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The present study offers a twofold contribution on counter-gradient transport (CGT) of
turbulent scalar flux. First, by examining turbulent scalar mixing through synchronized
particle image velocimetry and planar laser-induced fluorescence on an inclined jet in
cross-flow, we clarify the previously unexplained phenomenon of CGT, revealing key
flow structures, their spatial distribution and modelling implications. Statistical analysis
identifies two distinct CGT regions: local cross-gradient transport in the windward shear
layer and non-local effects near the wall after injection. These behaviours are driven
by specific flow structures, namely Kelvin–Helmholtz vortices (local) and wake vortices
(non-local), suggesting that scalar flux can be decomposed into a gradient-type term for
gradient diffusion and a term for large-eddy stirring. Second, we propose a new approach
for reconstruction of turbulent mean flow and scalar fields using continuous adjoint data
assimilation (DA). By rectifying model-form errors through anisotropic correction under
observational constraints, our DA model minimizes discrepancies between experimental
measurements and numerical predictions. As expected, the introduced forcing term
effectively identifies regions where traditional models fall short, particularly in the jet
centreline and near-wall regions, thereby enhancing the accuracy of the mean scalar field.
These enhancements occur not only within the observation region but also in unseen
regions, underscoring present DA approach’s reliability and practicality for reproducing
mean flow behaviours from limited data. These findings lay a solid foundation for
adjoint-based model-consistent data-driven methods, offering promising potential for
accurately predicting complex flow scenarios like film cooling.

Key words: variational methods, turbulent mixing, turbulence simulation

† Email address for correspondence: yzliu@sjtu.edu.cn

© The Author(s), 2024. Published by Cambridge University Press 999 A81-1

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

97
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

mailto:yzliu@sjtu.edu.cn
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2024.974&domain=pdf
https://doi.org/10.1017/jfm.2024.974


S. Li, W. Zhou, H.J. Sung and Y. Liu

1. Introduction

Scalar transport problems, which characterize mass and heat transfer behaviours in
fluid dynamics, are prevalent in various shear-dominated applications like premixed
turbulent flames, pollutant in plumes and film cooling in aeroengines. One of the most
prominent features of such transport is the presence of large-scale coherent structures
in the mixing layer (Li, Balaras & Wallace 2010). These structures induce turbulent
scalar flux that flows along the direction opposite to the mean scalar profile gradient,
giving rise to counter-gradient transport in mixing; such a fact certainly diverges
from the conventional understanding in first-order turbulent closure (Xiao & Cinnella
2019) presuming that turbulent diffusion typically follows the scalar gradient. However,
despite numerous observations of counter-gradient transport in turbulent scalar flux
(Veynante et al. 1997; Mahesh 2013), a notable research gap persists in understanding
the underlying cause-and-effect mechanism and the corresponding implications for
modelling. Accordingly, it is highly desirable to addressing the challenging issues in
Reynolds-averaged Navier–Stokes (RANS)-based models.

Both experimental data (Su & Mungal 2004) and theoretical analyses (Muppidi
& Mahesh 2008) have highlighted the existence of counter-gradient transport, which
contributes decisively to poor mean scalar field predictions. The observation of
counter-gradient transport in laboratory settings was initially documented by Komori
et al. (1983) in a thermally stratified open-channel water flow. Subsequently, Veynante
et al. (1997), Salewski, Stankovic & Fuchs (2008) and Milani, Ling & Eaton (2020)
reported instances of counter-gradient heat or mass transfer in various applications.
Among all scenarios, the jet-in-cross-flow (JICF) has received widespread attention. Su &
Mungal (2004) scrutinized the time-averaged turbulence quantities through simultaneous
measurements of scalar and velocity field and were the first to identify the region
of counter-gradient transport of turbulent scalar flux in JICF. Veynante et al. (1997)
endeavoured to measure the co-spectra of instantaneous momentum and scalar fluxes;
however, significant scattering was encountered in the circular JICF, posing challenges in
precisely identifying the scale motions contributing to counter-gradient transport. Milani
et al. (2020) identified two types of counter-gradient transport (CGT) in JICF, occurring
within the jet shear layer and near wall region, consistent with observations by Muppidi
& Mahesh (2008). They demonstrated that in the jet shear layer, cross-gradient effects
play a significant role in counter-gradient heat transfer, whereas in the near-wall region,
non-local contributions predominate. Nevertheless, the underlying mechanism driving
these behaviours remains unclear.

Parallelly, many efforts have been directed towards enhancing the predictive capabilities
of RANS models for scalar mixing, including adjustments to isotropic assumptions
(Bergeles, Gosman & Launder 1978; Lakehal, Theodoridis & Rodi 2001; Liu, Zhu &
Bai 2008, 2011; Ling, Rossi & Eaton 2015; Zhang et al. 2022b) or the implementation
of anisotropic modifications (Azzi & Lakehal 2001; Li et al. 2014; Milani et al. 2020;
Weatheritt et al. 2020). Bergeles et al. (1978) pioneered the work by adjusting eddy
viscosity through a correction factor based on wall-normal distance. Lakehal et al.
(2001) extended this to include the viscous sublayer. Despite improvements in spreading
behaviour, scalar mixing was still overestimated. Azzi & Lakehal (2001) introduced an
explicit algebraic stress model to address near-wall anisotropy, yet still struggled to capture
actual spreading. This again emphasizes taking turbulent scalar flux into consideration
is essentially important for accurate scalar diffusion. One avenue of exploration was
to analyse the turbulent Prandtl number (Prt) and devise a case-dependent correction
model, showing improved predictions over the gradient diffusion hypothesis (GDH)
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with uniform Prt distribution (Liu et al. 2008). Further enhancements were made by
using scalar gradient as a model input (Liu et al. 2011) and adapting the model near
solid walls to address disparities in behaviour between Reynolds stress and turbulent
scalar flux (Ling et al. 2015). Subsequently, the limitations of GDH were successfully
surpassed by recent artificial intelligence related efforts. Milani et al. (2020) employed
a tensor basis neural network to consider the anisotropic diffusion on the scalar flux
transport, while Weatheritt et al. (2020) used gene-expression programming to enhance the
accuracy of the turbulent scalar flux (u′

ic
′). These first data-driven endeavours underscore

the significance of anisotropic modifications on scalar predictions, as several challenges
are often overlooked. First, turbulence modelling for momentum equations alters mean
velocity, and thus affects scalar advection. Second, turbulent mixing models depend
explicitly on momentum-derived quantities such as turbulent eddy viscosity. Third,
anisotropic modifications inherently suffer from extreme numerical instability (Milani
et al. 2020). These complex implications indicate the necessity for careful consideration
of scalar mixing in turbulent flow.

Fortunately, data assimilation (DA) has emerged as a promising approach to enhance the
representation of Reynolds stress and turbulent scalar flux by integrating measurements
and numerical simulations (Heitz, Mémin & Schnörr 2010; Duraisamy, Iaccarino & Xiao
2019; Brunton, Noack & Koumoutsakos 2020). The essential aspect of a DA scheme lies in
its optimization strategy. For mean flow recovery, two categories of DA strategies are used:
parametric (Kato et al. 2015; Li et al. 2017, 2018) and non-parametric methods (Foures
et al. 2014; Brener et al. 2021; He, Wang & Liu 2021; Hafez, Abd El-Rahman & Khater
2022; Li, He & Liu 2022; Zhang et al. 2022a,b, 2023a). Parametric approaches involve
adjusting RANS closure coefficients based on flow sensitivity distribution. Techniques
such as perturbation-based adaptation (Duraisamy et al. 2019) or statistical approaches
like the ensemble Kalman filter (EnKF) (Kato et al. 2015) have shown improved mean
flow reconstruction. However, their reliance on ensemble-based techniques results in high
computational costs, and their reliability is constrained by the structure of turbulence
models. Non-parametric methods address these limitations by introducing modifications
directly into turbulent transport equations or model terms, such as Reynolds stress or
eddy viscosity. Singh & Duraisamy (2016) introduced a multiplicative correction into the
production terms of the turbulent transport equation using the discrete adjoint method,
achieving high-fidelity mean flow reconstruction. Efforts to extend the solution space of
non-parametric approaches were made by directly perturbing Reynolds stresses through
iterative EnKF methods (Zhang et al. 2022a, 2023a), adjusting the Reynolds force vector
(the divergence of the Reynolds stress) using adjoint-based approaches (Foures et al. 2014;
Symon et al. 2017) or incorporating the eddy viscosity model in high-Reynolds-number
flows (He et al. 2021; Li, He & Liu 2022). As mixing is predominantly governed by
convection transport and turbulent scalar flux transport, both factors should be taken into
full consideration in the DA framework; however, rather few efforts in this strategy have
been reported.

The major attention of the present work is placed on predicting the counter-gradient
transport of turbulent scalar flux using an improved DA framework for Reynolds stress and
turbulent scalar flux. Towards this end, the present paper offers a twofold contribution.
First, we employed an inclined JICF under two distinct flow regimes to elucidate
the underlying driving mechanism in regions exhibiting counter-gradient transport of
turbulent scalar flux. Second, we delve into the reconstruction of turbulent mean flow
and scalar field for inclined JICF using continuous adjoint data assimilation. Model-form
errors resulting from the Boussinesq approximation and the GDH are rectified through
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anisotropic correction under the constraint of observational data. The DA model is derived
to minimize discrepancies between the particle image velocimetry (PIV)/planar laser
induced fluorescence (PLIF) measurements and the numerical predictions, and thus enable
determination of the optimal contribution of the Reynolds force vector and turbulent scalar
force (the divergence of the turbulent scalar flux). Here, only limited data are used for
DA, and other data are reserved for validation. Finally, the velocity reconstruction of the
DA model for two scenarios with different velocity ratios has been validated, and the
application of the DA approach to correct the scalar field is explored.

