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Abstract
This paper presents a thermodynamic model for a heat engine based on evaporative
cooling of unsaturated air at reduced pressure. Also analysed is a related heat
pump based on condensation of water vapour in moist air at reduced pressure.
These devices operate as two-stroke reciprocating engines, which are their simplest
possible embodiments. The mathematical models for the two devices are based on
conservation of mass for both air and water vapour, ideal gas laws, constant specific
heats, and, as appropriate, either constant entropy processes or cooling/heating by
evaporation/condensation. Both models take the form of coupled algebraic systems
in six variables, which require numerical solution for certain stages of the cycle. The
specific work output of the heat engine increases as the inlet air becomes hotter and as
the expansion ratio of the engine increases. The engine provides evaporative cooling of
air from inlet to outlet. The heat pump has a good coefficient of performance, which
decreases as the expansion ratio increases. The heat pump also has the effect of drying
the air from inlet to outlet, producing distilled water as a by-product.

2000 Mathematics subject classification: 80-04, 80A20, 80A99.

Keywords and phrases: heat engine, heat pump, evaporation, condensation,
low-pressure, thermodynamic cycles, ideal gases.

1. Introduction

The Barton Evaporation Engine (BEE) is a heat engine which exploits a low-pressure
gas cycle as shown in Figure 1(a). Throughout, ‘cycle’ is used interchangeably to
mean the operation of the engine in which air is taken in, processed and then vented,
as well as a closed-loop cycle in which a fixed mass of gas undergoes heat transfer and
change of volume and pressure.

The conventional Brayton cycle used in jet engines and gas turbines involves the
steps compression–heating–expansion–exhaust. In contrast, operation of the BEE
involves expansion of air taken into the engine, and then cooling at reduced pressure.
The BEE cycle is completed by re-compression back to ambient pressure, and
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FIGURE 1. (a) Illustration of the thermodynamic cycle 1–2–3–4–5 for the BEE heat engine. Numbers
refer to various stations as used in this paper. Heat is provided to the engine between stations 5 and 1 by
the internal energy in the inlet air. Cooling between stations 2 and 3 and between 3 and 4 is accomplished
by evaporation of a fog of water droplets sprayed into the low-pressure air. The dashed line from station
3 represents compression without further evaporation. (b) Illustration of the thermodynamic cycle 1–3–
4–5 for the BDE heat pump. Heat is provided between stations 1 and 3 by latent heat of condensation.
Heat transfer out of the BDE takes place during the exhaust. The dashed line between stations 1 and 2
represents expansion without condensation.

then exhaust. In the expansion stage, work must be done as the gas is expanded against
atmospheric pressure. A greater amount of work is received during re-compression as
the atmosphere does work on the gas.

In the BEE, the cycle 1–2–3–4–5 of Figure 1(a) is executed by a two-stroke piston-
in-cylinder arrangement. This is the simplest manifestation of the thermodynamic
cycle. There are other possibilities to execute the cycle, including the use of the
Bernoulli effect for a compressible gas (see Barton [2]), and the use of a turbine
and extraction fan in series. Cooling at constant volume between stations 2 and
3 is accomplished by spraying microscopic water droplets into the air at the point
of maximum expansion. The present work extends an incomplete analysis of the
BEE thermodynamic cycle by Barton [1] by incorporating evaporation during the
compression stage 3–4.

The Barton Drying Engine (BDE) is a heat pump which is closely related to
the BEE. It too exploits a low-pressure gas cycle; see Figure 1(b). Heating during
the expansion stage is provided by condensation of water vapour, thereby releasing
latent heat.

The features of the BEE thermodynamic cycle are as follows; numbers refer to the
stations shown in Figure 1(a).
• 5→ 1: The cycle starts with the chamber empty and the piston fully inserted into

the cylinder. As the piston is withdrawn, unsaturated air naturally containing
some water vapour is drawn through inlet valves into the chamber at ambient
pressure.
• 1→ 2: Valves are closed and the first stroke continues. Work is expended as the

piston is withdrawn adiabatically against atmospheric pressure. The air–vapour
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mixture has constant entropy and remains unsaturated, even up to the point of
maximum expansion (station 2).
• 2 → 3: This stage takes place with the piston stationary, that is at constant

volume. Water is sprayed into the chamber, creating a fog of microscopic water
droplets. The gas is cooled at low pressure by evaporation until saturation. The
pressure in the chamber decreases.
• 3 → 4: The second stroke commences and the air–vapour–fog mixture is

compressed as the piston is forced back into the chamber under the action of
external pressure. Further evaporation occurs from microscopic droplets in the
fog, and the entropy of the entire air–vapour–fog mixture is constant. Work is
received during this stage.
• 4→ 5: The second stroke is completed with the piston plunging fully into the

chamber. The air–vapour–fog mixture is vented at ambient pressure through
exhaust valves. The air is cooler and moister than at the inlet, and net work is
obtained during the cycle. The BEE is a heat engine.

The BDE heat pump is closely related to the BEE heat engine. It operates on
a similar two-stroke piston-in-cylinder arrangement, but there is a major difference
in that saturation of the air–vapour mixture occurs during the expansion phase.
Provided condensation nuclei are present, condensation of vapour will occur, liberating
latent heat. Referring to Figure 1(b), the steps are as follows (note that station
2 is deliberately omitted from the discussion for consistency with the analysis
of the BEE).

