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Abstract We consider G, a linear algebraic group defined over k, an algebraically closed field
(ACF). By considering k as an embedded residue field of an algebraically closed valued field
K, we can associate to it a compact G-space Sμ

G(k) consisting of μ-types on G. We show that
for each pμ ∈ Sμ

G(k), Stabμ(p) = Stab(pμ) is a solvable infinite algebraic group when pμ is
centered at infinity and residually algebraic. Moreover, we give a description of the dimension
of Stab(pμ) in terms of the dimension of p.
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1. Introduction

Let G be a group definable in an o-minimal theory, and let γ : (a,b)→G be a definable
curve which is unbounded, in the sense that the limit at b does not exist. In [9], it was

shown that one can associate to this datum a definable 1-dimensional torsion-free group

Hγ ⊆ G, which can be viewed as the stabilizer of γ at ∞. The group Hγ is called the
Peterzil–Steinhorn subgroup associated to γ. For example, when G is a Cartesian power of

the additive group, Hγ is the linear subspace whose translate is the asymptote of γ at ∞.

Assume now that G is an affine algebraic group over the complex numbers, and X is
an algebraic curve embedded in G. If we view C as the algebraic closure of a real closed

field (ACF) K, the set of complex points of X can be viewed as the set of K-points

of a K-definable set Xan in the o-minimal structure K. This set is unbounded, and we

may therefore choose an unbounded curve γ inside Xan and consider the corresponding
PS-group Hγ . Taking its Zariski closure, we obtain an algebraic subgroup Gγ of G, of

(algebraic) dimension 1.
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It is natural to ask, to what extent does the subgroup Gγ depend on the nonalgebraic
data involved, namely, the real closed field K of choice and the curve γ? And if it does

not depend on these, can the construction be described in a purely algebraic manner?

We first note that a choice of γ : (a,b)→Xan determines an additional algebraic datum:
the curve X (which we may assume to be smooth) has a canonical compactification X̃,

its projective model, which is obtained from X by adding finitely many points. Viewing

γ as taking values in X̃an rather than Xan, the limit of γ at b will be precisely one of

these points, and curves γ corresponding to different such points definitely might give
rise to different subgroups Gγ . Hence, any hope of providing an algebraic construction of

Gγ should take into account the choice of such a point at infinity.

Main results

The main result of this paper provides an algebraic construction, as anticipated, once the

additional datum of a limit point is chosen:

Theorem 1.1. Let k be an algebraically closed field and G be a linear algebraic group

over k, and let X ⊆ G be an irreducible curve over k. Then there are finitely many 1-

dimensional linear subgroups of G, naturally associated to points at infinity of a smooth
projective model of the curve X. In fact, they are the μ-stabilizers of those points at

infinity, as explained later.

A more precise version is given in Theorem 3.12, and the notion of μ-stabilizers will be

introduced later. The main result of the paper, Theorem 1.2, includes a generalization

of this theorem to higher dimensions, and some analysis of the structure of the resulting

group. These results are obtained by viewing G as a definable group in ACVF, the theory
of algebraically closed valued fields, and applying some results from [4]. The relation of

the μ-stabilizers to the original construction of Peterzil and Steinhorn is explained in

Remark 3.13.
To state the main result, we need to introduce some additional terminology. The

subgroups we are interested in were introduced in an abstract setup in [7]. There, the

authors consider (suitably defined) definable topological groups. To such a group G, one
associates an infinitesimal subgroup μ, the intersection of all definable neighborhoods of

the identity. If P is a (partial) type on G, the set μ ·P can be viewed geometrically as a

tube around P, and the μ-stabilizer Stabμ(P ) of P is defined to be the stabilizer of this set.

In the o-minimal context, the datum of a curve γ as before determines a type at infinity
pγ , and it is easy to see that the PS-group Hγ depends only on this type. It is shown in [7]

that Hγ is precisely the μ-stabilizer of pγ . Similarly, every closed point of the projective

model of a smooth curve X determines an ACVF type on X, and the associated group
is defined as the μ-stabilizer of this type. To see that the definition is reasonable, it

is shown that the resulting group is 1-dimensional. Furthermore, it is contained in the

(algebraic) stabilizer of the corresponding point in every equivariant compactification of G
(Remark 3.4).