2. High-fidelity database and validation

2.1. Generation of high-fidelity database
The observational datasets for DA were obtained through synchronized time-resolved
PIV/PLIF measurements. Additionally, delayed detached eddy simulations (DDESs)
were conducted to quantitatively benchmark the reconstruction capabilities of the DA
procedure. The experiment set-up, depicted in figure 1, involves a water tunnel submerged
within a large glass tank. To ensure a stable mainstream flow, a honeycomb and a
contraction section were positioned upstream of the 600-mm-long test section, which
features a cross-section of 80 mm (width) × 50 mm (height). The free stream turbulence
level is roughly 5 %. During the experiments, the cross-flow velocity at the inlet of the
test section was maintained at U0 = 0.38 m s−1, corresponding to a Reynolds number
of 150 000 based on the distance between the leading edge of the test plate and the
coolant injection holes. Two different velocity ratios (VR = Uj/U0 = 0.4 and 1.2, where
Uj is the mean jet velocity) were examined by adjusting the jet flow rate. These ratios
represent both attached and detached flow regimes, resulting in jet Reynolds numbers
(based on the tube diameter) of 1200 and 3600, respectively. Both the cross-flow and
jet flow Reynolds number falls in the scope of the typical engine condition (Ye et al.
2019). A constant-head tank was employed to maintain a consistent water level, while
a jet chamber was used to stabilize the jet before introduction into the mainstream.
Multi-plane measurements (z/D = 0, 0.3 and 0.5) were conducted to comprehend the
three-dimensional flow features in JICF. The jet originated from a circular tube with
dimensions: diameter (D) of 8 mm, length (L) of 40 mm, and an inclination angle (α) of
30°. This configuration was selected for its representativeness of film cooling applications,
highlighting the highly non-uniform and secondary flow characteristics within the hole.

A continuous 532-nm laser illuminated PIV particles and served as the excitation
source for rhodamine solution in PLIF measurements. Synchronized measurements were
performed using two high-speed cameras (Dimax HS, PCO) to capture instantaneous
velocity and concentration field. The velocity fields were determined using the adaptive
cross-correlation PIV algorithm with 32 × 32 pixels interrogation window and 50 %
overlap, resulting in a grid spacing of 0.05D. Rhodamine dye, with a concentration of
C0 = 0.05 mg L−1, was employed as the jet fluid source. To eliminate the excitation
source, a long-wave-pass filter (570 nm) was positioned before the camera lens. The
sampling frequency was 1000 Hz and PLIF images had a spatial resolution of 0.02D.

The computational domain mirrors the experimental set-up depicted in figure 1, with
the mainstream inlet boundary located 4.0D upstream of the jet exit centre. The numerical
simulation incorporates the water chamber, consistent with established film cooling
practices, to resolve the recirculation occurring inside the hole before encountering
the cross-flow (Bodart, Coletti & Eaton 2013). In figure 2(c), time-averaged velocity
profiles extracted at x/D = −1.5 in three measurement planes are shown. Notably, the
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Figure 1. Experimental set-ups for the simultaneous PIV/PLIF measurements.

velocity profiles exhibit good agreement, supporting the notion of treating the mainstream
inlet velocity as uniformly distributed along the spanwise direction. To replicate the
experimental environment in the numerical simulation, the inflow statistics are derived
from time-resolved PIV measurements. The spectral synthesizer, originally proposed
by Kraichnan (1970) and modified by Smirnov, Shi & Celik (2001), is employed to
impose the desired flow statistics. Since PIV data for the Reynolds stresses out of the
xy-plane are unavailable, we resemble these stresses based on the distribution from
the high-fidelity simulation of a turbulent inclined JICF by Bodart et al. (2013) with
a mean turbulence intensity of 5 %. These inflow statistics, extracted at x/D = −1.5
from PIV measurements, are applied to the DDES with the mainstream inlet boundary
located 4.0D upstream of the jet exit centre (figure 2b). The cross-flow boundary layer
characteristics 1.5D upstream of the jet orifice are then verified using the DDES statistics
for velocity and Reynolds stress behaviour. Despite some discrepancies in turbulence
statistics, the mean velocity agrees well with the experiments, as shown in figure 2(d–g).
For the Spalart–Allmaras (SA) model, we impose the turbulent mean velocity profile
and the actual eddy viscosity determined from PIV, as depicted in figure 2(c). The eddy
viscosity ratio is determined by the linear relationship of the Boussinesq hypothesis, as
suggested by Weatheritt et al. (2020). At the chamber inflow, velocity and concentration
are imposed without any superimposed turbulence. Figure 2(b) depicts the numerical
meshes of the JICF configuration. The computational grids are block-structured and locally
refined with 100 inflation boundary layers in the region of interest (−1.5 < x/D < 5,
0 < y/D < 2 and −1.5 < z/D < 1.5) to better resolve the gradients near the shear layer
and solid surfaces. The grid resolution ensures that the first cell centre is located at
y+ < 1.5 for all walls, except for the upper wall where a slip boundary condition is
applied. This set-up adequately captures the blockage effect (Li, He & Liu 2023). An
in-house dynamic DDES code (He, Liu & Yavuzkurt 2017) is employed for the simulation
on a refined mesh comprising either 9.1 million (VR = 0.4) or 10.3 million (VR = 1.2)
elements. The time step size, �t+DDES = �tDDESU0/D = 0.01, ensures that the maximum
Courant–Friedrichs–Lewy number is always less than 1. A statistically steady state is
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Figure 2. (a) Schematic of the computational domain, (b) computational mesh with every 10 grid nodes
displayed, (c) profiles of the streamwise velocity and the eddy viscosity ratio vt/v determined through PIV
measurements and (d–g) comparison of velocity and turbulence statistics extracted from x/D = −1.5.

reached after 100 time units, where T = D/U0. Turbulent quantities are then averaged
over a period of 200T, which leads to an acceptable level of convergence for this
fully non-homogeneous configuration in which no spatial averaging can be employed to
accelerate the convergence.

2.2. Model validation
The mean turbulent flow, as determined by DDES and SA models, was validated against
PIV/PLIF measurements in the mid-plane (figures 3 and 4). The scalar transport in
SA model employs a straightforward, isotropic GDH, where the turbulent diffusivity is
prescribed with a fixed turbulent Schmidt number, denoted as Sct = 0.85 (Kays 1994).
Regarding the x-direction velocity, all profiles exhibit favourable agreement between
experimental data and DDES results. However, the SA model fails to accurately capture jet
spreading and diffusion, leading to noticeable discrepancies. Two significant distinctions
between the default SA model and PIV/DDES results are observed from the contours in
figure 3(a,c). First, the pattern of the jet core, as indicated by the x-direction velocity,
varies noticeably. The experimental and DDES results reveal a broader jet core that
extends deeper into the mainstream, whereas the default SA model predicts a narrower
core squeezed into the upstream region of the jet, leading to increased y-direction velocity.
Second, the x-direction velocity downstream of the injection, simulated using the default
SA model, is notably lower compared with the reference data. This discrepancy is
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Figure 3. Contours of the PIV/PLIF, SA and DDES results at the mid-plane. (a,b) VR = 0.4, (c,d) VR = 1.2.

particularly pronounced in the velocity profiles in figure 4(a–d). There are two local
maxima for each velocity ratio, representing the upstream and downstream shear layers,
respectively. The SA model consistently underestimates x-direction velocity for both
shear layers across all velocity ratios. Additionally, it is important to emphasize that
the cross-flow incoming boundary layer is thicker than the other two, indicating an
overestimation of eddy viscosity in front of the jet. This discrepancy stems from the
deficiency of the SA model in handling strong adverse pressure gradient (APG) flows. The
SA model assumes equilibrium conditions in the boundary layer, but under strong APG
conditions, this assumption fails. The destruction term in the SA model decays turbulence
too quickly, leading to overestimated eddy viscosity and a thicker boundary layer.

Regarding scalar distribution, the streamwise decay of the scalar field is accurately
predicted by DDES, and the extent of the jet’s shear layer aligns well with the PLIF
data. However, as illustrated in figures 3(b,d) and 4(e–h), the deviation trends in the scalar
field predicted by the SA model are entirely different from those in the velocity fields.
The isotropic model broadly underestimates spreading, resulting in a longer downstream
transport of scalar towards the wall after injection and a slower decay of the jet. Thus, the
jet scalar penetrates deeper into the mainstream for SA than for DDES and experimental
results. This penetration is influenced by both the convective and turbulent scalar flux
transport. The convective transport is affected by the Reynolds stress, while the turbulent
transport is affected by the turbulent scalar diffusion. In the default SA model, the linear
eddy viscosity model (LEVM) leads to limited dissipation, and the gradient diffusion
hypothesis with uniform Schmidt number results in insufficient turbulent diffusion.

999 A81-7

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

97
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.974


S. Li, W. Zhou, H.J. Sung and Y. Liu

2.0

1.0

0 1.5

2.0

1.0

0 1.5

2.0

1.0

0 1.5

2.0

1.0

0 1.5

2.0

1.0

0 1.00.5

2.0

VR = 0.4:

VR = 1.2:
PIV
DDES
SA

PIV
DDES
SA

1.0

0 1.00.5

2.0

1.0

0 1.00.5

2.0

1.0

0 1.00.5

y/
D

y/
D

C/C0 C/C0 C/C0 C/C0

U/U0 U/U0 U/U0 U/U0

x/D = 1 x/D = 2 x/D = 3 x/D = 4(b)(a) (c) (d )

( f )(e) (g) (h)

Figure 4. Comparison of the PIV/PLIF, SA and DDES results at four stations.

This suggests the necessity for careful consideration of both Reynolds stress and turbulent
scalar flux in JICF for accurate scalar mixing.

