ ⋅ ≠ jm ,

9 and φ(a i) = 0. Sets of random variables are said to be freely independent
if the algebras they generate are free.

In the proof of�eorem 1.8, we will use the following.

8In other words, C∗red(G) is the norm closure in B(ℓ2(G)) of the le� regular representation of G on

ℓ
2(G). See [Dav96, Section 7].

9Here and throughout, we use this shorthand to mean j i ≠ j i+1 , for all 1 ≤ i < m.
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Proposition 3.3 (Voiculescu) Let g1 , . . . , gm be the m canonical generators of Fm ,
10

and let λ be the le� regular representation of Fm on ℓ2(Fm). �en, the random variables
λ(g1), . . . , λ(gm) are free in the noncommutative probability space (C∗red(Fm), φ),
where φ is as in (3.1).

Note that in Proposition 3.3 the random variables λ(g i) are unitaries and satisfy
that

φ(λ(g i)k) = 0 ∀k ∈ Z/{0}.(3.2)

In noncommutative probability, random variables satisfying (3.2) are called Haar
unitaries.

3.2 Operator-valued probability spaces

We will require the following generalization of the notion of noncommutative proba-
bility space.

Definition 3.3 (Operator-valued probability space) A triple (A, E ,B) is called an
operator-valued probability space if A is a unital algebra, B ⊂ A is a subalgebra of
A with 1A ∈ B, and E ∶ A→ B is a conditional expectation, i.e., E is a linear map
satisfying:

(1) E ↾B= IdB, where E ↾B denotes the restriction of E to the subdomainB ⊂ A.
(2) E[b1ab2] = b1E[a]b2 for every a ∈ A and b1 , b2 ∈ B.

O�en, to emphasize the role ofB, we will say that (A, E ,B) is aB-valued probability
space.

In the present, we are interested in the following situations.

Example 3.4 (Matrices with entries in the algebra) Let (A, φ) be a noncommutative
probability space. �en, the algebra Mn(C)⊗A (i.e., n × n matrices with entries in
A) has a canonical copy of Mn(C) as a subalgebra, namely Mn(C)⊗ 1A. Hence,
Mn(C)⊗A can be viewed as anMn(C)-valued probability spacewith the conditional
expectation IdMn(C) ⊗ φ. In other words, if X ∈ Mn(C)⊗A is given by X = (x i j)ni , j=1,
then E defined by

E(X) ∶= (φ(x i j))ni , j=1 ∈ Mn(C),(3.3)

is an Mn(C)-valued conditional expectation.

Example 3.5 (Group C∗-algebras) Let H be a subgroup of G, and
denote by B the canonical copy of C∗red(H) inside C∗red(G). �en, we
can view C∗red(G) as a B-valued probability space, by considering the
canonical conditional expectation E ∶ C∗red(G)→ B, namely the projection
of C∗red(G) onto B that is orthogonal with respect to the Gelfand-
Naumark-Segal (GNS) inner product induced by the canonical tracial state
on C∗red(G).

10Here, Fm denotes the free group onm generators.
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3.3 Freeness with amalgamation

One of the main technical ingredients of this paper is Voiculescu’s notion of freeness
with amalgamation [Voi85, Section 5]. See [VDN92, Section 3.8] and [MS17, Section
9] for an introduction to the subject, and [Jek18] for a detailed development.

Definition 3.4 (Freeness with amalgamation) Consider an operator-valued proba-
bility space (A, E ,B). Let {Ai}i∈I be a family of subalgebras of A such that B ⊂ Ai

for every i ∈ I. We say that the algebras Ai are free with amalgamation over B if
E(a1 ⋅ ⋅ ⋅ am) = 0 whenever a i ∈ A j i , j1 ≠ j2 ≠ ⋅ ⋅ ⋅ ≠ jm , and E(a i) = 0.

Random variables in A are said to be free with amalgamation over B if the
subalgebras generated by them are so.

Observe that in the particular case of B = C1A, we recover the usual definition of
free independence. In this work, we exploit the following relation between freeness
and freeness with amalgamation.

Observation 3.6 Let (A, φ) be a noncommutative probability space, and letA1 ,A2 ⊂

A be freely independent subalgebras. Let X ,Y ∈ Mn(C)⊗A with X = (x i j)ni , j=1 and
Y = (y i j)ni , j=1. If x i j ∈ A1 and y i j ∈ A2 for every i , j = 1, . . . , n, then X and Y are free

with amalgamation over Mn(C) with respect to the conditional expectation defined
in (3.3).

�e connection with the amalgamated free product of groups is the following.

Proposition 3.7 (Voiculescu) Let G1 ,G2 be discrete groups with a common subgroup
H. Let G be the group free product with amalgamation of G1 ,G2 over H, i.e., G ∶= G1 ∗H

G2. Consider the inclusions ρ0 ∶ C
∗
red(H)→ C∗red(G) and ρ i ∶ C∗red(G i)→ C∗red(G) for

i = 1, 2. Now, as in Example 3.5, putB ∶= ρ0(C∗red(H)) and viewC∗red(G) as aB-valued
probability space. �en, ρ1(C∗red(G1)) and ρ2(C∗red(G2)) are free with amalgamation
over B.

We are now ready to explain in precise terms the way in which free probability
appears in the study of the spectra of Cayley graphs. Consider a finitely generated
group G, and let S ⊂ G be a finite generating set. Denote by Γ(G , S) the le� Cayley
graph of G with respect to S. When it is clear from the context, we will simply write Γ.
Let λ be the le� regular representation of G, and note that the operator

TΓ ∶=∑
s∈S

λ(s) ∈ C∗red(G)
is the adjacency operator of Γ. Indeed, if G is identified with the vertices of Γ, then for
every g ∈ G,

TΓ(δg) =∑
s∈S

δsg .

Moreover, if S is symmetric, meaning S = S−1, then clearly Γ is undirected and TΓ is
self-adjoint.

Observation 3.8 Let G1 ,G2 be two finitely generated groups with a common sub-
group H. Let S1 ⊂ G1 and S2 ⊂ G2 be respective finite generating sets. For j = 1, 2, let

https://doi.org/10.4153/S0008414X22000499 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X22000499


1652 J. Garza-Vargas and A. Kulkarni

ι j ∶ G j → G1 ∗H G2 be the canonical inclusion, and let S = ι1(S1) ∪ ι2(S2). Let λ be the
le� regular representation ofG1 ∗H G2 on ℓ

2(G1 ∗H G2). Let Γ ∶= Γ(G1 ∗H G2 , S), Γ1 ∶=
Γ(G1 , S1), and Γ2 ∶= Γ(G2 , S2).�en, we have the following decomposition:

TΓ =∑
s∈S

λ(s) = ∑
s∈ι1(S1)

λ(s) + ∑
r∈ι2(S2)

λ(r) = T̃Γ1 + T̃Γ2 ,

where T̃Γj denotes the natural inclusion of TΓj ∈ C
∗
red(G j) into C∗red(ℓ2(G1 ∗H G2)).

From Proposition 3.7, we know that T̃Γ1 and T̃Γ2 are free with amalgamation over
C∗red(H) with respect to the conditional expectation E ∶ C∗red(G1 ∗H G2)→ C∗red(H)
defined as in Example 3.5.

3.4 The amalgamated free product of Hilbert B-modules

In this section, we will assume that B is a unital C∗-algebra and we will focus on B-
valued probability spaces given by operators onHilbertmodules.�e theory ofHilbert
modules is delicate, and we refer the reader to [Jek18] for a comprehensive treatment.
Below,we content ourselves with providing a quick summary of the objects considered
here, referring the reader to specific places in [Jek18] for details.

A right Hilbert B-module, say H, is a right B-module with a B-valued inner
product

⟨⋅, ⋅⟩ ∶H ×H → B,

for whichH is complete with respect to a norm determined by ⟨⋅, ⋅⟩ in a suitable way
(see [Jek18, Section 1.2] for definitions and basic properties of these objects).�en, a
linear map T ∶H →H (when viewingH as a vector space) is said to be right-B-linear
if T(ηb) = T(η)b for all b ∈ B and η ∈H. �e B-valued inner product on H allows
one to define the adjoint for right-B-linear operators (which may not always exist),
and the norm induced by the inner product leads to a natural definition of bounded
right-B-linear operators (see Section 1.2 and Definitions 1.2.8 and 1.2.9 of [Jek18]).

In what follows, for H a right Hilbert B-module, we will denote the ∗-algebra
of bounded, adjointable (i.e., operators for which the adjoint exists), right B-linear
operators onH by B̃(H).�en, a HilbertB-bimoduleH is defined as a right Hilbert
B-module together with a ∗-homomorphism π ∶ B→ B̃(H). Intuitively, π provides a
le� action of B onH (complementing the existing right action provided by the right
B-module structure), so for b ∈ B and η ∈H, we will use bη as a shorthand notation
for π(b)η.

In Section 5, we will work with the following type of operator-valued probability
space, introduced by Voiculescu in [Voi85, Section 5.1].

Example 3.9 (B-valued conditional expectation on B̃(H)) Assume thatB is a unital
C∗-algebra and that H is a Hilbert B-bimodule. Furthermore, assume that ξ ∈H
is a unit central vector, that is, ⟨ξ, ξ⟩H = 1B and bξ = ξb for all b ∈ B, and consider

the decomposition H = ξB⊕
○

H, where
○

H denotes the orthogonal complement of
ξB with respect to the B-valued inner product of H (this is well defined by Lemma
4.3.2 in [Jek18]). It is easy to see that because ξ is a unit central vector, π ∶ B→ B̃(H)
induces aB-bimodule isomorphismbetweenB and ξB, and henceB can be viewed as
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a subalgebra of B̃(H) (see Lemma 4.3.2 in [Jek18]); moreover, the map E ∶ B̃(H)→ B

given by

E[X] ∶= ⟨ξ, Xξ⟩, ∀X ∈ B̃(H),
is a B-valued conditional expectation (see Lemma 1.5.4 in [Jek18]) and hence(B̃(H), E ,B) is an operator-valued probability space.

Now, consider a family of Hilbert B-bimodules {Hi}i∈I , and for every i ∈ I,
suppose that ξ i ∈Hi is a unit central vector. �en, as in Example 3.9, consider

the decomposition Hi = ξ iB⊕
○

Hi and define the B-valued conditional expectation
E i(X) ∶= ⟨ξ i , Xξ i⟩Hi

, so that we can view each B̃(Hi) as aB-valued probability space.
We will now explain how to construct a bigger B-valued probability space inside
which we can find copies of each of the B̃(Hi) that are free with amalgamation over
B. We refer the reader to [Voi85, Section 5] for the original source and [Jek18, Section
4] for an extended exposition.

Define the amalgamated free product overB of theHi as

(H, ξ) ∶= ∗B
i∈I
(Hi , ξ i) ∶= ξB⊕ ⊕

i1≠i2≠ ⋅ ⋅ ⋅ ≠in

○

Hi1 ⊗B ⋅ ⋅ ⋅ ⊗B

○

Hin .