The definition of a μ-stabilizer makes sense for types of higher Zariski dimension

as well. However, two types of different Zariski dimension might have the same tube
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(Example 2.17), so the dimension comparison is not straightforward. We say that a type

is μ-reduced if it is of minimal dimension among all types with a given tube. With this

terminology, we have the following generalization of Theorem 1.1:

Theorem 1.2 (Main theorem). Let G be a linear algebraic group defined over k and

p be a residually algebraic type. If p is centered at infinity, then Stabμ(p) is infinite.

Furthermore, if p is μ-reduced, then dim(Stabμ(p)) = dimp. And for each type p, Stabμ(p)
is a solvable linear algebraic group.

Here the term “centered at infinity” should be understood as “unbounded” in the o-

minimal counterpart. Do note that one cannot hope for the group to be torsion-free, as
in the result on PS-groups, since the underlying field may have positive characteristic.

The three parts of the theorem are proved, respectively, as Corollary 4.13, in §4.3, and
as Theorem 4.20.

Structure of the paper

The structure of the paper is as follows: In §2 we review some definitions and results
related to group actions, and provide an alternative approach to μ-stabilizers. In §3 we

consider the 1-dimensional case of Theorem 1.1. Though formally included in the general

case, this case is considerably simpler, and sheds light on the more complicated general

case. Then in §4 we deal with the general case.

2. μ-Stabilizers over ACF

Let k be an arbitrary algebraically closed field (ACF), and G a linear algebraic group

defined over k. In this section, we develop the theory of μ-types and their stabilizers in

this context, following [7]. Before going into μ-types, we begin with some generality on

definable group actions.

2.1. Definable group actions

Let us start by recalling some general facts about stabilizers of definable types in an

arbitrary complete theory T, following [7, Section 2]. We fix a monster model U of T, and

all the models of T we consider will be elementary submodels of U.

Let X be a definable set (over 0), and let A be a small set of parameters. We use
LX(A) to denote the set of formulas ψ over A such that ψ(x) ⇒ x ∈ X. Such formulas

will occasionally be called X-formulas. And by a (partial) X-type over A, we mean a

consistent collection of formulas in LX(A).
We fix H to be a definable group with a definable action on X. For an H-formula φ(x)

and X-formula ψ(y), let (φ ·ψ)(z) be

∃x∃yφ(x)∧ψ(y)∧ z = x ·y.

And for a partial X-type p, φ ·p= {φ ·ψ : ψ ∈ p}.
By a definable X-type over A, we mean an X-type over A such that for any formula

φ(x,y), {a ∈A : φ(x,a) ∈ p}= {a ∈A : dpφ(a)} for some formula dpφ over A. Note that in

this definition, a can be tuples in A.
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Let M be a model of T such that A=Y(M) for some M-definable set Y. Then any two

such definitions dpφ will be equivalent. Moreover, p can be extended to a unique type

p | L over Y(L) determined by {φ(x,c) : c ∈ dpφ(Y(L))}, for any L such that M	 L.

Convention 2.1. For the remainder of the paper, we will assume that we are working

over a set of parameters A such that A=Y(M) for some model M, and we assume further

that H and its action on X are defined over A. We assume further that H⊆Yn for some

Cartesian product of Y.

Definition 2.2. Let p be a definable partial X-type over A as in Convention 2.1. We

define

Stab(p)(M) = {h ∈H(M) : For any φ ∈ LX(A), p |= h ·φ⇔ p |= φ},

where h ·φ stands for (x= h) ·φ. We will occasionally denote Stab(p)(M) by Stab(p)(A).

The following is [7, Proposition 2.13]:

Fact 2.3. Let H be a definable group with a definable action on X, and assume we

are in the setting of Convention 2.1. Let p be a partial definable X-type over A. Then
Stab(p) is a A-type-definable subgroup of H in the following sense: there is a small system

Hα of A-definable subgroups of H such that for every elementary extension M 	 L, for

a ∈H(L), we have a ∈ Stab(p | L)(L) if and only if a ∈Hα(L) for all α.

With the language set up, we will now look at the setting to talk about μ-types as in
[7] over algebraically closed fields.

