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Every symmetric Kubo–Ando connection
has the order-determining property
Emmanuel Chetcuti and Curt Healey

Abstract. In this article, the question of whether the Löwner partial order on the positive cone of an
operator algebra is determined by the norm of any arbitrary Kubo–Ando mean is studied. The question
was affirmatively answered for certain classes of Kubo–Ando means, yet the general case was left as
an open problem. We here give a complete answer to this question, by showing that the norm of every
symmetric Kubo–Ando mean is order-determining, i.e., if A, B ∈ B(H)++ satisfy ∥Aσ X∥ ≤ ∥Bσ X∥
for every X ∈ A++, where A is the C∗-subalgebra generated by B − A and I, then A ≤ B.

1 Introduction

Recently, in [9], the author studied the question of when the norm of a given mean, on
the positive cone of an operator algebra, determines the Löwner order. As explained
clearly in the introduction by the author, this problem is of relevance to the study
of maps between positive cones of operator algebras that preserve a given norm of
a given operator mean. Such a study has received considerable attention, as can be
seen, for example, in [5–8]. The motivation of such investigations comes, first, from
the study of norm additive maps or spectrally multiplicative maps, and second, from
the study of the structure of certain quantum mechanical symmetry transformations
relating to divergences.

Let us recall that a binary operation σ onB(H)++ is called a Kubo–Ando connection
if it satisfies the following properties:
(i) If A ≤ C and B ≤ D, then AσB ≤ Cσ D.
(ii) C(AσB)C ≤ (CAC)σ(CBC).
(iii) If An ↓ A and Bn ↓ B, then An σBn ↓ AσB.1

A Kubo–Ando mean is a Kubo–Ando connection with the normalization condition
Iσ I = I. The most fundamental connections are:
• the sum (A, B) ↦ A+ B,
• the parallel sum (A, B) ↦ A ∶ B = (A−1 + B−1)−1,
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• the geometric mean

(A, B) ↦ A ♯B = A 1
2 (A− 1

2 BA− 1
2 )

1
2 A 1

2 .

A function f ∶ (0,∞) → (0,∞) is said to be operator monotone if ∑n
i=1 f (a i)Pi ≤

∑m
j=1 f (b j)Q j whenever ∑n

i=1 a i Pi ≤ ∑m
j=1 b jQ j , where a i , b j > 0, and the projections

Pi , Q j satisfy ∑n
i=1 Pi = ∑m

j=1 Q j = I. Such a function is automatically continuous,
monotonic increasing, and concave. For an operator-monotone function f, one has
f (A) ≤ f (B) whenever A, B ∈ B(H)++ and A ≤ B. It is easy to see that the class of
operator-monotone functions is closed under addition and multiplication by positive
real numbers. The transpose f ○ of the operator-monotone function f, defined by
f ○(x) ∶= x f (x−1), is again operator-monotone.

Let σ be a Kubo–Ando connection on B(H)++. In the proof of [4, Theorem 3.2], it
is shown that the function defined on (0,∞) by x ↦ Iσ(xI) has the form x ↦ f (x) I
for some operator-monotone function f, and it is further shown that f (B) = IσB for
every B ∈ B(H)++. This gives

AσB = A 1
2 f (A− 1

2 BA− 1
2 )A 1

2

for every A, B ∈ B(H)++. The function f is called the representing function of σ .
We recall that operator-monotone functions correspond to positive finite Borel

measures on [0,∞]2 by Löwner’s theorem (see [2]): To every operator-monotone
function, f corresponds a unique positive and finite Borel measure m on [0,∞] such
that

f (x) = ∫
[0,∞]

x(1 + t)
x + t

dm(t)(1)

= m({0}) + x m({∞}) + ∫
(0,∞)

1 + t
t

(t ∶ x)dm(t) (x > 0).