• 5→ 1: The cycle starts with the chamber empty and the piston fully inserted
into the cylinder. As the piston is withdrawn, moist air is drawn through inlet
valves into the chamber at ambient pressure.
• 1→ 3: Valves are closed and the first stroke continues. Work is expended as

the piston is withdrawn adiabatically against atmospheric pressure. At some
point during the expansion, the air–vapour mixture will become saturated and
condensation will occur provided condensation nuclei are present. This causes a
fog of microscopic water droplets to form. The entropy of the entire air–vapour–
fog mixture is constant during expansion. At the completion of the first stroke
(station 3), the fog of condensed droplets is collected as chilled distilled water,
leaving behind a saturated air–vapour mixture.
• 3→ 4: The second stroke commences and the air–vapour mixture is compressed

isentropically as the piston is forced back into the chamber under the action of
external pressure. The temperature rises and the air–vapour mixture moves away
from saturation. Work is received during this stage.
• 4→ 5: The second stroke is completed with the piston plunging fully into the

chamber. The air–vapour mixture is vented at ambient pressure through exhaust
valves. The air is hotter and drier than at the inlet, and net work has been supplied
to complete the cycle. The BDE is a heat pump.
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Thermodynamic models for the BEE and BDE are presented in Sections 2
and 4 respectively. The models take the form of coupled algebraic equations
expressing familiar concepts such as conservation of mass of air and vapour, ideal
gas laws, and, as appropriate, either constant entropy processes or cooling/heating by
evaporation/condensation. Results from the models are provided in Sections 3 and 5
for the BEE and BDE respectively.

To highlight the results and overall theoretical conclusions, the work output from
the BEE heat engine increases with the expansion ratio and the temperature of the
inlet air. Illustrative results are now given for the case when the ambient air is at 35 ◦C
and relative humidity 35.5%, the injected water has temperature 20 ◦C and the back-
work ratio (work expended : work received) is 80%. Without pre-heating, the BEE
heat engine functions as an evaporative cooler, which cools the air by 12.2 ◦C at the
same time as it delivers 346 J (kg dry air throughput)−1. If the ambient air is heated to
100 ◦C before being presented to the inlet valves, the specific work output is 7.2 kJ (kg
dry air throughput)−1 and the water consumption is 11.8 kg/kWh. If the ambient air is
heated to 400 ◦C, the specific work output is 106 kJ (kg dry air throughput)−1 and the
water consumption is 3.4 kg/kWh.

The BDE heat pump has a good coefficient of performance, which decreases as
the expansion ratio is increased. Chilled distilled water is produced as a by-product
of BDE operation. The following illustrative results are given for the case when the
temperature of the expanded air at Station 3 is just above freezing. If the inlet air is
saturated and at 15 ◦C, 5.1 g of water is condensed per kg of dry air, the specific work
requirement is 509 J (kg dry air throughput)−1 and the exhaust temperature is 28.1 ◦C.
If the inlet air is saturated and at 25 ◦C, 12 g of water is condensed per kg of dry
air, the specific work requirement is 2298 J (kg dry air throughput)−1 and the exhaust
temperature is 56.6 ◦C.

It is expected that both the BEE heat engine and the BDE heat pump would handle
a large volume of air. In their piston-in-cylinder form, these devices would be large,
slow-revving and unobtrusive. Comments on possible applications of the devices are
given in Section 6.

2. Thermodynamic model for the BEE heat engine

Between stations 1 and 2 of Figure 1(a), the air–vapour mixture in the chamber is
expanded isentropically. The model equations are

ρa1V1 = ρa2V2 = ma (mass of air), (2.1)

ρv1V1 = ρv2V2 = mv (mass of vapour), (2.2)
Pa1

ρa1T1
=

Pa2

ρa2T2
= Ra (ideal gas law for air), (2.3)

Pv1

ρv1T1
=

Pv2

ρv2T2
= Rv (ideal gas law for vapour), (2.4)
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V2

V1
= r. (2.6)

In equations (2.1)–(2.6) and throughout the paper, P , ρ, s, T and V denote
pressure, density, specific entropy, temperature and volume respectively. Other
constants include the specific heat capacity C (assumed constant), mass of gas
m, ideal gas constant R, and the expansion ratio r . Subscripts a and v

denote air and vapour, numerical subscripts 1–5 refer to the stations shown in
Figure 1(a), numerical subscript 0 refers to arbitrary constants, and subscripts
P and V refer to processes at constant pressure and volume respectively.
The ratio of specific heats is γ = CP/CV . Equation (2.5) (see for example
[6, Section 5.4] or [3, Section 1.7]) states that the total entropy of the air–vapour
mixture is constant during the expansion stage, which requires that no heat be added
between stations 1 and 2 and that the process is reversible.

A brief discussion is warranted as to whether water vapour can be represented by
an ideal gas with constant specific heats. Çengel and Boles [4, Figure 2-48] show the
relative error when the specific volume is calculated using ideal gas theory. For vapour
pressures less than 100 kPa, the relative error is less than 1.6%, even near saturation.
Çengel and Boles [4, Figure 3-76] show the temperature dependence of specific heat
capacities at constant pressure. For both air and water, the variation is modest provided
the temperature is less than 500 ◦C. Provided temperatures do not exceed 500 ◦C and
pressures are less than atmospheric, it is reasonable to assume that both air and vapour
are ideal gases with constant specific heat capacities.