2.2. μ-Stabilizers over ACF

Let k be an algebraically closed field. The theory of algebraically closed fields is not rich

enough to have a good notion of infinitesimal subgroups as in [7]. Hence, it is natural

to work with the theory Tloc as introduced in [3, Section 6]. The language for Tloc has
two sorts, a sort VF for the valued field and a sort Γ for the value group. The sort

VF is has a unary predicate RES for an embedded copy of the residue field, which can

be viewed as an additional sort. Thus we have function symbols res :VF2 →RES and
val :VF→ Γ. The theory Tloc asserts that the VF sort is an algebraically closed valued

field, RES is a subfield, val is a valuation map, and res(x,y) = res(x/y), the residue of x/y

if val(x)≥ val(y) and 0 otherwise, with res(c,1) = c for c∈RES. For notational simplicity,
we will use res(x) to denote res(x,1) for x ∈ O, the valuation ring.

We further assume that we have constants for the elements of the field k in RES.

Thus, models of Tloc are algebraically closed valued fields with embedded residue field

extending k.

Fact 2.4 ([3, Lemma 6.3]). Tloc admits quantifier elimination in this language. The sorts

Γ and RES are stably embedded and orthogonal to each other. The induced structures

on Γ and RES are of divisible ordered abelian groups and algebraically closed fields.
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Remark 2.5. In [3], a constant symbol 1 in the Γ-sort for some positive element was

included. But the proof of quantifier elimination does not rely on the constant.

In some cases, we will work in the reduct of Tloc in the 3-sorted language Lval,
which consists of the valued field sort VF, the value group sort Γ, the residue field

sort RES, and maps val : VF → Γ and res : VF → RES. In this language, we have

constants for k in both the VF-sort and the RES-sort. The induced theory on the
reduct is ACVFk, the theory of algebraically closed valued fields with constants for k,

which admits quantifier elimination in Lval. Since this is a reduct, we will freely view

formulas in Lval as definable sets in Tloc. The main point of working with this reduct is

the application of topological results from [4] available for this restricted class of definable
sets.

Recall that we are given a linear algebraic group G defined over k. In our context, this

group determines a number of distinct definable groups: the definable group G of VF-
points of G, and the definable subgroupsG(O) andG ofO- andRES-points, respectively.

The (pointwise) residue map res : G(O) → G is a definable group-theoretic retraction

(since G is over k), whose kernel we denote by μ. Note that μ is definable over k as
well. Geometrically, μ can be viewed as an infinitesimal neighborhood of the identity

in G.

Let P be an algebraic variety over k on which G acts. (Our main example will be

P = G, with G acting on itself by left multiplication, but occasionally we will need
the more general setup.) Then P determines a definable set P in VF and a definable

action of G on P, which restricts to an action of G ≤ G. We are therefore in the

setting of Convention 2.1, where we set T = Tloc, X = P, Y = RES, and H = G. In
fact, one can take k = RES(M), where M is a field of Hahn series with coefficients

in k.

Definition 2.6. Let P and G, and the associated terminology, be as in the foregoing.

We denote by SP(k) the space of complete Lval-P-types over k. For p ∈ SP(k), the μ
-stabilizer Stabμ(p) of p is StabG(μ ·p).

Note that a complete Lval-P-type might be a partial type in Tloc. By quantifier

elimination, such types correspond to pairs of the form (Z,v), where Z is an irreducible
closed subvariety of P and v is a valuation on the function field of Z which is trivial

on k. By Fact 2.4, the RES-sort is stably embedded as an algebraically closed field. In

particular, each p ∈ SP(k) is definable over k in Lval.

Proposition 2.7. Set p ∈ SP(k). Then μ ·p is a definable partial type over k.

Proof. Let Z be an Lval-definable set over k. Then μ ·p |= Z if and only if

p(x) |= ∀ε ∈ μ(ε ·x ∈ Z).

The latter condition is Lval-definable over k, and hence the result follows from the

definability of p.
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By Fact 2.3 and the foregoing discussion, Stabμ(p) is given by an intersection of Lval-

definable subgroups of G. However, G has the descending chain condition on subgroups.

Hence by Fact 2.4 we have the following:

Corollary 2.8. Let p be an Lval-complete G-type over k. Then the μ-stabilizer Stabμ(p)

of p is a k-definable subgroup of G, in the sense that there is a k-definable subgroup H
of G, such that Stabμ(p | L)(L) =H(L) for any model L�M.

