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SEMIGROUPS WITH QUASI-ZEROES 

S. A. RANKIN AND C. M. REIS 

1. Introduction. Let S be a semigroup. An element a G 5 is said to be 
a left quasi-zero if (a)x C\ (a) ^ 0 for all x (E S, where (a) denotes the 
cyclic sub-semigroup of 5 generated by a. In a recent study [6] of semi­
groups with a maximum right congruence, such elements proved to be 
useful in providing characterizations of these semigroups. Left quasi-
zeroes have appeared in the literature under different names in a variety 
of situations. In the context of semigroup radicals, left quasi-zeroes are 
called right quasi-regular elements, where an element is defined to be 
right quasi-regular if it is not a left identity for any right congruence 
other than the universal congruence (see [4], [5], [2], [7], and [8]). In 
quite a different context, monoids having a left quasi-zero which is a right 
unit but not a left unit have been studied by M. Demlova [1]. 

The semigroups with left quasi-zeroes studied in [6] were of the fol­
lowing kinds: (i) 5 not right simple but with right invertible elements; 
(ii) S2 = S, with no right invertible elements; (iii) S2 ^ S; and (iv) S 
right simple. Of semigroups with a maximum right congruence, a type 
(i) semigroup is an ideal extension of a periodic semigroup consisting 
entirely of left quasi-zeroes by a right simple semigroup with zero ; a type 
(ii) is the two element left zero semigroup; a type (iii) semigroup is nil 
cyclic; and a type (iv) semigroup is a cyclic group of prime order. 

In this paper semigroups with one or two-sided quasi-zeroes are studied 
(an element a £ S is a right quasi-zero if x(a) C\ (a) T̂  0 for all x £ S, 
and an element which is both a left and a right quasi-zero is called a two-
sided quasi-zero). In particular, the structure of semigroups which con­
sist entirely of left quasi-zeroes is described, thus improving the result 
obtained in [6] for type (i) semigroups with a maximum right congruence. 

Throughout this paper, Z will denote the group of integers, N the cyclic 
semigroup of natural numbers, N° the cyclic monoid of non-negative 
integers. 

2. Aperiodic left quasi-zeroes. The theory of semigroups with 
aperiodic left quasi-zeroes rests in large measure on the following 

(2.1) THEOREM. Let She a semigroup and a £ S an aperiodic left quasi-
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zero. Then there exists a homomorphism ypa: S —> Z such that \pa(a) = 1, 
whence ^(S) = N, N° or Z. 

Proof. For each x £ 5, a*x = aJ for some iyj £ N. Suppose that 
akx = a1 for fe, Z Ç N. We may assume that k ^ i. Then 

a1c~taix = ak~iaj = az 

and since a is aperiodic, k — i+j — lorl — k = j — i. Define ^a (#) = j — i. 
It is easily seen that \[/a is a homomorphism and that ^«(a) = 1, whence 
N C *«(S). Thus MS) = N, N° or Z. 

The dual result holds for right quasi-zeroes and we shall denote the 
corresponding homomorphism by \pa. 

The above theorem establishes the existence of a homomorphism \pa 

from S to Z. The next result shows that ypa is "essentially" the only 
homomorphism from S to Z. 

(2.2) THEOREM. Z,e£ S be a semigroup with an aperiodic left quasi-zero 
a and let \p:S —>Z be any homomorphism. Then yp = yp{a)\pa. 

Proof. For x £ S, alx = a-7" where i, 7 £ N. Thus 

&*(#) = j - i and 

i^(a) + i//(x) = j\p(a) 

and so 

^( x ) = (j - i)^(a) = xf/(a)^a(x). 

(2.3) COROLLARY. Le/ a &e an aperiodic quasi-zero of S. Then \f/a = i/>a. 

Pros/. ^ = V(a)ta = ^a since ^a(a) = 1. 

(2.4) COROLLARY. Let aif a2„ . . . , aw &<? aperiodic left quasi-zeroes of S. 

Then 

Proof. For aperiodic left quasi-zeroes a and 6 wre have \f/a — \pa(b)\pb-
Thus if c Ç 5, 

^a(c) = ta(b)tb(c) 

whence 

^ 1 ( ^ 2 ) ^ 2 ( ^ 3 ) . . . ^ a „ ( a i ) = ^ a i ( a i ) = 1. 

We observe that if (a) is a right ideal of S then a is a left quasi-zero. As 
an immediate consequence of this we have 

(2.5) LEMMA. The only (left) quasi-zero of N and N° is 1. 
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Proof. By the remark above, 1 is a left quasi-zero. Suppose n G N° is a 
left quasi-zero. Then nk + 1 = nl for some k, l G N whence n — 1. 

(2.6) LEMMA. Jf G is a group, then a £ G is a left quasi-zero (aperiodic 
or periodic) if and only if a generates G. 

Proof. Suppose a £ G is a left quasi-zero. Then for x £ G, a*x = â  
for some i, j G N, whence x = aj~\ Thus a generates G. Conversely, if a 
is a generator of G, then for x G G, x = a* where i £ Z. Thus for large 
enough K N, & + i Ç N and akx — ak+i whence a is a (left) quasi-zero. 

(2.7) COROLLARY. The (left) quasi-zeroes ofZ are ± 1 . 

It is appropriate at this point to ask whether periodic and aperiodic 
left quasi-zeroes can coexist. It is clear that left quasi-zeroes are preserved 
under epimorphisms and that if a is an aperiodic left quasi-zero and x a 
periodic element, ^a(#) = 0. These remarks in conjunction with Lemma 
2.5 and Corollary 2.7 yield 

(2.8) COROLLARY. A semi-group cannot contain both periodic and aperi­
odic left quasi-zeroes. 

