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Abstract

Antimicrobial-resistant bacteria pose serious public health risks, necessitating bioprospecting
for novel antimicrobial drugs. The endophytic fungi of the mangrove ecosystem are hotspots
for discovering new bioactive chemical compounds. In this context, an investigation was
designed to determine the isolation of the major endophytic fungi inhabiting the leaves of
Acanthus ilicifolius, a mangrove plant with a long history of traditional use in the Chinese
and Indian medical systems. Based on the morphological characterizations and molecular
analysis of internal transcribed spacer rDNA sequence data, the study identified three unique
endophytic fungal species, namely, Periconia macrospinosa, Coprinopsis cinerea, and
Alternaria sp. Of these, P. macrospinosa was identified as the most dominant one, with the
highest relative frequency (35.22%). The antibacterial activity of P. macrospinosa isolate
(CMFRI/fPM-01) was evaluated by the well and diffusion method against six human patho-
gens, viz., Escherichia coli, Klebsiella pneumoniae, Staphylococcus aureus, Vibrio cholerae,
Vibrio parahaemolyticus, and Vibrio vulnificus. The results demonstrated a high and wide
spectrum of antimicrobial action of the isolate against all the tested human pathogens, with
no significant difference (P > 0.05) in the activity between the pathogens. The antibacterial
activity was further confirmed by determining the fungal culture supernatant’s minimum
inhibitory concentration and minimum bactericidal concentration. Although the studied
fungi are known from other sources, this is the first report of P. macrospinosa and C. cinerea
as endophytes in A. ilicifolius leaves. The outcomes also showed that the P. macrospinosa iso-
late could be used to discover effective antibacterial drugs against various human diseases.