For p and q ∈ SP(k), define p ∼ q if μ · p = μ · q. It is easy to check that μ · p = μ · q if

and only if in a monster model U there are a |= p, b |= q, and ε ∈ μ such that ε ·a= b.
We denote by Sμ

P(k) the quotient by this equivalence relation, and for each p ∈ SP(k)

we denote by pμ its equivalence class. Since μ is normal in G(O), the G(k)-action on

SP(k) given in §2.1 respects the equivalence relation. Hence G(k) acts on Sμ
P(k), and

Stabμ(p) = Stab(pμ), where the right-hand side is by considering G(k) acting on Sμ
P(k).

Lastly, we note that stabilizers for types in the same orbit are conjugate:

Lemma 2.9. Let g ∈G(k) be such that g·pμ = qμ. Then Stabμ(q) = gStabμ(p)g−1.

We finish this subsection with two basic examples. These can be compared to the

computations in the o-minimal setting.

Example 2.10. Let G= SL2,k. Let

X1 =

{(
x 1
0 x−1

)
: x ∈Gm

}
,

a closed subvariety of G. Since this subvariety is isomorphic (as an algebraic variety) to
Gm, the definable subset given by val(x) < 0 isolates a complete type p on G (in the

language Lval over k).

We claim that the left μ-stabilizer H of p is the subgroup

G1 =

{(
1 a

0 1

)}
.

Indeed, set g ∈RES and choose α ∈VF with val(α)< 0. Then(
1 g

0 1

)(
α 1

0 α−1

)
=

(
α 1+gα−1

0 α−1

)
=

(
1+ ε 0

0 (1+ε)−1

)(
β 1

0 β−1

)
,

where ε = gα−1 and β = (1+ ε)−1α. Since val(ε) > 0, we have
(1+ε 0

0 (1+ε)−1

)
∈ μ and(β 1

0 β−1

)
|= p.

Thus G1 ⊆ H. By (the easy part of) Theorem 3.12, H is 1-dimensional, so G1 is the
connected component of H, and H has the form

H =

{(
ξ a

0 ξ−1

)
: ξn = 1

}

for some n. By a similar computation, such an element will take μ ·p to μ ·pξ, where pξ
is the type of elements

(
x ξ
0 y

)
with val(x)< 0, so we must have ξ = 1 and G1 =H.

This example will be considered again in Example 3.5.
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Example 2.11. Similarly to Example 2.10, we now consider the closed subvariety

X2 =

{(
x 0

1 x−1

)
: x ∈Gm

}
⊆G= SL2,

and let q be the type on G determined inside it by the condition val(x)< 0.

We claim that the left μ-stabilizer H of q is now the subgroup G2 =
{(

a 0
0 a−1

)
: a ∈Gm

}
.

The computation is similar: for g ∈Gm(RES) and α ∈VF with val(α)< 0, we have(
g 0

0 g−1

)(
α 0

1 α−1

)
=

(
gα 0

g−1 (gα)−1

)
=

(
1 0

ε 1

)(
β 0

1 β−1

)
,

where β = gα and ε= g−1−1
gα .

Since val(ε) > 0 and val(β) < 0, we obtain G2 ⊆H. The only 1-dimensional algebraic

subgroup of G that properly contains G2 is its normalizer, which contains the element

w =
(

0 1
−1 0

)
. This element sends q to the type of elements

(
1 x−1

−x 0

)
with val(x) < 0, so

cannot be in H. Hence the μ-stabilizer is G2 in this case.

2.3. A different view on μ-stabilizers

Instead of viewing the μ-stabilizers syntactically as in the previous section, we have some

concrete constructions to realize them in the monster model as well. In this section, we

describe the construction, following the same idea as [7, §2.4]. We work in a fixed monster
model U of Tloc and identify definable sets and (partial) types with their realizations in

U. From now on, we restrict our attention to the case P=G, unless mentioned otherwise.

Definition 2.12. For p ∈ SG(k) we use Gp to denote the set
(
(μ ·p)·(μ ·p)−1

)
∩G.