It is easy to see that f (0+) = m({0}) and f ○(0+) = m({∞}).
Let f ∶ (0,∞) → (0,∞) be an operator-monotone function, and let m be the

positive and finite Borel measure on [0,∞] associated with f via Löwner’s theorem
by (1). The binary operation σ f defined on B(H)++ by

Aσ f B = f (0+)A+ f ○(0+)B + ∫
(0,∞)

1 + t
t

(tA ∶ B)dm(t)

satisfies conditions (i) and (ii) of the definition of a Kubo–Ando connection. More-
over,

Iσ f A = f (0+) I + f ○(0+)A + ∫
(0,∞)

1 + t
t

(tI ∶ A)dm(t)

= ∫
[0,∞]

A(1 + t)(tI + A)−1 dm(t) = f (A)

for every A ∈ B(H)++, and therefore

Aσ f B = A 1
2 f (A− 1

2 BA− 1
2 )A 1

2

2We recall that every finite Borel measure on [0,∞] is regular, i.e., a Radon measure.
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for every A, B ∈ B(H)++. Using the fact that a continuous real-valued function is SOT
(strong operator topology) continuous on bounded sets of self-adjoint operators (see
[3, Proposition 5.3.2, p. 327]), it follows that if An ↓ A and Bn ↓ B in B(H)++, then
An σ f Bn ↓ Aσ f B. This shows that σ f is a Kubo–Ando connection on B(H)++.

We further recall that if σ is a Kubo–Ando connection with representing func-
tion f, then the representing function of the “reversed” Kubo–Ando connection
(A, B) ↦ Bσ A is the transpose f ○. The Kubo–Ando connection is said to be symmet-
ric if it coincides with its reverse, i.e., a Kubo–Ando connection is symmetric if and
only if the representing function f satisfies f = f ○ as shown in [4, Corollary 4.2]. The
Kubo–Ando means are precisely the Kubo–Ando connections whose representing
functions satisfy the normalizing condition f (1) = 1.

The most fundamental Kubo–Ando means are the power means which correspond
to the operator-monotone functions

fp(t) ∶=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

( 1 + t p

2
)

1
p

, if − 1 ≤ p ≤ 1, p ≠ 0,
√

t, if p = 0.

The principal cases f0(t) =
√

t, f−1(t) = 2t
1+t , and f1(t) = 1+t

2 correspond, respectively,
to the geometric mean (A, B) ↦ A ♯B, the harmonic mean (A, B) ↦ A!B = 2(A ∶ B),
and the arithmetic mean (A, B) ↦ A∇B = (A+ B)/2.

It is easy to verify that the measure m associated with the arithmetic mean is (δ0 +
δ∞)/2 and that associated with the harmonic mean is δ1, where δx denotes the Dirac
measure on the point x ∈ [0,∞].

A remark on the domain of definition of a Kubo–Ando connection: We have opted
for having B(H)++ the defining domain of a Kubo–Ando connection (as opposed to
B(H)+) in order to obtain fully consistent interchangeable relations in the diagram
above. It must be said, however, that this offers no handicap because any Kubo–Ando
connection σ on B(H)++ can be uniquely extended to a binary relation σ̂ on B(H)+
by setting Aσ̂B equal to
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inf{(A+ n−1I)σ(B + n−1I) ∶ n ∈N} = inf{XσY ∶ X , Y ∈ B(H)++ , X ≥ A, Y ≥ B},

and it is not hard to show that the extension σ̂ satisfies (i)–(iii) of the definition of a
Kubo–Ando connection. Note that the equality

Aσ̂B = A 1
2 f (A− 1

2 BA− 1
2 )A 1

2 ,

where f is the representing function associated with σ , holds only on B(H)++ ×
B(H)+. We further remark that the continuity properties of the function calculus
(see [3, Proposition 5.3.2, p. 327]) imply the following continuity properties of σ̂ .

Remark 1 (i) The map

σ̂ ∶ B(H)++ ×B(H)+ → B(H)+ ∶ (A, B) ↦ A 1
2 f (A− 1

2 BA− 1
2 )A 1

2(2)

is continuous when the domain is equipped with the product of the relative
topologies induced by the norm, and the range with the norm topology, and

(ii) for every ε, R > 0, the restriction of σ̂ to the rectangle

[εI , RI] × [0 , RI]

is continuous when the domain is equipped with the product of the relative
topologies induced by SOT, and the range with SOT.

In the sequel, we will not distinguish between σ and σ̂ any further.

2 Preliminary considerations

In this section, we collate a list of lemmas and propositions which will prove to be
helpful in proving the main result.