(2.9) COROLLARY. Let a and b be aperiodic left quasi-zeroes. Then 

ta(ab) = Mab) G {0,2} 

and thus ab is not a left quasi-zero. In particular, an is a left quasi-zero only 
for n — 1. 

Proof. By Corollary 2.4, $a(b)\l/b(a) = 1 whence the result. 

Thus the set of all left quasi-zeroes in a semigroup with aperiodic left 
quasi-zeroes is a mutant [3]. However, the product of more than two left 
quasi-zeroes can be a left quasi-zero as Z illustrates. 

We have seen that if a is an aperiodic left quasi-zero of S then S has 
N, N° or Z as a homomorphic image. For any left zero semigroup £ , 
E X N, E X N° and E X Z are examples of semigroups with aperiodic 
left quasi-zeroes having the respective homomorphic images N, N° 
and Z. 

We now give an example of a semigroup generated by an aperiodic left 
quasi-zero and an aperiodic right quasi-zero having Z as a homomorphic 
image but which does not contain a copy of Z. 

(2.10) Example. Let«^0 = (xo, x0| XoX0 = 1 ) be the bicyclic semigroup. 
Xo is an aperiodic left quasi-zero and Xo an aperiodic right quasi-zero. 
Since ^0(^o) = — 1, 

^ o ( ^ o ) = Z. 

However, âè\ does not contain a copy of Z. The left quasi-zeroes of Se\ 
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are exactly the elements 1 for i G N. For 

lMV*o') = ±1 <^i -j = ±1 

whence 

* = 3 ± 1. 

Consider first elements of the form Xo'xo^1. For k G N, 

and so 

( V * o i + 1 ) W * o a ) = (xzW+lY 

where r, s £ N, k > r and I = k — r + j . Thus #o*Xo*+1 is a left quasi-
zero of ^ o . On the other hand 

(xoW-1)* = xo^^o ' " 1 

and so xo^o*-"1 is not a left quasi-zero. It is however a right quasi-zero. 

(2.11) Definition. An aperiodic left quasi-zero a Ç 5 is said to be a /e/£ 
quasi-zero of type N, N° or Z and referred to as an N-left quasi-zero, an 
N°4eft quasi-zero or a Z-left quasi-zero, if ^a(»S) = N, N° or Z respectively. 

In Corollary 2.8 it was observed that a semigroup cannot contain both 
periodic and aperiodic left quasi-zeroes. We may be more precise and state 
the following 

(2.12) THEOREM. Let S be a semigroup with an aperiodic left quasi-zero. 
Then all left quasi-zeroes are of the same type. 

Proof. Let a and b be left quasi-zeroes of S. By Theorem 2.2, 

^o = ta(b)\l/b = ± ^ 6 . 

(2.13) Definition. Let S be a semigroup with a homomorphism 
\p:S—*Z such that each homomorphism x'*S —»Z factors through \p. 
Then 5 is said to be a semigroup of type N, N° or Z if ^(5) = N, N° or Z 
respectively. 

Thus if S has an aperiodic left quasi-zero of type N, N° or Z, then 5 is a 
semigroup of type N, N° or Z respectively. In fact, we can characterize 
semigroups with aperiodic left quasi-zeroes in terms of homomorphisms. 

(2.14) THEOREM. A semigroup S has an aperiodic left quasi-zero if and 
only if S has the following property: there exists a homomorphism \f/:S —* Z 
such that for each homomorphism x'-S—*T, T any semigroup, there exists 
a Ç T with the property that for x 6 S, 

an
x(x) = a*w+n 

for sufficiently large n £ N. 
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Proof. Suppose S has an aperiodic left quasi-zero b and let \p — \ph. Then 
for X É 5 , blx — bj for some i,j G N and \pb(%) = j — i. If x'*S —> ^ is 
a homomorphism choose a = x(&) € î \ Then 

a'x(#) = a* = a'-< + i = a*(*)+i. 

Conversely, suppose 5 has the property described above. Consider 
Is'-S —> S. Then there exists a Ç 5 such that for x Ç 5, 

for sufficiently large ». Thus a is a left quasi-zero and \f/(a) — 1 whence a 
is aperiodic. 

3. Periodic left quasi-zeroes. 

(3.1) Definition. A periodic left quasi-zero is said to be of type n or an 
n-left quasi-zero if it is of period », i.e., the group ideal of the cyclic sub-
semigroup generated by the left quasi-zero is a cyclic group of order ». 

We have the following result which is entirely analogous to the 
aperiodic case: 

(3.2) THEOREM. Let a be an n-left quasi-zero of a semigroup S. Then there-
exists an epimorphism \pa:S —> Znfor which \f/a(a) = [l]n-

We remark that a semigroup 5 has an »-left quasi-zero a if and only if 
5 has a minimal right ideal which is a cyclic group of order ». The 
following theorem is therefore a consequence of well-known results. 

(3.3) THEOREM. All left quasi-zeroes of a semigroup S are of the same 
type. 

(3.4) THEOREM. Let a be an n-left quasi-zero of S and let \p be a homo­
morphism of S to Zn. Then \p — \p(a)\{/a. 

As an immediate consequence of the above we have 

(3.5) COROLLARY. Let a and b be periodic left quasi-zeroes of a semi­
group S. Then 

ta = Mb)**. 