Next, for every i ∈ I, we consider the subspace ofH

H(i) ∶= ξB⊕ ⊕
i≠i1 , i1≠i2≠ ⋅ ⋅ ⋅ ≠in

○

Hi1 ⊗B ⋅ ⋅ ⋅ ⊗B

○

Hin ,

and define the identifications Vi ∶Hi ⊗B H(i)→H by sending ξ i ⊗ ξ to ξ, and

in the obvious way identifying
○

Hi ⊗ ξ with
○

Hi , each ξ i ⊗ ( ○Hi1 ⊗B ⋅ ⋅ ⋅ ⊗B

○

Hin)
with

○

Hi1 ⊗B ⋅ ⋅ ⋅ ⊗B

○

Hin and each
○

Hi ⊗B ( ○Hi1 ⊗B ⋅ ⋅ ⋅ ⊗B

○

Hin)with ○

Hi ⊗B

○

Hi1 ⊗B

⋅ ⋅ ⋅ ⊗B

○

Hin .�en, for every i ∈ I, define the le� actions of the elements in B̃(Hi) on
H by the inclusion λ i ∶ B̃(Hi)→ B̃(H) given by

λ i(X) ∶= Vi(X ⊗ IdH(i))V−1i .

Finally, note that also ξ ∈H defines a B-valued conditional expectation on B̃(H)
given by

E(X) ∶= ⟨ξ, Xξ⟩.
�eorem 3.10 (Voiculescu) �e above construction satisfies the following:

(1) For every i ∈ I, λ i ∶ B̃(Hi)→ B̃(H) is an injective ∗-algebra homomorphism.
(2) For every i ∈ I and every X ∈ B̃(Hi) it holds that E(λ i(X)) = E i(X).
(3) �e family of subalgebras {λ i(B̃(Hi))}i∈I of B̃(H) are free with amalgamation

overB with respect to E.

3.5 The operator-valued R-transform

In what follows, we consider an operator-valued space (A, E ,B) withA andB being
unital C∗-algebras. Moreover, we assume that E is positive, meaning that E[XX∗] ≥ 0
for all X ∈ A.
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In the scalar case, namely when B ≅ C, Voiculescu’s R-transform is used to com-
pute the distribution of sums of free random variables. See [VDN92, Section 3] for an
introductory reference.�e same machinery extends without many modifications to
the operator-valued context. A good introductory reference for this subject is [MS17,
Section 9].

�e first step toward defining the operator-valued R-transform is to define the
operator-valued version of the Cauchy transform, which essentially is the conditional
expectation applied to the resolvent.

Definition 3.5 (Operator-valued Cauchy transform) Let H
+
∶= {b ∈ B ∶ Im(b) >

ε1A , for some ε > 0} andH− ∶= −H+, where Im(b) ∶= b−b∗

2i .�en, for any self-adjoint
X ∈ A, the operator-valued Cauchy transform of X is the function GX ∶ H

+ → H
−

given by

GX(b) ∶= E[(b1A − X)−1].(3.4)

Observation 3.11 We can recover the scalar Cauchy transform from the operator-
valued Cauchy transform. More specifically, consider a noncommutative probability
space (A, φ) and a unital subalgebra B ⊂ A together with a conditional expectation
E ∶ A→ B. Furthermore, assume that φ and E are compatible in the sense that φ(X) =
φ(E(X)) for every X ∈ A.

Let X ∈ A be self-adjoint, and let µ be the probability measure on R given by the
distribution of X with respect to φ, i.e., µ is the unique probability measure whose kth
moment equals φ(Xk).�en, for z ∈ C with Im(z) > 0, we have that

φ(GX(z1B)) = ∫
R

1

z − t
dµ(t),

where GX is as in (3.4).

Without going into much detail, we recall that the operator-valued Cauchy trans-
form has a le� inverse when restricted to a proper neighborhood of infinity, so the
following definition makes sense.

Definition 3.6 (Operator-valued R-transform) Let X ∈ A be self-adjoint. In a suit-
able neighborhood of 0B ∈ B, the operator-valued R-transform of X, denoted by RX ,
is well defined by the following equation:

bGX(b) = 1 + RX(GX(b))GX(b),(3.5)

where GX(b) is as in (3.4).

Many things are known about the R-transform (both the scalar- and operator-
valued). Here, we will only need the following fact.

�eorem 3.12 (Voiculescu) Let X ,Y ∈ A be self-adjoint random variables that are free
with amalgamation over B, then

RX+Y = RX + RY ,

where RX and RY are as in Definition 3.6.
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4 Band structure of universal covers

In this section, G will be a graph with n vertices, edge weights a, and vertex potential
b. Moreover, as above, T will denote its universal cover (with the inherited periodic
weights and potential) and AT will be the corresponding periodic Jacobi matrix on T.

4.1 Sunada’s theorem via aymptotic freeness

Here, we give an alternate route to a theorem of Sunada [ABS20, Sun92] (i.e.�eorem
1.8) upper-bounding the number of connected components of the spectrum of the
universal cover, and below we point out a slight generalization to the case where the
base graph is allowed to contain half-loops. However, for now, let us assume that every
loop in G is a whole-loop.

For every d, let

Ad ,G = ∑
u∈V(G)

bu∆uu ⊗ Id + ∑
f ∈E(G)

a f∆σ( f )τ( f ) ⊗U
(d)
f

be the Jacobi matrix of a random d-li�, as specified in Definition 2.1. Now, if G
has m undirected edges, say { f1 , f̌1}, . . . , { fm , f̌m}, for every i ∈ [m], we can use

U
(d)
i as a shorthand notation of U

(d)
f i

. �en, by construction, U1 , . . . ,Um are inde-

pendent random uniform permutation matrices and {U(d)
f
} f ∈E(G) = {U(d)i }i∈[m] ∪{(U(d)i )∗}i∈[m]. It easy to see that each U i converges in distribution to a Haar

unitary random variable (see (3.2) for a definition). Moreover, the asymptotic joint
distribution is given by the following classical result of Nica.

�eorem 4.1 (Nica [Nic93]) Let {U(d)1 , . . . ,U
(d)
m } be a family of independent random

uniform d × d permutation matrices. �en, with respect to the state 1
d
E ○ Tr(⋅), as

d goes to infinity, the family {U(d)1 , . . . ,U
(d)
m } converges in distribution to a family{u1 , . . . , um} of free Haar unitaries.

On the other hand, recall that the result in Proposition 3.3 gives a construction for
a family of free Haar unitaries in C∗red(Fm), whereas Lemma 2.2 says that random
li�s converge in distribution to AT .�ese arguments put together yield the following
lemma, which appeared implicitly in [BC19].

Lemma 4.2 Let { f1 , f̌1}, . . . , { fm , f̌m} be a numbering of the undirected edges of G,
and let g1 , . . . , gm be the canonical free generators of Fm , φ the canonical trace of
C∗red(Fm), and λ the le� regular representation of Fm on ℓ

2(Fm). �en, the density
of states of AT is the same as the spectral measure of

∑
u∈V(G)

bu∆uu ⊗ 1 +
m∑
i=1

a f i(∆σ( f i)τ( f i) ⊗ λ(g i) + ∆τ( f i)σ( f i) ⊗ λ(g−1i ))(4.1)

in the noncommutative probability space (Mn(C)⊗ C∗red(Fm), 1
n
Tr⊗ φ).
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Now, the problemhas been reduced to studying the spectralmeasure of a particular
operator that lives in a well-studied C∗-algebra.11 In order to study the band structure
of the spectrum of this random variable, a standard trick in operator K-theory will be
used. In the context of graph theory, this technique was first used by Aomoto [A+88]
and has been used in the study of different infinite graphs by different authors (e.g.,
[KFSH19, Sun92]).

�e main technical result that one needs from the theory of C∗-algebras is the
following.

Proposition 4.3 Let m and n be positive integers, and let φ be the canonical trace in
C∗red(Fm). �en, if P ∈ Mn(C)⊗ C∗red(Fm) is a projection, (Tr⊗ φ)(P) is a nonnega-
tive integer.

Using a standard K-theory argument, it can be seen that the above proposition
follows from a deep and technical result of Pimsner and Voiculescu [PV82]. A self-
contained proof appears in [ABS20]. We can now show Sunada’s theorem.

Proof Use TG to denote the operator in (4.1), and let I be a connected component of
Spec(AT) = Spec(TG). Now, let χI(x) be the indicator function of the set I, and note
that since I is a connected component of the spectrum, χI is a continuous function
on Spec(TG) and hence χI(TG) ∈ Mn(C)⊗ C∗red(Fm). Moreover, since the range of
χI is contained in R and χ2I = χI , by the continuous functional calculus, we have that
χI(TG) is a projection.

On the other hand, if µAT
is the density of states of AT , and µTG

is the spectral
measure of TG with respect to the function 1

n
Tr⊗ φ, we have that

µAT
(I) = µTG

(I) = ∫
Spec(TG)

χI(x)dµTG
(x) = ( 1

n
Tr⊗ φ) (χI(TG)).

So, by Proposition 4.3, the quantity above is k/n for some integer k ≥ 1, as desired. ∎

Remark 4.4 (Spectral splitting) �e C∗-algebra representation of AT given in (4.1)
can also be used to answer other questions about the number of bands in Spec(AT).
We refer the reader to Appendix A for a discussion of some problems about the
number of bands in Spec(AT) that were le� open in [ABS20].

4.2 Allowing half-loops

When the base graph G has half-loops, a modification of Sunada’s result still holds.
In this case, the random permutations in the li� associated with half-loops should be
taken to be random matchings. To be precise, if L(G) denotes the set of half-loops of
G, the Jacobi matrix on a random 2d-li� is given by

Ad ,G = ∑
u∈V(G)

bu∆uu ⊗ Id + ∑
f ∈L(G)

∆σ( f )τ( f ) ⊗ P
(d)
f
+ ∑

f ∈E(G)/L(G)

a f∆σ( f )τ( f ) ⊗U
(d)
f

,

where the P
(2d)
f

are independent random permutations distributed uniformly in the

space of random matchings of [2d] (i.e., matrices whose corresponding permutation

11A similar approach is used by [ABS20] using a different C∗-algebra. �eir approach does not use
asymptotic freeness or any other free probability concept.
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α has no fixed points and satisfies α2
= Id). It is not hard to see that by the way we

defined the universal cover a graph with half-loops (see Section 1.7), we again have
Benjamini–Schramm convergence to T when defining random li�s in this way, and
hence Lemma 2.2 still holds.

Now, note that each P
(2d)
f

is self-adjoint and distributes as a Rademacher random

variable with respect to the state 1
2dTr(⋅). On the other hand, by the work of Nica

[Nic93], we know that asymptotic freeness also holds for independent randommatch-
ings and independent random uniform permutations.�at is,�eorem 4.1 admits the
following extension.

�eorem 4.5 (Nica [Nic93]) Let {P(2d)1 , . . . , P
(2d)
m1

,U
(2d)
1 , . . . ,U

(2d)
m2
} be a family of

independent random d × d permutation matrices, with the P
(2d)
i distribute as uniform

matchings and the U
(2d)
i as uniform permutation matrices. �en, as d goes to infinity,

this family converges in distribution (with respect to the state 1
2dTr(⋅)) to the free family{p1 , . . . , pm1

, u1 , . . . , um2
}, where the p i are Rademacher random variables and the u i

are Haar unitaries.

