MAXIMAL OPERATORS ALONG FLAT CURVES WITH ONE VARIABLE VECTOR FIELD

JOONIL KIM¹ AND JEONGTAE OH²

¹Department of Mathematics, Yonsei University, Seoul, Korea ²Research Institute of Mathematics, Seoul National University, Seoul, Korea Corresponding author: Joonil Kim, email: jikim7030@yonsei.ac.kr

(Received 28 August 2023)

Abstract We study a maximal average along a family of curves $\{(t, m(x_1)\gamma(t)) : t \in [-r, r]\}$, where $\gamma|_{[0,\infty)}$ is a convex function and m is a measurable function. Under the assumption of the doubling property of γ' and $1 \leq m(x_1) \leq 2$, we prove the $L^p(\mathbb{R}^2)$ boundedness of the maximal average. As a corollary, we obtain the pointwise convergence of the average in r > 0 without any size assumption for a measurable m.

Keywords: Maximal functions along curves; pseudo-differential operators

1. Introduction

In this study, we analyse a maximal operator defined by a convex function $\gamma|_{[0,\infty)}$ and a measurable function $m: \mathbb{R} \to \mathbb{R}$. Specifically, our focus lies on the operator:

$$\mathcal{M}_{\gamma}^{m} f(x_1, x_2) := \sup_{r>0} \frac{1}{2r} \int_{-r}^{r} |f(x_1 - t, x_2 - m(x_1)\gamma(t))| dt,$$

where $\gamma: \mathbb{R} \to \mathbb{R}$ is an extension of $\gamma|_{[0,\infty)}$, which is a even or odd function. Recently, Guo, Hickman, Lie and Roos [13] proved the L^p boundedness of maximal operators \mathcal{M}^m_{γ} for the homogeneous curve $\gamma(t) = t^n$, with $n \geq 2$, assuming that m is measurable. However, the L^p boundedness of \mathcal{M}^m_{γ} for the case n = 1 remains an open problem. So, we focus on flat convex curves, including piecewise linear curves. Given a convex extension $\gamma: \mathbb{R} \to \mathbb{R}$, we define the bounded doubling property for a derivative γ' as follows:

there exists a constant
$$\omega > 1$$
 such that $\gamma'(\omega|t|) \ge 2\gamma'(|t|)$ for all $t \in \mathbb{R}$. (1.1)

Now, we state the main theorem:

Main Theorem 1. Let $m : \mathbb{R} \to \mathbb{R}$ be a measurable function such that $1 \leq m(x) \leq 2$ for all $x \in \mathbb{R}$. Suppose that an extension γ of a convex function $\gamma|_{[0,\infty)}$ satisfies the

© The Author(s), 2024. Published by Cambridge University Press on Behalf of The Edinburgh Mathematical Society.

1

bounded doubling property of γ' in (1.1), with $\gamma(0) = 0$. Then, there exists a constant C_{ω} such that $\|\mathcal{M}_{\gamma}^{m}\|_{L^{p}(\mathbb{R}^{2}) \to L^{p}(\mathbb{R}^{2})} \leq C_{\omega,p}$ holds for 1 .

Remark 1.1.

- The theorem can be extended to certain types of piecewise linear curves. Refer to Section 7 in [7] or Remark 5 in [14] for more details. Additionally, the condition (1.1) admits flat convex curves, such as $\gamma(t) = \mathrm{e}^{-\frac{1}{|t|}}$ and $\mathrm{e}^{-\mathrm{e}^{\frac{1}{|t|}}}$, which are flat at the origin.
- By using the dilation technique, we can extend our results to $\|\mathcal{M}_{\gamma}^{m}\|_{L^{p}\to L^{p}} \leq C \log_{2}(\frac{b}{a})$ under the assumption $0 < a \leq m(x) \leq b$.

In the view of pointwise convergence, we can drop the assumption $1 \leq m(x_1) \leq 2$.

Corollary 1.1. For a measurable function $m : \mathbb{R} \to \mathbb{R}$ and a convex extension γ on \mathbb{R}^1 passing through the origin with its derivative γ' satisfying property (1.1), we have

$$\lim_{r \to 0} \frac{1}{2r} \int_{-r}^{r} f(x_1 - t, x_2 - m(x_1)\gamma(t)) dt = f(x_1, x_2) \quad a.e.$$

for $f \in L^p(\mathbb{R}^2)$.

The study of maximal operators along flat convex curves has a rich history in Harmonic analysis by itself. In the 1970s, Stein and Wainger [24] asked the general class of curves $(t, \gamma(t))$ for which there are L^p results for \mathcal{M}^1_{γ} . In the 1980s, Carlsson et al. [11] proved that \mathcal{M}^1_{γ} is bounded on $L^p(\mathbb{R}^2)$ under the bounded doubling condition (1.1). In the 1990s, the study of maximal operators was extended to the curves with a variable coefficient, as demonstrated in [4, 9, 10, 15, 23]. Carbery, Wainger and Wright [9] established the L^p boundedness of $\mathcal{M}^{x_1}_{\gamma}$ along plane curves γ whose derivative satisfies the infinitesimal doubling property. Under the same assumption, Bennett [4] extended the L^2 results for \mathcal{M}^P_{γ} , where P is a polynomial. As a corollary of our main theorem, we derive the L^p boundedness of \mathcal{M}^P_{γ} under much weaker assumptions on γ .

Corollary 1.2. For a polynomial $P: \mathbb{R} \to \mathbb{R}$ with degree d and a convex extension γ on \mathbb{R}^1 passing through the origin with its derivative γ' satisfying property (1.1), there exists a constant $C_{\omega,d}$ independent of the coefficients of P such that $\|\mathcal{M}_{\gamma}^P\|_{L^p(\mathbb{R}^2)\to L^p(\mathbb{R}^2)} \leq C_{\omega,d,p}$ for 1 .

Note that the infinitesimal doubling property implies the bounded doubling property. For more details, refer to [4].

1.1. Historical background

Zygmund conjecture is a long-standing open problem in harmonic analysis. This question inquires whether the Lipschitz regularity of u is sufficient to guarantee any non-trivial L^p bounds for the maximal operator:

$$\mathcal{M}_{\gamma}^{u}(f)(x_1, x_2) := \sup_{r>0} \frac{1}{2r} \int_{-r}^{r} |f(x_1 - t, x_2 - u(x_1, x_2)\gamma(t))| dt,$$

where $\gamma(t)=t$. Since the discovery of the Besicovitch set in the 1920s, it has been shown that the conjecture is false when the function u is only Hölder continuous C^{α} with $\alpha < 1$. However, the problem remains open under the Lipschitz assumption for u. In the 1970s, Stein and Wainger [24] proposed an analogous conjecture for the Hilbert transform. Regarding the Hilbert transforms along vector fields, Lacey and Li [18] made a significant progress regarding the regularity of u in 2006, using time–frequency analysis tools. Later, Bateman and Thiele [2] obtained the L^p estimates for the Hilbert transform along a one-variable vector field. Their proof relied on the commutation relation between the Hilbert transform and Littlewood–Paley projection operators, which cannot be directly applied to the maximal operator \mathcal{M}^m_{γ} due to its sub-linearity. Therefore, the problem for maximal operators remains open. For additional discussion on Stein's conjecture, we recommend references [1, 2, 17]. In the study of maximal operators, Bourgain [5] demonstrated the L^2 boundedness of \mathcal{M}^u_t for real analytic functions u. In 1999, Carbery, Seeger, Wainger and Wright [8] examined the maximal operators \mathcal{M}^m_t along one variable vector field. One of the authors in this paper further extended this result in [16].