Lemma 1 Let f ∶ (0,∞) → (0,∞) be an operator-monotone function, and let m
denote the positive and finite Borel measure associated with f via (1).
(i) If f is symmetric, ∫[0,∞] t dm(t) = ∫[0,∞] t−1 dm(t).
(ii) For every Borel subset Δ of [0,∞] satisfying m(Δ) > 0, the function fΔ defined

on (0,∞) by

fΔ ∶ x ↦ ∫
Δ

x(1 + t)
x + t

dm(t)

is operator-monotone. In particular, if m((0,∞)) ≠ 0, the function h defined by

h(x) ∶= ∫
(0,∞)

x(1 + t)
x + t

dm(t) = f (x) − f (0+) − f ○(0+)x (x > 0)

is operator-monotone. If f is symmetric, then so is h.

Proof (i) By the Monotone Convergence Theorem, one has that

f (x) = ∫
[0,∞]

1 + t
1 + tx−1 dm(t) ↑ ∫

[0,∞]
1 + t dm(t) as x ↑ ∞,
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and since f ○(x) = x f (1/x), one also gets

f ○(x) = ∫
[0,∞]

1 + t
t + x−1 dm(t) ↑ ∫

[0,∞]
1 + t−1 dm(t) as x ↑ ∞.

So, if f is symmetric, ∫[0,∞] t dm(t) = ∫[0,∞] t−1 dm(t).
(ii) If Δ is a Borel subset of [0,∞] satisfying m(Δ) > 0, the function on the Borel

σ-algebra of [0,∞] defined by mΔ ∶ Ω ↦ m(Δ ∩ Ω) is a positive finite Borel measure
and therefore

B(H)++ ∋ A↦ fΔ(A) = ∫
Δ
(1 + t)(I + tA−1)−1 dm(t) = ∫

[0,∞]
(1 + t)(I + tA−1)−1 dmΔ(t)

is operator-monotone.
Setting Δ = (0,∞), one obtains that

h(x) ∶= ∫
(0,∞)

x(1 + t)
x + t

dm(t) (x > 0)

is operator-monotone. Since m({0}) = f (0+) and m({∞}) = f ○(0+),

h(x) = f (x) − f (0+) − f ○(0+)x

follows. It is easy to verify that if f is symmetric, so is h. ∎

Let X ∈ B(H) be self-adjoint and let Δ denote the spectrum of X. The classical
measurable function calculus asserts that there exists a ∗-isomorphism Φ from the
Banach algebra L∞(Δ, B(Δ), μ) into the abelian von Neumann subalgebra of B(H)
generated by X and I, where B(Δ) is the Borel σ-algebra in Δ, and μ is the composition
of any faithful normal positive weight on B(H) with the spectral measure associated
with X. We recall that Φ is an isometry, preserves suprema/infima of monotone
sequences, and maps the continuous functions on Δ onto the C∗-subalgebra of B(H)
generated by X and I. Denote by �(X) the range of Φ. Recall that a lower semicon-
tinuous function f ∶ Ω → [0, 1], where Ω is a metrizable space, is the pointwise limit
of an increasing sequence of continuous functions (see, for example, [10, Problem 7K,
p. 49]). Let �1(X) ⊂ �(X) denote the image under Φ of the set of all bounded lower
semicontinuous functions on Δ. In particular, Φ(χJ) ∈ �1(X) whenever J is an open
subset of Δ. For the purpose of this paper, such a projection is shortly referred to as a
“�1-spectral projection of X.”

Lemma 2 Let σ be a Kubo–Ando connection. For A, B ∈ B(H)++, let A denote the
C∗-subalgebra of B(H) generated by B − A and I. If ∥AσT∥ ≤ ∥BσT∥ holds for all
T ∈ A++, then ∥AσT∥ ≤ ∥BσT∥ holds for all positive T ∈ �1(B − A).

Proof Let us first recall the general fact that whenever (Tγ) is an SOT-convergent
net of positive operators, bounded from above by its SOT-limit T, then the net of
norms (∥Tγ∥) is convergent to ∥T∥.