On the other hand, a copy in distribution of the free family{p1 , . . . , pm1
, u1 , . . . , um2

}mentioned above is given by the variables

{λ(h1), . . . , λ(hm1
), λ(g1), . . . , λ(gm2

)} ⊂ C∗red(Γm1
∗ Fm2

),
where h1 , . . . , hm1

, . . . , g1 , . . . , gm2
are the canonical generators of the group Γm1

∗ Fm2

(recall that Γm1
denotes the free product of m1 copies of Z2), and λ denotes the le�

regular representation.�e K-theory of this C∗-algebra is also well understood (see,
for example, [Sun92]), and hence one can get the corresponding analog of Proposition
4.3. In this case, one obtains the following result.

Proposition 4.6 (Analog of Sunada’s theorem) If G contains half-loops, then the
density of states of AT assigns a positive integer multiple of 1/2n to any connected
component of Spec(AT). Hence, Spec(AT) has at most 2n components.

�e bound of 2n is again tight since G can be a finite tree with a half-loop added
to some vertex, in which case T will be a finite tree with 2n vertices, and it is then
easy to construct examples where the (in this case finite) Jacobi matrix AT has 2n
distinct eigenvalues.Moreover, if one allows the coefficients bv to be nonzero, then one
can obtain many more examples with 2n bands. In particular, we have the following
example, which was pointed out to us by Barry Simon. Roughly speaking, one may
take n disjoint copies G1 , . . . ,Gn of a fixed finite graph G (and its graph Jacobi matrix),
add different large multiples of the identity to the Jacobi matrix on each Gi , and then
connect the Gi by some edges with very small weights a f .�is produces a connected
graph G′ whose universal cover has n times as many spectral bands as AG. If G is a
single vertex with a whole-loop and a half-loop with coefficients chosen so that the
spectrum of AT(G) has two bands by �eorem A.1, then AT(G′) has 2n bands in its
spectrum.

Remark 4.7 (Avoiding asymptotic freeness) Alternatively, using the amalgamated
free product of graphs, in Section 5.4, we will show that AT can be represented as
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an element inMn(C)⊗ C∗red(Γm), from where Proposition 4.6 can be easily deduced
from K-theory results as explained above.

5 The amalgamated free product for graphs

In Section 5.1, we give a combinatorial description of our graph product and show that
it extends both the free product of graphs given in [Que94] and the notion of universal
cover of a graph. At the end of Section 5.1, we state �eorem 5.4, the main result of
this section, which explains the connection with freeness with amalgamation and the
use of having such a product.

In Section 5.2, we delve into the technicalities of the product, showing the connec-
tion between the combinatorial description given in Section 5.1 and the construction
of the amalgamated free product of Hilbert modules described in Section 3.4.

To lighten notation, in the remaining of this section, for a graph G, we will write
G = (V,E, e) to denote that V(G) = V, E(G) = E, and e is the root of G.

5.1 Combinatorial description

First, following the presentation in [ALS07], we recall Quenell’s free product of rooted
graphs. Let G1 = (V1 ,E1 , e1), . . . , Gn = (Vn ,En , en) be rooted graphs, and for every

i ∈ [n], denote ○

Vi ∶= Vi/{e i}. �e free product of rooted graphs will be denoted by
∗{Gi}ni=1.

�e vertex set of ∗{Gi}ni=1 will be the following set of words:
∗{Vi}ni=1 ∶= {e} ∪ {vm ⋅ ⋅ ⋅ v1 ∶ vk ∈ ○

Vikand ik ≠ ik+1 for 1 ≤ k ≤ m − 1,m ≥ 1}.
(5.1)

As in [ALS07], we think of e as the empty word and we allow the roots e i to appear in
words also playing the role of an empty word, that is, ifw ∈ ∗{Vi}ni=1, then we have the
convention we i = e iw = w.�e set of edges in the free product is defined as follows:

∗{Ei}ni=1 = {(vw , v′w) ∶ (v , v′) ∈ ∪i∈[n]Ei and w , vw , v
′w ∈ ∗{Vi}ni=1} .(5.2)

In summary, ∗{Gi}ni=1 = (∗{Vi}ni=1 , ∗{Ei}ni=1 , e). See Figure 1 for an example.
We now expand the notion of free product of graphs by introducing the concept of

relator graph.

Definition 5.1 (Relator graph) Let C be a finite set. A relator graph with colors in C

is a finite graph G = (V,E) together with an edge coloring c ∶ E→ C.

Our amalgamated free product of rooted graphs G1 = (V1 ,E1 , e1), . . . ,Gn =(Vn ,En , en) will be defined relative to a relator graph (G, c) and a coloring of the
Gi compatible with the coloring of the relator graph.�e colorings together with the
graph structure of the relator graph indicate how the Gi will be combined to form
an infinite (possibly disconnected) multirooted graph.�us, one may obtain different
results even when the Gi are fixed, if the relator (G, c) is modified.

Definition 5.2 (Amalgamated free product for graphs) First, we describe the input
data for the product:
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Figure 1: �e free product of two graphs G1 and G2 .

• (Colored rooted graphs) Let G1 = (V1 ,E1 , e1), . . . ,Gn = (Vn ,En , en) be finite
rooted graphs. Assume that eachGi comes equippedwith an edge coloring c i ∶ Ei →
Ci such that Ci ∩ C j = ∅ for every i ≠ j.

• (Relator graph) Let C ∶= ⋃n
i=1 Ci , and let (G, c) be a relator graph with colors in C

and k vertices. Denote G = (V,E) and without loss of generality set V = [k].
�en, the free product of the (Gi , c i)with amalgamation over (G, c), which we denote
by ∗(G,c) {(Gi , c i)}ni=1, is the k-rooted graph defined as follows:

• (Vertex set) For the vertex set, we take k copies of the free product of the Vi , that is,

∗(G,c){Vi}ni=1 ∶= [k] × ∗{Vi}ni=1 .
• (Edge set) �e colorings c i and c are used to know which edges should be added:

∗(G,c){(Ei , c i)}ni=1 ∶= {((l , vw), (l ′ , v′w)) ∶ (v , v′) ∈ E j for some

j ∈ [n], (l , l ′) ∈ E and c(l , l ′) = c j(v , v′)} ,
where of course we are assuming that w , vw , v′w ∈ ∗{Vi}ni=1.

• (Roots) �e root set of G is {(l , e)}kl=1.
To lighten notation, sometimes we will use ∗(G,c){Gi}ni=1 and ∗(G,c){Ei}ni=1, as

shorthand notations for ∗(G,c) {(Gi , c i)}ni=1 and ∗(G,c) {(Ei , c i)}ni=1, respectively.
We first observe that this product generalizes different relevant constructions.

Example 5.1 (Universal cover of a graph) Let G = (V,E) be a finite graph with k
vertices.
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Figure 2: Here, we illustrate the construction in Example 5.1 in the particular case of a graph

G with three vertices and three edges. On the top le�, we have the graph G and the graphs

G1 ,G2 ,G3 defined in the construction. On the top right, a part of the vertex set ∗(G,c){Vi}
n
i=1

is shown, which in general is the union of the vertex sets of k disjoint m-regular trees, where

m is the number of undirected edges in G. �e vertices of these m-regular trees correspond to

sequences of edges in G containing all nonbacktracking walks, and the connected components

of the amalgamated graph product ∗(G,c){Gi}
n
i=1 (which are copies of T) move across the

different k levels in the vertex set, as it can be seen in the lower part of the image, which is

part of the connected component containing the root (1, e).

First, we consider the casewhereG has no loops. Letm be the number of undirected
edges in G, and let c ∶ E→ [m] be a coloring satisfying c( f ) = c( f̌ ) and c( f1) ≠ c( f2)
whenever f1 ≠ f2 and f̌1 ≠ f2. �en, choose (G, c) as the relator graph, and for every
i ∈ [m], let Gi be a rooted graph consisting of two vertices (one of them being the root
e i) connected by a single undirected edge with color i.

Now, if G has loops, one should replace every whole-loop for two half-loops.�en,
m is defined as the number of undirected nonloop edges in G plus the number of half-
loops. Once again, one considers a coloring c ∶ E→ [m]with c( f1) = c( f2) if and only
if f1 = f2 or f̌1 = f2.�e rest is done as in the no-loop case.

In any case, with this construction, note that Tfull ∶= ∗(G,c){Gi}mi=1 has k roots(1, e), . . . , (k, e) and that the connected component of Tfull containing (i , e), say Ti ,
is isomorphic to T(G). Moreover,Ti andT j are disjoint whenever i ≠ j and the unique
root (i , e) in Ti is in the fiber of i ∈ V(G). See Figure 2 for an example.
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Example 5.2 (Free products of graphs) Given n finite rooted graphs G1 =(V1 ,E1 , e1), . . . ,Gn = (Vn ,En , en), one can construct its free product by taking G =(V,E) to be the graph that has only one vertex and n half-loops around it. �en, for
any i ∈ [n], let Ci be the singleton {i}, that is, c i will color all edges in Gi with color i.
And, c ∶ C→ [n] will color each half-loop in G with a different color.

With this setup, it is easy to see that

∗(G,c){(Gi , c i)}ni=1 = ∗{Gi}ni=1 .
In this case, because the relator graph has only one vertex, the amalgamated product
has only one root. Hence, this construction generalizes Quenell’s free product of
graphs.

Example 5.3 (Cayley graphs of amalgamated free products of groups) In Section
5.3, we will show that if G1 , . . . ,Gn are finite groups with symmetric generating sets
S1 , . . . , Sn and a common subgroup H, then the le� Cayley graph Γ(∗H{G i}ni=1 , S)
(where S = ⋃n

i=1 S i) can be constructed explicitly as an amalgamated free product of
graphs. In our construction, H is taken to be the vertex set of the relator graph, and
for every i ∈ [n], a set of representatives for the right cosets of H in G i is taken as the
vertex set of the graph Gi . �en, the edges in G and Gi , and the colorings c and c i ,
encode the way in which the generators interact with the elements inH and the cosets
of H in G i .

So far, all the discussion in this section has been at the level of combinatorics;
however, our main result here is about Jacobi operators. It is then necessary to clarify
how edge weights and vertex potentials can be incorporated in our framework.

Definition 5.3 (Li�ing coefficients) If the relator graph, G = (V, c) has edge weights
a and vertex potential b, then the graph ∗(G,c){Gi}ni=1 can be endowed with “periodic”
edge weights ã and vertex potential b̃ in a natural way as follows:

ã((l ,vw),(l ′ ,v′w)) ∶= a(l , l ′) and b̃(l ,w) ∶= b l ,

for all ((l , vw), (l ′ , v′w)) ∈ ∗(G,c){Ei}ni=1 and (l ,w) ∈ ∗(G,c){Vi}ni=1.
When working with Jacobi operators on amalgamated free products of graphs, it

will be convenient to have the following notation.

Definition 5.4 (Notation) Fix G = (V,E) a graph and c ∶ E→ C a coloring of the
edges. For each α ∈ C, we denote by G[α] the graph with the same vertex set as G, but
that only includes those edges of color α, i.e., G = (V, c−1(α)). If G has edge weights
and vertex potential, then G[α] inherits these in the obvious way.

We are now ready to state the main theorem.