Recently, in [13], Guo et al. investigated the L^p boundedness of \mathcal{M}^u_{γ} under the Lipschitz assumption for u and homogeneous curve $\gamma(t) = t^n$ for n > 1. Later, Liu, Song and Yu [20] extended the results to more general curves with the condition $\left| \frac{t\gamma''(t)}{\gamma'(t)} \right| \sim 1$. A crucial tool used in the proofs of both papers was the local smoothing estimate, which was established in [3, 21]. For more history, we recommend the study [19] by Victor Lie, which presents a unified approach and includes a more general view of this topic as well as problems related to the concept of non-zero curvature.

1.2. Notation

Let $\psi: \mathbb{R} \to \mathbb{R}$ be a non-negative C^{∞} function supported on [-2,2] such that $\psi \equiv 1$ on [-1,1]. Define $\varphi(t) = \psi(t) - \psi(2t)$ and $\varphi_l(t) = \frac{1}{2^l} \varphi(\frac{t}{2^l})$. Also, define $\psi^c(t) = 1 - \psi(t)$. Note that $\sum_{l \in \mathbb{Z}} \varphi\left(\frac{t}{2^l}\right) = 1$ for $t \neq 0$ and $\operatorname{supp}(\varphi) \subset \left\{\frac{1}{2} \leqslant |x| \leqslant 2\right\}$. We define the Littlewood–Paley projection $\mathcal{L}_s f$ as $\widehat{\mathcal{L}_s f}(\xi) := \widehat{f}(\xi) \varphi\left(\frac{\xi_1}{2^s}\right)$. We shall use the notation $A \lesssim_d B$ when $A \leqslant C_d B$ with a constant $C_d > 0$ depending on the parameter d. Moreover, we write $A \sim_d B$, if $A \lesssim_d B$ and $B \lesssim_d A$. Let M_{HL} be the Hardy–Littlewood maximal operator and M^{str} be the strong maximal operator. Let χ_A be a characteristic function, which is equal to 1 on A and otherwise 0. Denote the dyadic pieces of intervals by

$$I_i = [2^{i-1}, 2^{i+1}] \cup [-2^{i+1}, -2^{i-1}],$$

 $\tilde{I}_i = [2^{i-2}, 2^{i+2}] \cup [-2^{i+2}, -2^{i-2}],$

and the corresponding strips by $S_i = I_i \times \mathbb{R}$, $\tilde{S}_i = \tilde{I}_i \times \mathbb{R}$.

2. Reduction

In this section, we present three propositions that have broad applicability. Let $\Gamma: \mathbb{R}^2 \to \mathbb{R}$ be a measurable function and define a general class of operators

$$T_j f(x_1, x_2) := \int f(x_1 - t, x_2 - \Gamma(x_1, t)) \varphi_j(t) dt.$$

Proposition 2.1. Define $T_j^{glo}f(x_1,x_2) := \psi_{j+4}^c(x_1)T_jf(x_1,x_2)$. Under the measurability assumption of Γ , we have

$$\|\sup_{i}|T_{j}-T_{j}^{glo}|\|_{p}\leqslant C_{p},$$

for 1 .

Proof. Denote that $\tilde{\varphi}(\frac{x}{2^j}) = \sum_{k=-3}^4 \varphi(\frac{x}{2^{j+k}})$, which has a localized support $|x| \sim 2^j$. Let T_j^{loc} and T_j^{mid} be operator, defined by

$$T_j^{\text{loc}} f(x_1, x_2) := \psi_{j-4}(x_1) T_j f(x_1, x_2),$$

$$T_j^{\text{mid}} f(x_1, x_2) := \tilde{\varphi}\left(\frac{x_1}{2^j}\right) T_j f(x_1, x_2).$$

Then, we can decompose $T_j - T_j^{\text{glo}}$ into $T_j^{\text{mid}} + T_j^{\text{loc}}$. For the operator T_j^{mid} , replace the sup as ℓ^p sum. Then, we have

$$\left\|\sup_{j\in\mathbb{Z}}|T_j^{\mathrm{mid}}f|\right\|_{L^p(\mathbb{R}^2)}\leqslant \bigg(\sum_{j\in\mathbb{Z}}\left\|T_j^{\mathrm{mid}}f\right\|_{L^p(\mathbb{R}^2)}^p\bigg)^{\frac{1}{p}}.$$

Denote $F(x_1) = ||f(x_1, \cdot)||_{L^p(dx_2)}$. By applying Minkowski's integral inequality and a change of variables, we get the pointwise inequality:

$$||T_{j}^{\text{mid}}f(x_{1},\cdot)||_{L^{p}(dx_{2})} \leq \int \left(\int |f(x_{1}-t,x_{2}-\Gamma(x_{1},t))|^{p}dx_{2}\right)^{\frac{1}{p}}\varphi_{j}(t)dt$$

$$\leq \int F(x_{1}-t)\varphi_{j}(t)dt \lesssim_{\varphi} M_{\text{HL}}F(x_{1}),$$
(2.1)

where the second inequality follows form the fact that $\Gamma(x_1,t)$ is independent of x_2 . By (2.1) and the L^p boundedness of $M_{\rm HL}$, we obtain

$$\left(\sum_{j\in\mathbb{Z}}\|T_j^{\mathrm{mid}}f\|_{L^p(\mathbb{R}^2)}^p\right)^{\frac{1}{p}}\leqslant \left(\sum_j\int \tilde{\varphi}\bigg(\frac{x_1}{2^j}\bigg)|M_{\mathrm{HL}}F(x_1)|^pdx_1\right)^{\frac{1}{p}}\lesssim \|f\|_p.$$

which implies the L^p boundedness of $f \mapsto \sup_j |T_j^{\text{mid}} f|$ for p > 1. For the operator $T_j^{\text{loc}} f$, we observe the localization principle:

$$T_j^{\text{loc}} f(x_1, x_2) = T_j^{\text{loc}}(\chi_{S_j} f)(x_1, x_2).$$

By combining this with $\sup_{j\in\mathbb{Z}}\|T_j\|_p\leqslant C,$ we get the following estimate:

$$\left\|\sup_{j\in\mathbb{Z}}|T_j^{\mathrm{loc}}f|\right\|_p^p = \sum_{j\in\mathbb{Z}}\int |T_j^{\mathrm{loc}}\chi_{S_j}f(x_1,x_2)|^p\mathrm{d}x \leqslant C\sum_{j\in\mathbb{Z}}\int |\chi_{S_j}f(x_1,x_2)|^p\mathrm{d}x \lesssim \|f\|_p^p.$$

Therefore, we prove $\|\sup_j |T_j - T_j^{\text{glo}}|\|_p \leqslant C_p$ for 1 .