(3.6) COROLLARY. Let alf a2, . . . , an be m-left quasi-zeroes of a semi­
group S. Then 

^ 1 ( ^ 2 ) ^ 2 ( ^ 3 ) • • • Mantel) = [l]m-

In contrast to the aperiodic case, we have the following result: 

(3.7) THEOREM. Let a £ S be an n-left quasi-zero. Then ar is a left 
quasi-zero if and only if (r, n) = 1. 
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Proof. Since a is an w-left quasi-zero, there is an epimorphism ^ a : 5 —> 
Zn with ^a(a) = [l]n. Thus \l/a(a

T) = [r]n. If ar is a left quasi-zero then 
[r]n is a left quasi-zero of Zn and so by Lemma 2.6 [r]n is a generator of Zn, 
i.e., (rtn) = 1. 

Conversely, suppose (r, n) = 1 and let x eS. Then a'x = ay for some 
i, j G N. Choose i and 7 sufficiently large so that a1 and aj belong to the 
group ideal of (a) and such that i — rk for some k £ N. Since (r, n) = 1, 
there exists 5 6 N such that rs = 1 [mod w] and so 

j == r5/ [mod n]. 

Hence arJtx = arjs. 

(3.8) Definition. A semigroup 5 is said to be of type n if there exists an 
epimorphism \p:S —» Zw such that every homomorphism x«5 —> Zn factors 
through \//. 

It is immediate that if S has an n-\eh quasi-zero, then S is a semigroup 
of type w. 

The following characterization of semigroups with periodic left quasi-
zeroes in terms of homomorphisms is analogous to Theorem 2.14. 

(3.9) THEOREM. S has an n-left quasi-zero if and only if there exists an 
epimorphism ^:5—>Zn such that for every semigroup T and every homo­
morphism x'-S —> T there exists a homomorphism x*.Zw —» T with x(0)x = 
X^. Here 0 is the identity of Zn. 

Proof. If 5 has an n-left quasi-zero b, then choose \p = y//b. For Gbl the 
group ideal of (b), |̂G& is an isomorphism between Zw and G&. If x-51 —» T 
is a homomorphism, define x-Zw —> T by 

x = x^lG,)-1-
For some m G N, èm is the identity of G&. For each x £ 5, frm# Ç G& and 

x(6w*) = x ^ m * ) = x*(*). 

But 

x(bmx) = x(&w)x(*) = xiK&w)x(*) = x(0)x(x). 

Conversely, consider the homomorphism ls-S—» 5. Then there exists 
x:Zn - > 5 such that x ( 0 ) l s = x*. Let & = x([l]»). Thus x(0) = bn and 
so for each x £ 5, 

M = xiK*)-
Let ^(#) = [k]n. Then 

&BX = x ([*],) = X(k[l]n) = 6* 

and so b is an n-leît quasi-zero. 
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(3.10) Example. If £ is a left zero semigroup then E X Zn has w-left 
quasi-zeroes. 

(3.11) THEOREM. Let S be a semigroup with an n-left quasi-zero. Then 
S has a right group kernel K isomorphic to E(K) X Zn. 

Proof. Since 5 has an n-left quasi-zero, 5 has a minimal right ideal which 
is a cyclic group G of order n. Thus 5 has a kernel K which is the disjoint 
union of the minimal right ideals of S where each such right ideal is a 
group isomorphic to G. 

We now characterize semigroups each of whose elements is a left 
quasi-zero. To this end we need the following 

(3.12) Definition. A semigroup S is said to be combinatorial if for each 
x G S there exists n G N such that xn = xn+l. 

(3.13) LEMMA. Let S be a semigroup and a G S be such that each power of 
a is a left quasi-zero of S. Then an — an+l for some w ^ N . 

Proof. By Corollary 2.9 a is periodic and by Theorem 3.7 the group 
ideal of (a) is trivial. 

The above yields immediately 

(3.14) COROLLARY. Let S be a semigroup. Then S consists entirely of left 
quasi-zeroes if and only if S is combinatorial and each idempotent of S is a 
left zero. 

Every element except the identity of a cyclic group of prime order is 
a left quasi-zero. The following is a generalization of this. 

(3.15) THEOREM. A semigroup S is an ideal extension of a right group 
K ~ E X Zp by a nil semigroup of index not greater than a prime p > 1 
if and only if S is archimedean and the set of left quasi-zeroes of S is 
S\E(S) * 0. 

Proof. Let p > 1 be a prime and suppose that 5 is an ideal extension 
of a right group K ~ E X Zv by a nil semigroup of index not more than 
p. For any a G S\E(S), a is a pth power only if a G K and so for some 
n G N, an is a generator of one of the groups in K. Thus a is a £-left 
quasi-zero of S. Since p > 1, no idempotent can be a left quasi-zero. Thus 
the set of left quasi-zeroes of 5 is S\E(S) 9e 0. Finally, any periodic semi­
group which is an ideal extension of a right group by a nil semigroup is 
archimedean. 

Conversely, suppose that S is an archimedean semigroup for which 
the set of left quasi-zeroes is S\E(S) ^ 0. Then S is an ideal extension 
of a right group K ~ E X Zn for some n G N. Since every non-idempo-
tent element of each group in K is a left quasi-zero, n is a prime. Now for 
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each x G S\K, xn is not a left quasi-zero by Theorem 3.7 and so xn is an 
idempotent. Since S is archimedean with a right group kernel, all idem-
potents of S belong to K. Thus S/K is nil of index not greater than n. 