Introduction

Novel agents displaying antimicrobial activity are urgently needed to tackle the public health
hazards posed by the global spread of antimicrobial-resistant bacterial pathogens (Miethke
et al., 2021). Bioprospecting studies of endophytic microbes for antimicrobial activity are fun-
damental for discovering novel human antimicrobial agents (Strobel and Long, 1998; Strobel,
2002; Strobel and Daisy, 2003). Around the world, investigations are being carried out to
explore endophytic fungi of various plants to discover new, potentially valuable secondary
metabolites (Tiwari and Bae, 2022). Among different plants, mangrove plants are attractive
biodiversity hotspots for prospecting novel bioactive compounds, including those having
potential medicinal applications (Cadamuro et al., 2021). As endophytic fungi of plants can
produce similar biologically active constituents similar to their hosts (Khan et al., 2017),
mangrove-associated fungi have received great attention in the past two decades. The man-
grove ecosystem is a significant source of novel fungal strains, constituting the second-largest
ecological category of marine fungi (Li et al., 2008). Accordingly, worldwide, several mangrove
species, such as Avicennia officinalis, Avicennia marina, Acanthus ilicifolius, Aegiceras cornicu-
latum, Arthrocnemum indicum, Bruguiera gymnorrhiza, Ceriops decandra, Excoecaria agallo-
cha, Kandelia candel, Lumnitzera racemosa, Rhizophora mucronata, Rhizophora apiculata,
Sesuvium portulacastrum, Suaeda fruticosa, Suaeda maritima, and Sonneratia caseolaris
have been investigated for their endophytic fungus relationships (Kumaresan and
Suryanarayanan, 2001; Ananda and Sridhar, 2002; Chi et al., 2019; Yanti and Anwarrudin,
2021). These studies revealed that each mangrove plant’s dominant endophytic fungi species
were specific, although many common endophytes existed in several hosts (Kumaresan and
Suryanarayanan, 2001). Furthermore, the fungi in mangrove plants are shown as a mixture
of soil, marine, and freshwater fungi (Ananda and Sridhar, 2002). Chi et al. (2019) and
Yanthi and Anwarrudin (2021) investigated the potential antimicrobial and anti-inflammatory
activities of six fungal species isolated from A. ilicifolius, namely, Corynespora cassiicola,
Phellinus noxius, Xylaria sp., Geotrichum sp., Humicola sp. and Aspergillus sp. The findings
suggested that endophytic fungi associated with A. ilicifolius leaves and stems could be a source
of several novel active substances.
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India’s mangroves are well recognized for their remarkable
biodiversity and spatial spread. India’s mangroves comprise a
total area of 4740 km2, representing ∼3% of the world’s vegetated
area (FSI, 2019). On the west coast of India, the mangroves
of Kerala constitute one of the most critical ecosystems
(Sreelekshmi et al., 2021). A. ilicifolius, belonging to Acanthaceae,
is one of the most common mangrove species in Kerala
(Sreelekshmi et al., 2021) and is widely utilized in traditional
medicine for a variety of medicinal uses (Ragavan et al., 2015;
Saranya et al., 2015). It has been established that this plant is
an abundant source of alkaloids, long-chain alcohols, flavonoid
glycosides, benzoxazinoid glucosides, megastigmane glucosides,
triterpenes, triterpenoid saponins, and steroids, especially
stigmasterol (Bandaranayake, 2002; Bai et al., 2014). The plant
showed several medicinal properties, viz., antioxidant, hepatopro-
tective, anticarcinogenic, cytotoxic, antimicrobial, anti-
inflammatory, anti-ulcer, and antibacterial activities (Zhang
et al., 2005), pointing out the high opportunity for finding endo-
phytic fungi with high bioactivities. Phomopsis sp. and
Colletotrichum sp. are reported as the dominant fungal endo-
phytes of A. ilicifolius (Suryanarayanan and Kumaresan, 2000;
Chaeprasert et al., 2010). Further, three independent studies in
Indonesia, Thailand, and Taiwan demonstrated that endophytic
fungi affiliated with A. ilicifolius possess strong antimicrobial
actions (Chaeprasert et al., 2010; Chi et al., 2019; Yanti and
Anwarrudin, 2021). The endophytic fungus of A. ilicifolius from
the genera Geotricum, Humicola, and Aspergillus exhibited a
high in vitro antagonistic activity against harmful bacteria such
as Escherichia coli and Staphylococcus aureus (Yanti and
Anwarrudin, 2021). Chi et al. (2019) revealed that endophytic
fungi from C. cassiicola and Xylaria sp. have potent antimicrobial
activity against Bacillus subtilis, S. aureus, and E. coli. According
to Chaeprasert et al. (2010), Xylaria sp. found in the leaves of
A. ilicifolius from Thailand possesses extensive antibacterial activ-
ities. These results imply that a range of biologically active endo-
phytic fungi may exist in A. ilicifolius. However, only a few studies
have identified biologically active endophytic fungi associated
with the Indian mangrove trees (Ananda and Sridhar, 2002;
Maria and Sridhar, 2003; Priyadharshini et al., 2015). In this con-
text, the present study analyses the cultural diversity of the fungal
endophyte assemblage on the healthy leaves of A. ilicifolius estab-
lished on the mangrove habitat of the west coast of India, with an
ultimate aim to elucidate their potential antimicrobial applications.

Materials and methods

Sample collection

The leaves of two apparently healthy mature trees of A. ilicifolius
(Figure 1A) were collected from Thevara (9.924348705°N,
76.28840469°E) on the south coast of Kerala, India, during the
pre-monsoon season (April and May 2021). The physicochemical
parameters at the sampling site were recorded as follows: salinity:
25 ppt, temperature: 31°C, pH: 7.8, and dissolved oxygen: 2.8 mg l−1.
The samples were placed in sterile sampling bags, placed in clean
thermocol boxes with ice packs, brought to the lab (Cha et al.,
2021), and analysed within 24 h of collection.