By Proposition 2.1, in order to prove Theorem 1, it suffices to consider the maximal operator defined as

$$f \mapsto \sup_{i} |T_{j}^{\text{glo}}f|$$
, where $T_{j}^{\text{glo}} = \psi_{j+4}^{c}T_{j}$.

Proposition 2.2 (Space Reduction). Let $T_j^{\ell} f(x_1, x_2) := \chi_{S_{\ell}}(x_1, x_2) T_j^{glo} f(x_1, x_2)$. Then, the following inequality holds:

$$\|\sup_{j\in\mathbb{Z}}|T_j^{glo}|\|_{L^p\to L^p}\lesssim \sup_{\ell\in\mathbb{Z}}\|\sup_{j\in\mathbb{Z}}|T_j^{\ell}|\|_{L^p\to L^p}.$$
 (2.2)

Proof. One can obtain (2.2) from the localization $T_j^{\ell}f(x_1,x_2)=T_j^{\ell}(\chi_{\tilde{S_\ell}}f)(x_1,x_2)$. \square

Combining Proposition 2.1 and Proposition 2.2, we may restrict our attention to the maximal operator defined by $f \mapsto \sup_i |T_i^{\ell}|$, supported on $|x_1| \sim 2^{\ell} \gg 2^j$.

Proposition 2.3 (Frequency Reduction). Suppose $\Gamma: \mathbb{R} \times [0, \infty) \to \mathbb{R}$ is measurable on \mathbb{R}^2 with $\Gamma(x_1, 0) = 0$ satisfying the following conditions:

For every $x_2 \in \mathbb{R}$, $x_1 \mapsto \Gamma(x_1, x_2)$ is measurable function. For every $x_1 \in \mathbb{R}$, $x_2 \mapsto \Gamma(x_1, x_2)$ is convex increasing function.

Let $\widehat{\mathcal{L}_{j}^{low}f}(\xi_{1},\xi_{2}):=\widehat{f}(\xi_{1},\xi_{2})\psi(2^{j}\xi_{1})$ for $f\in\mathcal{S}(\mathbb{R}^{2}).$ Then, there exists a constant C independent of Γ such that

$$\sup_{j\in\mathbb{Z}} |T_j(\mathcal{L}_j^{low}f)(x_1, x_2)| \leqslant CM^2M^1f(x_1, x_2),$$

where M^i is the Hardy-Littlewood maximal operator taken in the ith variable.

Proof. For $g \in \mathcal{S}(\mathbb{R}^1)$ and $2^{j-1} \leqslant |t| \leqslant 2^{j+1}$, we have

$$\int g(x_1 - t - s) \frac{1}{2^j} \check{\psi} \left(\frac{s}{2^j}\right) ds \lesssim_{\psi} M_{\mathrm{HL}} g(x_1),$$

$$\frac{1}{r} \int_0^r g(x_2 - \Gamma(x_1, t)) dt \leqslant 2M_{\mathrm{HL}} f(x_2 - \Gamma(x_1, 0)) = 2M_{\mathrm{HL}} g(x_2),$$

where the second inequality follows form the convexity of $t \mapsto \Gamma(x_1, t)$. For more details, we refer to Lemma 2 in [12] and [6]. Since $T_j(\mathcal{L}_j^{\text{low}} f)(x_1, x_2)$ is a composition of the above two functions, we obtain the desired pointwise inequality.

Set $\widehat{\mathcal{L}_{j}^{\text{high}}}f(\xi_{1},\xi_{2})=\widehat{f}(\xi_{1},\xi_{2})\psi^{c}(2^{j}\xi_{1})$. Following Proposition 2.3, it is enough to show the estimate $\|\sup_{i}|T_{i}^{\ell}(\mathcal{L}_{i}^{\text{high}}f)|\|_{p}\lesssim \|f\|_{p}$.

3. Proof of main theorem 1

Following the reduction section, we only consider $\mathcal{T}_j^{\ell}(\mathcal{L}_j^{\text{high}}f)$, which is given by

$$\mathcal{T}_j^{\ell}(\mathcal{L}_j^{\text{high}} f)(x_1, x_2) := \psi_{j+4}^c(x_1) \chi_{S_{\ell}}(x) \int \mathcal{L}_j^{\text{high}} f(x_1 - t, x_2 - m(x_1) \gamma(t)) \varphi_j(t) dt,$$

supported on $|x_1| \sim 2^{\ell} \gg 2^j$.

3.1. Main difficulty

In a view of pseudo-differential operator, we write

$$\mathcal{T}_j^{\ell}(\mathcal{L}_j^{\text{high}} f)(x_1, x_2) = \int e^{2\pi i (x_1 \xi_1 + x_2 \xi_2)} b_j(x_1, \xi_1, \xi_2) \hat{f}(\xi_1, \xi_2) d\xi_1 d\xi_2,$$

with the symbol $b_j(x_1, \xi_1, \xi_2)$ given by

$$b_j(x_1, \xi_1, \xi_2) = \chi_{I_\ell}(x_1)\psi^c(2^j\xi_1) \int e^{-2\pi i(2^jt\xi_1 + m(x_1)\gamma(2^jt)\xi_2)}\varphi(t)dt.$$

When analysing an oscillatory integral with a phase $t\xi_1 + m(x_1)\gamma(t)\xi_2$, it is usual to decompose each frequency variable ξ_1 and ξ_2 with dyadic scale. Specifically, in the case of a homogeneous curve, we can even estimate the asymptotic behaviour of oscillatory integral. However, under the flat condition (1.1), this usual approach does not work, as there are no comparablity condition $\left|\frac{\gamma'(2t)}{\gamma'(t)}\right| \sim 1$ and a finite type assumption for the curve. To overcome this situation, we will perform an angular decomposition in [11] for a function f and utilize the method in one of the author's paper [15].

3.2. Angular decomposition

Set

$$A_j(\xi_1, \xi_2) := \psi\left(\frac{\xi_1}{\xi_2 \gamma'(2^{j+1})}\right) - \psi\left(\frac{\xi_1}{\xi_2 \gamma'(2^{j-1})}\right)$$

and

$$\widehat{\mathcal{A}_{j}f}(\xi_{1},\xi_{2}) := \widehat{f}(\xi_{1},\xi_{2})A_{j}(\xi_{1},\xi_{2}),
\mathcal{A}_{i}^{c}f(x_{1},x_{2}) := f(x_{1},x_{2}) - \mathcal{A}_{i}f(x_{1},x_{2}).$$

Note that we have the following Littlewood–Paley estimate in [11]:

$$\left\| \left(\sum_{j \in \mathbb{Z}} |\mathcal{A}_j f|^2 \right)^{\frac{1}{2}} \right\|_{L^p(\mathbb{R}^2)} \lesssim \|f\|_{L^p(\mathbb{R}^2)} \text{ for } 1$$