On elimination of arbitrary constants, (2.5) gives(
Pa1

ρ
γa
a1

)maCaV
(

Pv1

ρ
γv
v1

)mvCvV

=

(
Pa2

ρ
γa
a2

)maCaV
(

Pv2

ρ
γv
v2

)mvCvV

. (2.7)

Since (2.1), (2.2) and (2.3) give ρa2 = ρa1/r and ρv2 = ρv1/r , (2.7) becomes(
Pa1

Pa2

)maCaV
(

Pv1

Pv2

)mvCvV

= rγamaCaV+γvmvCvV . (2.8)

From the equations of state (2.3) and (2.4), the partial pressures Pa2 and Pv2 can be
expressed in terms of the temperatures T1 and T2 as follows: Pa2 = Pa1T2/(rT1) and
Pv2 = Pv1T2/(rT1). Equation (2.8) thus gives

T2 = T1 r−d1/d2, (2.9)
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in which d1 and d2 are defined by

d1 = (γa − 1)maCaV + (γv − 1)mvCvV , (2.10)

d2 = maCaV + mvCvV . (2.11)

Once T2 has been calculated, all other properties at station 2 can be calculated by direct
substitution into equations above, thereby completing the model for the transition from
station 1 to station 2.

Between stations 2 and 3, suppose that mass δmv of water is sprayed into the
chamber at temperature Twi and evaporates at constant volume. The subscript wi
denotes injected water and the volume of water is neglected. The equations for the
transition from station 2 to station 3 are

ρa2V2 = ρa3V3 (mass of air), (2.12)

ρv2V2 + δmv = ρv3V3 (mass of water), (2.13)
Pa2

ρa2T2
=

Pa3

ρa3T3
= Ra (ideal gas law for air), (2.14)

Pv2

ρv2T2
=

Pv3

ρv3T3
= Rv (ideal gas law for vapour), (2.15)

maua2 + mvuv2 + δmvuwi = maua3 + (mv + δmv)uv3, (2.16)

V2 = V3. (2.17)

Here u is the specific internal energy and equation (2.16) states that the total internal
energy of the air–vapour–water mixture is constant during the evaporation process,
which takes place with the chamber volume held fixed. Because the specific heats have
been assumed constant, the specific internal energy terms in (2.16) can be written as

ua2 = ua0 + CaV (T2 − T0),

ua3 = ua0 + CaV (T3 − T0),

uv2 = uv0 + CvV (T2 − T0),

uv3 = uv0 + CvV (T3 − T0),

uwi = uv2 − CvV (T2 − Twi )− L(Twi ).

In the last of these equations, the three terms are respectively the internal energy of
vapour at T2, the sensible heat adjustment required to give the internal energy of vapour
at Twi , and the latent heat of evaporation of water at temperature Twi . Taking account
of these expressions for the specific internal energy, equation (2.16) becomes

T3 = T2 −
δmv[CvV (T2 − Twi )+ L(Twi )]

d3
, (2.18)

in which d3 is defined by

d3 = maCaV + (mv + δmv)CvV . (2.19)

Once T3 has been thus calculated, all other properties at station 3 follow
by substitution.
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It remains to calculate the amount of water evaporated, δmv . This is done iteratively
as follows. From the foregoing analysis based on an assumed value of δmv , the
temperature T3 and vapour pressure Pv3 can be calculated. However, at a particular
temperature T3, saturation occurs when Pv3 is equal to the saturation pressure given
by the Clapeyron–Clausius equation [4, Section 11-3]. If Pv3 is above the saturation
vapour pressure, then δmv is reduced; if Pv3 is below the saturation vapour pressure,
then δmv is increased. A simple iterative loop is applied until Pv3 is sufficiently close
to the saturation vapour pressure, thereby completing the model for the transition from
station 2 to station 3.

Re-compression from station 3 to station 4 is now discussed. It is first assumed that
further evaporation does not occur; subsequently the analysis will be modified to allow
for further evaporation.

The model equations for re-compression without evaporation follow the
development of Barton [1], and are similar to those for the transition from station 1
to station 2:

ρa3V3 = ρa4V4 = ma (mass of air), (2.20)

ρv3V3 = ρv4V4 = mv + δmv (mass of vapour), (2.21)
Pa3

ρa3T3
=

Pa4

ρa4T4
= Ra (ideal gas law for air), (2.22)

Pv3

ρv3T3
=

Pv4

ρv4T4
= Rv (ideal gas law for vapour), (2.23)

ma

[
sa0 + CaV log

Pa3

ρ
γa
a3

]
+ (mv + δmv)

[
sv0 + CvV log

Pv3

ρ
γv
v3

]
= ma

[
sa0 + CaV log

Pa4

ρ
γa
a4

]
+ (mv + δmv)

[
sv0 + CvV log

Pv4

ρ
γv
v4

]
, (2.24)

V4

V3
= θ. (2.25)

The volume ratio θ is unknown at this stage, but is eventually determined by matching
the outlet pressure to the inlet pressure.