Isolation and enumeration of endophytic fungi

The trituration procedure was used to prepare the samples to isolate
endophytic fungus (Kloepper et al., 1999). The leaves were sequen-
tially washed in 70% ethanol for 1min and 4% sodium hypochlorite
solution for 1min to sanitize the surface. The leaves were then
rinsed thrice in distilled sterile water. To test the efficacy of the sur-
face disinfection step, the disinfected samples were cultured on

Martin’s Rose Bengal streptomycin agar plates, followed by incuba-
tion for 2 weeks at 28°C to confirm the absence of epiphytes. The
surface-disinfected leaf samples were then triturated using a mortar
and pestle with sterile potassium phosphate buffer. Serial ten-fold
dilutions of the triturate were prepared, and each dilution was
spread plated in duplicates onto Martin Rose Bengal streptomycin
agar medium. All plates were incubated at 28°C for 48 h. The
total viable count was calculated by multiplying with the dilution
factor and expressed as the number of colony-forming units
(CFU) per g. Using potato dextrose agar (PDA) media, the culti-
vated fungal colonies were subcultured and purified for subsequent
identification and activity testing. Further, the PDA plates with pure
isolates were photographed. The glycerol stocks were prepared in a
30% glycerol solution and preserved at the Microbial Culture
Collection, Fish Microbiology Lab, ICAR-Central Marine Fisheries
Research Institute, Kochi.

Morphological characterization

Endophytic fungal isolates were grown in pure culture on PDA
media, and the colony characters such as colour, texture, etc.,
were studied. Morphological characters were studied by observing
the slide culture (Harris, 1986) of fungi under a microscope. The
septation of hyphae, conidiophore, and conidia characters were
observed, and photomicrographs were recorded. Established taxo-
nomic keys (Kohlmeyer and Kohlmeyer, 1979; Kohlmeyer, 1984;
Kohlmeyer and Volkmann, 1991; Jones et al., 2009) were used
to identify the isolates.

Molecular characterization

Fresh axenic cultures were cultivated on PDA media in the dark
for 7 days at 28°C to extract genomic DNA. Fungal hyphae

Figure 1. Mangrove leaves in the study and results of endophytic fungi enumeration:
(A) leaves of A. ilicifolius used in the study and (B) results of endophytic fungi enumer-
ation. Observed means of log CFU ± SD per g of leaves are given. *Indicates significant
difference at P < 0.05.
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(100 mg) were scraped from the agar plate surface and ground in
liquid nitrogen. Following that, fungal DNA was collected using
the NucleoSpin® Plant II Kit according to the manufacturer’s
protocol (Macherey-Nagel GmbH & Co., Düren, Germany). The
internal transcribed spacer (ITS) sequences were then amplified
by polymerase chain reaction using the primers ITS1 and ITS4
(White et al., 1990) (ITS1: 5′-TCCGTAGGTGAACCTGCGG-3′;
ITS4: 5′-TCCTCCGCTTATTGATATGC-3′). The initial denatur-
ation was conducted at 98°C for 30 s, followed by 40 reaction cycles
(denaturation at 98°C for 30 s, annealing at 58°C for 10 s, extension
at 72°C for 15 s), and final extension at 72°C for 60 s The amplicons
were then sequenced in both directions at the Regional Facility for
DNA Fingerprinting, Rajiv Gandhi Centre for Biotechnology,
Thiruvananthapuram. The sequence data from forward and reverse
sequencing reactions were edited and compiled using Editseq
(DNASTAR, Lasergene, Madison, WI, USA). Next, we BLAST-ed
(with default settings) the nucleotide sequence to check for similar
sequences in the GenBank database at the National Center for
Biotechnology Information (NCBI). The results of molecular
characterization were then compared with those of morphological
characterization for the final identification. The representative

gene sequences of each distinct endophyte species were then
deposited in GenBank and allocated accession numbers.