Invoking the continuity of σ w.r.t. the norm (as mentioned in the introduction),
and since A++ is norm-dense in A+, it can be seen that the hypothesis implies that
∥AσT∥ ≤ ∥BσT∥ holds for every T ∈ A+.
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Let X ∶= B − A. Let (Δ, B(Δ), μ) be the measure space associated with X, i.e., Δ is
the spectrum of X, B(Δ) is the Borel σ-algebra in Δ, and μ is the composition of any
faithful normal positive weight on B(H) with the spectral measure associated with
X. Let Φ be the ∗-isomorphism from the Banach algebra L∞(Δ, B(Δ), μ) into the
abelian von Neumann subalgebra of B(H) generated by X and I.

Fix a positive T ∈ �1(X). We want to show that ∥AσT∥ ≤ ∥BσT∥. Let f be a
bounded lower semicontinuous function on Δ satisfying Φ( f ) = T . There exists a
sequence ( fn) of continuous functions on Δ such that fn(x) ↑ f (x) as n ↑ ∞ for every
x ∈ Δ. Without loss of generality, we can assume that 0 ≤ fn(x) for every n ∈N and
x ∈ Δ, i.e., we can suppose that Φ( fn) ∈ A+. Applying (ii) of Remark 1, one obtains
A σ Φ( fn) ↑ A σ T and B σ Φ( fn) ↑ B σ T as n ↑ ∞. The observation recalled in the
first paragraph of the proof then yields

∥BσT∥ = lim
n
∥B σ Φ( fn)∥ ≥ lim

n
∥A σ Φ( fn)∥ = ∥AσT∥. ∎

In the subsequent lemma, the main ideas can be found in [1, Lemma 11]. We
formalize them and present them here for completeness sake.

Proposition 3 For the operators A, B ∈ B(H)+, the following assertions are equiva-
lent:
(i) A ≤ B,
(ii) ∥PAP∥ ≤ ∥PBP∥ for every �1-spectral projection P of B − A,
(iii) {λ ≥ 0 ∶ λP ≤ PAP} ⊆ {λ ≥ 0 ∶ λP ≤ PBP} for every �1-spectral projection P of

B − A.

Proof The assertions (i)⇒(ii) and (i)⇒(iii) are trivial.
Let us prove that both (ii) and (iii) imply (i). Suppose that A ≰ B, for contradiction.

Then, there exists ε > 0 such that the spectrum of B − A has a nontrivial intersec-
tion with (−∞,−ε). Let Δ be the intersection of (−∞,−ε) with the spectrum of
B − A, and let Pε be the (nonzero) �1-spectral projection of B − A associated with
the indicator function χΔ . Clearly, t χΔ(t) ≤ −ε χΔ(t) for every t ∈ R, and therefore
Pε BPε − Pε APε = Pε(B − A)Pε ≤ −εPε . Rearranging the terms, we get

Pε BPε ≤ Pε(A− εI)Pε .(3)

(ii)⇒(i). It follows, by (3), that Pε APε ≥ εPε , and therefore ∥Pε BPε∥ ≤
∥Pε(A− εI)Pε∥ = ∥Pε APε∥ − ε.

(iii)⇒(i). First, observe that for every A ∈ B(H)+ and projection P, the supre-
mum of {λ ≥ 0 ∶ λP ≤ PAP} is indeed a maximum and is at most equal to ∥A∥.
Let λ0 ∶= max{λ ≥ 0 ∶ λPε ≤ Pε APε}. Then (iii) and (3) imply that λ0Pε ≤ Pε BPε ≤
Pε APε − εPε , which in turn shows that (λ0 + ε)Pε ≤ Pε APε , contradicting the maxi-
mality condition of λ0. ∎

In the following proposition, the ideas in [9, Proposition 10] are used to generalize
[9, equation (15)]. This will be of pivotal importance in proving the main result of this
paper.
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Proposition 4 Let Xs ∈ B(H)+, s > 0 satisfy lims→∞ Xs = X in norm, and let P ∈
B(H) be a projection. Then

lim
s→∞

∥Xs + sP∥ − s = ∥PXP∥ .