On elimination of arbitrary constants, (2.24) gives(
Pa3

ρ
γa
a3

)maCaV
(

Pv3

ρ
γv
v3

)(mv+δmv)CvV

=

(
Pa4

ρ
γa
a4

)maCaV
(

Pv4

ρ
γv
v4

)(mv+δmv)CvV

. (2.26)

Equations (2.20), (2.21) and (2.25) give ρa4 = ρa3/θ and ρv4 = ρv3/θ , so (2.26)
becomes(

Pa3

Pa4

)maCaV
(

Pv3

Pv4

)(mv+δmv)CvV

= θγamaCaV+γv(mv+δmv)CvV . (2.27)
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From the ideal gas laws (2.22) and (2.23), the partial pressures Pa4 and Pv4 can be
eliminated in favour of the temperature T4: Pa4 = Pa3T4/(θT3), Pv4 = Pv3T4/(θT3).
Equation (2.27) thus reduces to

T4 = T3 θ
−d4/d5, (2.28)

in which d4 and d5 are defined by

d4 = (γa − 1)maCaV + (γv − 1)(mv + δmv)CvV , (2.29)

d5 = maCaV + (mv + δmv)CvV . (2.30)

The volume ratio θ is determined by equating the outlet pressure to the inlet pressure.
The outlet pressure is

Pa4 + Pv4 = (Pa3 + Pv3)θ
−(d4+d5)/d5

and, since Pa4 + Pv4 = Pa1 + Pv1, θ is found to be

θ =

(
Pa3 + Pv3

Pa1 + Pv1

)d5/(d4+d5)

. (2.31)

In the absence of evaporation, all quantities at station 4 can now be determined by
substitution.

Suppose, however, that some water droplets at temperature Twi are present during
compression, which is assumed to be adiabatic (i.e. no external heat transfer occurs).
For example, these droplets might be injected once saturation has been reached at stage
3. After a short period of compression, conditions in the chamber will be such that the
vapour pressure Pv is below the saturation vapour pressure for the given temperature,
and evaporation will occur. Moreover, such evaporation is reversible—the entropy of
the entire air–vapour–fog mixture will be constant—with the sensible heat effects of
the droplets playing a relatively unimportant role. That suggests that re-compression
with evaporation can be calculated as a sequence of small steps, each involving two
sub-steps:

(1) compression without evaporation as per equations (2.20)–(2.30), with constant
entropy of the air–vapour component of the air–vapour–fog mixture (here the
presence of droplets is ignored); and

(2) evaporative cooling to saturation at constant volume as per equations (2.12)–
(2.19) for the transition from station 2 to station 3.

For this compression model to be valid, changes in the entropy of the droplets should
be negligible in sub-step 1, and changes in the internal energy of the droplets should
be negligible compared to the latent heat of evaporation in sub-step 2. This will be the
case when (a) the temperature during re-compression does not differ too much from
the temperature Twi of surplus droplets, which is assumed not to change, or (b) the
droplets are injected as required through the compression process. It is noted that
the mass of vapour mv needs to be updated through the process, which means that
constants d3, d4 and d5 also need to be updated.
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FIGURE 2. Simulations for the case T1 = 45 ◦C, Pa1 = 99 000 Pa, Pv1 = 2000 Pa, r = 1.2, Twi = 20 ◦C.
The dashed line represents re-compression without evaporation. The sawtooth line shows re-compression
with evaporation (only 10 steps are shown above, but 60 steps were used for the results of Section 3).
When evaporation occurs during compression, the net work output is more than twice that for the case
when evaporation does not occur during compression.

This sequential approach is illustrated in Figure 2. The sawtooth line is an
approximation to the state path on which the vapour pressure Pv is always equal to
the saturation vapour pressure given by the Clapeyron–Clausius law [4, Section 11-3].

To sum up, compression with evaporation is analysed by decomposing the transition
into N steps, each of which involves an increment to the pressure of

δP =
(Pa1 + Pv1)− (Pa3 + Pv3)

N
.

Each step has two sub-steps, the first described by appropriate modifications to
equations (2.20)–(2.30), and the second by appropriate modifications to equations
(2.12)–(2.19) together with iteration to determine the amount of evaporation at each
step. An overall check on the calculation is that the entropy of the entire air–vapour–
fog mixture must be approximately constant from station 3 to station 4.

The work output W of the BEE is given by

W =
∫ V2

V1

(Pa + Pv − [Pa1 + Pv1]) dV +
∫ V4

V3

(Pa + Pv − [Pa1 + Pv1]) dV .

(2.32)
Work is neither expended nor received when inlet or outlet valves are open (i.e.
disregarding any work required for intake and exhaust), nor during evaporative cooling
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TABLE 1. State of the engine for the entropy check. The amount of water evaporated during
re-compression is 0.039 16− 0.022 91= 0.016 25 kg.

Station V (m3) T (◦C) ma (kg) mv (kg) Pa (Pa) Pv (Pa)
1 1.0 130 0.858 22 0.0107 5 99 300 2000
2 1.6 61.2 0.858 22 0.0107 5 51 475 1037
3 1.6 16.6 0.858 22 0.0229 1 44 614 1915
4 0.815 8 39.4 0.858 22 0.0391 6 94 376 6924

with the piston held in a fixed position. The first integral in (2.32) is negative and
represents the work required for expansion, and the second integral is positive and is
the work received during compression. For the expansion phase, equations (2.6) and
(2.9) show that

Pa + Pv = (Pa1 + Pv1)

(
V

V1

)−(d1+d2)/d2

, (2.33)

which enables an analytical evaluation of the first integral. For the compression phase,
P and V are known at the beginning and end of each of the sub-steps, and so the
second integral can be evaluated numerically by the trapezoidal rule.