In vitro antimicrobial assay

The fungal isolate representing the most dominant species in the
leaves of A. ilicifolius was only used for the downstream experi-
ments. The antibacterial activity was tested against a panel of
six indicator human pathogens (Table 1) by the well diffusion
method (Taye et al., 2011) and disc diffusion method (Mabrouk
et al., 2014). Briefly, 18 h old cultures of the indicator pathogens
were centrifuged, and the pellet was resuspended by adjusting the
optical density of the suspension test culture to 0.1 at 600 nM.
Each indicator strain’s resuspension was applied separately on
Mueller–Hinton agar (HiMedia, Mumbai, India) to create a
lawn culture. Subsequently, for the well diffusion method, the
wells were prepared on each plate, and 100 μl of supernatant of
7 day old fungal culture was transferred to the wells.
Simultaneously, the disc diffusion method was also applied, for
which 50 μl of supernatant of fungal culture was added to 10
mm sterile disc (HiMedia, Mumbai, India) and allowed to dry.

Table 1. Details of human pathogenic bacteria used in the study

Sl. no. Bacteria Strain ID Source

Bacterial density in OD600

adjusted to 0.1, culture
suspension (CFUml−1)

1 V. cholerae MTCC 15025 Microbial Type Culture Collection (MTCC), Chandigarh 2.7 × 107

2 V. parahaemolyticus CMFRI/VP-07 Marine Microbial Culture Collection (MMCC), Central
Marine Fisheries Research Institute (CMFRI), Kochi

1.5 × 107

3 V. vulnificus CMFRI/VP-02 MMCC, CMFRI, Kochi 9 × 107

4 S. aureus CMFRI/SA-01 MMCC, CMFRI, Kochi 3.05 × 107

5 K. pneumoniae CMFRI/KlP-01 MMCC, CMFRI, Kochi 2 × 107

6 E. coli ATCC 35218 HiMedia, India 3.5 × 107

Table 2. Morphological characteristics of the isolates

Isolate ID/characteristics AFE-1 (C. cinerea) AFE-2 (Alternaria sp.) AFE-3 (P. macrospinosa)

Colony colour during
initial growth (initial 7
days)

White in colour
(Figure 2A)

White in colour (Figure 3A) White in colour (Figure 4A)

Colony colour after 14
days

Black (Figure 2B) Grey to dark-black (Figure 3B) Dark brown to black (Figure 4B)

Colony diameter after 7
days (mm)

3–5 3–6 2–4

Colony diameter after
14 days (mm)

6–8 8–10 7–9

Hyphae Branched, septate
(Figure 2C)

Dichotomous branching, smooth, septate
(Figure 3C)

Dichotomous branching, smooth, septate
(Figure 4C)

Conidiophores Arising directly from the
stipe (Figure 2C)

Head of conidiophore showing the chain of
conidia (Figure 3C)

Macronematous conidiophores formed after 7
days on PDA media, head of conidiophore
showing the chain of conidia, immediately
below the head bearing shorter branches or
stipes (Figure 4C)

Conidiogenous cells Apically bearing a cluster
of conidiogenous hyphae
(Figure 2C)

Arising mostly directly from the stipe
(Figure 3C)

Arising mostly directly from the stipe,
spherical, smooth-walled (Figure 4D)

Conidia Cylindrical conidia
(Figure 2C)

Conidia in chains, often of more than three,
most conidia with apical beak, club-shaped,
produced long chains; multiseptate with
both transverse and longitudinal septa
(Figure 3C)