Proof Let ε > 0. It can easily be verified that

∥((∥PXs P∥ + ε)−1/2P + s−1/2(I − P))Xs ((∥PXs P∥ + ε)−1/2P + s−1/2(I − P))∥

converges to (∥PXP∥ + ε)−1 ∥PXP∥ < 1 as s →∞. Therefore, for sufficiently large s,

((∥PXs P∥ + ε)−1/2P + s−1/2(I − P))Xs ((∥PXs P∥ + ε)−1/2P + s−1/2(I − P)) ≤ I,

so by multiplying both sides of the above by the inverse of (∥PXs P∥ + ε)−1/2P +
s−1/2(I − P), the inequality Xs ≤ (∥PXs P∥ + ε)P + s(I − P) is obtained. This implies
that

∥Xs + sP∥ − s ≤ ∥PXs P∥ + ε,(4)

for sufficiently large s. On the other hand, for every s > 0,

∥Xs + sP∥ ≥ ∥PXs P + sP∥ ,

and therefore

∥Xs + sP∥ − s ≥ ∥PXs P + sP∥ − s = ∥PXs P∥ .(5)

Combining (4) and (5), for sufficiently large s, it holds that

∥PXs P∥ ≤ ∥Xs + sP∥ − s ≤ ∥PXs P∥ + ε.

This proves that lims→∞ ∥Xs + sP∥ − s = ∥PXP∥. ∎

Proposition 5 [9, Lemma 2] Let f ∶ (0,∞) → (0,∞) be a nontrivial (i.e., not affine)
operator-monotone function satisfying f (0+) = 0, and let σ denote the Kubo–Ando
connection associated with f via (2). For A ∈ B(H)++ and nonzero projection P ∈ B(H),

∥AσP∥ = f ○ ( 1
max{λ ≥ 0 ∶ λP ≤ PA−1P}) .

3 Results

Theorem 6 Let σ be a nontrivial symmetric Kubo–Ando connection on B(H)++.
Then, for every A, B ∈ B(H)++,

A ≤ B ⇐⇒ ∥Aσ X∥ ≤ ∥Bσ X∥ , ∀X ∈ A++,

where A equals the C∗-subalgebra of B(H) generated by B − A and I.

Proof The implication ⇒ follows trivially by the monotonicity property of Kubo–
Ando connections. We shall show the converse. By Lemma 2, we can suppose that
∥Aσ X∥ ≤ ∥Bσ X∥ holds for every X of the form X = sP + tI, where P is a �1-spectral
projection of B − A and s, t ∈ R+. Let f be the operator-monotone function associated
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with σ , and let m be the positive and finite Borel measure associated with f by Löwner’s
theorem. Let α = f (0+) = m({0}). The proof will be divided in cases.

Case 1: α = 0. Since f = f ○ is strictly monotonic increasing, this case follows
immediately by Propositions 5 and 3. This result was obtained by Molnár in [9].

Case 2a: α ≠ 0 and ∫(0,∞) t dm(t) < ∞. Let γ ∶= ∫(0,∞) 1 + t dm(t). For every
s, t, δ > 0, A ∈ B(H)++ and nonzero projection P ∈ B(H):

∫
(0,∞)

1 + t
t

(tA ∶ sP + sδI) dm(t) − A∫
(0,∞)

1 + t dm(t)

= ∫
(0,∞)

(A(( tA
s
+ P + δI)

−1
(P + δI) − I))(1 + t)dm(t).

Noting that ∥A(( tA
s + P + δI)−1 (P + δI) − I)∥ is a bounded function of s and t,

and using the fact that ∫(0,∞) 1 + t dm(t) < ∞, it is possible to apply the Dominated
Convergence Theorem to infer that

∫
(0,∞)

1 + t
t

(tA ∶ sP + sδI) dm(t)

converges in norm to γ A as s →∞. This implies that

Aσ(sP + sδI) − β(sP + sδI) → (α + γ)A

in norm, as s →∞. Noting that β = m({∞}) = m({0}) > 0 and applying Proposi-
tion 4, it is deduced that

lim
s→∞

(∥Aσ(sP + sδI) − βsδI∥ − βs) = (α + γ)∥PAP∥.