�eorem 5.4 Use the notation in Definitions 5.2 and 5.4, and assume that the relator
graph G is equipped with edge weights a and vertex potential b. Let J denote the Jacobi
operator on ∗(G,c){(Gi , c i)}ni=1 where the edge weights and vertex potential are defined
as in Definition 5.3.
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For every i ∈ [n] and every α ∈ Ci , let Xα and Aα be the weighted adjacency
matrix of G[α] and the unweighted adjacency matrix of Gi[α], respectively.12 �en,
there exists an operator-valued probability space (A, E ,Mk(C)), and random variables
D, T1 , . . . , Tn ∈ A with the following properties:

(1) (Path counting) If T ∶= D + T1 + ⋅ ⋅ ⋅ + Tn , then for every natural number p and
i , j ∈ [k], we have that

E[T p](i , j) = J p((e , i), (e , j)).
(2) (Freeness with amalgamation)�e Ti are free with amalgamation over Mk(C)with

respect to E. Moreover, D is free with amalgamation over Mk(C) from any other
element inA.

(3) (Equal in distribution) Fix i ∈ [n], let m i ∶= ∣Vi ∣, and note that Xα ⊗ Aα ∈

Mk(C)⊗Mm i
(C) for every α ∈ Ci . �en, if we view Mm i

(C) as a noncommuta-
tive probability space with the functional induced by the root of Gi , and from there
construct theMk(C)-valued probability space (Mk(C)⊗Mm i

(C), E i ,Mk(C)) as
in Example 3.4, we have that

∑
α∈Ci

Xα ⊗ Aα

distributes with respect to E i as Ti with respect to E. Moreover, D dis-
tributes with respect to E as the matrix diag(b1 , . . . , bk) distributes in the space(Mk(C), Id,Mk(C)).

Remark 5.5 (Scalar-valued distributions) Note that item (1) in the above theorem
tells us that the k × k matrices obtained as the operator-valued moments of T encode
all of the information provided by walks between any two roots of the amalgamated
free graph product. Hence, for every i ∈ [k], if one composes the conditional expec-
tation E with the functional φ i ∶ Mk(C)→ C given by φ i(X) ∶= X(i , i), then one can
understand the spectral measure of the Jacobi matrix J on ∗(G,c){(Gi , c i)} associated
with the root (e , i).

To see �eorem 5.4 in action, we refer the reader to Section 5.4, where we
combineExample 5.1 and�eorem5.4 to obtain aC∗-representation of periodic Jacobi
operators on universal covers.

5.2 Proof of Theorem 5.4

Since we care about the explicit action of the operators in question, we think of the Xα

as elements in B(ℓ2(V)) and of the Aα as elements of B(ℓ2(Vi)) if α ∈ Ci . To lighten
notation, let

B ∶= B(ℓ2(V)) ≅ Mk(C),
and because of the last equivalence, let Ik denote the unit of B. In what follows, the
notion of tensorwill be used in differentways, andwewill use⊗B ,⊗C, and⊗ to denote

12�at is, Xα(l , l ′) = a(l , l ′) if (l , l ′) is an edge in G[α] and Xα(l , l ′) = 0 otherwise, whereas
Aα(v, v′) = 1 whenever (v, v′) is an edge in Gi[α] and Aα(v, v′) = 0 otherwise.
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the tensor of B-modules, C-algebras, and C-vector spaces, respectively. However, to
avoid overloading, the subscript in ⊗B will be dropped when using it to denote pure
tensor elements in aB-module tensor product.

For clarity of exposition, we divide the proof in several steps. �e first one
consists in defining the building blocksHi to which we apply the construction of the
amalgamated free product for Hilbert modules described in Section 3.4.

Step 1: Construction of the operator-valued probability spaces. For every i ∈ [n], let
Hi ∶= B⊗ ℓ

2(Vi),
and note that this is aB-bimodule with the right and le� actions ofB on pure tensors
given by

(X ⊗ η)Y ∶= XY ⊗ η and Y(X ⊗ η)
= YX ⊗ η ∀X ,Y ∈ B, ∀η ∈ ℓ2(Vi),(5.3)

and then extended by linearity. Moreover, we can turn each Hi into a right Hilbert
B-module by using theB-valued inner product determined by

⟨X ⊗ η,Y ⊗ ζ⟩Hi
∶= ⟨η, ζ⟩ℓ2(Vi)X

∗Y , ∀X ,Y ∈ B, ∀η, ζ ∈ ℓ2(Vi).(5.4)

In fact, because we are working with finite-dimensional spaces, operators are auto-
matically bounded, so this turns Hi into a Hilbert B-bimodule where, as expected,
the representation π i ∶ B→ B̃(Hi) is given by the le� action ofB onHi .

Now, recall that, for every i ∈ [n], e i ∈ Vi denotes the root of Gi , so δe i is the
distinguished vector in the Hilbert space ℓ2(Vi). Following the construction outlined
in Section 3.4, we set ξ i ∶= Ik ⊗ δe i to be the distinguished vector of Hi . It is easy to
see that ξ i is a unit central vector, and moreover, by (5.3), ξ iB = B⊗ δe i . Hence, the

decompositionHi = ξ iB⊕
○

Hi satisfies

○

Hi = B⊗ ℓ
2( ○Vi),

where as before
○

Vi ∶= Vi/{e i}.
Asmentioned in Example 3.9, the∗-algebra of bounded, adjointable, rightB-linear

operators B̃(Hi) is a B-valued probability space with the conditional expectation
defined by E i(S) ∶= ⟨ξ i , Sξ i⟩Hi

for every S ∈ B̃(Hi). However, sinceB and B(ℓ2(Vi))
are finite-dimensional, we can use the identification

B̃(Hi) ≅ B⊗C B(ℓ2(Vi)),
by letting each X ⊗ A ∈ B⊗C B(ℓ2(Vi)) act onHi by

X ⊗ A(X′ ⊗ η) = XX′ ⊗ Aη, ∀X′ ∈ B,∀η ∈ ℓ2(Vi),(5.5)

and extending this definition by linearity to all elements in B⊗C B(ℓ2(Vi)). Now,
note that under this identification, the E i we just defined also coincide with the
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construction given in Example 3.4, since for a pure tensor X ⊗ A ∈ B⊗C B(ℓ2(Vi))
we have, by (5.4) and (5.5), that

E i(X ⊗ A) = ⟨ξ i , X ⊗ A(ξ i)⟩Hi
= ⟨Ik ⊗ δe i , X ⊗ A(Ik ⊗ δe i )⟩Hi

= ⟨Ik ⊗ δe i , X ⊗ Aδe i ⟩Hi
= ⟨δe i ,Aδe i ⟩ℓ2(Vi)X .

Step 2: Defining A, φ, and the Ti . Note that B and the Hilbert B-bimodules
Hi satisfy all the conditions required in Section 3.4, so we can go ahead with the
construction of the amalgamated free product. Define

H ∶= ξB⊕ ⊕
i1≠i2≠ ⋅ ⋅ ⋅ ≠im

○

Hi1 ⊗B ⋅ ⋅ ⋅ ⊗B

○

Him ,

where ξ = Ik ⊗ δe and δe is the vector resulting from identifying the δe i , and let A ∶=
B̃(H). �en, for every i ∈ [n], set λ i ∶ B̃(Hi)→ A to be the inclusions described in
Section 3.4 and define

Ti ∶= ∑
α∈Ci

λ i(Xα ⊗ Aα).
With these definitions, from �eorem 3.10, it is clear that the Ti are free with

amalgamation over B with respect to the conditional expectation E, and that each
Ti has the same distribution as

∑
α∈Ci

Xα ⊗ Aα .

�is proves the claims about the Ti made in items (2) and (3) in�eorem 5.4. Before
completing the proof of the theorem, we will understand better the structure ofH.

Step 3: Rewriting H and defining D. First, recall that

H = ξB⊕ ⊕
i1≠i2≠ ⋅ ⋅ ⋅ ≠im

○

Hi1 ⊗B ⋅ ⋅ ⋅ ⊗B

○

Him

= B⊗ δe ⊕ ⊕
i1≠i2≠ ⋅ ⋅ ⋅ ≠im

(B⊗ ℓ
2( ○Vi1))⊗B ⋅ ⋅ ⋅ ⊗B (B⊗ ℓ

2( ○Vim))
and note that asB-bimodules we have the identification

(B⊗ ℓ
2( ○Vi1))⊗B ⋅ ⋅ ⋅ ⊗B (B⊗ ℓ

2( ○Vim)) ≅ B⊗ ℓ
2( ○Vi1)⊗ ⋅ ⋅ ⋅ ⊗ ℓ

2( ○Vim),
for every i1 ≠ i2 ≠ ⋅ ⋅ ⋅ ≠ im . So we can viewH as follows:

H ≅ B⊗ δe ⊕ ⊕
i1≠i2≠ ⋅ ⋅ ⋅ ≠im

B⊗ ℓ
2( ○Vi1)⊗ ⋅ ⋅ ⋅ ⊗ ℓ

2( ○Vim)
≅ B⊗K,

whereK ∶= ∗C{ℓ2(Vi)}ni=1, and the last equivalence (which is clearly true at the level
ofB-bimodules for the algebraic direct sum) holds at the level of HilbertB-bimodules
becauseB is finite-dimensional. We can then use this identification to define

D ∶= diag(b1 , . . . , bk)⊗ IdK .
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It is clear that D ∈ A and that it is free with amalgamation over B from any other
element inA, as stated in (2).

Step 4: Interpreting T as the Jacobi operator. Define T ∶= D + T1 + ⋅ ⋅ ⋅ + Tn , and for
every i , j ∈ [k], let ∆ i j denote the operator inB corresponding to thematrix inMk(C)
with a 1 in the entry (i , j) and 0 everywhere else. Observe that

∆ i j∆ lm =

⎧⎪⎪⎨⎪⎪⎩
∆ im , if j = l ,

0, otherwise,
(5.6)

and hence the lth column space C l ∶= Span{∆ i l ∶ i ∈ [k]} is a le� ideal of B for every
l ∈ [k] (where the span is taken at the level of C-vector spaces).

�e main idea in this step is to find aC-vector subspaceW ofH that is T-invariant
and such that a C-basis ofW can be bijected with ∗(G,c){Vi}ni=1 so that it is clear that
T acts onW in the same way that the Jacobi operator acts on ℓ

2(∗(G,c){Vi}ni=1). With
this end, recall thatK ∶= ∗C{ℓ2(Vi)}ni=1 and for every l ∈ [k] define

Wl ∶= C l ⊗K,

and consider the C-basis forWl given by

Θ l ∶= {∆ i l ⊗ δe ∶ i ∈ [k]} ∪ {∆ i l ⊗ δvm ⊗ ⋅ ⋅ ⋅ ⊗ δv1

∶ i ∈ [k], v1 ∈ ○Vi1 , . . . , vm ∈
○

Vim , i1 ≠ i2 ≠ ⋅ ⋅ ⋅ ≠ im}.
Now, because C l is a le� ideal of B, it is clear that Wl is le�-invariant under the
action of each Tj and D, and hence it is invariant under the action of T. �en, we
can decompose

Ik ⊗ δe =
k∑
i=1

∆ i i ⊗ δe ,

and it will follow that T p(∆ l l ⊗ δe) ∈Wl for every l and every p. On the other hand,

E[T p] = ⟨Ik ⊗ δe , T
p(Ik ⊗ δe)⟩H = k∑

l=1

k∑
i=1

⟨∆ i i ⊗ δe , T
p(∆ l l ⊗ δe)⟩H ,

and because of the construction of ⟨⋅, ⋅⟩, and since C l is a le� ideal, it is easy to see that

k∑
i=1

⟨∆ i i ⊗ δe , T
p(∆ l l ⊗ δe)⟩H ∈ C l , ∀l ∈ [k].