Bearing simple or branched chains of conidia,
well-defined conidial heads, mature
conidiophores with head of verruculose
conidia (Figure 4D)
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Discs containing the supernatant were placed on the surface of the
medium containing the lawn culture of each pathogen. The plates
(both well and disc diffusion) were incubated for 2 days at 37°C.
For positive cases, the inhibitory zone developed after the incuba-
tion period was registered and measured. To validate the anti-
microbial activity, the test was repeated thrice for positive
instances. The mean zone diameter was then measured for the
study. Further, to confirm the results of the disc and well diffu-
sion methods the antibacterial efficacy in terms of minimum
inhibitory concentration (MIC) and minimum bactericidal con-
centration (MBC) against the indicator pathogens was deter-
mined by the microtitre plate method (Marshall et al., 1996;
Sharma et al., 2021). In brief, the fungal culture supernatant
mentioned above for the disc and well diffusion methods was
used as the stock. Then, two-fold serial dilutions of the stock
were prepared in Mueller–Hinton broth, and 100 μl of each
dilution was added to polystyrene sterile flat-bottom 96-well
plates in duplicates. All the wells were then inoculated with
100 μl of bacterial suspension (106 CFUml−1) followed by incu-
bation at 37°C for 24 h. The wells containing bacterial inoculum
without fungal supernatant served as the control. At the end of
incubation, the lowest concentration of supernatant that did not
show visible bacterial growth was noted as MIC. Subsequently,
50 μl of suspension from each well was cultured onto Mueller–
Hinton agar plates and incubated at 37°C for 24 h. The plates
were inspected for bacterial growth after incubation, and the

lowest concentration showing no bacterial growth on agar plates
was noted as MBC.

Phylogenetic analysis

The evolutionary relationship of the most dominant endophytic
fungal isolate was inferred through phylogenetic analysis using
the sequences representing 18S rRNA gene partial sequence,
5.8S rRNA gene, 28S rRNA gene partial sequence, ITS1, and
ITS2. Initially, a 551 bp-sized sequence representing the partial
sequences of the 18S rRNA gene, ITS1, 5.8S rRNA gene, ITS2,
and 28S rRNA gene of the fungus was obtained by editing and
compiling the sequences obtained from forward and reverse
sequencing reactions using Editseq (DNASTAR, Lasergene,
Madison, WI, USA). Then, using CLUSTALW, multiple sequence
alignment of this sequence, corresponding sequences of other
fungi of the same family (Periconiaceae), and two representatives
from the nearest family, viz., Massarinaceae was then performed
(Altschul, 1997). Molecular Evolutionary Genetics Analysis, ver-
sion 10 (MEGA 10), was then employed to perform a phylogen-
etic analysis on the aligned data (Kumar et al., 2018). The Kimura
two-parameter model (Nei and Kumar, 2000), which had the low-
est Bayesian information criterion score was used to calculate the
evolutionary distances. Following that, the phylogenetic tree was
built using the neighbour-joining method with 1000 bootstrap
replications (Saitou and Nei, 1987), and the gamma distribution

Figure 2. Morphological characteristics of C. cinerea: (A) col-
ony morphology during initial growth, (B) colony morph-
ology after 14 days of growth, and (C) microscopic
morphology after lactophenol cotton blue staining.
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with five discrete categories was employed to model the variations
in evolutionary rates among sites. For the purpose of rooting, the
corresponding sequence from an uncultivated Agaricomycetes
was used (GenBank accession number: GQ268657.1).

Data analysis

Data on the enumeration of endophytic fungi were recorded as
the log colony-forming units per g of leaf tissue (log CFU ±
SD). The inhibition zone diameter (the difference between the
total zone diameter and the bacterial colony/disc diameter) of
the three-triplicate testing (mean ± SD) was used to express the
antimicrobial assay results. The colony counts and the inhibition
zone diameters (antibacterial tests) were compared using one-way
analysis of variance (ANOVA), with a P-value of <0.05 set to indi-
cate a significant difference. Tukey’s test was employed for post-
hoc analysis following one-way ANOVA (SPSS software program,
ver. 16). The relative frequency (RF) of each distinct fungal isolate
was then estimated as the ratio of the number of isolates of a par-
ticular taxon (n) to the total number of isolates (N ) [(n/N ) × 100]
(Du et al., 2020). The zone of inhibition diameter was used to
score each isolate against each pathogen (Sumithra et al., 2019).
High (>10 mm), moderate (5–10 mm), low (1–4 mm), and no
inhibition activities were given scores of 4, 3, 2, 1, and 0,
respectively.