(3.16) THEOREM. Let S be an archimedean semigroup. Then S is an ideal 
extension of a right group K ~ E X G if and only if the following hold: 

(i) S is the disjoint union of archimedean homogroups He, e Ç E(S), 
(ii) the group ideal Ge of each He is a right ideal of S. 

Proof. Suppose that S is archimedean and is an ideal extension of a 
right group K ~ E X G. Since 5 is archimedean, (x) C\ K ^ 0 for all 
x Ç 5. In particular, 

E(S) = E(K) - E. 

For each e G E(S), define 

He= {x G S\ (x)C\Ge^ 0}. 

We show that (x) C\ Ge 9^ 0 if and only if xGe = Ge, in which case the 
result follows. If (x) n c e ^ 0 and xGe = Gf, then xn+1Gf = Gf for n such 
that xn £ Ge. Thus 

Gf = xn+lGf = exn+1Gf = eGf = Ge 

and so xGe = Ge. Conversely, if xGe = Ge then xnGe = Ge for all n. If 
xw 6 Gh then 

G/ = /Ge = fxnGe = xwGe = Ge 

whence xn Ç Ge. 
Now if S satisfies conditions (i) and (ii), then S has a right group kernel 

K « £ (5 ) X G where G = Ge for g 6 E(S). For any x, y Ç 5, xw G Ge 

for some n Ç N, £ G E(S), and so xw = xw(e;y)-1£3/ where the inverse 
refers to the group Ge. Thus xn G 51y51 and so 5 is archimedean. 

(3.17) COROLLARY. Let S be an archimedean semigroup. Then S has an 
n-left quasi-zero if and only if S is the disjoint union of archimedean homo-
groups Ha, each with group ideal Ga ~ Zn and each Ga is a right ideal of S. 

Since this partition induces a left zero congruence on the kernel of 5, 
it is natural to ask whether the partition itself is a left zero congruence. 
However, this is rarely the case. Consider for example the left zero semi­
group {a, b, c) and adjoin d by defining d2 = a, dc = b. Then Ha — 
{a,d},Hh = {b),Hc = {c} and HaHc = {a, b}. 

4. Semigroups generated by left quasi-zeroes. In this section we 
apply the theory developed so far to presentations of semigroups gener-
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ated by left quasi-zeroes. In particular, we construct examples of such 
semigroups to show the extent to which their structure can differ. 

If X = {a,i\ i € /} and for eachj £ / , Rj is a relation on X + , then the 
quotient semigroup X+ modulo the congruence generated by these rela­
tions is denoted by {at\ Rjf i Ç J , j G / ) . 

(4.1) THEOREM. Let X = {a1} a2, . . . , an) and let ku lt 6 N for 

i — 1, 2, . . . , n. For i = 1, 2, . . . , n define a relation 

RilafWi+i = at
li (where an+i = ai). 

Then (ah a2, . . . , an\Ri, R2, . . . Rn) is a semigroup generated by the left 
quasi-zeroes ai, a2, . . . , an. 

Proof. It is clear that (a^aj C\ (at) ^ 0 for all iyj = 1, 2, . . . , n. 

The next theorem enables us to tell at a glance what type of left quasi-
zeroes the generators ai, . . . , an are. 

(4.2) THEOREM. Let X = {ai, a2, . . . , an} and Ri'.a^ai+i = a/i+*»' 
for j i } jt + &ï G N awd k{ £ Z (again an+x = ai). L^ 

n ** -1 
Tl^n 5 = (ai, a2, . . . , an\Ru R2, . . . , Rn) is a semigroup of type k if 
k 9e 0 and a semigroup of type N or Z if k = 0. 

Proof. By (4.1) we know that 5 is generated by left quasi-zeroes. By 
(2.4), 

0a 1 (^2)^a 2 (^3) • • • , </>an(^l) = 1 

if the left quasi-zeroes are aperiodic. Thus if k ^ 0, the left quasi-zeroes 
are periodic and hence S is a semigroup of type n for some n 6 N. But 
then by (3.6), 

0fll(a2) . . . , 0an(#i) = 1 (mod ») 

whence n\k. We show now that k\n. Define a correspondence {ai, . . . , an\ 
to Zk as follows: 

0i*-> [1]* = h, at^ 
i-i 

n *, = 6̂  for i = 2, 3, . . . , n. 

It is easy to show that the bt satisfy the same relations as the at. Thus the 
above correspondence may be extended to a homomorphism of S to Zk. 
In particular, (ai) maps onto Zk and so the group ideal of (ai) maps 
onto Zk. Thus k\n and so k = n. 

If k = 0 then, for the same reasons as above, a homomorphism from 
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S to Z may be defined by 

a\\ 1, at* n ** 2, 3, . . . , n. 

It is then clear that the semigroup is of type Z if and only if kt = — 1 for 
some i. If fez- = 1 for all i then 5 is a semigroup of type N. In particular, 
5 has no periodic elements in this case. 

We remark that the left quasi-zeroes of a semigroup S of type N must 
belong to any generating set of S. 

(4.3) LEMMA. Let a, b be aperiodic left quasi-zeroes of a semigroup S. 
If an = bm for some m,?i G N, then m = n and there exists k0 6 N such that 
for k ^ ko, ak = bk. 

Proof. If an = bm then n = m<j)a(b). Since \4>a(b)\ = 1 we must have 
<t>a(b) = 1 and so m = n. Thus ant = bnt for all t ^ 1. Furthermore, 
alb = ai+1 for some i (E N. If n ^ i then awè = aw+1 and so bn+1 = aw+1 

and, by induction, a* = bk for all k ^ n. H n < i, choose t so that n£ ^ i. 
As before a* = bk for & ^ ŵ . 