3. Results for the BEE heat engine

Details of computational procedures and checks are mentioned before presentation
of results. Numerical tests showed that accurate results could be obtained using
60 steps for the transition from station 3 to station 4, as described near the end of
Section 2. A key requirement in the simulations was to determine saturation conditions
for air–vapour mixtures. This is required both for the transition between stations 2
and 3 and each of the sub-steps 2 in the transition from station 3 to station 4. At a
particular temperature, saturation occurs when the partial vapour pressure Pv reaches
the saturation pressure given by the Clapeyron–Clausius equation [4, Section 11-3].
For the simulations presented below, the saturation vapour pressure was given by linear
interpolation of tabulated values [4, Table A-4].

The entropy check anticipated near the end of Section 2 is now described for the
case V1 = 1 m3, T1 = 130 ◦C, Pa1 = 99 300 Pa, Pv1 = 2000 Pa, Twi = 20 ◦C and r =
1.6. These conditions (except for the volume) correspond to design specifications for
an experimental BEE currently under construction.

Based on linear interpolation of Table 1 for specific entropy for air and saturated
water and vapour [4, Tables A-4 and A-17], the change in entropy of the vapour–fog
component of the air–vapour–fog mixture between stations 3 and 4 is +118.61 J K−1,
whilst the change in entropy of the air component of the mixture is −119.34 J K−1.
(Note that the specific entropy of air as an ideal gas depends on both temperature
and pressure; see [4, Equation (6-42)].) The entropy change of the entire mixture
is −0.73 J K−1, which is acceptably close to zero given the various approximations
made (constant specific heats, ideal gas laws, finite number of compression steps,
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FIGURE 3. Mass of water δmv (kg) evaporated per kg of dry air for both sets of inlet temperatures. Results
are shown as a function of the expansion ratio r for various values of inlet temperature T1.

linear interpolation of various quantities). The magnitude of the entropy change, given
by addition of two large quantities of opposing sign, is 0.003 times the sum of the
magnitudes of the individual quantities. This gives confidence in the computational
procedure described at the end of Section 2.

In the results presented in the remainder of this section, the ambient air was assumed
to be at 35 ◦C with partial pressures Pa1 = 99 300 Pa and Pv1 = 2000 Pa. This
corresponds to a relative humidity of 35.5%. The initial volume was V1 = 1 m3 and
the temperature of the injected water was 20 ◦C.

The prime objective was to explore the sensitivity of the results to pre-heating
of the air. Results are presented for a set of relatively low inlet temperatures
(T1 = 35, . . . , 95 ◦C) and a second set with relatively high inlet temperatures (T1 =

100, . . . , 400 ◦C). The inlet densities of air and vapour were given by the ideal gas
law P = RρT , where Ra = 287.0 J (kg K)−1 and Rv = 461.5 J (kg K)−1. The specific
heat capacities (with units J (kg K)−1) were fixed at the values of 20 ◦C: Ca P = 1005,
CaV = 718, CvP = 1872, CvV = 1411. The latent heat of evaporation, L , was given
by linear interpolation of tabulated values [4, Table A-4]. An approximate value for L
is 2.3 MJ kg−1, which is slightly less than one-tenth the energy density of hydrocarbon
fuels, without need for oxidant.

Figures 3 and 4 show the specific water consumption, δmv/ma (kg (kg air
throughput)−1), and the specific work output for one cycle of the BEE heat engine,
w =W/ma (J kg−1). As the inlet temperature is increased, more water can be
evaporated and the work output of the engine increases. The work output of the
engine also increases as the expansion ratio r increases, but only up to the point where
saturation would be reached at station 2.

Figures 5 and 6 show the back-work ratio and the temperature decrease from
inlet to outlet. The back-work ratio is the work required for expansion divided
by the work received during compression. In common with all gas cycle engines,
the BEE has a high back-work ratio; values of perhaps 70% or more must be
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FIGURE 5. Back-work ratio (expansion work divided by compression work) for both sets of inlet
temperatures. Results are shown as a function of the expansion ratio r for various values of inlet
temperature T1.

considered as a design requirement. The temperature decrease from inlet to outlet
shows the remarkable fact that evaporative coolers can also simultaneously deliver
useful work output.

Efficiency is defined as desired output divided by required input. The desired output
is the work per cycle, W , and the required input is the energy needed to pre-heat air
from ambient temperature Tamb to the inlet temperature T1. Thus the efficiency, η, is

η =
W

(maCa P + mvCvP)(T1 − Tamb)
. (3.1)

Figure 7 shows the efficiency, which increases with T1 and the expansion ratio. The
left-hand figure does not include results for T1 = 35 ◦C, which is in fact the ambient
temperature. At ambient temperature, the BEE heat engine delivers surplus work
without any need for pre-heating. The engine is able to take energy from the air,
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thereby providing a cooling effect from inlet to exhaust, without violating the laws of
thermodynamics. The increase in entropy due to evaporation offsets the decrease in
entropy due to cooling. The efficiency is also remarkably high for inlet temperature
T1 = 45 ◦C since relatively little pre-heating is required.