Results

Isolation and enumeration of endophytic fungi

Three different endophytic fungi, designated AFE-1, AFE-2, and
AFE-3, were successfully isolated from the leaf segments of A. ili-
cifolius. The results of the enumeration of these fungi are depicted
in Figure 1B. A statistical method was used to test the overall sig-
nificant difference (P < 0.05) between the log10 CFU values of dif-
ferent fungal isolates, with significantly higher counts of AFE-3
compared to the other two isolates. In brief, the results showed
that the most predominant fungus was AFE-3, with an average
log10 CFU g−1 of leaf tissue of 7.70 ± 0.06.

Identification of the isolates

The morphological characteristics of the three fungal isolates on
PDA media are depicted in Table 2 and Figures 2–4. During
molecular characterization, an amplicon of 484, 439, and 546 bp
was obtained from AFE-1, AFE-2, and AFE-3 isolates, respect-
ively. GenBank accession numbers ON897769, ON898017, and
OM085665 were assigned to the submitted sequencing data
derived from the three fungal isolates. In total, three different fun-
gus species belonging to the genera Alternaria sp., Coprinopsis sp.,
and Periconia sp. were identified (Table 3). A combined analysis
of the morphological and molecular characteristics classified the

Figure 3. Morphological characteristics of Alternaria sp.: (A)
colony morphology during initial growth, (B) colony morph-
ology after 14 days of growth, and (C) microscopic morph-
ology after lactophenol cotton blue staining.
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first two fungi as Periconia macrospinosa (strain: CMFRI/fPM-01)
and Coprinopsis cinerea (strain: CMFRI/fCC-01). The third fun-
gus (strain: CMFRI/fAl-01) could not be classified to the species
level. The RF of each unique fungal isolate was calculated as
35.22, 32.64, and 32.13% for CMFRI/fPM-01, CMFRI/fCC-01,
and CMFRI/fAl-01, respectively.

In vitro antimicrobial assay

The antibacterial activity of the fungal isolate of the most preva-
lent species in A. ilicifolius leaves was investigated. The results are
shown in Figure 5. In essence, the P. macrospinosa strain CMFRI/
fPM-01 demonstrated a broad-spectrum antibiotic efficacy against
all indicator pathogens tested. There was no significant difference
in the antibacterial activity against the tested pathogens (P > 0.05).
More importantly, the fungus scored 4, indicating high inhibitory
activity against various pathogens. MIC and MBC values of the
culture supernatant against the tested pathogens were 1:8 and
1:2 dilutions, respectively

Phylogenetic analysis

The outcome of the phylogenetic analysis of the promising fungal
isolate AFE-3 with potential antibacterial action is shown in
Figure 6. Based on the derived phylogenetic tree, the
Periconiaceae family of the Pleosporales order is distinguished

from the Massarineae as a sister taxon with a distinct lineage.
There were two well-separated subclades in the family
‘Periconiaceae’ clade (order: Pleosporales). The first subclade con-
tained P. macrospinosa, Periconia igniaria, Periconia epilithographi-
cola, Periconia variicolor, Periconia homothallica, Periconia digitata,
Periconia elaeidis, Periconia cyperacearum, and Periconia psuedodi-
gitata. The strains belonging to Periconia echinochloae, Periconia
pseudobyssoides, and Periconia byssoides formed a different subclade
(II). The isolate CMFRI/fPM-01 was clustered in the first subclade
with close similarity to P. macrospinosa strains.

Discussion

Among different plants, mangrove plants are the most attractive
biodiversity hotspots for prospecting novel bioactive compounds
(Cadamuro et al., 2021). A. ilicifolius is a widely used mangrove
species for various medicinal purposes, especially in the field of
conventional medicines (Ragavan et al., 2015; Saranya et al.,
2015). The previous limited studies on A. ilicifolius (Chaeprasert
et al., 2010; Chi et al., 2019; Yanti and Anwarrudin, 2021) sug-
gested that A. ilicifolius may possess a wide variety of biologically
active endophytic fungi. In this context, the cultural diversity
of the endophytic fungal assemblage on the healthy leaves of
A. ilicifolius established on the mangrove habitat of the west
coast of India was explored to elucidate their possible antimicrobial
applications.