Similarly, we can define the row space R i = Span{∆ i j ∶ j ∈ [k]}, which is a right ideal,
and use the same reasoning to conclude that ⟨∆ i i ⊗ δe , T

p(∆ l l ⊗ δe)⟩H ∈ R i for every
i. Hence, if we view E[T p] as a k × k matrix, we get that

E[T p](i , l) = ⟨∆ i i ⊗ δe , T
p(∆ l l ⊗ δe)⟩H .(5.7)

To analyze the above expression, for any word w = vm ⋅ ⋅ ⋅ v1 ∈ ∗{Vi}, denote δw ∶=
δvm ⊗ ⋅ ⋅ ⋅ ⊗ δv1 and note that

∆s l ⊗ δw ↦ (s,w)
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is a bijection between Θ l and the vertex set ∗(G,c){Vi}. Moreover, for every j ∈ [n],
any w ∈ ∗{Vi}, and any v ∈ V j , it is clear that

Tj(∆s l ⊗ δvw)
= ∑

α∈C j

∑
f1∈σE(s), f2∈σE j

(v)

Xα(σ( f1), τ( f1))Aα(σ( f2), τ( f2)) ⋅ ∆τ( f1)l ⊗ δτ( f2)w

= ∑
s′∈V, v′∈V j

(s ,s′)∈E, (v ,v′)∈E j , c(s ,s
′)=c j(v ,v

′)

a(s ,s′) ⋅ ∆s′ l ⊗ δv′w ,

where in the first linewe have used the notation σE and σE j
, to emphasize that σE(s) ∶=

σ(s) ⊂ E and σE j
(v) ∶= σ(v) ⊂ E j . It is also clear that

D(∆s l ⊗ δw) = bs∆s l ⊗ δw .

From the above, it follows that T acts on Θ l in the same way in which J acts on
∗(G,c){Vi}ni=1 as we wanted to show.

�erefore,

T p(∆ l l ⊗ δe) =∑ c i ,v1 , . . . ,vm∆ i , l ⊗ δvm ⊗ ⋅ ⋅ ⋅ δv1 ,

where the sum ranges over all tuples (i , vm , . . . , v1) for which there is a (possibly lazy)
walk of length p in ∗(G,c){Gi}ni=1 between the vertices (l , e) and (i , vm ⋅ ⋅ ⋅ v1), where
the coefficients c i ,v1 , . . . ,vm are determined by the edge weights and vertex potential. So,
recalling (5.7) and the definition of the inner product ⟨⋅, ⋅⟩H, we can conclude that
E[T p](i , l) is the sum of weighted walks of length p between (l , e) and (i , e), as we
wanted to show.

5.3 Amalgamated free product of groups as amalgamated free product of graphs

Here, we show that Cayley graphs of amalgamated free products of finite groups
can be realized as an amalgamated free product of finite graphs. Note that this is
not an obvious fact and requires a proof. In the setup of Observation 3.8, freeness
with amalgamation appears because we are working in a group C∗-algebra of an
amalgamated free group product. In contrast, in the case of the amalgamated free
graph product, the freeness with amalgamation comes from the fact that we are
working in a tensor algebra.

In this section, we will consider finite groupsG1 , . . . ,Gn with a common subgroup
H. And we will work with the right cosets of H in each of this groups. For every i, we
will fix R i with eG i

∈ R i to be a set of representatives of the right cosets ofH inG i , and
heavily exploit the following structural theorem for amalgamated graph products (see
[Ser80, Section 1.2,�eorem 1]).

�eorem 5.6 (Structure of amalgamated free products of groups) Let H,G i , and R i

be as above.�en, every element g of the amalgamated free product G ∶= ∗H{G i}ni=1 has
a unique representation of the form

g = hrm ⋅ ⋅ ⋅ r1 ,
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where h ∈ H, r j ∈ R i j/{eG i j
}, and i j+1 ≠ i j .�is representation is called the normal form

of g.

Although we have chosen to consider right cosets, we will be interested in con-
structing le� Cayley graphs (the reason for this discrepancy will become apparent
below). As in Section 3.3, given a group G and a generating set S, we denote the
le� Cayley graph of G with respect to S by Γ(G , S). Now, for every i, fix S i a
symmetric generating set of G i , that is, assume that for every s ∈ S i one also has
s−1 ∈ S i .�e symmetry of the symmetric sets will ensure that the constructed graphs
are undirected.

Below, we will show how to construct the Cayley graph Γ(∗H{G i}ni=1 , S) for
S = ⋃n

i=1 S i as an amalgamated free product of graphs {Gi}ni=1 over some relator
graph (G, c). However, before describing the construction in detail, we provide some
intuition on why such construction should exist. First, note that, for every i, we can
view G i as the amalgamated free product of the singleton {G i} over H, and apply
�eorem 5.6 with n = 1 to obtain that every g ∈ G i can be uniquely represented as
g = hrwith h ∈ H and r ∈ R i .�is induces a bijection betweenG i andH × R i , which in
turn induces an isomorphism between the vector spaces ℓ2(G) and ℓ

2(H)⊗ ℓ
2(R i).

On the other hand, the Jacobi operator on Γ(G , S) is constructed via the operators
λs ∶ ℓ

2(G i)→ ℓ
2(G i) given by the le� regular representation of G i . �e idea is that,

because ℓ2(G i) ≅ ℓ2(H)⊗ ℓ
2(R i), we can view λs as an operator over the latter, and

decompose it as a sum of pure tensors in B(ℓ2(H))⊗ B(ℓ2(R i)). Once this is done,
one is precisely in the setup of the amalgamated graph product. Below, we exemplify
this procedure in the case of two small abelian groups, and we later present the general
construction.

Example 5.7 Here, we provide an explicit construction for the Jacobi operator on the
Cayley graph of SL(2,Z) with respect to some canonical generators. It is well known
that this group can be viewed as the free product of Z4 and Z6 with amalgamation
over Z2, and has the finite presentation

SL(2,Z) ≅ ⟨x , y ∣ x4 = y6 = 1, x2 = y3⟩.
Let λZ4

, λZ6
denote the le� regular representations of Z4 and Z6, respectively, and

note that the cosets of (the inclusion of) Z2 in Z4 and Z6 are {{0, 2}, {1, 3}} and{{0, 3}, {1, 4}, {2, 5}}, respectively.�en, fix the generating sets S1 = {1,−1} ⊂ Z4 and
S2 = {−1, 1} ⊂ Z6.

Now, consider the algebra inclusions (constructed as above)

χ1 ∶ C[Z4]→ B(ℓ2(Z2))⊗ B(ℓ2({0, 2}, {1, 3}))
and

χ2 ∶ C[Z6]→ B(ℓ2(Z2))⊗ B(ℓ2({0, 3}, {1, 4}, {2, 5})).
We start by evaluating χ1 at the element λZ4

(1) + λZ4
(−1) (which is the Jacobi operator

of Γ(Z4 , S1)) where we use the coset representatives R = {0, 1}. It is easily seen that

χ1(λZ4
(1) + λZ4

(−1)) = ( 1 0
0 1

)⊗ ( 0 1
1 0

) + ( 0 1
1 0

)⊗ ( 0 1
1 0

) .
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Similarly, we evaluate χ2 on λZ6
(1) + λZ6

(−1)where the set of coset representatives
R = {0, 1, 2} is used to obtain

χ2(λZ6
(1) + λZ6

(−1)) = ( 1 0
0 1

)⊗ ⎛⎜⎝
0 1 0
1 0 1
0 1 0

⎞⎟⎠ + (
0 1
1 0

)⊗ ⎛⎜⎝
0 0 1
0 0 0
1 0 0

⎞⎟⎠ .
With the above, one can decompose the Jacobi operator on the Cayley graph of
SL(2,Z) as a sum of two random variables that are free with amalgamation over
B(ℓ2(Z2)) by applying the construction in Section 3.4 to the operators obtained
above. Equivalently, this gives a way to construct the Cayley graph of SL(2,Z) as an
amalgamated free product of finite graphs.

Note that the above decompositions into pure tensors are very simple, and hence
a construction of the Cayley graph via our graph product can be obtained using few
colors. �is simplicity is due to the abelian nature of the groups considered here. In
general, the situation is more complicated, and as we will see below, more colors are
needed.

5.3.1 General construction

We produce a family of colored graphs {(Gi , c i)}ni=1 and a relator graph (G, c) as
follows:

(1) Vertices: Set V(G) = H, and for every i, put V(Gi) = R i .
(2) Roots: For every i, root Gi at eG i

.
(3) Color sets: For every i, we will choose

Ci = S i ×H × R i/ ∼,
where (s, h, r) ∼ (s′ , h′ , r′) if (s, h, r) = (s′ , h′ , r′) or if s′ = s−1 and shr = h′r′.

(4) Edges: For every i and every (h, h′) ∈ H2 and (r, r′) ∈ R2
i , put a directed edge in G

from h to h′, and in Gi from r and r′, both of color [(s, h, r)], if shr = h′r′.
Proposition 5.8 �e graphs G and G1 , . . . ,Gn are undirected, the colorings of the edges
are well defined, and the graphs Γ(∗H{G i}ni=1 , S) and ∗(G,c){Gi}ni=1 are isomorphic.

Proof We begin by arguing that the color sets are well defined, and that all of the
edges defined are in fact undirected (i.e., for any directed edge that appears in the
construction, its reverse edge was also added and both have the same color). To do
this, first we point out that the relation defined in (3) induces a pairing of the elements
of S i ×H × R i . Indeed, by�eorem 5.6, for any (s, h, r), there are unique h′ ∈ H and
r′ ∈ R i such that shr = h

′r′, and hence each triple is related to exactly one other triple.
Moreover, if (s, h, r) ∼ (s′ , h′ , r′) for (s′ , h′ , r′) ≠ (s, h, r), then by definition we have
that shr = h′r′ and s′ = s−1, so we also have hr = s′h′r′ and hence (s′ , h′ , r′) ∼ (s, h, r),
that is, ∼ is a symmetric relation. Because ∼ is symmetric and each triple is only related
to one triple (other than itself), we can conclude that ∼ is an equivalence relation, and
hence Ci is well defined. Moreover, because ∼ induces a pairing in S i ×H × R i , we are
also guaranteed that for any directed edge of the form (h, h′) ∈ H2 (in G) or of the
form (r, r′) ∈ R2

i (in Gi), its inverse was also added, and both received the same color,
so we can think of both of them as an undirected edge.
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Now, we prove the isomorphism claim. First, note that, by the definition
of ∗(G,c)V(Gi) and �eorem 5.6, there is a natural bijection ϕ ∶ ∗(G,c)V(Gi)→
∗H{G i}ni=1 given by

ϕ(h, rm ⋅ ⋅ ⋅ r1) = hrm ⋅ ⋅ ⋅ r1 .
It then just remains to show that ϕ preserves edge incidences. For this, suppose that(h, rrm ⋅ ⋅ ⋅ r1) and (h′ , r′rm ⋅ ⋅ ⋅ r1) are incident in the free amalgamated product of
graphs (where r and r′ are allowed to be the empty word and m is allowed to be 0).
�en, by definition, there is some i such that r, r′ ∈ V(Gi) = R i , and there is an edge
between r and r′ inGi and between h and h

′ inG. Moreover, the aforementioned edges
have the same color, which in this case means that there exists some s ∈ S i such that
shr = h′r′, and therefore

s ⋅ ϕ(h, rrm ⋅ ⋅ ⋅ r1) = shrrm ⋅ ⋅ ⋅ r1 = h′r′rm ⋅ ⋅ ⋅ r1 = ϕ(h′ , r′rm ⋅ ⋅ ⋅ r1).
�at is, any pair of adjacent vertices in ∗(G,c){Gi}ni=1 gets sent to a pair of adjacent
vertices in Γ(∗H{G i}ni=1 , S). �e same argument can then be used to show that any
pair of adjacent vertices in Γ(∗H{G i}ni=1 , S) comes from a pair of adjacent vertices in
∗(G,c){Gi}ni=1, so the proof is concluded. ∎

5.4 Implications for AT(G)

Here, we revisit Example 5.1 in the context of �eorem 5.4. As in Example 5.1, we
assume without loss of generality that every loop in G is a half-loop and furthermore
that V(G) = [n]. Let a and b be the edge weights and vertex potential of G, and let T
be its universal cover.