3. Counter-gradient transport of turbulent scalar flux

The synchronized measurements provide valuable insights into turbulent scalar flux and
the dynamic characteristics of momentum and scalar transport. Access to turbulent scalar
flux enables direct evaluation of GDH and identification of CGT in turbulent scalar flux,
which are pivotal for construction of anisotropic models to accurately capture turbulent
transport. This section clarifies and substantiates the information on flow structures
predominantly responsible for the counter-gradient transport regions within turbulent
scalar flux, the location of these structures and the modelling implications.

3.1. Identification of counter-gradient transportation
Figure 5 presents the evolution of concentration and vorticity fields at two VRs. Each
case shows two snapshots separated by a dimensionless time interval equivalent to
approximately 0.01 in terms of T = D/U0. To facilitate comparison between the vorticity
and concentration fields, the jet boundary is outlined in the vorticity field using a threshold
of C/C0 = 0.8. These vivid results aid in intuitively understanding the evolution of
concentration and vorticity fields and their dynamic relationship. The snapshots reveal
mixing from the Kelvin–Helmholtz (K–H) mode and the downstream growth of flow
structures. Figure 5(b,d) displays clockwise (blue) and anticlockwise (red) K–H vortices
along the jet leading edge and from the separated wake region in the tube. Anticlockwise
vortices with positive vorticity originate from the tube boundary layer, while clockwise
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Figure 5. Simultaneous snapshots of (a,c) concentration and (b,d) vorticity field with a dimensionless time

interval of 0.01 at two VRs. (a,b) VR = 0.4, (c,d) VR = 1.2.

vortices shed from the vorticity feed associated with the horseshoe vortex. The interaction
between the anticlockwise vortex and the upstream horseshoe vortex leads to noticeable
oscillations during vortex shedding.

The mean velocity gradient plays a dominant role in the shear layer dynamics. In
the low-velocity-ratio scenario (figure 5a,b), the positive mean velocity gradient in the
upper shear layer promotes the formation of clockwise vortices. Anticlockwise vortices,
however, undergo vorticity cancellation and decay as they are convected downstream of
the jet orifice. Observations at locations A and B reveal that the spatiotemporal evolution
of concentration structures is influenced by the corresponding vortical structures: local
clockwise vortical structures induce a clockwise curl in the local concentration field.
As the velocity ratio increases to 1.2, the inclined jet fully detaches from the wall. This
intensifies vortical structures, leading to a denser and stronger mixing process and more
fragmented concentration structures compared with at VR = 0.4 (figure 5c,d). In this
higher velocity ratio scenario, the negative mean velocity gradient in the upper shear
layer promotes the formation of counterclockwise vortices. Despite this shift, a similar
correlation persists between the spatiotemporal evolution of concentration and vorticity
fields at locations A and B: the anticlockwise curl of local concentration field arises from
the influence of an anticlockwise vortical structure.

The synchronous correlation between concentration and vorticity fields offers valuable
insights into the turbulent scalar flux distribution in the mixing process of JICF. In the
PIV/PLIF measurement, turbulent scalar flux comprises two components: the streamwise
term (u′

1c′/U0C) and the wall-normal term (u′
2c′/U0C). Figure 6 illustrates the contours

of normalized (a,c) streamwise and (b,d) wall-normal components of turbulent scalar flux
at two velocity ratios. At VR = 0.4, the streamwise turbulent scalar flux shows significant
magnitude in the upstream shear layer with a negative value, whereas it turns positive at
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Figure 6. (a,c) Streamwise and (b,d) wall-normal turbulent scalar flux determined by synchronized
PIV/PLIF. (a,b) VR = 0.4, (c,d) VR = 1.2.

VR = 1.2. As for the wall-normal turbulent scalar flux u′
2c′, the distribution pattern is quite

different. In both examined velocity ratios, the wall-normal term exhibits intensity in the
windward shear layer with positive values but is considerable weaker in the downstream
shear layer.

The distribution of turbulent scalar flux in the jet shear layer is interpretable. When
VR = 0.4, the streamwise component of jet velocity is lower than that of the mainstream
velocity, yet the jet concentration is higher than that of the cross-flow. During turbulent
fluctuation, a location in the windward shear layer is dominated by the jet and the
cross-flow alternately due to K–H instability, as indicated in figure 5(a,b). When the
cross-flow dominates at a certain time, the streamwise component of velocity is likely to be
larger than the time-averaged streamwise velocity (u′

1 > 0), while the local concentration
is lower than the time-averaged concentration (c′ < 0). Similarly, when the jet dominates,
c′ > 0 and u′

1 is likely to be negative. Therefore, the streamwise turbulent scalar flux u′
1c′

is negative in the windward shear layer. As for the wall-normal component of turbulent
scalar flux u′

2c′, the measurement results shown in figure 6 can also be interpreted in
the same way. Moreover, the wide region and relatively large magnitude of positive u′

2c′
in the windward shear layer for both cases reveal a significant relationship between the
wall-normal velocity and concentration field in an inclined JICF.

Regarding the downstream shear layer, u′
1c′ is also positive, as depicted in figure 6(a).

It is logical to explain the case of VR = 1.2 by the alternating dominance of jet and
cross-flow. However, the scenario seems counterintuitive for VR = 0.4. When considering
the wall effect, even at low velocity ratio, the jet velocity in the downstream shear layer
exceeds the cross-flow velocity, as shown in figure 3(a). Consequently, the streamwise
turbulent scalar flux remains positive even at low VR. In the wall-normal direction,
negligible correlation is observed within the downstream shear layer at VR = 0.4, and
only weak negative correlations are observed at VR = 1.2.

Most RANS models reduce the turbulent scalar flux to a diffusion term of the form:

u′
ic

′ = − υt

Sct
∂iC. (3.1)

In this scenario, turbulent diffusivity primarily relies on the turbulent viscosity (υt) in the
momentum equation using the Reynolds analogy and on the turbulent Schmidt number
(Sct) using the GDH. In most turbulent regions, the mean concentration gradient and
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Figure 7. Identification of counter-gradient transport regions in (a,c) streamwise and (b,d) wall-normal
directions determined by synchronized PIV/PLIF. (a,b) VR = 0.4, (c,d) VR = 1.2. Terms are
non-dimensionalized by U0 and D.

the mean scalar flux transport by turbulence retain the same sign across the flow. This
indicates that scalar transport consistently occurs from regions of higher mean scalar
concentration to those of lower concentration. However, the alignment between the two
vectors, u′

ic
′ and ∂iC, may be notably skewed. This can be identified by examining the sign

of the product between each component of u′
ic

′ and ∂iC, as depicted in figure 7, revealing
instances of counter-gradient diffusion. Notably, two prominent features stand out:
(a) in the upstream shear layer, a positive correlation between u′

ic
′ and ∂1C is observed for

both VRs. Specifically, for VR = 1.2, a sizable positive region immediately follows the jet
release, while for VR = 0.4, the correlation shifts to positive after 2D downstream of the
jet orifice; (b) in the downstream shear layer near the wall, a positive correlation between
u′

2c′ and ∂2C is observed for both VRs, with a notably enhanced positive correlation for
VR = 1.2. This correlation can be readily deduced by considering the distribution of ∂iC,
as evident in figure 3(b,d), in conjunction with the distribution of turbulent scalar flux
illustrated in figure 6.

3.2. Local and non-local contribution
Counter-gradient transport is commonly observed in combustion problems (Pfadler et al.
2009), where it is generally understood to arise from thermal dilatation due to chemical
reactions. However, the previous subsection reveals CGT in different flow regions without
any chemical reactions, consistent with reports from authors such as Sau & Mahesh
(2008), Schreivogel et al. (2016) and Milani, Ling & Eaton (2020). This section focuses on
clarifying the existence of CGT in these regions, identifying the dominant flow structures
responsible and pinpointing their locations.

To elucidate the presence of CGT in various regions, it is useful to examine the scalar
flux transport equation, presented in (3.2). Term P i is the production term, showing how
mean velocity and scalar gradients locally generate u′

ic
′. Term Di represents redistribution.

The source term, ϕi, arises from the pressure-scalar correlation, which is inherently
non-local because pressure fluctuations are governed by an elliptic Poisson equation.
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Figure 8. Production terms of (a,b,d,e) turbulent scalar flux and (c, f ) scalar fluctuation variance determined
by synchronized PIV/PLIF. (a–c) VR = 0.4, (d–f ) VR = 1.2. Terms are non-dimensionalized by U0 and D.

Term E i represents viscous destruction associated with small scales.

Dtu′
ic

′ =
Pi︷ ︸︸ ︷

−u′
jc

′∂jUi − u′
ju

′
i∂jC +Di + ϕi − E i. (3.2)

Assuming that the experimental and numerical results have reached statistical steady-state
values and considering physical symmetry,

∂3φ ≡ 0,
∂jU3 ≡ 0,

}
(3.3)

P i =

⎧⎪⎪⎨
⎪⎪⎩

−u′
1c′∂1U1 − u′

1u′
1∂1C − u′

2c′∂2U1 − u′
2u′

1∂2C,

−u′
1c′∂1U2 − u′

1u′
2∂1C − u′

2c′∂2U2 − u′
2u′

2∂2C,

−u′
1u′

3∂1C − u′
2u′

3∂2C.

(3.4)

Next, considering the scalar field analogously, the production term Pc for scalar
fluctuation variance can be expressed as

Pc = −u′
1c′∂1C − u′

2c′∂2C. (3.5)

The production term for scalar fluctuations reflects the transfer of scalar intensity from the
mean field to the fluctuating field, akin to the turbulent kinetic energy cascade. A negative
Pc signifies that scalar intensity is transferred from smaller scales to mean flow, indicating
non-local behaviour.