Figure 4. Morphological characteristics of P. macrospinosa:
(A) colony morphology during initial growth, (B) colony
morphology after 14 days of growth and (C) microscopic
morphology after lactophenol cotton blue staining.
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Only three taxonomically distinct endophytic fungi could be
identified from the leaves of A. ilicifolius in the current investiga-
tion. The diversity of endophytic fungi in the plants relates to the
host species and their environment. The number of distinct endo-
phytic fungal species identified from the mangrove plants varies
among the studies. According to Petrini (1986) and Rajagopal
et al. (2018), only one or a small number of endophytic fungi
dominate within a single host species due to inter-competition.
The same might be a reason for the low diversity of the fungal
endophytes obtained in the present research. In accordance
with our results, Rodrigues and Samuels (1999) and Rajagopal
et al. (2020) recovered only 13 and six endophytic fungal species
from Spondias mombin and Eichhornia crassipes, respectively.
Similarly, Mao et al. (2021) could isolate only 15 different endo-
phytic fungi from the branches and fruits of Eucalyptus exserta,
using PDA media. Wibowo et al. (2016) isolated 20 compounds
from the mangrove-associated fungus Pseudolagarobasidium aca-
ciicola, originally isolated from the B. gymnorrhiza tree. The work
underscored the importance of mangrove fungi as a rich source of
novel bioactive compounds. Because most endophytic fungi can-
not be cultured on artificial media and PDA media is not always
an optimal medium, the three species in this study may represent
only a subset of the total endophytic fungi found in A. ilicifolius.
Arnold and Lutzoni (2007) recommended using 2% malt extract
agar to encourage the growth of the most diversity of fungi, which
has to be explored in future studies. Bosshard (2011) recom-
mended an incubation period of 2–4 weeks to recover the max-
imum possible diverse fungi from the samples; accordingly, a
shorter incubation period might be another reason for the
observed low diversity in the present study. Further, Yu et al.
(2021) showed that the diversity of foliar endophytes in plants
varies significantly with age and is shown to be spread out and
insignificant on young leaves. Accordingly, using older leaves,
diverse isolation media, prolonged incubation, trying other isola-
tion methods, such as surface sterilization method and application
of high-throughput sequencing, are recommended to isolate more
diverse endophytic fungi from A. ilicifolius or to confirm the low
diversity; these are the future perspectives of the present study.

The three fungal isolates of the present study were identified as
C. cinerea, Alternaria sp., and P. macrospinosa belonging to the
phylum Basidiomycota, Ascomycota, and Ascomycota, respect-
ively. The results support the hypothesis of Du et al. (2020)
that all endophytic fungi belong to either Ascomycetes or
Basidiomycetes. Also, Mishra et al. (2016) and Pecoraro et al.
(2018) reported that Ascomycetes are the most prevalent members
of endophytic fungal communities isolated using traditional sep-
aration techniques, as in agreement with our findings.
Nevertheless, the diversity analysis of endophytes based on
culture-dependent methodologies underestimates the actual
diversity, and many isolates could still be identified by the culture-
independent methods (Wang et al., 2015). Our study identified
the dominant endophytes on the healthy leaves of A. ilicifolius
in the mangrove ecosystem of the west coast of India, which
will be helpful in screening and setting the groundwork for
their application. It is important to mention that none of the spe-
cies identified in the present study has been previously reported as
the endophyte of A. ilicifolius leaves. Among the three species
identified in the current research, Alternaria sp. is already
described as a dominant endophytic fungal species of different
plants (Rashmi et al., 2019) and has been isolated from other
mangrove species such as A. marina, Sonneratia alba,
Myoporum bontioides, and Rhizophora annamalayana (Kjer,
2009; Elavarasi et al., 2014; Wang et al., 2014; Liu et al., 2016).