Figure 8 shows the water consumption of the BEE expressed in kg of water per
kWh of work produced. Water consumption is of great practical importance, since in
general the injected water will need to be pure, thereby necessitating a water treatment
plant as an auxiliary system. The water consumption drops rapidly with increasing
inlet temperature, from approximately 51 kg/kWh at T1 = 35 ◦C and 80% back-work
ratio to 3.4 kg/kWh at T1 = 400 ◦C and 80% back-work ratio.

4. Thermodynamic model for the BDE heat pump

Model equations are now presented for the BDE heat pump, for which the
thermodynamic cycle is illustrated in Figure 1(b). In general, it is assumed that the
inlet air is saturated. Provided condensation nuclei (i.e. seed droplets) are present, the
expansion phase from station 1 to station 3 will involve condensation. This is analysed
using an approach similar to that presented at the end of Section 2 for the BEE heat
engine. The starting point for the model equations is to assume that condensation does
not occur between stations 1 and 2 as shown on Figure 1(b), only between stations 2
and 3. The two stages will then be combined into a multi-step transition from station
1 to station 3.

Between stations 1 and 2 of Figure 1(b), suppose the air–vapour mixture is
expanded adiabatically without condensation. This results in a set of equations
identical to (2.1)–(2.6). The method of solution is the same as introduced in Section 2.
The temperature T2 is given by

T2 = T1 r−e1/e2, (4.1)

in which e1 and e2 are defined by

e1 = (γa − 1)maCaV + (γv − 1)mvCvV , (4.2)

e2 = maCaV + mvCvV . (4.3)

Once T2 has been calculated, all other properties at station 2 can be calculated by direct
substitution.

Between stations 2 and 3, suppose that the mass of vapour changes by δmv; in
fact condensation occurs, δmv < 0. The model equations are similar to the set (2.12)–
(2.17), but with changes to equation (2.16):
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ρa2V2 = ρa3V3 (mass of air), (4.4)

ρv2V2 + δmv = ρv3V3 (mass of water), (4.5)
Pa2

ρa2T2
=

Pa3

ρa3T3
= Ra (ideal gas law for air), (4.6)

Pv2

ρv2T2
=

Pv3

ρv3T3
= Rv (ideal gas law for vapour), (4.7)

maua2 + mvuv2 = maua3 + (mv + δmv)uv3 − δmvuw3, (4.8)

V2 = V3. (4.9)

The specific internal energy terms in (4.8) can be written as

ua2 = ua0 + CaV (T2 − T0),

ua3 = ua0 + CaV (T3 − T0),

uv2 = uv0 + CvV (T2 − T0),

uv3 = uv0 + CvV (T3 − T0),

uw3 = uv3 − L(T3),

where L(T3) is the latent heat of condensation at temperature T3 with the volume held
constant, V3 = V2. (Implicit in the last equation is an assumption that condensation is
occurring under saturated conditions for both liquid water and vapour.) It follows that
T3 is given by

T3 = T2 −
δmvL(T3)

e3
(δmv < 0), (4.10)

in which e3 is defined by
e3 = maCaV + mvCvV . (4.11)

Once T3 has been thus calculated, all other properties at station 3 follow by
substitution. Again, it is necessary to include an iterative loop to ensure saturation
conditions at station 3. That determines δmv and completes the model for the transition
from station 2 to station 3.

The transition from station 1 to station 3 of Figure 1(b) is now modelled as a
sequence of N small steps with equal volume increments, not pressure increments
as for the BEE, each with two sub-steps:

(1) expansion without condensation, with constant entropy of the air–vapour
component of the air–vapour–fog mixture; and

(2) condensation to saturation at constant volume as per equations (4.4)–(4.11).

For this expansion model to be valid, changes in the entropy of droplets are assumed to
be negligible for sub-step 1, and changes in the internal energy of condensed droplets
are assumed to be negligible for sub-step 2. This will be acceptable provided not
too much condensed water is present, which is equivalent to assuming that the inlet
temperature T1 is not too high. Note that the constants e1, e2 and e3 need to be updated
throughout the expansion process.
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FIGURE 9. Effect of condensation during expansion is modelled by the sawtooth line: T1 = 20 ◦C,
Pa1 = 98 961 Pa, Pv1 = 2339 Pa (exactly at saturation), r = 1.12. Only 10 steps are shown above, but 60
steps were used for the results of Section 5.

The expansion process is illustrated in Figure 9, in which only 10 steps are depicted.
For the results presented in Section 5, 60 steps were used. Since no heat is added
and condensation is assumed to be reversible, expansion from station 1 to station 3
is a constant-entropy process, which permits a good check on numerical results. The
entropy of the air–vapour mixture at station 1 should equal the entropy of the air–
vapour–fog mixture at station 3.

The remaining stage is compression from station 3 to station 4. This involves
identical equations to (2.20)–(2.25), but in which δmv is now negative. The
compression ratio θ = V4/V3 can be determined by matching the outlet pressure to
the inlet pressure. The analysis proceeds as that for the BEE in Section 2 and gives

T4 = T3 θ
−e4/e5, (4.12)

in which e4 and e5 are defined by

e4 = (γa − 1)maCaV + (γv − 1)(mv + δmv)CvV , (4.13)

e5 = maCaV + (mv + δmv)CvV , (4.14)

and θ by

θ =

(
Pa3 + Pv3

Pa1 + Pv1

)e5/(e4+e5)

. (4.15)

All quantities at station 4 can now be determined by substitution. It is noted again that
δmv < 0 for the BDE heat pump.
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TABLE 2. State of the heat pump for the entropy check. The amount of water condensed during expansion
is 0.017 29− 0.012 62= 0.004 67 kg.