Label the half-loops of G by f1 , . . . , f l and its nonloop undirected edges by{ f l+1 , f̌ l+1}, . . . , { fm , f̌m}. �en, define the discrete group Γm ∶= Z2 ∗ ⋅ ⋅ ⋅ ∗Z2 and
denote its canonical generators by g1 , . . . , gm . As usual, λ will denote the le� regular
representation of Γm on ℓ2(Γm).Wewill now see that the following result follows easily
from�eorem 5.4.

Proposition 5.9 Define XG ∈ Mn(C)⊗ C∗red(Γm) by
XG ∶=

n∑
i=1

b i∆ i i ⊗ 1C∗
red
(Γm) +

l∑
i=1

a f i∆σ( f i)τ( f i) ⊗ λ(g i)
+

m∑
i=l+1

(a f i∆σ( f i)τ( f i) + a f̌ i
∆σ( f̌ i)τ( f̌ i)

)⊗ λ(g i),
and let E ∶ Mn(C)⊗ C∗red(Γm)→ Mn(C) be the canonical conditional expectation (see
(3.3)). �en:

(1) E[X p

G
] is a diagonal matrix for all p ∈ Z≥0.

(2) For any r ∈ [n], let φr ∶ Mn(C)→ C be defined by φr(B) ∶= Brr for all B ∈ Mn(C).
�en, the spectral distribution of XG with respect to φr ○ E is equal to µr , the spectral
measure of AT associated with r.

(3) �e spectral distribution of XG with respect to 1
n
Tr ○ E is equal to the density of states

of AT .
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Proof Consider the construction in Example 5.1 and recall that for such a con-
struction Tfull = ∗(G,c){Gi}mi=1 has n roots (1, e), . . . , (n, e) and that the connected
components T1 , . . . ,Tn of each are disjoint copies of T. Li� the edge weights and
vertex potential of G to Tfull as in Definition 5.3. �en, apply �eorem 5.4 to obtain
operators D, T1 , . . . , Tm in an operator-valued probability space (A, E ,Mn(C)), so
that Ti distributes with respect to E as

a f i∆σ( f i)σ( f i) ⊗ ( 0 1
1 0

) ∈ (Mn(C)⊗M2(C), E i ,Mn(C)),
for i = 1, . . . , l (i.e., when f i is a half-loop), and it distributes as

a f i (∆σ( f i)τ( f i) + ∆τ( f i)σ( f i))⊗ ( 0 1
1 0

) ∈ (Mn(C)⊗M2(C), E i ,Mn(C)),
for i = l + 1, . . . ,m (i.e., when { f i , f̌ i} is an undirected nonloop edge), and D dis-
tributes with respect to E as diag(b1 , . . . , bn) ∈ (Mn(C), Id,Mn(C)). Moreover, we
know that D, T1 , . . . , Tm are free with amalgamation with respect to E.

Now, decompose XG by defining XD
G ∶= ∑n

i=1 b i∆ i i ⊗ 1C∗
red
(Γm) and X

(i)
G
∶=

a f i∆σ( f i)σ( f i) ⊗ λ(g i), for i = 1, . . . , l , and X
(i)
G
∶= a f i (∆σ( f i)τ( f i) + ∆τ( f i)σ( f i))⊗

λ(g i) when i = l + 1, . . . ,m. Now, from Observation 3.6, we know that the family{XD
G , X

(1)
G

, . . . , X
(m)
G
} is free with amalgamation over Mn(C). Moreover, it is clear

that D is equal in distribution (over Mn(C)) to XD
G , and similarly each Ti is equal in

distribution to X
(i)
G

.
Hence, XG is equal in distribution overMn(C) to T = D + T1 + ⋅ ⋅ ⋅ + Tm .�en, (2)

follows directly from�eorem 5.4(1). On the other hand, because 1
n
Tr = 1

n ∑r∈[n] φr ,
we get (3) from (2). Finally, to show (1), take i ≠ j and use that E[T p](i , j) =
E[X p

G
](i , j) combined with �eorem 5.4(1), to conclude that E[X p

G
](i , j) is equal to

the sum of the weighted paths of length p in Tfull from (i , e) to ( j, e), but since these
vertices are in distinct connected components, we can conclude that E[X p

G
](i , j) = 0

as we wanted to show. ∎

Remark 5.10 (Distinct C∗-algebra representations) Note that we have so far pre-
sented two essentially different methods to view AG as an element of a C∗-algebra.
First, in Section 4, we used asymptotic freeness of random matrices to argue that
AT could be viewed as an element in Mn(C)⊗ C∗red(Fm). Here, we have used the
machinery from amalgamated graph products to show that AT can be viewed as
an element in Mn(C)⊗ C∗red(Γm). Although each representation and each proof are
insightful in their own way, note that having access to distinct C∗-algebras is also
relevant in applications. �e representation in Mn(C)⊗ C∗red(Fm) was exploited in
Section 4.1 to prove Sunada’s theorem, where the K-theory of C∗red(Fm) (which is
different from that of C∗red(Γm)) played a crucial role. On the other hand, in Section
6, we will use the representation in Mn(C)⊗ C∗red(Γm), which will allow us to apply
verbatim some results of Lehner [Leh99] about the norm and Cauchy transform of
elements in this C∗-algebra.
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6 Universal covers: algebraic description of the spectrum

In this section, we give two applications of Proposition 5.9, where it was shown that
AT can be represented as an element inMn(C)⊗ C∗red(Γm). An important ingredient
for our proofs will be the work of Lehner [Leh99], which has formulas for the
operator-valued R-transform and norm of certain elements in Mn(C)⊗ C∗red(Γm).
In what follows, we maintain the same setup and notation defined at the beginning
of Section 5.4.

6.1 Aomoto’s equations via the R-transform

Here, we will recover Aomoto’s system of equations (i.e., �eorem 1.5) using free
probability.We begin by noting that if we apply [Leh99, Proposition 3.1], and specialize
from positive definite matrices to diagonal positive definite matrices, we get the
following result.

Proposition 6.1 (Lehner) Let W ∈ Mn(C) be a diagonal matrix with positive entries,
and let w i ∶=Wi i . �en, the Mn(C)-valued R-transform of XG at W, i.e., RXG

(W), is
also diagonal, and the diagonal entries are given by

RXG
(W)(i , i) = b i + 1

2w i
∑

f ∈σ(i)

((1 + 4a2fwσ( f )wτ( f ))1/2 − 1), ∀i ∈ [n].
In order to use the above proposition, we will need the following observation,

which is a corollary of Proposition 5.9.

Observation 6.2 LetGXG
denote theMn(C)-valued Cauchy transform of XG.�en,

for z ∈ C in a neighborhood of infinity, GXG
(zIn) is diagonal.

Proof We will use the following power series expansion (in a neighborhood of
infinity) for the Cauchy transform:

GXG
(B) = ∑

p≥0

E[B−1(XGB
−1)p].

For B = zIn , the terms in the right-hand side of the above equation will be of the form
z−(p+1)E[X p

G
]. Proposition 5.9(1) then implies that each term of the series expansion

of GXG
is a diagonal matrix, so the claim follows. ∎

We can now show�eorem 1.5.

Proof As in the statement, for every i ∈ [n], letw i(z) be the Cauchy transform of µ i ,
the spectral measure of AT corresponding to i. LetW(z) ∶= GXG

(zIn), and note that,
from Observation 6.2, we know that W(z) is diagonal. Moreover, from Observation
3.11, we have that

w i(z) =W(z)(i , i).
Moreover, because they are Cauchy transforms, for any i, we have that w i(z) > 0 for
all sufficiently large real z. Using the definition of the R-transform in (3.5), we obtain

zw i(z) = 1 + RXG
(W)(i , i)w i(z),
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for all 1 ≤ i ≤ n. A�er substituting in the expression for RXG
from Proposition 6.1

and simplifying, we get that the system of equations in the theorem statement holds
for sufficiently large positive real z. Since wu(z) is holomorphic and wu(z)→ 0 as∣z∣→∞, both sides of the equations are holomorphic in a neighborhood of infinity, so
by analytic continuation the system of equations holds in a neighborhood of infinity.
Since w i(z)w j(z) > 0 for all i , j when z is real and outside the convex hull of the
spectrumSpec(AT), the systemof equations holds for these z aswell, as the singularity
of the square root is always avoided. ∎

Remark 6.3 (Half-loops are allowed) Although (for exposition purposes) we stated
�eorem 1.5 for graphs without half-loops, note that the above proof does allow half-
loops, and the statement is le� unchanged.

Remark 6.4 (Understanding the density of states) In [Aom91], Aomoto used this
system of equations to prove results about the point spectrum of AT (equivalently the
atoms in the density of states). In Appendix B, we show that this system of equations
can also be used to understand the behavior of the density of states at the edge of
Spec(AT). Specifically, we prove�eorem 1.7 stated in the introduction.

6.2 Formula for the spectral radius

Let spr(AT) denote the spectral radius of AT , and let ρr denote the right edge of
Spec(AT). �is subsection will be devoted to proving �eorem 1.1. We will build on
[Leh99, �eorem 1.1], and, as above, we will use g1 , . . . , gm to denote the canonical
generators in Γm .

�eorem 6.5 (Lehner) Assume that m ≥ 2, and let A0 , . . . ,Am be n × n Hermitian
matrices, with A0 positive semidefinite. �en,

∥A0 ⊗ 1C∗
red
(Γm) +

m∑
i=1

A i ⊗ λ(g i)∥
= inf

Z>0
∥2Z + A0 +

m∑
i=1

Z
1

2 ((In + (Z− 1

2 A iZ
− 1

2 )2) 1

2 − In)Z 1

2 ∥,(6.1)

where the infimum is taken over all positive definite invertible n × n matrices Z.
Moreover, the infimum can be restricted to those Z for which the expression inside the
norm sign equals a positive scalar multiple of the identity matrix In .

We are now ready to prove�eorem 1.1. In short, the proof uses Aomoto’s equations
(�eorem 1.5) to reduce the expression (6.1).