Let ko denote the least element of N for which ak = bk for k ^ k0. It 
can happen that an = bn with n < ko. For example, 

S = (a, b\ a2 = b\ an = bn for n ^ 4) 

is generated by aperiodic left quasi-zeroes a, 5 but a3 ^ fr3, while 
&o = 4. The verification that a3 ^ b* is obtained by representing 5 by 
the matrix semigroup generated by 

A = 

0 1 1 1 
0 0 1 1 
0 0 0 1 
0 0 0 0 

and B = 

0 2 0 0 
0 0 1/2 1 
0 0 0 2 
0 0 0 0 

We note that since S is a semigroup of type N, S has no other left quasi-
zeroes. 

(4.4) Example. Let S = (a, b\ a2b = a, b2a — b). S is generated by the 
two aperiodic left quasi-zeroes a and b. However both ab and ba are 
idempotent. Probably the simplest example of such a semigroup is Z. 

The following example shows tha t a semigroup finitely generated by 
periodic left quasi-zeroes is not necessarily periodic. 

(4.5) Example. Let 5 = (a, b\ a3b = a2, b2a = b2). Then a3 = a2 and 
bz = b2 whence a2b = a2 and b2a = b2. Thus we have symmetry in the 
defining relations of S. It is easy to show that the elements of 5 are of the 
form displayed in the table below where each column contains all powers 
of the top element and ab and ba are aperiodic elements. 
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TABLE 1. 

{aby a 
(ab)2a2 (abyb 

(ab)a 
(ab)a2 (ab)b 

a 
a2 

ab 
(aby\ 
(ab)3\ 

1 ba 
(bay 
(ba)3 

b 
b2 (ba)a 

(ba)b 
(ba)b2 (ba)2a 

(ba)2b 
(ba)2b2 

It is a matter of routine computation to verify that any 2 distinct 
words from Table 1 can be distinguished by at least one of the following 
four homomorphisms. 

[0 0 0" 0 0 - l l 
1 0 0 , B = 0 0 1 
0 1 1_ 1 1 1_ 

Define 

<j>ùS-* (A,B) by 0!(a) = A, faib) = B and 

<t>2:S-+(A,B) by <j>2(b) = A, fo(a) = B. 

(2) Let 

["0 0 0" 1 1 - 1 
1 0 0 , B = 1 

2 0 0 2 1 

_o i i_ _1 1 l j 

Define 

0 3 :5 -> (A,B)by fo(a) = A,fa(b) = B and 

0 4 :5 -> (A,B) by 04(a) = B, fa{b) = A. 

The kernel of the above semigroup is the (infinité) bottom row of the 
table. We observe that if any further relations are added to ensure 
periodicity, the semigroup becomes finite. This does not happen in 
general. 

(4.6) Example. There is an infinite periodic semigroup finitely gener­
ated by left quasi-zeroes. For A. Thue [9] has shown that there exist 
infinitely many square-free words on an alphabet of three letters. If 

X = {a, bf c) and I = {uv2w\ uy w € X*, v € X+}t 

then 5 = X+/I is a nil semigroup generated by the left quasi-zeroes 
a, b and c and S is infinite. 
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To conclude this section, we show that a finite semigroup generated by 
left quasi-zeroes is not archimedean in general, i.e., it is not necessarily 
the case that every idempotent belongs to the kernel. 

(4.7) Example. The following semigroup was obtained as a subsemi-
group of a transformation semigroup on 5 letters. 

Let 

S = (a, b\ azb = a2, b2a = &3, bza ~ b2, aba = a, 
bob = b, ab2a = b2ab). 

Then 

5 = {a, a2, a3, b, b2> &3, ab, ba, ab2, abz}. 

This semigroup is displayed in the form of a table below, where each 
column contains all powers of the top element and the idempotents are 
enclosed within the dotted rectangle. 

a b 

ab a2 ab3 b2 
" " " " l 

ba ' 
- - - -• 

a3 a&2 b3 

The kernel of this semigroup is {a2, a3, abz, ab2, b2, bz} which is a right 
group with group isomorphic to Z2. The elements ab and ba are idem­
potents. 

5. A sequence of generalizations of the bicyclic semigroup. In 
(2.10) we examined the bicyclic semigroup ^ o = (#o, Xo| XQXQ — 1) for 
left and right quasi-zeroes. In this section we introduce a sequence of 
generalizations of the bicyclic semigroup and investigate their properties. 
The set of all left quasi-zeroes of each such semigroup is determined and 
by symmetry the right quasi-zeroes of each are also obtained. 

(5.1) Definition. For each « ^ 0 , let 

0% _m /yy. %. I y. n+\%. — /y n y. %> n-\-\ — %. n\ f-*J n V n̂» ^n\ ^n ^n *"n » ^n-^n — ^n /• 

For each n ^ 0, it is immediate that of the generators of 3Sn% [xn] is a 
left quasi-zero while [xn] is a right quasi-zero. We are going to see that 
only «â?o and 3è\ have infinitely many left (right) quasi-zeroes, while for 
« è 2 , Sën has exactly one left (right) quasi-zero. The exceptional be­
haviour of 38 § and 3S\ does not end here. It is well known that Se\ can be 
described as a semigroup on the set N0 X N0. In much the same way, £8\ 
can be described as a semigroup on N0 X N0 X N0. There does not appear 
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to be any such representation of 38 n for n ^ 2. The Green's relations for 
38 \ can be described readily by utilizing this representation. 