Figure 8 shows the production terms for turbulent scalar flux and scalar fluctuation
variance, as determined by synchronized PIV/PLIF. Building on the insights from figures 6
and 7, figure 8 identifies two distinct types of CGT regions. The first type, evident in the
windward shear layer (figure 7a,c), is associated with the streamwise component of the
turbulent scalar flux. Here, the production term aligns with the sign of the streamwise
turbulent scalar flux, indicating primarily local CGT behaviour. This local CGT is mainly
driven by the cross-gradient transport of turbulent scalar flux. In the grey regions depicted
in figure 9, where ∂2C < 0 and ∂2U > 0, turbulent eddies bringing fluid from above
(u′

2 < 0) tend to carry a weaker concentration (c′ < 0) and higher streamwise velocity
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Figure 9. Vertical profiles of different component of the u′
1c′ production term, mean streamwise velocity

and concentration. Profiles are extracted (a) at x/D = 2.8 and z/D = 0 for VR = 0.4 and (b) at x/D = 0 and
z/D = 0 for VR = 1.2 using synchronized PIV/PLIF. The grey band represents the region of CGT. Terms are
non-dimensionalized by U0 and D.

(u′
1 > 0). Similarly, eddies that bring fluid from below (u′

2 > 0) link c′ < 0 with u′
1 < 0.

This pattern is consistent in jets with higher velocity ratios, where vertical turbulent
transport produces positive u′

1c′ in that region. These behaviours align with the alternating
dominance of jet and cross-flow correlations discussed in § 3.1. To further elucidate,
figure 9 depicts various components of the u′

1c′ production term. Note that the GDH
considers only the mean concentration gradient in the x-direction on u′

1c′, reflected in the
production term −u′

1u′
1∂1C. However, in regions exhibiting CGT, the production term is

dominated by vertical gradient components, specifically −u′
2c′∂2U1 and −u′

2u′
1∂2C. These

terms, shown as negative in figure 9(a) and positive in figure 9(b), correspond with the
observed sign of u′

1c′ in the grey regions.
To identify the flow structure responsible for the local CGT behaviour, the co-spectra

Fu′
ic

′ of the turbulence transport term are presented. Figure 11(a,b) shows the first
momentum of co-spectra fFu′

ic
′ , normalized by the sign of ∂iC to clearly depict the

CGT contribution (Sen et al. 2023). The Strouhal number, St, is defined as St =
f D/U0. Figure 11(a,b) illustrates the co-spectrum for the point where CGT occurs. It is
evident that u′

2c′ consistently portrays gradient transport behaviour across all investigated
frequencies, with the large-scale structure of the windward shear-layer playing a dominant
role. This large-scale structure, identifiable by its characteristic Strouhal number –
corresponding to shear layer vortices at high VR and hairpin vortices at low VR – has
been extensively documented in the literature (Mahesh 2013). Regarding the streamwise
component, regions with opposite sign effectively define the contributions from the low-
and high-frequency components of the motion. The low-frequency components, related to
the largest eddies, are inferred to be the main mechanism for the CGT of scalar flux.
The change in sign occurs at approximately St = 1.3, corresponding to a length scale
of l/D = Uc/f D ≈ 0.3, where Uc is the convection velocity of the vortices (Sen et al.
2023). Similarly, the length scale determined from the characteristic Strouhal number is in
the range of 0.5–1.0. A local transport model requires that the characteristic scale of the
transport mechanism is comparable to or smaller than the distance over which the mean
gradient of the transported property changes appreciably (Hamba 2022). This suggests that
the CGT behaviour aligns with the local turbulent effects. Evidence that cross-gradient
effects are responsible for the streamwise CGT behaviour includes the energetic scales
for both u′

1c′ and u′
2c′ being in the same frequency band, and the vertical scalar flux
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Figure 10. Streamwise turbulence scalar flux budget determined from PIV (scatters) and DDES (lines).
Profiles are extracted at x/D = 2.1 and z/D = 0 (a) for VR = 0.4 and (b) for VR = 1.2. The grey band
represents the region of CGT. Terms are non-dimensionalized by U0 and D.

showing a strong correlation. This corroborates that vertical large-scale motion drives the
local CGT behaviour. As a result, the scalar flux transport equation redistributes energy
from the vertical to the streamwise component, with the CGT behaviour in the streamwise
turbulence scalar flux governed by vertical turbulence motion.

A second region where counter gradient transport is present is near the wall, right
after injection. In this case, a negative production term is observed for both streamwise
and vertical turbulent scalar flux, and for scalar fluctuation variance. This indicates
that local effects act as a sink and, therefore, favours a negative value of u′

2c′. Since
the resulting scalar flux is positive, other effects are overwhelming the production. To
help explain this, figure 10 shows a complete budget of u′

2c′, with vertical profiles of
all terms of (3.2). The viscous destruction term is omitted since a first-order isotropic
tensor does not exist, making the dissipation rate zero (Durbin & Reif 2010). Since we
cannot directly obtain all budgets from PIV/PLIF measurements, only DDES budgets are
depicted, with experimental results of the production term shown for comparison. The
DDES results closely replicate the experimental data. It can be clearly seen that, since the
resulting scalar flux is positive, the pressure-scalar correlation effects are overwhelming
the production. This is especially true close to the wall, where pressure fluctuation is
dominant (Durbin 2018). This suggests that non-local turbulent effects, primarily through
fluctuating pressure, are responsible for generating a positive correlation between u′

2 and
c′ in this region.

To investigate the physical mechanism and coherent structure of the flow in the non-local
CGT region, the co-spectra Fu′

ic
′ of the turbulence transport term are presented in

figure 11(c,d). The results clearly show that both components of the scalar flux exhibit
CGT behaviour, and the energetic structure responsible for the non-local CGT behaviour
occurs at a much lower frequency compared with the local one. Since low-frequency
components dominate the scalar flux, it can be inferred that these components, linked to the
largest eddies in the flow, are the primary mechanism for the negative production of scalar
fluctuation intensity seen in figure 8(c, f ). The non-local nature can be further elucidated
by the scale separation between mixing length theory and the large-scale structure. The
large-scale vortical structures with a frequency of St = 0.2 and their high frequency
harmonics dominate the unsteady behaviour near the wall. This frequency corresponds to
a length scale of 3. According to Bodart et al. (2013), these turbulent scales are much larger
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Figure 11. Co-spectra of velocity and concentration at different locations determined using synchronized
PIV/PLIF. (a,b) Local CGT region; (c,d) non-local CGT region. The grey band represents the CGT region.
(a) VR = 0.4, locations P1 (2.8, 0.43) and P2 (2.8, 0.48); (b) VR = 1.2, locations P1 (0, 0.23) and P2 (0, 0.28);
(c) VR = 0.4, locations P1 (2.1, 0.13) and P2 (2.1, 0.18); (d) VR = 1.2, locations P1 (2.1, 0.13) and P2 (2.1,
0.18). The notation sgn(·) represents the sign function.

than the length scales over which ∂iC varies (less than 0.1 according to the mixing-length
theory), meaning they can induce turbulent fluctuations that cannot be explained by local
information alone. This indicated that the non-local nature of the fluxes – depending on the
gradient not just at the point in question but over a broader region – should be considered.

Another interesting phenomenon is that, unlike the dominant frequencies determined by
the shear layer properties related to jet velocity, the dominant frequency in the non-local
region remains constant for two different velocity ratios. This Strouhal number suggests
wake vortex shedding, as reported by Moussa, Trischka & Eskinazi (1977), who found that
vortex shedding from JICF has a Strouhal number of 0.2 that is generally independent of
VR. To support these observations, consider figure 12, which shows the non-local CGT
regions identified using DDES and multiplane synchronized PIV/PLIF. Additionally, a
snapshot of the Q criterion, coloured by u′

2c′, is depicted from a downward view. The
distribution of the CGT region in the lateral direction resembles a classical wake shear
layer, similar to those in the von Kármán street. The vortical structures further corroborate
this observation. Thus, based on spectral characteristics, there is substantial evidence
suggesting that the non-local CGT behaviour in the JICF may be associated with vortex
shedding across the jet column.

3.3. Modelling implications
In the previous subsections, we identified locations exhibiting CGT behaviour and
explored its origins. However, while insightful, the implication for turbulence modelling
remains unclear. To delve into counter-gradient transport in turbulent scalar flux, we
examine the angle (θ ) between the vectors u′

ic
′ and ∂iC, expressed as

θ = arccos

(
−u′

ic
′∂iC

|u′
ic

′| · |∂iC|

)
. (3.6)

In regions where the simple GDH holds precisely, θ should be 0◦, indicating normal
diffusion, whereas in areas exhibiting counter-gradient transport, θ exceeds 90◦. Figure 13
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Figure 12. Identification of non-local counter-gradient transport regions and visualization of the Q criterion.
(a,b) Non-local counter-gradient transport regions identified using DDES and synchronized PIV/PLIF.
(c,d) Snapshot of Q criterion (normalized Q = 0.62) coloured by u′

2c′ from a downward view, as determined
by DDES. (a,c) VR = 0.4; (b,d) VR = 1.2.
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Figure 13. Counter-gradient transport at the mid-plane determined by synchronized PIV/PLIF. (a) VR = 0.4;
(b) VR = 1.2.

shows contours of the angle θ at two different VRs, revealing key differences between
previously identified local and non-local regions. Generally, θ is highest near the wall,
where its presence induces strong anisotropy into the turbulent mixing. In the windward
shear layer, where vertical turbulent motion drives local transport, θ typically ranges
between 40◦ and 70◦, as the vertical component governed by the GDH is dominant.
Conversely, regions of non-local transport, shown in figure 13(a,b), exhibit significant
misalignment between −u′

ic
′ and ∂iC due to both components of the scalar flux depicting

counter-gradient transport behaviour.
From a modelling standpoint, regions where θ is significantly above zero cannot be

well captured by the simple GDH described in (3.1), regardless of the diffusivity chosen.
Introducing a spatially distributed Sct can capture some counter-gradient transport of
turbulent scalar flux and would therefore be expected to model turbulent mixing more
effectively. However, singular values of Sct could occur when θ > 90◦ and the scalar
transport equation may suffer from extreme numerical instability. Local and non-local
behaviours require models of different complexity. Local behaviours can be modelled
using local formulations but need a diffusivity matrix to capture cross-gradient effects
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(Milani et al. 2020). Non-local behaviours cannot be adequately modelled by any
diffusivity-based model and may require solving separate transport equations for the scalar
flux components. However, from a spectrum perspective, both the local and non-local
behaviours correspond to large scales of the flow. The scalar flux can thus be decomposed
into a gradient-type term representing the gradient diffusion and a term accounting for
the stirring by large eddies. This approach extends the double-structure concept originally
proposed by Townsend (1976):

− u′
ic

′ = υt

Sct
∂iC + (−u′

ic
′)∗, (3.7)

where (−u′
ic

′)∗ denotes the turbulent scalar flux due to large eddies.