Similarly, C. cinerea has been identified in Eugenia jambolana
leaf tissue (Rashmi et al., 2019) but not from any mangrove spe-
cies. However, other fungal species of the same genus Coprinopsis,Ta
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have been reported in certain mangrove plants (Li et al., 2016;
Devadatha et al., 2021). Similarly, P. macrospinosa and other
Periconia spp. are reported as the endophytes of the leaves of
Acer truncatum and different plants, respectively (Rashmi et al.,
2019). Further, other Periconia spp. have been reported as the
endophytes of certain mangrove plants (Costa et al., 2012;
Hamzah et al., 2018). However, the study forms the first report
of P. macrospinosa and C. cinerea as endophytes in any mangrove
plant species. It was also interesting to note that the common
endophytes of mangrove plants such as Aspergillus and
Penicillium could not be obtained in this study (Costa et al.,
2012; Salini, 2014).

The fungal isolate representing the most dominant species in
the leaves of A. ilicifolius, P. macrospinosa (strain: CMFRI/
fPM-01), was then evaluated for possible antimicrobial activity.
Surprisingly, P. macrospinosa showed antibacterial properties
against all the tested indicator pathogens, displaying a broad-
spectrum antibacterial efficacy. More importantly, the fungus

scored 4, indicating the solid inhibitory action against several
pathogens. These findings concur with the report of Azhari and
Supratman (2021), identifying Periconia spp. as an exciting
resource for natural product research. The secondary metabolites
of this genus have been found to have strong antimicrobial, cyto-
toxic, anti-HIV, and anti-inflammatory properties, including ter-
penoids, polyketides, cytochalasin, meroterpene, macrolides,
macropshelides, aromatic compounds, and carbohydrate deriva-
tives (Azhari and Supratman, 2021). The results are exciting as
the spectrum of the antimicrobial action includes three
ESKAPE pathogens (S. aureus, Klebsiella pneumoniae, and E.
coli), which cause the vast majority of nosocomial infections
and have been shown to exhibit rising rates of antibiotic resistance
and pathogenicity (Mulani et al., 2019). It is worth mentioning
that the usage of E. coli ATCC 35218 in the study, which is the
quality control organism for β-lactam–β-lactamase inhibitor
compounds, further signifies the antimicrobial action of
P. macrospinosa.

Figure 5. Antibacterial activity of P. macrospi-
nosa (CMFRI/fPM-01). VC, V. cholerae; VP, V.
parahaemolyticus; VV, V. vulnificus; KP, K. pneu-
moniae; SA, S. aureus; EC, E. coli.

Figure 6. Phylogenetic analysis of P. macrospinosa strain CMFRI/fPM-01 based on ITS sequence.
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Conclusion

The present study demonstrated the cultural diversity of endo-
phytic fungal assemblages on the healthy leaves of A. ilicifolius
established in the mangrove habitat of the west coast of India.
The study has identified the lesser-known genera Alternaria,
Coprinopsis, and Periconia as endophytic members of the A. ilici-
folius leaf fungal community. More importantly, this study is the
first report of P. macrospinosa and C. cinerea as endophytes in
mangrove plant species. The results also demonstrated the high
and wide spectrum of antimicrobial action of the isolated P.
macrospinosa against human pathogens, including ESKAPE
pathogens. The isolate could serve as a potential resource for
developing novel antimicrobial drugs, which could aid in the
fight against antibiotic-resistant bacteria. Future studies shall be
carried out using different media and high-throughput sequen-
cing to isolate more endophytic fungi from the same plant or to
confirm the low diversity found in this study. Also, further efforts
are warranted to adequately characterize the isolated organism’s
biotechnological potential.
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