The first result to be established is that 38 2 has exactly one left quasi-
zero, whence by a similar argument, it can be shown that 38\ has exactly 
one right quasi-zero. 

In order to prove this result we shall require the notion of a reduced 
word (relative to the congruence relation defining 381, i.e., X2X23 = X22 

and %23Xi = x2
2). We shall delete any reference to the subscript 2 on the 

generators for this discussion. 

(5.2) Definition. A word in X*, X = {x, x}, is said to be reduced if it 
is of the form 

xilxi2xiz. . . xik~lxik for k even, 

with 

0 < i2, H, • • • , H-i S 2 if k ^ 4, and iu ik ^ 0. 

(5.3) LEMMA. Each word of X* is congruent to a reduced word by the 
congruence generated by the relations 0000 00 • 00 00 00 • 

Proof. Let u £ X* and suppose that u is not reduced. Then u is of the 
form 

x^xiz. . . xik~lxik for k ^ 3, ii ^ 0, ik ^ 0 and 

i2, iz, . . . , ijc-i > 0. 

It follows that for some 1 < j < k, ij > 2. If j is even, form the word U\ 
by deleting xx from xiJ'xiJ+1 in w, while if j is odd, form wx by deleting xx 
from x^-lxij in w. Then w = U\ and |^i| = |w| — 2. If «1 is reduced, we 
are done. Otherwise, repeat the process. By induction, we obtain that u 
is congruent to a reduced word. 

(5.4) THEOREM. If u and v are reduced words of X* and u = v, then 
u = v. 

Proof. Suppose that u = xilxi2 . . . xik~1xik is reduced. Then there 
exists a finite sequence u = U\ = u2 = . . . = um = v where ui+i is 
obtained from ut by inserting or deleting xx (by using the relations 
xzx = x2, xx3 = x2). To form u2, xx must be inserted into U\ and so 
1̂21 = |wi| + 2. Define 

F = {x'x1] t ^ 0}. 

Let ki be the first number for which 

|w*i+i| = \ukl\ — 2 

(that ki exists is clear). Then 

Uki = WiXilW2Xi2 . . . WkX
ikWk+i 
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where each wt G F*. Since ukl is not reduced, ukl 7
e v. Let k2 be the least 

subscript greater than kx for which |^/t2+i| = | ^ 2 | + 2. Then each of the 
words ut, ki < i ^k2 is obtained from ut-\ by deleting xx. Each such 
deletion can occur only within the subwords of the Wi which remain at 
any particular step. This is easily seen to be the case since each such sub-
word begins with x and ends with x. If m = ki + k2, then v = uk2. But 
uk2 is reduced only if no subwords of the wt remain, i.e., only if uk2 = U\. 
Thus u = v. If m > ki + k2j we repeat the process, beginning with ukti 

where 

^ * 2 = WiXhW2X
i2 . . . Wk

fXikWk+i 

with each w( £ F*. But in this manner we see that for each j , 

Uj = ylX^y2x
i2 . . . ykx

ikyk+ï 

for some yu y2l . . . , yk+\ G F*. Thus in particular, um is such a word and 
since such a word is reduced only iî yi = y2 = . . . = yk+i = 1, 

V = Um = XilXi2 . . . Xik = Ui = U. 

Thus each class of the congruence on X* generated by the relations 
00 00 *~~ 00 j 0000 00

 2 has a unique reduced representative. 

(5.5) THEOREM. 382 has exactly one left quasi-zero, namely the congruence 
class [x]. 

Proof. Let u G X* be a reduced representative of a left quasi-zero of 
^ 2 . Then 

1/1/ «V ^v . • • xV 

with k even and 

Z Hj — Z *2J+1 = 1-

If fc = 2, we have u = x*xi+1 for some Î ^ 0. If i = 0 we have u = x. 
Otherwise, i > 0 and then by an inductive argument, one can show that 
the reduced representative of ul is 

x*(x2x)*~"1x*+1. 

But then u*x has reduced representative 

whence w'x ^ uT for any /, r Ç N. Thus we obtain a contradiction and so 
for k = 2 we obtain u = x and [x] is a left quasi-zero of «â?2. Now con­
sider & ̂  4. There are four possible cases. We shall show that none of the 
cases can occur. 
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Case 1. 4 , 4 > 0. Consider u2 = xil . . . xinxil . . . xin. If a;***'1 is re­
duced, then the reduced representative for ur ends in xxin for all r and so 
urx ^ ^5 for any r, 5 G N. But this implies that [z/] is not a left quasi-
zero of ^ 2 , a contradiction. Thus xinxil is not reduced. If 4 ^ 4 , then the 
reduction of u2 will be accomplished by making deletions of xx factors to 
the left of the right factor x2 in ôcil. Once again, the reduced representative 
of ur ends in xxin for all r, a contradiction. Thus 4 < 4 and the reduction 
of u2 is accomplished by deleting xx factors to the right of the left factor 
x2 in xin. If these deletions do not reach the right factor xxin in u2, again 
the reduced representative for uT ends in xxin for any r Ç N whence [u] 
is not a left quasi-zero of ^ 2 , a contradiction. Thus the reduced rep­
resentative of u2 is 

xilxi2 . . . xin~lxl where 

t = in — 4 - i + 4-2 — . . . — ii + in. 

However, for the deletions to have been possible, we must have had 
4 è î'i + 2, in — i\ + 4 è 4 + 2, and so on, finishing with in — 4 + 4 
— 4 + . . . + 4-2 ^ 4 - i + 2. But this implies that 

a contradiction. Thus at least one of 4 or in is zero. 