We have $\mathcal{A}_j \mathcal{L}_j^{\text{high}} f(x) = \mathcal{A}_j f(x) - \mathcal{L}_j^{\text{low}} \mathcal{A}_j f(x)$. Then, it gives

$$|\mathcal{A}_j \mathcal{L}_j^{\text{high}} f(x_1, x_2)| \lesssim |\mathcal{A}_j f(x_1, x_2)| + |M^1 \mathcal{A}_j f(x_1, x_2)|$$

from the pointwise estimate $|\mathcal{L}_j^{\text{low}} f(x_1, x_2)| \lesssim M^1 f(x_1, x_2)$. By the vector valued estimate for Hardy–Littlewood maximal operator, the following estimate holds:

$$\left\| \left(\sum_{j \in \mathbb{Z}} |\mathcal{A}_j \mathcal{L}_j^{\text{high}} f|^2 \right)^{\frac{1}{2}} \right\|_{L^p(\mathbb{R}^2)} \lesssim \|f\|_{L^p(\mathbb{R}^2)} \text{ for } 1 (3.1)$$

We split $\mathcal{T}_j^{\ell}(\mathcal{L}_j^{\text{high}}f)$ into two terms:

$$\mathcal{T}_j^\ell(\mathcal{L}_j^{\mathrm{high}}f) = \mathcal{T}_j^\ell(\mathcal{A}_j\mathcal{L}_j^{\mathrm{high}}f) + \mathcal{T}_j^\ell(\mathcal{A}_j^c\mathcal{L}_j^{\mathrm{high}}f).$$

Then, we shall prove the following:

$$\left\| \sup_{j \in \mathbb{Z}} |\mathcal{T}_j^{\ell}(\mathcal{A}_j \mathcal{L}_j^{\text{high}} f)| \right\|_{L^p(\mathbb{R}^2)} \lesssim \|f\|_{L^p(\mathbb{R}^2)}, \tag{3.2}$$

$$\left\| \sup_{j \in \mathbb{Z}} |\mathcal{T}_j^{\ell}(\mathcal{A}_j^c \mathcal{L}_j^{\text{high}} f)| \right\|_{L^p(\mathbb{R}^2)} \lesssim \|f\|_{L^p(\mathbb{R}^2)}. \tag{3.3}$$

We can obtain the estimate (3.2) for p=2 from the following process:

$$\left\| \left(\sum_{j \in \mathbb{Z}} |\mathcal{T}_j^{\ell}(\mathcal{A}_j \mathcal{L}_j^{\text{high}} f)|^2 \right)^{\frac{1}{2}} \right\|_{L^p(\mathbb{R}^2)} \lesssim \left\| \left(\sum_{j \in \mathbb{Z}} |\mathcal{A}_j \mathcal{L}_j^{\text{high}} f|^2 \right)^{\frac{1}{2}} \right\|_{L^p(\mathbb{R}^2)} \lesssim \|f\|_p. \tag{3.4}$$

Furthermore, the range of p can be extended by a bootstrap argument detailed in Section 3.4. In the following proposition, we focus particularly on the term $\mathcal{T}_j^{\ell}(\mathcal{A}_j^c \mathcal{L}_j^{\text{high}} f)$ and prove the estimate (3.3). Furthermore, the range of p can be extended by a bootstrap argument detailed in Section 3.4. In the following proposition, we focus particularly on the term $\mathcal{T}_j^{\ell}(\mathcal{A}_j^c \mathcal{L}_j^{\text{high}} f)$ and prove the estimate (3.3).

Proposition 3.1. Define the Littlewood-Paley projection $\widehat{\mathcal{L}_j f}(\xi_1, \xi_2) := \widehat{f}(\xi_1, \xi_2)$ $\varphi(\frac{\xi_1}{2j})$ so that $\mathcal{T}_j^{\ell}(\mathcal{A}_j^c \mathcal{L}_j^{high} f) = \sum_{n=0}^{\infty} \mathcal{T}_j^{\ell}(\mathcal{A}_j^c \mathcal{L}_{n-j} f)$. For $f \in L^p(\mathbb{R}^2)$, It holds that

$$\left\| \sup_{j \in \mathbb{Z}} |\mathcal{T}_j^{\ell}(\mathcal{A}_j^c \mathcal{L}_{n-j} f)| \right\|_{L^p(\mathbb{R}^2)} \le C 2^{-\varepsilon_p n} \|f\|_{L^p(\mathbb{R}^2)}, \tag{3.5}$$

for $1 and <math>n \ge 0$.

Note that we need the following:

Lemma 3.1 (Reduction to one variable operator). Consider the two operators \mathcal{R}_1 and \mathcal{R}_2^{λ} , given by

$$\mathcal{R}_1 f(x_1, x_2) := \int_{\mathbb{R}^2} e^{2\pi i (x_1 \xi_1 + x_2 \xi_2)} a(x_1, \xi_1, \xi_2) \hat{f}(\xi_1, \xi_2) d\xi_1 d\xi_2,$$

$$\mathcal{R}_2^{\lambda} g(x_1) := \int_{\mathbb{R}} e^{2\pi i x_1 \xi_1} a(x_1, \xi_1, \lambda) \hat{g}(\xi_1) d\xi_1.$$

for $f \in \mathcal{S}(\mathbb{R}^2)$ and $g \in \mathcal{S}(\mathbb{R})$. Then, $\|\mathcal{R}_1\|_{L^2(\mathbb{R}^2) \to L^2(\mathbb{R}^2)} \leqslant \sup_{\lambda \in \mathbb{R}} \|\mathcal{R}_2^{\lambda}\|_{L^2(\mathbb{R}) \to L^2(\mathbb{R})}$.

Proof of Lemma 3.1 Consider a function $f \in \mathcal{S}(\mathbb{R}^2)$ with $||f||_{L^2(\mathbb{R}^2)} = 1$. Denote $\mathcal{F}_2 f(x_1, \xi_2) = g_{\xi_2}(x_1)$. By Plancheral's theorem with respect to x_2 , we get

$$\|\mathcal{R}_{1}f\|_{2}^{2} = \int \left| \int_{\mathbb{R}^{2}} e^{2\pi i (x_{1}\xi_{1} + x_{2}\xi_{2})} a(x_{1}, \xi_{1}, \xi_{2}) \hat{f}(\xi_{1}, \xi_{2}) d\xi_{1} d\xi_{2} \right|^{2} dx_{1} dx_{2}$$

$$= \int \left| \int_{\mathbb{R}} e^{2\pi i x_{2} \lambda} \mathcal{R}_{2}^{\lambda} g_{\lambda}(x_{1}) d\lambda \right|^{2} dx_{2} dx_{1}$$

$$= \int |\mathcal{R}_{2}^{\lambda} g_{\lambda}(x_{1})|^{2} dx_{1} d\lambda \leqslant \sup_{\lambda \in \mathbb{R}} \|\mathcal{R}_{2}^{\lambda}\|_{L^{2}(\mathbb{R}) \to L^{2}(\mathbb{R})}^{2} \int |g_{\lambda}\|_{L^{2}(\mathbb{R})}^{2} d\lambda.$$

which yields the desired estimate.