Proposition 2.13. Set a ∈ μ ·p. The following are equivalent for an element b ∈G(k):

(1) b ∈ μ ·p ·a−1∩G;

(2) b= res
(
a1a

−1
)
for some a1 |= p for which a1a

−1 ∈G(O);

(3) b ∈Gp;

(4) b= res
(
a1a2

−1
)
for some a1,a2 |= p for which a1a2

−1 ∈G(O).

Hence, Gp(k) = μ ·p·a−1∩G(k).

Proof. The equivalence of (1) and (2) follows directly from the definitions, and likewise

for (3) and (4). Hence we need to show that (4) implies (2). Assume b= res
(
a1a

−1
2

)
. Since

a and a2 satisfy the same type over k, and RES is stably embedded and stable, there

is an automorphism τ over k such that τ(a2) = a. Then b = τ(b) = res
(
τ(a1)a

−1
)
, with

τ(a1) also satisfying p, showing (2) for b.

We now have the following description of Gp:

Corollary 2.14. Gp(k) = Stabμ(p)(k).

Proof. Assume g ∈G stabilizes μ ·p. Then for any a ∈ μ ·p, g ·a ∈ μ ·p, hence g ∈ μ ·pa−1,

so is in Gp. Conversely, if g ∈ Gp and a ∈ μ · p, writing g = a1a
−1 as before we obtain

g ·a ∈ μ ·p.
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Remark 2.15. We would like to have Corollary 2.14 hold for RES-points instead of just
k-points. This is not automatic, since Gp is not, a priori, a definable set. However, in the

special case as in Theorem 1.1, it is indeed the case.

2.4. μ-Reduced types

For p ∈ SG(k) we denote by dim(p) the dimension of its Zariski closure in G over k.

Most of the rest of this paper is devoted to comparing this dimension to the dimension of

Stabμ(p). We first note that if X is a variety over a valued field L whose valuation ring is
O, then the Zariski dimension of res(X∩O) is at most the dimension of X (this follows,

for example, from [11, Lemma 00QK], by choosing a model of X over O). Applying this

observation to X=Ya−1, where Y is a variety containing p, we obtain the following:

Proposition 2.16. For any p∈ SG(k), dim(Stabμ(p)) = dimGp(k)≤ dim(p), where dim
means the Krull dimension in Stabμ(p) and Gp(k), and dim(p) is the minimal VF-

dimension of the formulas ϕ ∈ p.

In general, the bound will not be sharp, since types of different dimensions may have

the same μ-type:

Example 2.17. Let G= A2 as an additive group. Let K be a large enough Hahn series
in variable t over k. Let p= tp

((
t−1,t−1+ tr

)
/k

)
, where r > 0,r /∈Q, and tp denotes the

Lval-type. Then dim(p) = 2, since t−1 + tr is transcendental over t−1. But μ · p = μ · q,
where q = tp

((
t−1,t−1

)
/k

)
, since

(
t−1,t−1+ tr

)
and

(
t−1,t−1

)
differ by (0,− tr) ∈ μ, so

dim
(
Gp

)
≤ 1 (as we will see later, they are in fact equal). Furthermore, when Char(k) =

p > 0, we see that Stabμ(p) is not torsion-free.

This observation motivates the following definition:

Definition 2.18. For p ∈ SG(k), we say that p is μ-reduced if p is a type of minimal

dimension in pμ. An element a ∈G is μ-reduced over k if a |= p for some μ-reduced p.

2.5. Bounded types

In this subsection, we revert to working with a general G-varietyP. We recall the following
definition (e.g., from [4, §4.2]):

Definition 2.19. Let V be an affine variety, viewed as a definable set in ACVF, and let

X⊆V be an Lval-definable subset. We say that X is bounded if for every regular function

f on V there is γ ∈ Γ such that val(f(X))≥ γ.
For a general variety V, a subset X⊆V is bounded if it is covered by bounded subsets

of an affine cover.

A partial type p in V is bounded if p |=X for some bounded X ⊆V. A type in V is

said to be centered at infinity if it is not bounded.

Note that the property of a definable set to be bounded depends on the ambient variety

(for example, A1 is bounded as a subset of P1, but not as a subset of A1). However, if

V is a closed subvariety of W, then X⊆V is bounded in V if and only if it is bounded
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in W. Also, it suffices to check the conditions for generators of the regular functions. In
particular, a subset X of a closed subvariety of An is bounded if and only if val(X) ≥ γ

for some γ.