Case 2. 4 = 0, 4 > 0 whence w = xi2xu . . . xin~lxin and 0 < 4 , 
4 , . . . , 4 - i = 2. The arguments of Case (1) can be applied here by 
putting 4 = 0 to conclude that [u] is not a left quasi-zero of ^ 2 , a 
contradiction. 

Case 3. 4 > 0, 4 = 0 and so n = £Zlx*2 . . . ff1'»-1. When we consider 
w2 in this case, we see that the only reduction that could possibly occur is 
to the left of the right factors2 in xin~l+il

f leaving the reduced represen­
tative of uT for any r £ N to end in xin~l. Since urx ^ us for any r, 5 in 
such a case, [u] would not be a left quasi-zero of ^ 2 , a contradiction. 

Case 4. 4 = 4 = 0- Then no reduction in u2 can occur whence u2 is 
reduced and thus ur is reduced for all r £ N. Obviously [w] would not be 
a left quasi-zero of ^ 2 , a contradiction. 

By similar arguments, it can be shown that £$2 has exactly one right 
quasi-zero, namely [x]. 

(5.6) COROLLARY. For each n ^ 2, «Ŝ n has exactly one left quasi-zero 
and one right quasi-zero, namely [xn] and [xn] respectively. 

Proof. The assignment [xn] —> [#n_i] and [#J —> [xw_i] determines a 
surjective homomorphism of ^ w onto 3tn-\ whence quasi-zeroes are 
mapped to quasi-zeroes (of the same type, left or right). The result is thus 
established upon observing that [xn] = {xn} and [xn] = {xn}. 
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(5.7) LEMMA. Every word in X*, X = { congruent to a word of the 
form xk(xx)lxn for some (jfe, /, n) £ N0 X N0 X N0 fry the congruence 
defining 31 \, i.e., the congruence determined by the relations OC OC —~ OC % 

Proof. We shall proceed by induction on the length of words in X*. 
The statement is obviously true for words of length 0, 1 or 2. Suppose 
then that any word of length less than n is congruent to a word of the 
required form, with n ^ 2. Let u Ç X* be a word of length n. Then either 
u = (xx)f with n = 22, or else x or x appears in u to a power greater than 
1. In the first instance, u = x°(xx)'x°, while in the second, either u = 
WiXiW2ore\seu = Vi&Vz for some i > l a n d with w\ G X*\X*x, Wi Ç X*\ 
xZ*, Vi G X*\X*x, v2 G X*\xX* and i, j ^ 2. Consider the case u = 
W\Xlwi. If W2 = 1 it follows from the induction hypothesis, while if 
wi y£ 1, then wi = xwz and so 

u = wiac<jwe;3 = WiX{~lw^ = v. 

But \v\ < n and so the result follows from the induction hypothesis. A 
similar argument can be presented if u = Viôc^-

By observing how the multiplication of congruence classes works, as 
determined by representatives of the form described in (5.7), we are led 
to define a binary operation * on the set N0 X No X No as follows: for 
(fc, /, w), (r, 5, 0 Ç No X No X No, 

Uk + r 
)(k,l + 
)(kj 

— m, s,t) m < r 

(k I m)*(r s t) = { v ~ " + 5 + *' l) m = Y* ° 

/ + m — r) m > r 

Sixteen computations are required to verify that this binary operation 
is associative, and these computations have been carried out. Thus 
(No X No X No,*) is a semigroup. 

(5.8) Definition. Let Bi denote the semigroup (N0 X No X No,*). 

(5.9) THEOREM. 3&X ~ Bx. 

Proof. Let X — {x, x}. Define a homomorphism n'.X* —> B\ by putting 
/*(*) = (0, 0, 1) and ix(x) = (1, 0, 0). Since 

(0,0, 1)2*(1,0, 0) = (0,0, 1) and 

(0,0, 1)*(1,0,0) 2 = (1 ,0 ,0 ) , 

M induces a homomorphism jx'.Six—* B\ for which ji([x]) = (0, 0, 1) and 
P([x]) = (1, 0, 0). Now define a function rç:5i — > ^ I by 

,,(*, /, n ) = [xfc(xx)'xn]. 
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It is readily verified that rj is a homomorphism and that 

7) o jH(M) = M, rj o /z([s]) = [*] 

whence rj o ji is the identity on ^?i. As well one can readily show by com­
putation that 

/Z o 77 (ft, I, n) = (ft, I, n) 

whence Jx o 77 is the identity on J§I. Thus /z and 77 are isomorphisms. 

By means of this representation of 381, we are readily able to describe 
the set of right quasi-zeroes and the set of left quasi-zeroes for 38 \ and, 
as well, we can determine the Green's relations on 38 \. 

(5.10) THEOREM. The set of left quasi-zeroes of B\ is 

{(ft,/, ft + 1| ft, I e No}. 

Proof. It is easily established by induction that 

(ft, /, ft + l)n = (ft, l,k + n) 

for any n Ç N and so for (r, s, t) Ç 5 i we choose n > r — t to obtain 

(ft, /, ft + 1 )"*(', 5, 0 = (ft, /, ft + n + * - r) = (ft, /, ft + l ) n + ' - r . 