Proof For i = 1, . . . , n, define g i(y1 , . . . , yn) to be the expression inside the max
symbol in the theorem statement, and let w i(z) denote the Cauchy transform of
µ i (the spectral measure of AT associated with i). Fix t > ρr(AT), and observe that
∞ > w i(t) > 0, for every i ∈ [n]. On the other hand, from �eorem 1.5, we have
t = g i(w1(t), . . . ,wn(t)) for every i. Together, this implies that

t ≥ inf
y1 , . . . ,yn>0

max
i∈[n]

g i(y1 , . . . , yn).
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Since the above inequality holds for any t > ρr(AT), it holds for t = ρr(AT). It remains
to show the opposite inequality.

From Proposition 5.9, we have that spr(AT) = ∣∣XG∣∣. We would like to apply
�eorem 6.5 on XG, but the theorem requires A0 to be positive semidefinite. To
remedy this, take λ ≥ 0 large enough so that λ + b i ≥ 0 for all i; we may now apply
�eorem 6.5 on XG + λ to obtain

spr(AT + λ) = ∥XG + λIn∥
= inf

Z>0
∥2Z + D + λIn + m∑

i=1

Z
1

2 ((In + a2f i (Z− 1

2 A iZ
− 1

2 )2) 1

2
− In)Z 1

2 ∥,(6.2)

where D = diag(b1 , . . . , bn), A i = ∆σ( f i)σ( f i) for i = 1, . . . , l , and A i =

∆σ( f i)τ( f i) + ∆τ( f i)σ( f i) for i = l + 1, . . . ,m. We will now see that in this case
the infimum is achieved by diagonal matrices. Let y1 , . . . , yn > 0 and take
Y ∶= diag(1/2y1 , . . . , 1/2yn). Simple computations yield that upon setting Z = Y
in (6.2), the quantity inside the norm on the right-hand side becomes

λIn + diag(g1(y1 , . . . , yn), . . . , gn(y1 , . . . , yn)).(6.3)

Since λ + g i(y1 , . . . , yn) ≥ 0 for all i, we have
∣∣λIn + diag[g1(y1 , . . . , yn), . . . , gn(y1 , . . . , yn)]∣∣ = λ +max

i∈[n]
g i(y1 , . . . , ym).

�en, (6.2) and (6.3) yield

spr(AT + λ) ≤ λ + inf
y1 , . . . ,yn>0

max
i∈[n]

g i(y1 , . . . , yn).
Since ρr(AT) + λ = ρr(AT + λ) ≤ spr(AT + λ), we have

ρr(AT) ≤ inf
y1 , . . . ,yn>0

max
i∈[n]

g i(y1 , . . . , yn),
as desired. ∎

Applying Lagrange multipliers to the optimization problem (1.3), using the con-
straint that all n expressions inside the max symbol are equal, we have the following
corollary.

Corollary 6.6 With the above setup and notation, t = ρr is the only real number such
that, under the constraint y1 , . . . , yn > 0, the following system of 2n + 1 equations in the
variables t, y1 , . . . , yn , λ1 , . . . , λn ∈ R has a solution:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 =
n∑
i=1

λ i ,

λ i(t − b i) = ∑
f ∈σ(i)

a2f
yτ( f )λσ( f ) + yσ( f )λτ( f )

(1 + 4a2
f
yσ( f )yτ( f ))1/2 , ∀i ∈ [n],

t = b i +
1

2y i
(2 − deg(i) + ∑

f ∈σ(i)

(1 + 4a2f yσ( f )yτ( f ))1/2), ∀i ∈ [n],
where half-loops count once toward the count in deg(i).
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7 Future research

Since the first version of the present paper has beenmade public, some of the questions
discussed in this section have been answered. Below, we discuss relevant recent work
and highlight the questions that we still believe to be open and interesting.

7.1 Amalgamated free product for graphs

In the first version of this paper, we pointed out similarities and differences between
our graph product and the additive graph product introduced by Mohanty and
O’Donnell in [MO20], and asked for a complete characterization of the graphs
that could be constructed using each of these products. �is has been answered in
[OW20] by O’Donnell and Wu, where a new graph product was introduced (with
the purpose of exploiting results in [BC19] to generate relative expanders), and was
shown to generalize the amalgamated free product of graphs and the additive product.
Moreover, the authors gave a full characterization of the graphs that could be obtained
using their product.

On a different direction, we would like to recall questions about algebraicity and
absence of singular continuous spectrum for general classes of graphs (such as the ones
that can be obtained using the amalgamated graph product). For certain operators on
different classes of infinite graphs, the respective Green functions (or other related
functions) have been shown to be algebraic [ABS20, Lal01, KLW13, NW02, Woe87].
On the other hand, algebraicity is relevant in the context of spectral theory since it
provides means to show that the operators in question have no singular continuous
spectrum [ABS20] or in some cases that the spectrum is purely absolutely continuous
[KLW13]. We believe that Jacobi operators on any graph defined via our product also
have no singular continuous spectrum, and it is possible that the work of Anderson
[And14] might lead to showing algebraicity of their Green functions. Proving this
would provide a generalization of �eorem 6.7 in [ABS20] and other results in the
literature of spectral analysis of Cayley graphs. We state this as a conjecture.

Conjecture 7.1 (Algebraicity and absence of singular continuous spectrum) �e
Cauchy transforms of the spectralmeasures of any Jacobi operator on a graph constructed
via the amalgamated free product of graphs are algebraic, and the Jacobi operator has
no singular continuous spectrum.

�e above could also be relevant in relation to numerical computations. In par-
ticular, we point out that an operator-valued analog of [RE08] can lead to accurate
numerical method for computing the spectral measures of any graph obtained via the
amalgamated free product of graphs.

7.2 Universal covering graphs

In [ABS20] and in previous versions of this paper, some questions about the point
spectrum of AT were asked. �ese questions were answered in [BGVM20], where
a full characterization of the point spectrum of AT was provided by analyzing the
combinatorial structure of its eigenvectors. Later in [ACSY21], using free probability
tools, a general theory about atoms of spectral measures of polynomials in noncom-

https://doi.org/10.4153/S0008414X22000499 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X22000499


Spectra of infinite graphs via freeness with amalgamation 1675

mutative random variables was developed, and some of the results in [BGVM20] can
be obtained directly from this general theory.

On a different direction, we bring to the attention of the reader that many of the
questions aboutm-functions of AT raised in [ABS20] remain open (in particular, see
[ABS20, Section 10.1]). On the other hand, in the same way in which we deduced
Aomoto’s systems of equations using theR-transform, we believe that results about the
m-functions of AT can be obtained via the theory of subordination in free probability
[BB07, Bia98, BMS17, Voi93]. Moreover, the subordination approach would yield
numerical methods for computing the density of states of AT via fixed point equations
(see [BMS17, HMS18]).

Finally, we highlight that, despite recent activity in the area, simple questions about
the number of bands in the spectrum of AT seem to be out of reach of current tools.
For example, we believe that the following toy problems are quite challenging.

Problem 7.2 Find a characterization of the base graphs G and coefficients a f , bv for
which AT has connected spectrum.

Problem 7.3 Find an infinite sequence of Jacobi matrices AGn
on graphs Gn (without

half-loops) with ∣V(Gn)∣→∞ as n →∞, and with b
(n)
v = 0 for every v ∈ V(Gn), such

that for every n, Gn has at least two cycles and the spectrum of AT(Gn) has ∣V(Gn)∣
bands.13

A Spectral splitting

�eorem 1.8 provides an upper bound to the number of bands in the spectrum of the
universal cover, and we have provided examples of when this bound is tight above.
A natural further question is to determine what properties of a graph result in one
band, two bands, and so on, as the number of bands has some relevance in physics
(see [ABS20]). In this section, we discuss some interesting examples yielding various
numbers of bands.

One way to vary the number of bands in the spectrum of the universal cover is to
fix the base graph G and vary the edge weights a f . For the specific case of regular trees,
Figá-Talamanca and Steger [FTS94] gave an explicit description of this phenomenon.
Here, to make it compatible with our context, the theorem below paraphrases Lemma
1.4 in Chapter 2 of [FTS94].

�eorem A.1 (Figá-Talamanca and Steger) Let G be the graph with two vertices u, v
and d parallel edges f1 , . . . , fd connecting them. Assume that a f1 ≥ ⋅ ⋅ ⋅ ≥ a fd > 0 and
bu = bv = 0. �en, zero is in the spectrum of AT(G) if and only if

a2f1 ≤
d∑
i=2

a2f i .(A.1)

13�e simpler problem in which the condition b
(n)
v = 0 is removed has a simple solution [ABS20]

(see Remark 1.9).
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Let G be as in the above theorem. Note that, from �eorem 1.8, it follows that
the spectrum of AT(G) has at most two bands. Combining this with the fact that the
spectrum is symmetric about zero (as T is bipartite), we have the following.

Observation A.2 Using the notation of �eorem A.1, AT(G) has a connected spec-
trum if and only if inequality (A.1) is satisfied. Moreover, this remains true if we add
a constant to bu and bv .

We pause to mention some examples. If d = 2k + 1 and the a f i are chosen to
be distinct and in such a way that (A.1) holds, we get a (2k + 1)-regular tree with
nonconstant coefficients and connected spectrum. On the other hand, if d = 2k and
the a f i are chosen with the same characteristics as above, we get that AT(G) has
connected spectrum.14

More can be said about the graph G from�eorem A.1.

Proposition A.3 Using the notation of �eorem A.1, if bu and bv are instead taken to
be arbitrary distinct reals, then the spectrum of AT has two bands.

Proof Applying Lemma 4.2, in particular, we obtain that the spectrum of AT is the
spectrum of an operator-valued matrix of the form

(b1 x
x∗ b2

) ∈ M2(C)⊗ C∗red(Fd).
Since b1 ≠ b2 by assumption, let us subtract a suitablemultiple of the identity to obtain

X ∶= ( t x
x∗ −t

)
for some real t; this merely translates the spectrum. Note that the spectrum of X is

symmetric about zero, as UXU−1 = −X for the unitary U = (0 −1
1 0

).15 Since X2
=

(y 0
0 y∗

), where y = xx∗ + t2 is invertible, 0 is not in the spectrum of X. �us, the

spectrum has a gap, as desired. ∎

Now, we show that nonconstant-degree universal covers with similar characteris-
tics can be constructed. To this end, we will now use G to denote the graph
consisting of two vertices u, v, with a loop f1 on u and two parallel edges f2 , f3
connecting u and v. Put bu = bv = 0 and assume that a f i > 0.

As in the example of regular trees, since G has two vertices, we also have that
the spectrum of AT(G) is connected if and only if it contains zero. By Lemma 4.2,

14�ese two examples answer Conjectures 9.6 and 9.7 in [ABS20] in the negative, and we thank
Barry Simon for pointing out that the case d = 3 negatively answers their Conjecture 10.5.

15We thank Barry Simon for this observation.
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determining the invertibility of AT is equivalent to deciding if the following operator-
valued matrix is invertible:

X ∶= ( a f1(λ(g1) + λ(g1)∗) a f2 λ(g2) + a f3 λ(g3)
a f2 λ(g2)∗ + a f3 λ(g3)∗ 0

) ∈ M2(C)⊗ C∗red(F3),
where g1 , g2, and g3 are the canonical generators of F3.