3.3. Proof of Proposition 3.1

We shall prove $\|\mathcal{T}_j^{\ell}\mathcal{L}_{n-j}\mathcal{A}_j^c\|_{L^2(\mathbb{R}^2)\to L^2(\mathbb{R}^2)} \lesssim 2^{-\frac{n}{2}}$, which implies

$$\left\| \sup_{j} |\mathcal{T}_{j}^{\ell}(\mathcal{L}_{n-j}\mathcal{A}_{j}^{c}f)| \right\|_{2}^{2} \lesssim \sum_{j} \|\mathcal{T}_{j}^{\ell}\mathcal{L}_{n-j}\mathcal{A}_{j}^{c}(\mathcal{L}_{n-j}f)\|_{2}^{2}$$
$$\lesssim 2^{-n} \|\sum_{j} \mathcal{L}_{n-j}f\|_{2}^{2} = 2^{-n} \|f\|_{2}^{2}.$$

We write $\mathcal{T}_{j}^{\ell}\mathcal{L}_{n-j}\mathcal{A}_{j}^{c}f$ as

$$\mathcal{T}_{j}^{\ell} \mathcal{L}_{n-j} \mathcal{A}_{j}^{c} f(x_{1}, x_{2}) = \int e^{2\pi i (x_{1}\xi_{1} + x_{2}\xi_{2})} a_{j}(x_{1}, \xi_{1}, \xi_{2}) \hat{f}(\xi_{1}, \xi_{2}) d\xi_{1} d\xi_{2},$$

with symbol $a_j(x_1, \xi_1, \xi_2)$ given by

$$\chi_{I_{\ell}}(x_1)\varphi\bigg(\frac{\xi_1}{2^{n-j}}\bigg)A_j^c(\xi_1,\xi_2)\int_{\mathbb{R}} \mathrm{e}^{-2\pi i (2^j t \xi_1 + m(x_1)\gamma(2^j t) \xi_2)}\varphi(t)\mathrm{d}t.$$

By Lemma 3.1, to prove (3.5), it suffices to show

$$\|\mathcal{R}_j^{\lambda}\|_{L^2(\mathbb{R})\to L^2(\mathbb{R})} \leqslant c_1 2^{-c_2 n},$$

where c_1 and c_2 are constants independent of j and λ and $\mathcal{R}_j^{\lambda}g(x) := \int e^{2\pi i x \xi} a_j(x,\xi,\lambda) \hat{g}(\xi) d\xi$ for $g \in \mathcal{S}(\mathbb{R})$. Note that $x \in \mathbb{R}$ and $\xi \in \mathbb{R}$. Hereafter, we omit j and λ in operators for simplicity. Observe that we write \mathcal{R} with kernel K

$$\mathcal{R}g(x) = \int e^{2\pi i x \xi} a_j(x, \xi, \lambda) \left(\int e^{-2\pi i y \xi} g(y) dy \right) d\xi$$
$$= \int K(x, y) g(y) dy,$$

where

$$K(x,y) := \chi_{I_\ell}(x) \int \mathrm{e}^{-2\pi i \lambda m(x) \gamma(2^j t)} \bigg(\int \mathrm{e}^{2\pi i (x-2^j t-y)\xi} \varphi\bigg(\frac{\xi_1}{2^{n-j}}\bigg) \widehat{A^c_j}(\xi,\lambda) d\xi \bigg) \varphi(t) \mathrm{d}t.$$

Recall that $|x| \sim 2^{\ell} \gg 2^{j}$ and denote

$$Q_k := \{ x \in \mathbb{R} : 2^{\ell-1} + k \cdot 2^j \leqslant |x| < 2^{\ell-1} + (k+1) \cdot 2^j \},$$

$$Q'_k := \{ x \in \mathbb{R} : 2^{\ell-1} + (k-4) \cdot 2^j \leqslant |x| < 2^{\ell-1} + (k+5) \cdot 2^j \},$$

for each integer k. We define the functions

$$G_k(x,y) := K(x,y)\chi_{Q_k}(x)\chi_{Q'_k}^c(y),$$

$$B_k(x,y) := K(x,y)\chi_{Q_k}(x)\chi_{Q'_k}(y)$$

and use them to split the operator \mathcal{R} as

$$\mathcal{R}g(x) = \sum_{k=0}^{3 \cdot 2^{\ell-j-1} - 1} \left(\int G_k(x, y) g(y) dy + \int B_k(x, y) g(y) dy \right)$$
$$:= \sum_{k=0}^{3 \cdot 2^{\ell-j-1} - 1} \left(\mathcal{G}_k g(x) + \mathcal{B}_k g(x) \right).$$

Then, we shall prove the following:

Lemma 3.2. There exist constants C_1 and C_2 independent of j, ℓ and λ such that

$$\left\| \sum_{k=0}^{3 \cdot 2^{\ell-j-1} - 1} \mathcal{G}_k \right\|_{L^2(\mathbb{R}) \to L^2(\mathbb{R})} \leqslant C_1 2^{-n}, \tag{3.6}$$

$$\left\| \sum_{k=0}^{3 \cdot 2^{\ell-j-1} - 1} \mathcal{B}_k \right\|_{L^2(\mathbb{R}) \to L^2(\mathbb{R})} \leqslant C_2 2^{-\frac{n}{2}}. \tag{3.7}$$

Proof of (3.6). Recall that

$$K(x,y) := \int \mathrm{e}^{-2\pi i \lambda m(x) \gamma(2^j t)} \bigg(\int \mathrm{e}^{2\pi i (x-2^j t-y)\xi} \varphi\bigg(\frac{\xi}{2^{n-j}}\bigg) A_j^c(\xi,\lambda) \mathrm{d}\xi \bigg) \varphi(t) \mathrm{d}t.$$

We build our proof upon the following observation:

$$|G_k(x,y)| \lesssim \frac{2^j}{2^n|x-y|^2} \chi_{Q_k}(x) \psi^c \left(\frac{|x-y|}{2^j}\right). \tag{3.8}$$

Proof of (3.8). Note that $supp(\psi^c) \subset \{|x| > \frac{1}{2}\}$. We utilize the integration by parts twice with respect to ξ . Then, we get

$$\left| \int e^{2\pi i(x-2^{j}t-y)\xi} \varphi_{n-j}(\xi) A_{j}^{c}(\xi,\lambda) d\xi \right| \lesssim \frac{1}{(x-2^{j}t-y)^{2}} \int \left| \partial_{\xi}^{2} \left[\varphi\left(\frac{\xi}{2^{n-j}}\right) A_{j}^{c}(\xi,\lambda) \right] \right| d\xi$$
$$\lesssim \frac{2^{j}}{2^{n}} \cdot \frac{1}{(x-2^{j}t-y)^{2}}.$$

Since $|x-2^jt-y| \gtrsim |x-y|$ on $x \in Q_k$, $y \in \mathbb{R} \setminus Q'_k$ for $\frac{1}{2} \leqslant t \leqslant 2$, we get the desired estimate.