Using the fact that

Aσ(sP + sδI) = αA+ β(sP + sδI) + ∫
(0,∞)

1 + t
t

(tA ∶ sP + sδI)dm(t) ≥ βsδI,

it can be seen that ∥Aσ(sP + sδI) − βsδI∥ = ∥Aσ(sP + sδI)∥ − βsδ. This establishes
that

lim
s→∞

(∥Aσ(sP + sδI)∥ − βs(1 + δ)) = (α + γ)∥PAP∥.(6)

So, if A, B ∈ B(H)++ satisfy ∥Aσ(sP + tI)∥ ≤ ∥Bσ(sP + tI)∥ for every �1-spectral
projection P of B − A and s, t ∈ R+, it follows that ∥PAP∥ ≤ ∥PBP∥ holds for every
�1-spectral projection of B − A. The result follows by Proposition 3.

Case 2b: α ≠ 0 and ∫(0,∞) t dm(t) = ∞. Denote by σh the (symmetric) Kubo–Ando
connection associated with the function h(x) = f (x) − α − αx (see (ii) of Lemma 1).
Let mh denote the positive and finite Borel measure associated with h. Then, mh(Δ) =
m(Δ ∩ (0,∞)) for every Borel subset Δ of [0,∞].

The inequality

∥Aσ(sP)∥ = ∥αA+ αsP + Aσh(sP)∥ ≤ ∥αB + αsP + Bσh(sP)∥ = ∥Bσ(sP)∥(7)

holds for every �1-spectral projection P of B − A and s > 0.
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Fix an arbitrary �1-spectral projection P of B − A. Noting that h(sP) = h(s)P for
every s > 0, it can then be deduced that

Aσh(sP) ≤ (∥A∥I)σh(sP) = ∥A∥h(∥A∥−1(sP)) = ∥A∥h(∥A∥−1s) P,

i.e., Aσh P commutes with P. Thus, (7) yields

∥αsP∥ + ∥Aσh(sP)∥ = ∥αsP + Aσh(sP)∥
≤ ∥αA+ αsP + Aσh(sP)∥
≤ ∥αB + αsP + Bσh(sP)∥
≤ ∥αB∥ + ∥αsP∥ + ∥Bσh(sP)∥,

and therefore

∥Aσh(sP)∥ − ∥Bσh(sP)∥ ≤ ∥αB∥,(8)

for every s > 0.
Let cA ∶= 1/max{λ ≥ 0 ∶ λP ≤ PA−1P}, and let cB be defined similarly. Proposi-

tion 5 gives

∥Aσh(sP)∥ = s∥(s−1A)σh P∥ = s h ( 1
s max{λ ≥ 0 ∶ λP ≤ PA−1P}) = s h (cAs−1) ,

and since mh is just the restriction of the measure m (associated with f ) to (0,∞), we
obtain

∥Aσh(sP)∥ = s h (cAs−1) = ∫
[0,∞]

scA(1 + t)
cA + st

dmh(t) = ∫
(0,∞)

scA(1 + t)
cA + st

dm(t).

Similarly, ∥Bσh(sP)∥ = ∫(0,∞)
scB(1+t)

cB+st dm(t), and therefore

∥Aσh(sP)∥ − ∥Bσh(sP)∥ = ∫
(0,∞)

scA(1 + t)
cA + st

− scB(1 + t)
cB + st

dm(t)

= (cA − cB)∫
(0,∞)

s2 t(1 + t)
(cA + st)(cB + st) dm(t).

The Monotone Convergence Theorem implies that as s ↑ ∞, the integral increases
to ∫(0,∞)

1
t + 1 dm(t). The relation between the two measures m and mh , part (i) of

Lemma 1, and the hypothesis then yield that

∥Aσh(sP)∥ − ∥Bσh(sP)∥ → (cA − cB)∫
(0,∞)

1
t
+ 1 dm(t)

= (cA − cB)∫
[0,∞]

1
t
+ 1 dmh(t)

= (cA − cB)∫
[0,∞]

t + 1 dmh(t)

= (cA − cB)∫
(0,∞)

t + 1 dm(t),

as s ↑ ∞. Since ∫(0,∞) t + 1 dm(t) = ∞, it follows that cA − cB ≤ 0 since otherwise one
would get a contradiction with (8).
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This shows that

max{λ ≥ 0 ∶ λP ≤ PA−1P} ≥ max{λ ≥ 0 ∶ λP ≤ PB−1P}
for every �1-spectral projection of B − A, and therefore A−1 ≥ B−1 by
Proposition 3. ∎
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