We separate our analysis into two cases. First assume that a f2 ≠ a f3 . We can further
assume without loss of generality that a f2 > a f3 . Note that

a f2 λ(g2) + a f3 λ(g3) = a f2 λ(g2)(1 + a f3

a f2

λ(g−12 g1)) .(A.2)

From a f2 > a f3 , we have ∥ a f3

a f2

λ(g−12 g1)∥ < 1, which implies that 1 +
a f3

a f2

λ(g−12 g1) is
invertible, and in view of (A.2), this implies that a f2 λ(g2) + a f3 λ(g3) is also invertible.
Set x ∶= (a f2 λ(g2) + a f3 λ(g3))−1 and

Y = ( 0 x∗

x −a f1x(λ(g1) + λ(g1)∗)x∗ ) .
It is easy to see that XY = I2 ⊗ 1 and hence that zero is not in the spectrum of AT when
a f2 ≠ a f3 .

Now, assume that a f2 = a f3 . In this case, one can show that AT is not invertible.
Indeed, let xn be the vector whose entries alternate between 1 and −1 along n
consecutive degree-two vertices on the y-axis of T as depicted in Figure 3. �en,∥xn∥ =√n, whereas ∥ATxn∥ =√2, so {xn} is a sequence of approximate eigenvectors
for zero. Alternatively, one can show that X is not invertible by noting that X(1, 2)
is a scalar multiple of λ(g2) + λ(g3), which is not invertible since its spectrum is{z ∈ C ∶ ∣z∣ ≤√2} (see Example 5.5 in [HL00]). �is means that both X(1, 2) and
X(2, 1) are not invertible, and hence X is not invertible.

�is discussion can be summarized as follows.

Example A.4 Let G be the graph consisting of two vertices u, v, with a loop f1
on u and two parallel edges f2 , f3 connecting u and v. Put bu = bv = 0 and assume that
a f i > 0 for i = 1, 2, 3.�en, if a f1 = a f2 , the spectrum of AT is connected; otherwise, it
has two bands.

�is example disproves Conjecture 9.5 in [ABS20], since it provides a graph G of
nonconstant degree and specific coefficients for which AT has a connected spectrum.

Finally, in [ABS20], an interesting conjecture was made regarding the possibility
of generalizing the Borg–Hochstadt theorem. Roughly speaking, in the language of
our work, it was conjectured that for an arbitrary universal cover T, if the cumulative
distribution function of the density of states of AT is of the form j/p inside every gap,
then there exists a quotient of T, say G, such that ∣V(G)∣ is a divisor of p.16 In some
sense, Example A.4 is already a counterexample of this conjecture, since in this case
when a f1 = a f2 there is only one band in the spectrum, while the smallest quotient of

16Actually, the conjecture was stated in terms of the notion of period discussed in [ABS20], where
an ultimate definition of period was le� open. However, there does not seem to be a sensible definition
of period that rules out the counterexamples presented here.
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Figure 3: �e graph G and a finite portion of its universal cover T, along with an approximate

eigenvector for zero.

the universal cover has two vertices. However, it is still of interest to find an example
with an interior spectral gapwhere the extension of the Borg–Hochstadt theoremdoes
not hold. We do this below.17

Letm ≥ 4, and let g1 , . . . , gm be the canonical generators of Fm . Take x ∈ C
∗
red(Fm)

self-adjoint. If x is invertible, then

⎛⎜⎝
x λ(g1) 0

λ(g1)∗ 0 λ(g2)
0 λ(g2)∗ 0

⎞⎟⎠
⎛⎜⎝

x−1 0 −x−1λ(g1g2)
0 0 λ(g2)

−λ(g−12 g−11 )x−1 λ(g−12 ) λ(g−12 g−11 )x−1λ(g1g2)
⎞⎟⎠

= I3 ⊗ 1.(A.3)

Now, consider a graph G with three vertices u, v ,w and edges f1 , f2 connecting u with
v, and v with w, respectively. Assume that bu = bv = bw = 0. If we add whole-loops on
the vertex u, then by Lemma 4.2AT will have the formof the firstmatrix in the le� side
of (A.3). Moreover, x will correspond to the loops on u and it can be made invertible
by putting at least two loops on u and varying their Jacobi coefficients as shown in
Example A.4. So, for the cases where x is invertible, zero will not be in the spectrum
of AT , but by�eorem 1.8 and since the density of states is symmetric about zero, this
means that AT has exactly two bands, each with mass 1/2. �is provides an example
of a universal cover whose smallest quotient has three vertices, and where the mass of
the bands has the form j/2.

17We should mention that our example consists of a graph with a leaf, whereas in [ABS20] only
leafless graphs were considered.
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B Behavior of the density of states at the right edge of the
spectrum

Here, we use the same notation and setup as the one described at the beginning of
Section 5.4.

Using Aomoto’s systems of equations for the Cauchy transforms, we may prove
the following condition on when the spectral radii of a graph and its universal cover
match.

Proposition B.1 Let µ and ρr denote the density of states of AT andmaximum element

of the spectrum of AT , respectively.�en, the (possibly infinite) limit limε→0+
µ((ρr−ε ,ρr])

ε
exists. Moreover, if

lim
ε→0+

µ((ρr − ε, ρr])
ε

> 0,(B.1)

then the maximum eigenvalue of AG is equal to ρr .

Proof Let w(z) denote the Cauchy transform. We begin by noting that w(z) is
algebraic, since it is the average of thewu(z) (defined as in (1.4)), which were shown to
be algebraic in [ABS20]. On the other hand, this implies (by [AZ08,�eorem 2.9]) that
for some δ > 0 the measure µ is absolutely continuous with respect to the Lebesgue
measure on (ρr − δ, ρr) and its density s(x) is of beta type (i.e., there is a version of
its Radon–Nikodym derivative, say s(x), which is continuous and has a power-like
behavior at ρr).

�ere are now two cases. If µ has an atom at ρr , then limε→0+
µ((ρr−ε ,ρr])

ε
= +∞

(showing that the limit exists), and it is easy to see that limt→ρ+r w(t) =∞. On the
other hand, if µ has no atom at ρr , the existence of the limit follows from the density
of µ being continuous on (ρr − ε, ρr), andmoreover if in this case (B.1) holds, we have
that there is some C > 0 such that s(x) > C for all x close enough to (the le� of) ρr .
Hence, for any ε > 0,

w(ρr + ε2) ≥ ∫ ρr

ρr−ε

1

ρr + ε2 − s
dµ(s) ≥ C ∫ ρr

ρr−ε

1

ρr + ε2 − s
ds = C log(1 + 1

ε
) .

So taking ε → 0+, we get that even when there is no atom at ρr , (B.1) implies that

lim
t→ρ+r

w(t) =∞.(B.2)

Now, note that for any u, wu(t) is analytic, positive, and strictly decreasing
for t > ρr , so limt→ρ+r wu(t) exists and lies in (0,∞]. �us, for all u, v ∈ V(G),
we have that limt→ρ+r wv(t)/wu(t) exists and lies in [0,∞]. In fact, we claim
limt→ρ+r wv(t)/wu(t) <∞ when u is a neighbor of v. If not, then setting z = t in
�eorem 1.5 and rearranging, we would have

t = bu +
2 − deg(u)
2wu(t) + ∑f ∈σ(u)(

1

4wσ( f )(t)2 + a2f
wτ( f )(t)
wσ( f )(t))

1/2

,(B.3)

and the right-hand side would diverge as t → ρ+r , whereas the le�-hand side would
converge, a contradiction.
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Taking the reciprocal and switching the roles of u and v, we in fact obtain

0 < lim
t→ρ+r

wv(t)/wu(t) <∞(B.4)

whenever u and v are neighbors. By the connectedness of G, (B.4) actually holds for
arbitrary vertices u, v. Together with (B.2), this implies limt→ρ+r wu(t) =∞ for all u ∈
V(G).

By (B.4), there exist positive real numbers {w̃u}u∈V(G) with the property

w̃u

w̃v

= lim
t→ρ+r

wu(t)
wv(t) .

Taking the limit as t → ρ+r of (B.3), we get

ρr
√
w̃u = bu + ∑

f ∈σ(u)

a f

√
w̃τ( f ) .

Recalling the definition (1.1) of AG, the above equation explicitly shows that ρr is an
eigenvalue of AG with an eigenvector with positive entries (√w̃ f ) f ∈E(G). Now, take
λ > 0 large enough so that λ + bu > 0 for all u ∈ V(G). �en, the entries of AG + λ
are nonnegative, the eigenvector for ρr + λ has positive entries, and AG is irreducible
(since as a directed graph G is strongly connected), so by the Perron–Frobenius
theorem ρr + λ is in fact themaximum eigenvalue of AG + λ.�us, ρr is themaximum
eigenvalue of AG, as desired. ∎

�e following theorem of Sy and Sunada will be useful. We rephrase it in the
language of Jacobi matrices on graphs.�eir original formulation is in terms of what
they call a discrete Schrodinger operator, but every graph Jacobi matrix with positive
edge weights a f can be represented in their framework.

�eorem B.2 [SS92] Let G1 be a finite connected graph with no loops or multi-edges,
and let AG1

be a Jacobi matrix on G1 with ae > 0 for all e ∈ E(G1). Let G2 be a graph
covering G1, and let AG2

be the li� of AG1
.�en, ρr(AG1

) ≥ ρr(AG2
)with equality if and

only if the deck transformation group of the covering is amenable, where ρr(⋅) denotes
the right edge of the spectrum.

Wemay now prove our main result on the edge of the spectrum:

Restatement of�eorem 1.7 Let AG be a Jacobi matrix on a finite graph Gwith at least
two cycles, and let ATbe its pullback to the universal cover T(G). Furthermore, assume
that a f > 0 for all f ∈ E(G). Let µ and ρr be the density of states and the maximum
element of the spectrum of AT , respectively. �en, µAT

is absolutely continuous with
respect to the Lebesgue measure in a neighborhood of ρr and its density s(x) satisfies
limx→ρr s(x) = 0.
Proof Since G has at least two cycles, the deck transformation group of the universal
cover contains the free group on two generators as a subgroup, and is therefore

https://doi.org/10.4153/S0008414X22000499 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X22000499


Spectra of infinite graphs via freeness with amalgamation 1681

nonamenable. If G has no loops and no multi-edges, �eorem B.2 then implies
that the maximum eigenvalue of AG is strictly greater than ρr . �us, applying the
contrapositive of Proposition B.1, we have

lim
ε→0+

µ((ρr − ε, ρr])
ε

= 0.

In particular, µ has no atoms in (ρr − ε, ρr] for ε sufficiently small. Furthermore, µ has
no singular continuous part [ABS20] due to algebraicity of the Cauchy transforms.
�us, the conclusion follows.

If, on the other hand, G has loops or multi-edges, we use the following work-
around. One may first take a finite cover G′ of G that does not contain loops or multi-
edges. (If j is the maximum number of loops at any vertex and k is the maximum
number of edges in any multi-edge, a cover with max{2 j + 1, k} sheets suffices.) Since
T(G) = T(G′), the only thing le� to check is that ρr(AG) ≥ ρr(AG′), where ρr(⋅)
denotes the maximum eigenvalue.�is holds because the top eigenvector v of AG′ can
be projected down to an eigenvector v′ of AG for the same eigenvalue by summing
the entries of v in each fiber. Note that v′ is nonzero because v has positive entries,
by Perron–Frobenius applied to AG + λ for λ > 0 sufficiently large (as the bu may be
negative).�us, ρr(AG) ≥ ρr(AG′), as desired. ∎
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