4. Inversion framework

4.1. Model deficiency representation
The classic RANS model attempts to estimate the unknown nonlinear source term in the
mean equations to acquire the mean flow quantities. For incompressible mean flow, we
first define a state vector q as

q =
⎧⎨
⎩

p
Ui
C

⎫⎬
⎭ , (4.1)

where p is the static pressure of the fluid; Ui is the mean velocity vector, i = 1, 2, 3 in a
three-dimensional space; and C is the mean scalar. We may then denote R as the conserved
form of the incompressible RANS models, that is,

R(q) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂jUj

∂j(UiUj)+ 1
ρ
∂ip − υ∂j∂jUi + ∂ju′

iu
′
j

∂j(UjC)− ∂j

( υ
Sc
∂jC

)
+ ∂ju′

jc
′

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ = 0, (4.2)

where Sc is the Schmidt number and −u′
iu

′
j is the Reynolds stress tensor. The commonly

adopted closure approximation for the second-order correlation of fluctuation states
follows a form based on the classical analogies of Reynolds and GDH (Pope 2000),
assumed as

−u′
iu

′
j = υt∂jUi − 2

3
kδij,

−u′
jc

′ = υt

Sct
∂jC,

⎫⎪⎬
⎪⎭ (4.3)

where k is the turbulent kinetic energy and δij is the Kronecker symbol. A constant value
for Sct is often adopted (Sct = 0.85 in all of the following cases). As demonstrated in
§§ 2 and 3, the LEVM and GDH pose great challenges to time-averaged predictions. The
solution space impedes the capability of the DA method to reproduce the second-order
correlation of fluctuations. To address modelling deficiencies, we introduce a spatially
distributed body force correction Fi and FC into the Reynolds stress and turbulent scalar

999 A81-17

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

97
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.974


S. Li, W. Zhou, H.J. Sung and Y. Liu

flux, as follows:

−∂ju′
iu

′
j = ∂j

(
υt∂jUi − 2

3
kδij

)
+ Fi,

−∂ju′
jc

′ = ∂j

(
υt

Sct
∂jC

)
+ FC.

⎫⎪⎪⎬
⎪⎪⎭ (4.4)

The inclusion of the LEVM and GDH in (4.4) serves to enhance the effective diffusion
in the RANS equations, thereby ensuring numerical stability. Indeed, DA can also be
performed to optimize υt and Sct. However, as demonstrated by Ling et al. (2017), singular
values would occur in strongly anisotropic flow in a JICF. For non-local behaviour, the
optimized coefficient of the Laplace operator is negative, generating counter-gradient
transport that concentrates low-concentration regions into high-concentration regions.
This can cause local increases in concentration, leading to oscillations or even blow-ups in
the numerical solution. The direct assimilation of FC ensures robustness and convergence
of the iteration in the DA process. Overall, the DA scheme demonstrates stability and
convergence similar to the baseline RANS model, with instabilities occurring only when
the baseline RANS computation becomes unstable. To ensure strictly divergence-free
estimated force correction, we introduce the Stokes–Helmholtz decomposition as follows:

Fi = −∂ϕ/∂xi − εijk∂ψk/∂xj, (4.5)

with the scalar potential ϕ, the vector potential ψ and the Levi–Civita symbol εijk. For
more details on the scalar and vector potential, please refer to our previous work (Li et al.
2022). By substituting (4.4)–(4.5) into (4.2) and integrating the scalar potential ϕ into
pressure p, we have

R(q) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂jUj

∂j(UiUj)+ 1
ρ
∂ip̄ − ∂j[(υ + υt)∂jUi] − fi

∂j(UjC)− ∂j

[(
υ

Sc
+ υt

Sct

)
∂jC

]
− FC

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ = 0. (4.6)

Here, the modified pressure p̄ and solenoidal part of Fi are expressed as follows:

p̄ = p + 2
3 k + ρϕ

fi = −εijk∂ψk/∂xj

}
. (4.7)

4.2. Continuous adjoint formulation
The DA procedure is to find the optimal forcing fi and FC by minimizing the cost function
J , i.e. the discrepancy between the state variables obtained by the corrected model (4.6)
and the limited observations, subject to the governing equations. This is expressed as
follows:

JUi = ξ
∫
MFxi

(
Ui − UObs,i

U0

)2

dM + ζ

2

∫
M ( fi)2 dM

JC = ξC
∫
MFxi

(
C − CObs

C0

)2

dM + ζ

2

∫
M (FC)

2 dM

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ s.t. R(RNS,Rp,RC) = 0.

(4.8)

Here, M is the computational domain; ξ and ξC are dimension converter with dimensions
[L2 · t−3] and [M2 · L−6 · t−1], respectively, and possess a value of unity. This ensures

999 A81-18

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

97
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.974


On the origin of CGT in turbulent scalar flux

dimensional consistency. Term Fxi is a masking function that is defined to specify the
region where the measurements are made. If observation data are available, Fxi = 1 holds;
otherwise, Fxi = 0. Here, we incorporate knowledge on the correction force by noting that
the Reynolds stress and turbulent scalar flux usually exhibit large-scale structures that vary
across the length scales of the mean flow (Franceschini, Sipp & Marquet 2020). This term
penalizes undesired oscillations resulting from sparse observations. The hyperparameter ζ
is introduced to balance the measurement discrepancy and smoothness of the correction.
Here, R = R(RNS,Rp,RC) are the momentum equations, the continuity equation, and
the scalar transport equation presented in (4.6), respectively.

In a variational approach, the linear equations for the small perturbations of the mean
flow are used to derive the adjoint equations. We first define the adjoint state vector q∗, as
follows:

q∗ =
⎧⎨
⎩

p∗
U∗

i
C∗

⎫⎬
⎭ . (4.9)

To minimize the energy of the cost function, the following Lagrangian function is used:

L(q, q∗, fi,FC) = J +
∫
M
(U∗

i RNS + p∗Rp + C∗RC) dM. (4.10)

The Lagrangian multipliers U∗
i , p∗ and C∗ are the adjoint variables corresponding to (4.6),

and are referred to as the adjoint velocity, adjoint pressure and adjoint scalar, respectively.
The optimal distribution of fi and FC can be determined by obtaining the sensitivities of
the Lagrange operator L with respect to fi and FC, while setting the total variations of L
with respect to the other state variables to vanish, according to

δL ≡ δqL︸︷︷︸
0

+δq∗L + δfiL + δFTL. (4.11)

The adjoint equations can be obtained by enforcing the zero constraint in (4.11), resulting
in

R∗(q∗) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂jU∗
j

U∗
j ∂iUj − Uj∂jU∗

j + 1
ρ
∂ip∗ − ∂j[(υ + υt)∂jUi] + 2ξFxi

Ui − UObs,i

U0

−Uj∂jC∗ − ∂j

[(
υ

Sc
+ υt

Sct

)
∂jC∗

]
+ 2ξCFxi

C − CObs

C0

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

= 0.

(4.12)

The boundary conditions are derived as follows. For the inflow and the wall, where the
primary state variable Ui, C is specified, the boundary conditions are as follows:

U∗
i = 0,

ni∂ip∗ = 0,
C∗ = 0,

⎫⎪⎬
⎪⎭ (4.13)
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where ni is unit surface normal vector. For the outflow boundary, where the Neumann
condition is used for the primary variables, the adjoint boundary conditions are as follows:

Un · U∗
τ+(υ + υt)(ni∂iUτ ) = 0,

Un · U∗
n+(υ + υt)(ni∂iUn) = p∗,

Un · C∗ +
(
υ

Sc
+ υt

Sct

)
(ni∂iC∗) = 0.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ . (4.14)

The subscripts n and τ denote the normal and tangential components of the variables,
respectively. When q and q∗ satisfy (4.6) and (4.12)–(4.14), the sensitivity of the Lagrange
function L becomes independent of the change in the adjoint variables, such that the
gradient of the cost function can be computed, as follows:

dJUi

dfi
= ∂L
∂f

= −U∗
i +ζFi,

dJC

dFC
= ∂L
∂FC

= −C∗ + ζFC.

⎫⎪⎪⎬
⎪⎪⎭ (4.15)

The gradient is determined for the entire computational domain and then used to update
the force correction in an optimal sense, as

f n+1
i = f n

i − β
∂L
∂fi
,

Fn+1
C = Fn

C − β
∂L
∂FC

,

⎫⎪⎪⎬
⎪⎪⎭ (4.16)

where β is the step length. The iterative framework for flow reconstruction from mean
field is as follows. It begins with an initial guess for fi and FC, followed by an initialization
procedure where (4.6) is solved without any corrections to achieve a converged base flow
for the optimization process. The force correction is then used in (4.6) to obtain the
primary variable distributions. Subsequently, the adjoint equations are solved using the
boundary condition (4.13)–(4.14) computed by the cost function. The adjoint solution is
then used to determine the sensitivity of the Lagrangian function (4.15), which is then
employed to update the correction term (4.16). Finally, the iterative loop is repeated until
a convergence criterion is met.