Over k, we have in our situation the following:

Proposition 2.20. A k-definable set X⊆V is bounded if and only if it is contained in

V(O)

Proof. By definition, it suffices to prove the statement for V affine, and by the foregoing
remarks, for V = An.

If X ⊆ On we may take γ = 0 in the definition. Conversely, we may assume n = 1 by

projecting. If a∈X\O, then γ =val(a)< 0 has the same type as any other negative value
γ′, so there is an automorphism of Γ taking γ to γ′, and since Γ is stably embedded and

Γ and RES are orthogonal, it extends to an automorphism over k that takes a to a′ ∈X,

with val(a′) = γ′. Thus X is unbounded.

Let p be a bounded type on P, a variety endowed with an action of G. A realization a

of p is then an O-point of P, and so determines a point a of P in the residue field. The
type of a depends only on p (since it is encoded there), and we denote it by p. The group

G acts on the set of all types in P, the variety P viewed as a definable set in RES. In

particular, we may consider the stabilizer of p.

Proposition 2.21. For any bounded type p on P we have Stabμ(p)≤ Stab(p).

Proof. Let a be a realization of p, and let a be a realization of p whose residue is a.
Assume that for some g ∈G we have g ·a= ε · b for some ε ∈ μ and b realizing p (so that

g ∈ Stabμ(p)). Since all elements involved are in O, we may apply the residue map and

obtain g ·a= b. Since b realizes p, b realizes p. Thus g ·p= p–that is, g ∈ Stab(p).

Returning to the case P=G, we obtain the following:

Corollary 2.22. If p is a bounded type on G such that p is realized in k, then its μ-
stabilizer is trivial.

Proof. In this case p corresponds to a (closed) point of G, hence the stabilizer is trivial.

Because of the last corollary, we shall concentrate on types centered at infinity.

3. Analyzing the 1-dimensional case

In this section, we prove the main theorem in dimension 1 (Theorem 1.1). We think this

section worth including even though it follows from the general case, since it is relatively
simple and it sheds light on the important idea in proving the general case. The result in

this section was first proved by Moshe Kamensky and Sergei Starchenko in unpublished

notes via the language of places.
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3.1. Points on curves

Each smooth curve X over k embeds in a unique smooth projective one over k, its

projective model X̃. Every closed point c on X̃ corresponds to a valuation valc on the

function field k(X), given by the order of vanishing at c. In particular, valc is trivial on

k. The projective model contains a finite number of closed points outside of X, which we
call the points at infinity.

In our case, X is an affine curve, embedded as a closed subvariety in a fixed affine space

An. To any point c ∈ X̃ we associate the complete type on X determined by

pc(a) =
{
val(f(a))> 0 : valc

(
f
)
> 0

}
,

where f runs over all elements of the local ring corresponding to X and f is the
corresponding element in k(X).

We would like to describe the types that occur in this way intrinsically, in a way

that will be helpful later. The condition that c is a closed point corresponds to the

following:

Definition 3.1. An extension of (possibly trivially) valued fields is residually algebraic if

the corresponding residue field extension is algebraic. For L a (possibly trivially) valued

field, an Lval-type p over L is residually algebraic if for a (or every) realization a of p,

L(a) is residually algebraic over L.

Proposition 3.2. Let X be a smooth curve embedded in An (viewed as a definable set in

VFn). An Lval-type p over k on X is residually algebraic if and only if it is of the form

pc for a closed point c of X̃, the smooth projective model of X. Furthermore, c ∈ X̃\X if
and only if pc is unbounded.

Proof. Let p be a residually algebraic type on X, and let a be a realization that witnesses

this. If a ∈ k, p corresponds to the k-point a of X and we are done. Otherwise, k(a) is

isomorphic to k(X) as a field, and since p is residually algebraic, the valuation on k(a) is
nontrivial. Thus we obtain a k-point c of X̃ by the discussion earlier in this subsection,

and it is clear that the two procedures are inverse to each other. The last statement also

follows.