Station V (m3) T (◦C) ma (kg) mv (kg) Pa (Pa) Pv (Pa)
1 1.0 20 1.176 23 0.017 29 98 961 2339
3 1.2 11.6 1.176 23 0.012 62 80 109 1382
4 1.027 06 29.8 1.176 23 0.012 62 99 582 1718

The net work output W during the cycle is given by the integral

W =
∫ V3

V1

(Pa + Pv − [Pa1 + Pv1]) dV +
∫ V4

V3

(Pa + Pv − [Pa1 + Pv1]) dV .

(4.16)
The first term is negative and is the work required during expansion; this was evaluated
numerically as for the BEE heat engine. The second term is positive and is the work
received during compression; this was evaluated analytically. In fact, W < 0, that is
work is required to complete the cycle.

5. Results for the BDE heat pump

In the results presented in this section for the BDE heat pump, the inlet air was
assumed to be fully saturated at the inlet temperature, which was between 5 and 25 ◦C.
The initial volume was V1 = 1 m3 and the expansion ratio r = V2/V1 varied between
1.04 and 1.68. The inlet densities of air and vapour were given by the ideal gas laws
P = RρT , where Ra and Rv had the same values as in Section 3. The specific heat
capacities also had the same values as those used in Section 3. The latent heat of
condensation at constant volume, L , was given by linear interpolation of tabulated
values [4, Table A-4]. Results were again obtained using 60 steps for the transition
from station 1 to station 3.

A key requirement in the simulations was to determine saturation conditions for
air–vapour mixtures. This is required for each of the small steps in the expansion
phase between stations 1 and 3. At a particular temperature, saturation occurs
when the partial vapour pressure Pv reaches the saturation pressure given by the
Clapeyron–Clausius equation [4, Section 11-3]. For the simulations presented below,
the saturation vapour pressure was given by linear interpolation of tabulated values
[4, Table A-4].

The entropy check anticipated in Section 4 is now described for the case V1 = 1 m3,
T1 = 20 ◦C, Pa1 = 98 961 Pa, Pv1 = 2339 Pa (i.e. at saturation) and r = 1.2.

Based on linear interpolation of tabulated values (Table 2) of specific entropy for
air and saturated water and vapour [4, Tables A-4 and A-17], the change in entropy
of the air component of the air–vapour–fog mixture from station 1 to station 3 was
+37.12 J K−1, whilst the change in entropy of the vapour–fog component of the
mixture was −37.20 J K−1. (As noted in Section 3, the specific entropy of air as
an ideal gas depends on both temperature and pressure; see [4, Equation (6-42)].)
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FIGURE 10. Left-hand figure: change in the mass of vapour δmv (kg per kg of dry air; in fact
δmv < 0, which confirms that water has condensed during the thermodynamic cycle). Right-hand figure:
specific work output w (J kg−1; in fact w < 0, which confirms that work is required to complete the
thermodynamic cycle). Results are shown as a function of the expansion ratio r for various values of inlet
temperature T1.

The entropy change of the entire mixture was −0.08 J K−1, which is acceptably
close to zero given the various approximations made (constant specific heats, ideal
gas laws, finite number of expansion steps, linear interpolation of various quantities).
The magnitude of the entropy change, given by addition of two large quantities of
opposing sign, is 0.001 times the sum of the magnitudes of the individual quantities.
This gives confidence in the computational procedure described in Section 4.

Figure 10 shows the change in mass of vapour and work output during the
thermodynamic cycle of the BDE heat pump. Both quantities are negative, showing
that water vapour has condensed and work is required to complete the cycle. This
is a classic feature of heat pumps: heat is taken from a low-temperature reservoir
(condensation at reduced pressure and low temperature) and provided to a reservoir at
higher temperature (the exhaust). Work must be done during the cycle. The validity
of the foregoing theory is limited in that the temperature at the coldest point, T3, must
be above freezing. If it were below freezing, then different values need to be used
for the saturation vapour pressure. This limits the expansion ratio r , but only for
application of the theory presented in Section 4. In practice, higher values of r would
be possible since vapour can freeze onto droplets with an ice coating. The saturation
vapour pressure over ice is actually lower than that over water.

The coefficient of performance COP of the BDE heat pump is defined by

COP=
maCa P(T4 − T1)

W
, (5.1)

where W is given by equation (4.16). Figure 11 shows the back-work ratio (expansion
work divided by compression work) and COP. The back-work ratio is always greater
than one (work must be supplied!) and increases as the inlet temperature T1 increases.
Wiggles in the back-work plots are artefacts of the computational process, particularly
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various linear interpolations between tabulated values. The results for the coefficient
of performance, given by equation (5.1), are noteworthy. For example, for inlet
temperatures of 10 and 15 ◦C and maximum allowable values of the expansion ratio r ,
COP takes the values 47 and 26 respectively. The BDE is a very good heat pump!