We shall deduce the following estimate:

$$\sum_{k=0}^{3 \cdot 2^{\ell-j-1} - 1} \left(\int |G_k(x, y)| dx + \int |G_k(x, y)| dy \right) \lesssim 2^{-n}.$$
 (3.9)

Proof of (3.9). By estimate (3.8) and the disjointness of Q_k s, we have

$$\sum_{k=0}^{3 \cdot 2^{\ell-j-1} - 1} \int |G_k(x, y)| dx \lesssim \frac{2^j}{2^n} \sum_k \int_{|x-y| > 2^j} \frac{\chi_{Q_k}(x)}{|x-y|^2} dx$$
$$\lesssim \frac{2^j}{2^n} \cdot \int_{|x| > 2^j} \frac{1}{|x|^2} dx = 2^{-n}.$$

and the second estimate also holds by the similar way.

By Schur's lemma with the estimate (3.9), we finish the proof of (3.6).

Proof of (3.7). For the operator \mathcal{B}_k , denote $g_k(y) = \chi_{Q'_k}(y)g(y)$. By the localization principle, we have

$$\left\| \sum_{k=0}^{3 \cdot 2^{\ell-j-1} - 1} \mathcal{B}_k \right\|_{L^2 \to L^2} \lesssim \sup_{k \in \mathbb{Z}} \left(\sup_{\|g_k\|_2 = 1} \|\mathcal{B}_k g_k\|_2 \right). \tag{3.10}$$

To estimate $\|\mathcal{B}_k g_k\|_2$, we write it with the symbol expression again, which is

$$\mathcal{B}_k g_k(x) = \int e^{2\pi i x \xi} \chi_{Q_k}(x) a_j(x, \xi, \lambda) \widehat{g}_k(\xi) d\xi,$$

where

$$a_j(x,\xi,\lambda) = \chi_{I_{\ell}}(x)\varphi\left(\frac{\xi}{2^{n-j}}\right)A_j^c(\xi,\lambda)\int e^{-2\pi i(2^jt\xi + m(x_1)\gamma(2^jt)\lambda)}\varphi(t)dt,$$

Observe that

$$|a_j(x,\xi,\lambda)| \lesssim \frac{1}{2^j|\xi|}. (3.11)$$

Proof of (3.11). From the support of $A_j^c(\xi,\lambda)$, we have $|\frac{\xi}{\lambda}| \sim |\gamma'(2^j t)|$ for $|t| \sim 1$. This enables us to apply the integration by parts with respect to variable t. Then, we get

$$\left| \int e^{-2\pi i(\xi 2^{j}t + \lambda m(x)\gamma(2^{j}t))} \varphi(t) dt \right|$$

$$\lesssim \left| \int e^{-2\pi i(\xi 2^{j}t + \lambda m(x)\gamma(2^{j}t))} \partial_{t} \left(\frac{\varphi(t)}{2^{j}(\xi + \lambda m(x)\gamma'(2^{j}t))} \right) dt \right|$$

$$\lesssim \int \frac{|2^{j}\lambda m(x)2^{j}\gamma''(2^{j}t)|}{\{2^{j}(\xi + \lambda m(x)\gamma'(2^{j}t))\}^{2}} \cdot \varphi(t) dt + \int \frac{|\varphi'(t)|}{|2^{j}(\xi + \lambda m(x)\gamma'(2^{j}t))|} dt$$

$$\lesssim \int \frac{|\varphi'(t)|}{|2^{j}(\xi + \lambda m(x)\gamma'(2^{j}t))|} dt \lesssim \frac{1}{2^{j}|\xi|}.$$

Then, we get the desired estimate.

From the observation (3.11), it is easy to check

$$\int |\chi_{Q_k}(x)a_j(x,\xi,\lambda)| dx \lesssim 2^{-(n-j)},$$
$$\int |a_j(x,\xi,\lambda)| d\xi \lesssim 2^{-j}.$$

By Schur's lemma with the above estimate and (3.10), we obtain (3.7) in Lemma 3.2.

3.4. A bootstrap argument for the proof of Theorem 1

In the spirit of Nagel, Stein and Wainger [22], we claim that

Lemma 3.3. If $\|\sup_{j} |\mathcal{T}_{j}^{\ell} f|\|_{L^{p}(\mathbb{R}^{2})} \leqslant C_{1} \|f\|_{L^{p}(\mathbb{R}^{2})}$ and $\|\mathcal{T}_{j}^{\ell} f\|_{L^{r}(\mathbb{R}^{2})} \leqslant C_{2} \|f\|_{L^{r}(\mathbb{R}^{2})}$ for $1 < r < \infty$,

$$\left\| \left(\sum_{j} |\mathcal{T}_{j}^{\ell} f_{j}|^{2} \right)^{\frac{1}{2}} \right\|_{L^{q}(\mathbb{R}^{2})} \leq (C_{1} C_{2})^{\varepsilon_{q}} \left\| \left(\sum_{j} |f_{j}|^{2} \right)^{\frac{1}{2}} \right\|_{L^{q}(\mathbb{R}^{2})}$$
(3.12)

holds for all q with $\frac{1}{q} < \frac{1}{2}(1 + \frac{1}{p})$.

Proof. Consider vector valued functions $\mathfrak{f} = \{f_j\}$ and $\mathfrak{T}\mathfrak{f} = \{\mathcal{T}_j^{\ell}f_j\}$. Since the operator \mathcal{A}_j is a positive, it follows that $\|\mathfrak{T}\mathfrak{f}\|_{L^p(\mathbb{R}^2,l^\infty)} \lesssim \|\mathfrak{f}\|_{L^p(\mathbb{R}^2,l^\infty)}$ and $\|\mathfrak{T}\mathfrak{f}\|_{L^r(\mathbb{R}^2,l^r)} \lesssim \|\mathfrak{f}\|_{L^p(\mathbb{R}^2,l^r)}$ for r near 1. Applying the Riesz–Thorin interpolation for vector-valued function, we get the conclusion.

Combining (3.4), Proposition 2.3 and Proposition 3.1, we obtain the estimate

$$\left\| \sup_{j \in \mathbb{Z}} |\mathcal{T}_j^{\ell} f| \right\|_p \leqslant C_p \|f\|_p \tag{3.13}$$

for p = 2. Moreover, we have

$$\|\mathcal{T}_i^\ell f\|_r \leqslant \|f\|_r \tag{3.14}$$

for r > 1. By using Lemma 3.3 with (3.13) and (3.14), we obtain (3.12) for $\frac{4}{3} . Then, by setting <math>\{f_j\}_{j\in\mathbb{Z}} = \{\mathcal{A}_j^c \mathcal{L}_{n-j} f\}_{j\in\mathbb{Z}}$ in (3.12) and applying interpolation with the decay estimate (3.5), we obtain Proposition 3.1 for $\frac{4}{3} . To treat the bad part in (3.4), set <math>\{f_j\}_{j\in\mathbb{Z}} = \{\mathcal{A}_j \mathcal{L}_j^{\text{high}} f\}_{j\in\mathbb{Z}}$. Then, we apply Lemma 3.3 again to get the first inequality of (3.4), which implies (3.13) for $\frac{4}{3} . We can iteratively apply Lemma 3.3 with a wider range of <math>p$ until we get (3.13) for all p > 1. With this, we complete the proof of Main Theorem 1.