4.3. Data assimilation set-up
The benchmark flow configuration used for DA mirrors the experiment (figure 2a),
with the mainstream inlet velocity profile derived from PIV results. Nevertheless, as
demonstrated in our prior work (Li et al. 2022), the inlet velocity profile can also be
accurately computed through a precursor RANS simulation. At the outflow boundary,
a Dirichlet condition is specified for pressure and a Neumann condition for velocity.
The concentration field is obtained via a scalar transport model, with rhodamine’s
mass fraction set to 5 × 10−8 at the jet inlet and 0 at the mainstream inlet, mirroring
experimental conditions. Adjoint boundary conditions align with those in (4.13)–(4.14).
The convection terms in the primary-adjoint system are discretized using a linear-upwind
scheme to ensure second-order accuracy. To reduce the computational mesh size
whilst maintaining reasonable flow blockage, slip-wall conditions are applied to neglect
boundary layer effects on the side and upper walls (Li et al. 2023). A structured mesh
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Section Observation regions States ζ

5.1 x
D ∈ [0, 4] ∪ y

D ∈ [0.2, 1.5] ∪ z
D ∈ [0] Ui (i = 1, 2) 0.001

5.2 x
D ∈ [0, 4] ∪ y

D ∈ [0.2, 1.5] ∪ z
D ∈ [0] Ui (i = 1, 2), C 0.001

Table 1. Observation set-up and regularization for various cases

with 1.05 million grids is used for the JICF configuration after a grid independence
test. Observations for assimilation are extracted from the PIV/PLIF data at the Z/D = 0
plane (table 1), with exclusion of the near-wall region (d/D < 0.2) to mimic the large
uncertainty. The regularization parameter ζ is fixed at 0.001 to mitigate any spurious
fluctuations in correction determination. Further insights into the impact of regularization
on convergence studies can be found in our earlier work (Li et al. 2024). Validation of
velocity reconstruction is presented in § 5.1, followed by the application of DA for scalar
field correction in § 5.2.

5. Results and discussion

5.1. Inversion of turbulent mean flow
Figure 14 depicts the streamwise velocity distribution at two spanwise locations, z/D = 0
and z/D = 0.3. The DDES results are superimposed on the coloured contours as dashed
lines for comprehensive comparison. The velocity pattern highlights both acceleration
and separation at the inlet of the tube, owing to the sharp angle between the chamber
and the hole. This feature is crucial for subsequent flow development. The blockage
created by the flow separation induces high momentum in the upper part of the pipe, with
velocities twice as high as the pipe bulk velocity. The high-shear, high-velocity region
adjacent to the separation zone is particularly crucial, especially in short-hole geometries
like the present one, as there is limited space for flow redevelopment before interacting
with the mainstream. Additionally, the substantial disparity in velocity between z = 0
and z = 0.4D suggests the presence of a pronounced secondary flow within the pipe.
The counter-rotating vortices developing inside the hole may interact with the well-known
counter-rotating vortex pair (CRVP) that dominates every JICF.

A thorough examination reveals two notable distinctions between the default SA model
and the reference. In zone I, a disparity in the pattern of the jet core is evident in the
streamwise velocity. The reference exhibits a wider and shorter jet core, while the default
SA model predicts a narrower core compressed into the upstream region of the jet. In
zone II, downstream of the jet leeward, the streamwise velocity determined by the default
SA model exhibits a more pronounced decay rate compared with the reference. Both
disparities indicate that the default SA model tends to underestimate the diffusion in the
JICF. The first discrepancy arises from the jet separation at the hole inlet, and the second
is attributed to the adverse pressure gradient from the test plate.

As depicted in figure 14, the reconstructed velocity exhibits a notable enhancement
within the region available for observation after DA, consistent with expectations. The
low-speed region downstream of the jet’s exit is reduced compared with that for the default
SA model. It is worth noting that the DA procedure accurately recovers the streamwise
velocity at plane z/D = 0.3, despite only mid-plane observations being used. This
successful correction primarily stems from the global correction mechanism embedded
within the DA scheme. This mechanism relies on both the upstream convection of the
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Figure 14. Streamwise velocity distribution at two spanwise locations: (a,c) z/D = 0 and (b,d) z/D = 0.3.
Colour contours show SA estimation and data assimilation based on SA (DA-SA), with DDES results overlaid
as lines for reference. (a,b) VR = 0.4; (c,d) VR = 1.2.

adjoint velocity and the downstream convection of the primary flow. Initially, all adjoint
values remain at zero until the system is triggered by the source term in (4.12), defined
as the disparity between observations and predictions. Subsequently, upon excitation,
the adjoint solution evolves in reverse direction based on the primary solution. The
disturbance, induced by the convective velocity, propagates through the control region,
providing essential information for computing the gradient (4.15), and thus the correction
force.

To further elucidate the underlying mechanism of the improvement, we examine the
distributions of normalized eddy viscosity before and after DA at mid-plane z/D = 0
and axial plane x/D = 4, as depicted in figure 15. It is evident that the eddy viscosity
experiences a significant increase after DA, both within the jet hole (region I) and the
mixing layer (region II). This notable rise in eddy viscosity introduces additional diffusion,
thereby enhancing momentum exchange within the shear layer.

A profound understanding of the improvement lies in the redistribution of the Reynolds
stress forcing Ri, expressed as

Ri = −∂ju′
iu

′
j = ∂j(υt∂jUi − 2

3 kδij)+ Fi. (5.1)

The streamwise Reynolds stress forcing R1 at two spanwise locations is depicted in
figure 16. In the SA model, the streamwise Reynolds stress forcing in the shear layer
is notably underestimated in both the tube and cross-flow regions. This underestimation
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Figure 15. Distribution of eddy viscosity (a,b) before, (c,d) after DA at mid-planes z/D = 0 and axial
planes x/D = 4. (a,c) VR = 0.4; (b,d) VR = 1.2.
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Figure 16. Full Reynolds stress forcing R1 at mid-planes z/D = 0 and axial planes x/D = 4, obtained by
(a,b) the SA model, (c,d) DA based on SA (DA-SA) and (e, f ) DDES results. (a,c,e) VR = 0.4; (b,d, f ) VR =
1.2.

results in a lower effective viscosity, consequently leading to a substantial recirculation
region both in the tube and downstream of the jet leeward. In contrast, the DA model
exhibits a substantial increase in the streamwise Reynolds stress forcing within the tube,
both windward and leeward of the shear layer. This augmentation contributes additional
vorticity to the interaction between the mainstream and jet flow, enhancing effective
viscosity.

5.2. Exploration of the concentration field
In film cooling and many other JICF applications, the mixing behaviours are highly
concerned. Achieving an accurate representation of mean mixing behaviour hinges not
only on understanding Reynolds stress but also on grasping turbulent scalar flux. This
prompts a crucial question: does an accurate velocity field necessarily imply an accurate
scalar field? And if not, does it yield any enhancements? Furthermore, what physical
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Figure 17. Concentration distribution at mid-planes obtained by (a,b) SA estimation, (c,d) DA based on SA
(DA-SA), and (e, f ) DA with scalar flux correction based on SA (DA-SA-C). White dashed lines, DDES results.
(a,c,e,g) VR = 0.4; (b,d, f,h) VR = 1.2.

mechanisms enable adjoint-based DA to enhance the reconstruction accuracy? Therefore,
further investigation of applying the adjoint-based DA to correct the concentration field is
conducted.

Figures 17 and 18 depict concentration distributions at mid-planes, wall-normal
planes and axial planes obtained using different models: the default SA, DA-SA
(using PIV measurements as observations) and DA-SA-C (incorporating both PIV and
PLIF measurements as observations). In figure 17, DDES results, validated against
experimental data, are overlaid on the coloured contours as dashed lines for comparison.
The concentration field predicted by the default SA model (figure 17a,b) shows an
underestimation of turbulent mixing throughout much of the domain, particularly near
the wall. Additionally, as depicted in figure 18(a,c), the concentration gradient in the shear
layer is steeper than the reference, indicating an underestimation of lateral mixing between
the jet and cross-flow, causing the jet scalar to penetrate deeper into the mainstream
compared with DDES and experimental results. This deeper penetration is influenced
by both convective and turbulent scalar flux transport, driven by Reynolds stress and
turbulent scalar flux, respectively. The limited turbulent viscosity in the SA model, due
to the LEVM, results in insufficient turbulent diffusion, as prescribed by the GDH with a
fixed turbulent Schmidt number. Interestingly, for the higher velocity ratio (VR = 1.2),
the jet centreline mean scalar prediction aligns more closely with the reference, as shown
in figure 17(b) and in the profiles of figure 17(h). This suggests that in the higher VR case,
the isotropic formulation of the GDH is more appropriate, likely because the jet is further
from the wall, making spanwise and wall-normal transport more similar. In contrast, in
the lower VR case, the jet remains closer to the wall, which suppresses vertical eddies and
increases turbulence anisotropy, making the isotropic GDH formulation less accurate.

Figures 17(c,d) and 18(b,d) depict the concentration distribution determined by
the DA-SA model. Despite incorporating a reconstructed velocity distribution and an
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Figure 18. Concentration at wall-normal (left, y/D = 0.5 for VR = 0.4 and y/D = 1.0 for VR = 1.2) and
axial planes (right, x/D = 4 for VR = 0.4 and x/D = 2.5 for VR = 1.2). (a,b) VR = 0.4; (c,d) VR = 1.2.

improved eddy viscosity estimation in the scalar transport equation, the results from the
DA-SA model reveal minimal correction (figures 17d and 18d) or even a deterioration
in performance (figures 17c and 18b) for both VR = 0.4 and 1.2. A detailed line
profile comparison in figure 17(g,h) starkly illustrates this trend, showing marginal or
no discernible improvement. Further scrutiny of the distribution highlights nuanced
improvements in the scalar field. Specifically, for the VR = 0.4 case, the DA-SA model
exhibits better alignment with the centreline trajectory position observed in DDES results.
For VR = 1.2, increased turbulence diffusion moderately enhances concentration decay,
particularly noticeable where x/D < 2 (figures 17d and 18d).