Figure 12 shows temperature change T3 − T1 from the inlet to the coldest point and
the temperature change T4 − T1 from inlet to outlet. (Recall that T3 must be above
freezing for the theory to hold, thus limiting the expansion ratio.) At the maximum
theoretical values of the expansion ratio r and inlet temperatures of 10 and 15 ◦C, the
outlet temperature is 7 and 13 ◦C hotter respectively than the inlet temperature.

6. Discussion and conclusions

The inputs to the BEE heat engine are water plus unsaturated air; the outputs are
work and air that is cooled and moistened. The simulations show that evaporative
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coolers can deliver useful power, and that the work output increases as the inlet
temperature increases.

The amount of work obtained during a cycle of the BEE is limited by the amount
of water that can be evaporated before saturation occurs. That fact, together with
the high back-work ratios associated with gas cycle engines, means that a piston-in-
cylinder configuration is strongly preferred over a continuous flow configuration (that
is turbine, evaporator and extraction fan in series). Positive aspects of a piston-in-
cylinder configuration are good control over leakage and friction, and tolerance to
droplets in the air.

Water consumption in the BEE is a non-trivial issue. Small droplets are required
for evaporation to occur quickly. Injection of droplets with diameter 15 µm requires
a water pump at approximately 5 MPa pressure. For such a pump, the work required
to inject 1 g of water is 5 J. However, this is not particularly demanding considering
the amount of work obtained. For example, with inlet temperature T1 = 100 ◦C and
expansion ratio r = 1.8, the specific power output is 7238 J per kg of air throughput
and the specific water consumption is 0.023 7 kg per kg air. To inject the water
requires 1.6% of the theoretical work output of the engine. In a relative sense, both
water injection and consumption become progressively less of a problem as the inlet
temperature increases.

In general, water injected into the BEE will need to be free from solid matter and
preferably from chemical impurities at well. If water containing salt or other dissolved
substances is used for injection instead of pure water, dissolved substances will reduce
the saturation vapour pressure according to Raoult’s law [5] and thereby the work
output per cycle. Deposition of chemical residues inside the engine should also be
avoided.

Unpublished experimental work by the author shows that it takes a little more than
a second for injected water droplets to disperse from a high-pressure nozzle and fill
an 80 litre container. The additional time required for evaporation once the droplets
have been dispersed is not expected to be particularly large (unpublished calculations
by the author, confirmed by Sirignano [7]). The cycle time for the BEE will be more
than one second—but perhaps not much more, depending on how the expansion and
compression steps are managed. In fact, an inertial double-acting piston-in-cylinder
configuration is anticipated to require approximately three seconds for two complete
cycles. Such a configuration is planned for the first experimental BEE, currently under
construction.

Possible applications for the BEE heat engine include efficient evaporative coolers,
power generation in arid climates using solar pre-heating, and power generation using
industrial waste heat, especially the exhaust of open-cycle gas turbines (OCGTs).
Other applications are expected to be discovered.

The inputs to the BDE heat pump are cool moist air plus power; the outputs are
condensed water plus air that is warmed and dried. The main application is anticipated
to be for space heating, although dryness of the output air might be important for
certain applications. Since condensed droplets are collected during the BDE cycle, the
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BDE would also ‘wash’ the air, which might be relevant if the ambient atmosphere
contains unwanted particles.

The BEE and BDE will be slow-revving. Also, since the BEE and BDE devices
are based on expansion, not compression, they are expected to be large compared to
automobile or aircraft engines of comparable power output. The large size will help
minimise some of the inevitable practical losses (see below). With careful design, an
increase in the volumetric capacity is not expected to have a strong effect on the cycle
time. Large slow-revving devices will probably not be suitable for mobile applications
(except perhaps for boats or trains) and are certainly unconventional, but still might be
economically advantageous for stationary applications.

Comments in the previous paragraph are now illustrated by an example in which
the intake air for the BEE is sourced from the exhaust of an open-cycle gas turbine at
500 ◦C and partial pressures Pa1 = 92.5 kPa and Pv1 = 8.8 kPa. The density of dry air
at the inlet is ρa1 = 0.414 kg m−1. The theory of Section 2 predicts that the specific
power output of the BEE is 148 kJ (kg dry air throughput)−1 at an expansion ratio
r = 4.0. Current thoughts on the construction of the BEE are that it would have an
inertial double-acting piston-in-cylinder configuration. If the engine completes two
power strokes in three seconds, as is currently thought achievable, the theoretical
average power output per unit volume would be 9.3 kW m−3. That is expected to
be similar to the power output per unit volume of a steam turbine to use the OCGT
exhaust, bearing in mind the need for high-pressure boiler and condenser. Note that
the BEE does not need a boiler or condenser, thereby saving on capital costs.

The theory and results presented above do not include the effects of various losses,
in particular:
• losses associated with flow through inlet and outlet valves;
• leakage around the piston (or if leakage is absent, then friction);
• mechanical friction in the mechanism used to extract or supply power;
• losses associated with the high-back work ratio;
• heat transfer through the cylinder walls;
• energy required for water treatment;
• energy required to inject water droplets between stations 2 and 3 for the BEE;

and
• energy required to collect condensed water at station 3 in the BDE; collection

is anticipated to be carried out by sweeping a secondary piston with cyclones
through the chamber at the point of maximum expansion.

An experimental BEE is currently under construction. Experimental investigation of
losses will be an important task once construction of the engine is complete.
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