4. Application

In this section, we shall prove Corollary 1.1 and Corollary 1.2.

4.1. Proof of Corollary 1.1

For a measurable function $m: \mathbb{R} \to \mathbb{R}$, denote that

$$S_r^m f(x_1, x_2) = \frac{1}{2r} \int_{-r}^r f(x_1 - t, x_2 - m(x_1)\gamma(t)) dt,$$

$$\tilde{E}^k = \{ (x_1, x_2) \in \mathbb{R}^2 : 2^k \le m(x_1) \le 2^{k+1} \}.$$

By Main Theorem 1 and the second part of Remark 1.1, one can easily check that

$$\|\sup_{r>0} |\chi_{\tilde{E}^k}(\cdot) S_r^m f|\|_p \lesssim \|f\|_p. \tag{4.1}$$

To prove Corollary 1.1, it suffices to show that for each $\alpha > 0$ and $k \in \mathbb{Z}$, the set

$$E_{\alpha}^{k} = \left\{ (x_{1}, x_{2}) \in \tilde{E}^{k} : \limsup_{r \to 0} |S_{r}^{m} f(x_{1}, x_{2}) - f(x_{1}, x_{2})| > 2\alpha \right\}$$

has measure zero. Consider a continuous function g_{ε} of compact support with $||f - g_{\varepsilon}||_p < \varepsilon$. One can see that $\limsup_{r \to 0} |S_r^m f(x_1, x_2) - f(x_1, x_2)| \leq \mathcal{M}_{\gamma}^m (f - g_{\varepsilon})(x) + |g_{\varepsilon}(x) - f(x)|$. For F_{α}^k and G_{α}^k , defined by

$$F_{\alpha}^{k} = \{ x \in E_{\alpha}^{k} : \mathcal{M}_{\gamma}^{m} (f - g_{\varepsilon})(x) > \alpha \},$$

$$G_{\alpha}^{k} = \{ x \in E_{\alpha}^{k} : |f(x) - g_{\varepsilon}(x)| > \alpha \},$$

we have $m(E_{\alpha}^k) \leq m(F_{\alpha}^k) + m(G_{\alpha}^k)$. Applying estimate (4.1), we get

$$m(F_{\alpha}^k) + m(G_{\alpha}^k) \leqslant \frac{2\varepsilon^p}{\alpha^p}.$$

As $\varepsilon \to 0$, we get the conclusion.

4.2. Proof of Corollary 1.2

In order to achieve our goal of removing the dependence of the coefficients of polynomial P on factors other than its degree, we consider the following lemma.

Lemma 4.1. Given a polynomial P with degree d, we can find a partition $\{s_0, s_1, s_2, \ldots, s_{n(d)}\}$ such that for each interval $[s_i, s_{i+1}]$, there exists a pair (m_i, s_{j_i}) with $1 \leq m_i \leq d$, satisfying

$$\sup_{x \in [s_i, s_{i+1}]} \frac{|P(x)|}{|x - s_{j_i}|^{m_i}} \sim_d \inf_{x \in [s_i, s_{i+1}]} \frac{|P(x)|}{|x - s_{j_i}|^{m_i}}.$$
(4.2)

Proof of Lemma 4.1. We seek to construct a partition $\mathcal{P} = \{s_1, s_2, ..., s_{n(d)}\}$ of $(-\infty, \infty)$ such that, for each subinterval $[s_i, s_{i+1}]$, there exist non-negative integers m_i and j_i satisfying (4.2). Consider a polynomial P(x) represented by the following expression:

$$P(x) = \prod_{i=1}^{d_1} (x - \alpha_i)^{q_i},$$

where α_i are distinct real numbers. Let $U_i = \{x \in \mathbb{R} : |x - \alpha_i| < |x - \alpha_k| \text{ for all } k = 1, \ldots, d_1\}$. For each i and k, let $\mathcal{U}_i^k(1) = \{x \in U_i : 2|x - \alpha_i| \ge |x - \alpha_k|\}$ and $\mathcal{U}_i^k(0) = \{x \in U_i : 2|x - \alpha_i| < |x - \alpha_k|\}$. Then, for any $x \in \mathbb{R}$, there exists an index i such that $x \in U_i$. We define the set-valued function F_i on $\{0,1\}^{d_1}$ by $F_i(a) = \bigcap_{k=1}^{d_1} \mathcal{U}_i^k(a_k)$ for $a = (a_k) \in \{0,1\}^{d_1}$. By using the set-valued function F, we can decompose each set U_i into a finite number of disjoint open intervals, that is,

$$U_i = \mathcal{U}_i^k(0) \cup \mathcal{U}_i^k(1) = \bigcap_{k=1}^{d_1} \left(\mathcal{U}_i^k(0) \cup \mathcal{U}_i^k(1) \right) = \bigcup_{a \in \{0,1\}^{d_1}} F_i(a).$$

For each interval $F_i(a) = [s_i, s_{i+1}]$, we take $m = \sum_{\{k: a_k = 1\}} q_k$ and $s_{j_i} = \alpha_i$. Observe that we have the following inequalities for each fixed i:

$$|x - \alpha_k| \sim |x - \alpha_i|$$
 for all k such that $a_k = 1$, $|x - \alpha_k| \sim |\alpha_i - \alpha_k|$ for all k such that $a_k = 0$.

By using these observation, we have (4.2) on $[s_i, s_{i+1}]$.

To handle a general polynomial, we can employ a similar approach. First, we can express the polynomial as

$$P(x) = \prod_{i=1}^{d_1} (x - \alpha_i)^{q_i} \prod_{i=1}^{d_2} \{(x - \beta_i)^2 + \delta_i^2\}^{r_i}.$$

To treat this, we give one more criterion comparing between $2|x - \alpha_i|$ and $\max\{|x - \beta_k|, |\delta_k|\}$ instead of $|x - \alpha_k|$. Then, the last part can be proved similarly.

Proof of the Corollory 1.2. Given a polynomial P(x), we obtain a partition $\mathcal{P} = \{s_0, s_1, \ldots, s_{n(d)}\}$ from Lemma 4.1. We then decompose $\mathcal{M}_{\gamma}^P f(x)$ as

$$\mathcal{M}_{\gamma}^{P} f(x) = \sum_{i=0}^{n(d)} \chi_{[s_{i}, s_{i+1}]}(x) \mathcal{M}_{i} f(x),$$

where $\mathcal{M}_i f(x) := \chi_{[s_i, s_{i+1}]}(x) \mathcal{M}_{\gamma}^P f(x)$. To complete the proof, it suffices to demonstrate that

$$\|\mathcal{M}_i f\|_p \leqslant C_d \|f\|_p.$$

By Lemma 4.1, there exists a pair (m_i, s) such that the following holds for $[s_i, s_{i+1}]$:

$$\sup_{x_1 \in [s_i, s_{i+1}]} \frac{|P(x_1)|}{|x_1 - s|^{m_i}} \sim_d \inf_{x_1 \in [s_i, s_{i+1}]} \frac{|P(x_1)|}{|x_1 - s|^{m_i}}.$$