Thus (ft, /, ft + 1) is a left quasi-zero for any ft, l £ N0. In particular, 
# = (0, 0, 1) is a left quasi-zero. Let <t>u:Bi—+ Z be the corresponding 
homomorphism. Then 4>u{\, 0, 0) = —1 and since 

(ft, /, w) = (1, 0, 0)**((0, 0, 1)*(1, 0, 0))z*(0, 0, l )w , 

we have 

<j>u(k, l, m) = m — ft. 

Thus m — ft = dbl, and so we need only show each element of the form 
(ft + 1, /, ft) is not a left quasi-zero. By computation, one can readily 
show that 

(ft + 1, /, ft)w*(0, 0> 1) 5* (ft + 1, /, ft)r for any w . r ^ N . 

Thus (ft + 1, I, ft) is not a left quasi-zero for any ft, I £ N0. 

Similarly, one can show that the set of right quasi-zeroes of Bx is 
{(ft + u , ft)|ft,/e No}. 

We now demonstrate that for n ^ m, ^ w ^ â?m. Since the set of left 
quasi-zeroes of 381 and of 38\ are both infinite, while the set of left 
quasi-zeroes of each 38 n, n ^ 2, is a singleton, ^ 0 and «â?i are distinct 
from 38 ni n è 2. 

(5.11) THEOREM. £ ( ^ 0 = {1}. 
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Proof. We prove that E{BY) = {(0,0,0)}. If (k,l,m) 6 Si is an 
idempotent, then 

(k, /, 7n)*(k, I, m) — (k, /, m) 

from which one concludes that m = k. But by definition of *, not only 
must m = k, but we must have m = k = 0. 

But (0, /, 0)2 = (0, 21, 0) and thus 2/ = / whence / = 0. 

(5.12) COROLLARY. 30 4L 3X. 

Let NC(fe) denote the nil cyclic semigroup of order k. 

(5.13) THEOREM. There exists an epimorphism of 3n to NC(w) but no 
epimorphism of 3n to NC(n + 1 ) . 

Proof. Define an epimorphism from X* —>NC(w) by x —> a, x —> a 
where a is the generator of NC(w). Since the relations xn+1x = x11, 
%xn+l = xw define «â?n, this epimorphism determines an epimorphism 
* n : ^ n - » N C ( » ) b y 

0n(M) = <fci([#]) = <*• 

Suppose now that there does exist an epimorphism \p:3\ —> NC(w + 1). 
Then either [x] or [x] maps to b where b is the generator of NC(n + 1). 
Suppose that ^([x]) = b and ^([x]) = br for some r Ç N. Then 

^([x]n+1[x]) = bn+1br = 0 

but [x]n+1[x] = [x]n whence 

f([x]n+1[x]) = \KM") = bn. 

Thus 6n = 0, a contradiction, and so no epimorphism from 3S n to 
NC(w + 1) can exist. 

(5.14) COROLLARY. For all n, m £ N0, n ^ m, 3n qk 3tm. 

Proof. It is only necessary to show that for n > m ^ 2, ^ n q^ ^?m . 
Suppose that for some such n, m, 3 n c^ 3 m. Then since n > m, there is 
an epimorphism <â?w -» ^ m + i -» NC(w + 1) and since 3n c^3m we 
obtain an epimorphism of 3m -» NC(w + 1), which is a contradiction 
by (5.13). 

Finally, we determine the Green's relations for Bx and hence for 3 \. 
It is easily seen from the definition of * that if two elements of Bx are 
i^-related, their first and second components must be equal. 

(5.15) THEOREM. The R-classes of Bi are of two types, namely 

Ru = \(iJ,k)\k e N}andR°t, = {(i,j,0)\ for i, j Ç N0. 
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Proof, Let k, V 6 N. Then 

(i,j, k)*(k - 1, 0, V - 1) = (i,j, kf) and 

(i,j,k')*(k' - 1 , 0 , * - 1) = (i,j,k). 

Thus ( i , j , k)R(i,j, V) for all jfe, ft' Ç N. Moreover, if (i,j, 0)R(i,j, k) 
for some k Ç N, then 

0', 7, 0) = (i, j , fe)*(x,y,2;) 

for some x, y, z (E N0. By definition of *, this is not possible. 

(5.16) THEOREM. The J£-classes of B\ are of two types, namely 

Ljk = {(i,j, k)\i € N} and L% = {(0, j , k))forj, k Ç N0. 

(5.17) COROLLARY. The H-relation on B\ is trivial. 

(5.18) COROLLARY. The D-relation for Bi has classes of four types, 
namely 

(1) Dj= j f t i J ) K K N } , i e N 0 ; 

(2) DQj= { ( 0 , j , i ) | i e N ) , i e N 0 ; 

(3) Dj0 = {(*,j,0)|* 6 N}, i G iV0 a»d 

(4) Doio = {(0 , j ,0)} , j G No. 

Thus in contrast to 38 Q, 38 \ is not bisimple. Moreover, 38 \ is not even 
simple, but rather close to it. 

(5.19) THEOREM. The J-relation on B\ has two classes, namely 
{(0,0,0)} andB1\{ (0 ,0 ,0)} . 

Proof. For any u, b £ N, s, t £ No, we have 

(0, b, 0) = (0, 0, 5 + l)*(s, t, u)*(u + 1, t - 1, 0) and 

(5, *, «) = (s, t, u)*(0, 6, 0)*(0, 0, 0). 

Thus (0, b, 0)J(s, tf u) for all u,b £N,s,t £ N0. If we put 

the above argument implies that U ; Ç N ^ > which is Bi\{ (0, 0, 0)}, is con­
tained in a single /-class. Since it is clear that the /-class of (0, 0, 0) is a 
singleton, the result follows. 
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