The scalar distribution in the DA-SA model results from the interplay between enhanced
convective transport and increased turbulent diffusion. Both velocity ratios of DA-SA
exhibit improved streamwise convective transport (see figures 14 and 4a–d), enhancing
scalar penetration along the streamwise direction. Additionally, increased eddy viscosity
(figure 15) enhances mixing efficiency. Specifically, for VR = 0.4 at the mid-plane,
convective transport dominates, elongating the scalar distribution along the streamwise
centreline and penetrating deeper into the cross-flow compared with SA model predictions.
In contrast, for VR = 1.2, turbulent diffusion prevails, contributing to varying degrees of
improvement.

As we transition to the wall-normal direction, improvements in the DA-SA
results become more intricate. Despite applying enhanced velocity and eddy
viscosity, improvements in the DA-SA model’s scalar distribution are not guaranteed.
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Our observations indicate that while the DA-SA model enhances certain aspects of the
flow, such as the scalar distribution within the jet core and the concentration gradient
in the shear layer, these improvements do not consistently extend to the downstream
scalar distribution. This discrepancy is primarily attributed to the competing effects of
convective transport and turbulent diffusion. This nuanced perspective underscores that
while the DA-SA model introduces refinements, particularly in alignment and diffusion
characteristics, significant improvements in scalar distribution across all tested conditions
remain elusive.

Simply improving the velocity and eddy viscosity fields yield only marginal
improvements in correcting the concentration field. Thus, we used the adjoint-based
DA, integrating both PIV and PLIF data (DA-SA-C). Figure 17(e, f ) showcases the
concentration distribution at the mid-planes determined by the DA-SA-C model.
Impressively, the reconstructed scalar field closely mirrors the results obtained from
the DDES, spanning both the observation-embedded and unseen regions. Two notable
improvements stand out. First, the windward shear layer concentration distribution
displays remarkable improvement, showcasing an augmented mixing, as depicted in
figure 17(e, f ). This enhancement is further emphasized in the wall-normal scalar
distribution, particularly evident in the VR = 1.2 case, as illustrated in figure 18(b,d).
Second, the decay rate of the concentration distribution in both the streamwise and
spanwise direction is captured. However, subtle deviations persist, notably in the core
region of the CRVP in figure 18(b,d), possibly stemming from inconsistencies between
DDES and PIV/PLIF measurements.

Spanwise-averaged line plots provide a more quantitative comparisons between
various models and the PLIF results. Figure 19 demonstrates spanwise-averaged vertical
concentration profiles at three measurement planes (z/D = 0, z/D = 0.3 and z/D = 0.5)
at different stations. The black circles represent the PLIF data, serving as the benchmark
for model validation. Once again, the limitations of the default SA model are evident:
an excessively small diffusivity sharpens the profile, overestimates values near the jet
centreline and shifts the scalar peak downwards. As expected, the predictions from the
DA-SA model exhibit a moderate enhancement, especially in the vicinity of the jet
centreline. This improvement is primarily ascribed to the augmented viscosity, thereby
leading to an increase in turbulent diffusivity. However, a remarkable deviation persists
in the near-wall region due to strong wall-induced anisotropy. Incorporating both PIV and
PLIF results into the DA model yields excellent concentration predictions, as showcased in
figure 19. The comprehensive improvements underscore the capability of the adjoint-based
DA approach in capturing underlying mechanisms and enact effective modifications.

To further elucidate the enhanced turbulent mixing, we performed a simulation using
velocity and eddy viscosity reconstructed through the DA procedure, along with a constant
turbulent Schmidt number set at 0.32. This turbulent Schmidt number was determined by
an EnKF-based DA method for JICF mixing (Zhang et al. 2023b). The turbulent Schmidt
number is a version of the turbulent diffusivity, αt, scaled by the local eddy viscosity:

Sct = υt/αt. (5.2)

For Sct < 1, decreasing Sct equates to an endeavour to bolster turbulent mixing in scalar
transportation. Figure 19 shows that decreasing the turbulent Schmidt number results in
a significant improvement in scalar distribution when x/D < 6. The improvement in the
present DA approach resembles similar corrective behaviour as reducing the turbulent
Schmidt number, as also observed by Zhang et al. (2022b). However, this reduction
in Sct introduces too much diffusivity to the scalar transport equation for the far field,
resulting in a smoothed vertical profile. For the present DA approach, despite observations
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Figure 19. Spanwise-averaged (z/D = 0, z/D = 0.3 and z/D = 0.5) concentration distribution at different
stations. The DA-SA-Sc model denotes the scalar transport simulation with a constant turbulent Schmidt
number of 0.32 from Zhang et al. (2023b). (a–d) VR = 0.4; (e–h) VR = 1.2.

being available only in the region x/D ∈ [0, 4] at the mid-plane, the downstream scalar
distribution still demonstrates a remarkable improvement. One potential reason is the
effect of anisotropy in the turbulent transport. In the near-field region, the jet remains
closer to the wall, which acts to damp vertical eddies and thus renders turbulence more
anisotropic. As the jet progresses further downstream from the wall, as in the region
x/D > 6, spanwise and wall-normal transport are probably more similar, so the isotropic
formulation of the GDH becomes a better approximation. This physical transition can
be accurately discerned from the global correction mechanism embedded within the DA
scheme.

Figure 20 illustrates the distributions of the adjoint scalar obtained from different
VRs before and after DA. The adjoint scalar before the gradient descent optimization
approximately represents the deviations induced by the model deficiency. Initially, all
adjoint values are set to zero until the system is excited by the source term in (4.12), defined
as the disparity between the PLIF measurements and model estimates. After excitation,
the adjoint solution evolves in the reverse direction, based on the primary solution.
The disturbance, dictated by the convective velocity, propagates through the control
region, offering information for computing the gradient (4.15). The large magnitudes of
the adjoint scalar in figure 20 underscore the heightened sensitivity of the flow to the
measurements. Specifically, the adjoint scalar remains exhibits significant magnitudes
proximal to both windward and leeward shear layers, alongside the near-wall regions,
mirroring the deficiencies observed in figure 13. It is noteworthy that all the adjoint scalar
(figure 20c,d) decrease to extremely small values as the computation converges. This
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Figure 20. Distribution of the adjoint scalar at the mid-plane (z/D = 0) and wall-normal plane ( y/D = 0.25)
(a,b) before and (c,d) after DA. (a,c) VR = 0.4; (b,d) VR = 1.2.

convergence eliminates the disparity between estimates and observations, which serves
as the source in the adjoint equations.

It is important to note that inaccuracies in scalar transport predictions are not limited to
CGT alone. The errors in predicting turbulent scalar flux using the GDH model primarily
stem from two factors. First, model form uncertainty, particularly related to local and
non-local CGT behaviours as discussed in § 3.2. The simple, isotropic GDH model is
inadequate for accurately describing this process. Second, even in the absence of CGT,
a fixed turbulent Schmidt number is insufficient for representing the shear layer turbulent
scalar mixing. Figures 17(a,b) and 18(a,c) clearly show that the scalar field predicted by the
default SA model underestimates turbulent mixing throughout much of the jet centreline.
This results in the jet scalar penetrating deeper into the mainstream compared with the
DDES and experimental results.

The forcing term added to the scalar equation is designed to correct the modelled scalar
flux, ensuring it better aligns with observational data. Although the derived forcing term
does not directly provide the turbulent scalar flux, it highlights regions where the GDH
model deviates from expected behaviours. Physically, the turbulent scalar flux quantifies
how turbulence redistributes scalar quantities, leading to mixing within the flow. The
Laplacian of a scalar field typically represents the local concavity or convexity and the
local rate of change at a particular point, which is often used to analyse the diffusion
properties or transport behaviour of the scalar within a medium. To better understand the
correction force, the derived forcing term is expressed as proportional to the Laplacian of
the scalar field:

FC = α∗∇2C. (5.3)
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Figure 21. Colour contours of (a–d) the coefficient α∗ at the wall-normal ( y/D = 0.25) and mid-plane (z/D =
0), and (e,f ) the Laplacian of the scalar field ∇2C at the mid-plane (z/D = 0). (a,c,e) VR = 0.4; (b,d, f ) VR =
1.2.

Here, the Laplacian ∇2C measures the diffusion of the scalar concentration through the
fluid. When ∇2C is positive, C is ‘concave up’, indicating a local minimum where the
scalar value at the point is lower than the average of its neighbours, resulting in a net influx
of the scalar. Conversely, when ∇2C is negative, C is ‘concave down’, indicating a local
maximum where the scalar value is higher than the average of its neighbours, resulting in
a net outflux.

Figure 21 presents the distributions of the coefficient α∗ and the Laplacian ∇2C,
recomputed from the correction force FC after DA. The results demonstrate that the forcing
term effectively identifies areas where the traditional GDH falls short, particularly in the
jet centreline and near-wall regions. In regions where α∗ > 0, scalar diffusion is governed
by ∇2C. In the jet centreline, the correction acts as a sink (α∗∇2C < 0), making the
scalar to diffuse remarkably away and reducing the local concentration. This observation
aligns with the results shown in figures 17 and 18. The GDH, which uses a fixed turbulent
Schmidt number of 0.85, is based on boundary layer studies and tends to underestimate
turbulent mixing. Previous work suggests that ScT ≈ 0.85 is appropriate for the turbulent
boundary layer, while ScT ≈ 0.7 is more suitable for the jet core region (Durbin & Reif
2010). Enhanced turbulent mixing in the jet core region is primarily driven by large
turbulent structures. As demonstrated in § 3.1, these structures shed from regions near
the jet centreline, leading to significant mass exchange and enhanced turbulent mixing
compared with that at the boundary layers. This finding is consistent with the experimental
results of Koeltzsch (2000), who reported a smaller turbulent Schmidt number near the jet
centreline compared with the boundary layer.