Denote that $g_s(x_1, x_2) := f(x_1 + s, x_2)$ and consider the estimate

$$\|\mathcal{M}_i f\|_p^p = \int_{s_i - s}^{s_{i+1} - s} \int_{\mathbb{R}} \left(\sup_{r > 0} \frac{1}{r} \int_0^r |g_s(x_1 - t, x_2 - P(x_1 + s)\gamma(t))| dt \right)^p dx_2 dx_1.$$

By applying Proposition 2.2, we can reduce matters to $|x_1| \sim 2^{\ell}$:

$$\left\| \sup_{j \in \mathbb{Z}} |\mathcal{P}_j^{\ell} g_s| \right\|_p \leqslant C_d \|f\|_p, \tag{4.3}$$

where $\mathcal{P}_{j}^{\ell}g_{s}(x)$ is defined as

$$\mathcal{P}_{j}^{\ell}g_{s}(x) := \chi_{I_{\ell}}(x_{1})\psi_{j+4}^{c}(x_{1}) \int g_{s}(x_{1} - t, x_{2} - P(x_{1} + s)\gamma(t))\varphi_{j}(t)dt,$$

for ℓ such that $[2^{\ell-1}, 2^{\ell+1}] \cap [s_i - s, s_{i+1} - s] \neq \emptyset$. To prove (4.3), it is enough to check the hypothesis of Remark 1.1:

$$\frac{\sup_x |P(x+s)|}{\inf_x |P(x+s)|} \lesssim_d \frac{2^{(\ell+1)m_i}}{2^{(\ell-1)m_i}} \lesssim_d 1 \text{ for } |x| \in [2^{\ell-1}, 2^{\ell+1}],$$

where $1 \leq m_i \leq d$. This implies the conclusion.

Acknowledgements. J. Kim was supported by the Ministry of Education of the Republic of Korea and the National Research Foundation of Korea under grant NRF-2015R1A2A2A01004568. J. Oh was supported by the National Research Foundation of Korea under grant NRF-2020R1F1A1A01048520 and is currently supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (RS-2024-00461749).

References

- (1) M. Bateman, Single annulus L^p estimates for Hilbert transforms along vector fields, Rev. Mat. Iberoam. **29**(3): (2013), 1021–1069.
- (2) M. Bateman and C. Thiele, L^p estimates for the Hilbert transforms along a one-variable vector field, Anal. PDE 6(7): (2013), 1577–1600.
- (3) D. Beltran, J. Hickman and C. D. Sogge, Variable coefficient Wolff-type inequalities and sharp local smoothing estimates for wave equations on manifolds, *Anal. PDE* 13(2): (2020), 403–433.
- (4) J. M. Bennett., Hilbert transforms and maximal functions along variable flat curves, Trans. Amer. Math. Soc. 354(12): (2002), 4871–4892.
- (5) J. Bourgain, A remark on the maximal function associated to an analytic vector field In Analysis at Urbana, Vol. I (Urbana, IL, 1986–1987), Volume 137, pp. 111–132, (Cambridge Univ. Press, Cambridge, 1989) London Math. Soc. Lecture Note Ser..
- (6) A. Córdoba and J. L. Rubio de Francia, Estimates for Wainger's singular integrals along curves, Rev. Mat. Iberoamericana 2(1-2): (1986), 105–117.
- (7) A. Carbery, M. Christ, J. Vance, S. Wainger and D. K. Watson, Operators associated to flat plane curves: L^p estimates via dilation methods, Duke Math. J. 59(3): (1989), 675–700.
- (8) A. Carbery, A. Seeger, S. Wainger and J. Wright, Classes of singular integral operators along variable lines, J. Geom. Anal. 9(4): (1999), 583–605.
- (9) A. Carbery, S. Wainger & J. Wright. Hilbert transforms and maximal functions along variable flat plane curves, The Journal of Fourier Analysis and Applications, (1995), 119–139.
- (10) A. Carbery, S. Wainger and J. Wright, Hilbert transforms and maximal functions associated to flat curves on the Heisenberg group, J. Amer. Math. Soc. 8(1): (1995), 141–179.
- (11) H. Carlsson, M. Christ, A. Córdoba, J. Duoandikoetxea, J. L. Rubio de Francia, J. Vance, S. Wainger and D. Weinberg, L^p estimates for maximal functions and Hilbert transforms along flat convex curves in R², Bull. Amer. Math. Soc. (N.S.) 14(2): (1986), 263–267.
- (12) Y. -K. Cho, S. Hong, J. Kim and C. Woo Yang, Multiparameter singular integrals and maximal operators along flat surfaces, Rev. Mat. Iberoam. 24(3): (2008), 1047–1073.
- (13) S. Guo, J. Hickman, V. Lie and J. Roos, Maximal operators and Hilbert transforms along variable non-flat homogeneous curves, *Proc. Lond. Math. Soc.* (3) 115(1): (2017), 177–219.
- (14) J. Kim, Hilbert transforms along curves in the Heisenberg group, *Proc. London Math. Soc.* (3) **80**(3): (2000), 611–642.
- (15) J. Kim, L^p -estimates for singular integrals and maximal operators associated with flat curves on the Heisenberg group, $Duke\ Math.\ J.\ 114(3)$: (2002), 555–593.
- (16) J. Kim, Maximal average along variable lines, Israel J. Math. 167 (2008), 1–13.

- (17) M. Lacey and X. Li, On a conjecture of E. M. Stein on the Hilbert transform on vector fields, *Mem. Amer. Math. Soc.* **205**(965): (2010), viii+72.
- (18) M. T. Lacey and X. Li, Maximal theorems for the directional Hilbert transform on the plane, *Trans. Amer. Math. Soc.* **358**(9): (2006), 4099–4117.
- (19) V. Lie, A unified approach to three themes in harmonic analysis (I & II): (I) The linear Hilbert transform and maximal operator along variable curves; (II) Carleson type operators in the presence of curvature, Adv. Math. 437 (2024), Paper No. 109385, 113.
- (20) N. Liu, L. Song and H. Yu, L^p bounds of maximal operators along variable planar curves in the Lipschitz regularity, J. Funct. Anal. 280(5): (2021), Paper No. 108888, 40.
- (21) G. Mockenhaupt, A. Seeger and C. D. Sogge, Wave front sets, local smoothing and Bourgain's circular maximal theorem, *Ann. of Math.* (2) **136**(1): (1992), 207–218.
- (22) A. Nagel, E. M. Stein and S. Wainger, Differentiation in lacunary directions, *Proc. Nat. Acad. Sci. U.S.A.* **75**(3): (1978), 1060–1062.
- (23) A. Seeger and S. Wainger, Singular Radon transforms and maximal functions under convexity assumptions, Rev. Mat. Iberoamericana 19(3): (2003), 1019–1044.
- (24) E. M. Stein and S. Wainger, Problems in harmonic analysis related to curvature, *Bull. Amer. Math. Soc.* **84**(6): (1978), 1239–1295.