Other improvements are observed in the windward shear layer downstream of the jet
orifice, where α∗∇2C depicts a positive value, serving as a source for the mean scalar.
This reduces local turbulent mixing and increases the local scalar value, as depicted in
figures 17(h) and 19(e, f ). A similar correction force is observed in the leeward shear layer,
although it does not fully align with the scalar field correction. This inconsistency may
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be due to the low magnitude of α∗ in those regions, making the diffusivity negligible
and allowing the reduction of scalar concentration in the jet centreline to dominate.
It is important to note that while the posterior results in the windward shear layer show
reasonable improvement, the implications of the correction force for local cross-gradient
CGT behaviour are difficult to identify due to the divergence operation on the turbulent
scalar flux. However, as demonstrated in Appendix A, while this cross-gradient CGT
behaviour is interesting from a physical perspective, it does not significantly impact the
mean scalar concentration.

Transitioning from this analysis, it is crucial to highlight the impact of negative α∗
values in other critical regions. Notably, just above the wall post-injection, negative values
of α∗ emerge both in the mid-plane and wall-normal directions, aligning with regions
characterized by non-local CGT behaviour. In these regions, the Laplacian term ∇2C is
positive, indicating a ‘concave up’ scalar field where gradient diffusion would typically
increase local concentration by drawing scalar from surrounding regions. However, the
negative α∗ coefficient leads to a reversal of this process, making scalar flux to diffuse
away from the region, reducing the local scalar concentration and highlighting the
non-local CGT behaviour. Such negative coefficients are challenging to obtain using the
traditional modelling approach. This nuanced understanding underscores the DA model’s
ability to not only capture CGT transport effectively, but also to improve the prediction
of mixing in the shear layer, thereby explaining its superior performance over the baseline
model.

Similar to the Reynolds stress forcing, the turbulent scalar force RC, which represents
the contribution of turbulence to the scalar diffusion, is expressed as

RC = −∂ju′
jc

′ = ∂j

(
υt

Sct
∂jC

)
+ FC. (5.4)

The resulting turbulent scalar force RC at the wall-normal and axial planes is presented
in figure 22. In the default GDH model, the magnitude of the turbulent scalar force
is significantly underestimated in both the jet centreline and CRVP regions. The
underestimation of turbulent scalar force in the jet centreline leads to reduced mixing, as
depicted in figures 17 and 18. The underestimation of turbulent scalar force in the CRVP
region is more pronounced and contributes to most of the deficiencies in the GDH model.
The CRVP is a dominant feature of the JICF flow under most conditions because it is
clearly visible in the mean field. It consists of axial vortices with a common-up direction
that distort the shape of the jet core as they advect downstream. The CRVP plays a crucial
role in mixing the jet and cross-flow, especially near the wall, and thus is important in
JICF applications. Regarding the DA-SA model, as demonstrated in the upper part of
figure 22(b,d), the structure of the RC closely resembles the default GDH model, with
a slight increase in magnitude observed in both the shear layer and the CRVP region. This
increase primarily stems from enhanced dissipation induced by velocity reconstruction.
In contrast, DA-SA-C accurately computes RC compared with the ground truth (DDES
results), consistent with the agreement of the mean scalar fields between DA-SA-C and
DDES/PLIF (figures 17 and 18). The DA-SA-C model shows a substantial increase in the
magnitude of the RC, especially in the CRVP region, providing additional mixing for the
CRVP.

Line distribution of the full turbulent scalar force RC along the streamwise curve
is presented in figure 23. The DA-SA-Sc results are also overlaid for comprehensive
comparison. Compared with the DDES results, the default SA model shows a clear
underestimation of the turbulent scalar force. The DA-SA model closely resembles the
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Figure 22. Full turbulent scalar force RC obtained at the wall-normal planes (left, y/D = 0.5 for VR = 0.4
and y/D = 1.0 for VR = 1.2) and axial planes (right, x/D = 4 for VR = 0.4 and x/D = 2.5 for VR = 1.2).
(a,b) VR = 0.4; (c,d) VR = 1.2.

profile of the default SA model with a moderate increase in magnitude. In contrast,
the profile of RC in the DA-SA-C model more closely matches the DDES results.
Although the DA-SA-Sc model presents an overly smoothed estimation of concentration,
the reconstructed RC suggests a common trend in both the DA-SA and DA-SA-C models:
enhanced mixing attributed to the heightened magnitude of turbulent scalar force, as the
arrow shown in figure 23. Another interesting observation is that as the jet develops further
downstream from the wall (x/D > 6), all profiles except the DA-SA-Sc converge to the
default GDH with a constant Sct = 0.85. This suggests that the spanwise and wall-normal
transport of scalar flux become more similar, making the isotropic formulation of the
default GDH a better approximation. This physical transition, identified from the global
correction of RC, underscores the accuracy of the second-order momentum recovery using
the present formulation, which is critically important for the mean field reproduction.

6. Conclusions

The present study offers a twofold contribution on counter-gradient transport of turbulent
scalar flux. First, we employed an inclined JICF under two distinct flow regimes to
elucidate the underlying driving mechanism in regions exhibiting CGT behaviour. Second,
we delve into the reconstruction of turbulent mean flow and scalar field using continuous
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Figure 23. Distribution of full turbulent scalar force RC along the curve y/D = 0.5 for (a) VR = 0.4 and
y/D = 1.0 for (b) VR = 1.2 at the mid-plane. The DA-SA-Sc model refers to the scalar transport simulation
with a constant turbulent Schmidt number of 0.32 from Zhang et al. (2023b).

adjoint data assimilation with limited observations. By examining turbulent scalar
mixing through synchronized PIV and PLIF measurements, we clarified the previously
observed but unexplained phenomenon of CGT, revealing key flow structures, their spatial
distribution and modelling implications. Statistical analysis reveals two distinct types of
CGT behaviours in JICF. The first, occurring in the windward shear layer, is primarily
driven by local cross-gradient transport. This is consistent with the report of previous
work (Milani et al. 2020). The second type, identified near the wall following injection, is
governed by non-local effects, resulting in a positive vertical scalar flux despite negative
scalar fluctuation variance production. These CGT behaviours are closely associated with
specific flow structures, namely K–H vortices (local) and wake vortices (non-local), that
govern scalar flux transport across different flow regions. These findings highlight the
varying levels of complexity in turbulence models. However, from a spectrum perspective,
both the local and non-local behaviours correspond to the large scales of the flow.
Consequently, the scalar flux can be decomposed into a gradient-diffusion term and a
term representing large-eddy stirring.

Thus, an adjoint DA scheme has been established for reconstructing turbulent mean flow
and scalar field. Model-form errors stemming from the Boussinesq approximation and the
GDH are rectified through anisotropic correction under the constraint of observational
data. The DA model is theoretically derived to minimize discrepancies between PIV/PLIF
measurements and numerical predictions, thereby enabling the determination of the
optimal contribution of the Reynolds force vector and turbulent scalar force. As expected,
the introduced forcing term effectively identifies regions where traditional models fall
short, particularly in the jet centreline and near-wall areas, thereby enhancing the accuracy
of the mean scalar field not only within the observation region but also in unseen regions.

These findings underscore the reliability and practicality of the DA model in replicating
mean flow behaviours from limited observations. By focusing on the divergence of
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Figure 24. Magnitude of turbulent scalar flux components relative to the equivalent mean advection
component determined by PIV/PLIF. (a,b) Streamwise component |u′

1c′/U1C| and (c,d) wall-normal
component |u′

2c′/U2C|.

turbulent scalar flux, we leverage the double structure concept (Townsend 1976) to improve
modelling accuracy. This approach introduces new machine learning targets – specifically,
the divergence of the nonlinear component of turbulent scalar flux – which can be
integrated into neural networks for model consistent turbulence modelling (Brunton et al.
2020) across various JICF configurations. Targeting a divergence field offers a data-driven
advantage over vector fields, as it requires learning fewer components. Ongoing work seeks
to integrate this strategy with physical invariance in the RANS system. This framework,
inspired by Ling, Kurzawski & Templeton (2016), paves the way for a robust data-driven
turbulence model capable of accurately predicting complex flow phenomena like film
cooling.
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Appendix A. Relative contribution of the scalar flux

The forcing term added to the scalar equation is designed to correct the modelled scalar
flux, ensuring it better aligns with observational data. Since this forcing term acts as a
divergence correction on the turbulent scalar flux, understanding its physical implications
requires examining the relative contributions of the turbulent scalar flux components to the
mean field. The scalar transport equation typically balances mean advection and turbulent
scalar flux, assuming negligible molecular diffusion, as shown in

∂j(UjC) = ∂ju′
jc

′. (A1)

In a jet in cross-flow, the streamwise length scales and mean velocities are much larger
than those in the transverse directions, making the streamwise mean advection generally
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balance turbulent mixing in the transverse directions. As a result, errors in the transverse
components of turbulent scalar flux (u′

2c′ and u′
3c′) have a more significant impact on

the mean scalar field computed through RANS than errors in the streamwise component
(u′

1c′). Figure 24 shows the magnitude of turbulent scalar flux components relative to
the mean advection component from the synchronized PIV/PLIF. It reveals that u′

2c′ is
more prominent than u′

1c′, with high magnitudes observed in the windward shear layer
around the jet and near the wall after injection. This suggests that, while local CGT is
physically interesting, as discussed in § 3.2, it does not significantly contribute to the
mean flux divergence. In contrast, the wall-normal flux is critical in shaping the mean
flux divergence, thereby directly influencing the mean scalar equation.
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