We have been working with smooth curves, but since we are interested in points at

infinity, the assumption is immaterial, since the singularity of varieties are of at least

codimension 1, and hence varieties are smooth at generic points.

Corollary 3.3. For X a curve, there are finitely many residually algebraic types centered
at infinity. Moreover, they are isolated by Lval-formulas over k.

Proof. It remains to prove the ‘moreover’ part of the statement. Since we know that there

are only finitely many types on X centered at infinity, call them p1, . . . ,pm. Without loss
of generality, for each i,j there will be regular functions fij,gij such that pi |= val(fij)<

val(gij) but pj |= val(fij)≥ val(gij). Hence some Boolean combinations of these formulas

together with the formula x /∈X(O) will isolate the types in question.
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Remark 3.4. Let X be an affine curve embedded in G, and assume that we are given a
G-equivariant embedding of G in a G-variety P. Assume that the closure X′ of X in P

includes the point c ∈ X̃. The type pc is then bounded in P, and by Proposition 2.21 the

μ-stabilizer of pc is contained in the stabilizer of the residue type of pc, which is simply c.
Hence the μ-stabilizer of c is contained in the stabilizer of this point in every equivariant

compactification where the point is realized.

This fact, along with the dimension equalities for the μ-stabilizers, justifies viewing the

μ-stabilizer as a canonical stabilizer for the corresponding point.

Example 3.5. Example 2.10 provides an instance of the situation here, with X = X1.

Since X1 =Gm as an abstract variety, its projective model X̃1 is P
1, so has two additional

points, 0 and ∞ (with 0 the one included in the chart where x is defined). Hence, the
type p considered there is p∞ in our notation, and p0 corresponds to the type with the

roles of x and x−1 reversed.

We may alter it a bit by considering the image of X1 in PSL2 (the computation remains
essentially the same, but we now also have the elements

(−1 a
0 −1

)
in the stabilizer). The

space PSL2 can be compactified equivariantly by mapping it into P3, viewed as the

projective space associated to the space of all linear endomorphisms of A2. It is easy to

compute that under this embedding, the point ∞ maps to the element c=
[(

1 0
0 0

)]
of P3.

The stabilizer of this point under the action of SL2 is the subgroup of upper triangular

matrices, so properly contains our μ-stabilizer.

Let p ∈ SG(k) be a residually algebraic type of Zariski dimension 1 inside G. There is
then a curve X in G containing p. We explained in Proposition 2.13 and Remark 2.15

that Stabμ(p)(k) = μ ·p ·a−1∩G(k) for any realization a of p (this will be shown again

for residually algebraic types in Corollary 4.8). However, since p is isolated by Corollary

3.3, we see that Stabμ(p | L)(L) = μ ·p ·a−1(L)∩G(L) for any L extending M and a. In
particular, one can work with a model L of Tloc with RES(L) = k. Working in this model,

let pi, pj be two types as before. If g ∈G(k) satisfies g ·pi ∈ pjμ (i.e., if μ · g ·pi = μ ·pj),
then μ ·pj ·a−1 = g ·Stabμ(pi), for any a |= pi.

To complete the proof, we would like to show that this set is infinite for some realization

a of p. This amounts to showing that μ ·p ·a−1 cannot be covered by a finite number of

open balls. To do that, we will use topological methods from [4], which we first review.

3.2. Tame topology on definable sets

We make a slight digression into the tame topology of definable sets in ACVF, as
developed in [4]. This is an important ingredient in the proof of the main result.

The results in this section can be found in [4]. In this section, the underlying theory

is ACVF, and the main motivation is to study the topological structure of Lval-definable
sets in the VF-sort.

Definition 3.6. Let V be an algebraic variety over a valued field F. A subset X⊆V is

v-open if it is open for the valuative topology.
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A subset X⊆V is g-open if it is a positive Boolean combination of Zariski open, closed
sets and sets of the form

{x : v ◦f(x)> v ◦g(x)},

where f and g are regular functions defined on U, a Zariski open subset of V.
If Z⊆V is a definable subset of V, a subset W of Z is said to be v -open (resp., g-open)

if W is of the form Z∩Y, where Y is v -open (resp., g-open) in V.

The complement of v -open (resp., g-open) is v -closed (resp., g-closed). We say X is

v+g-open (resp., v+g-closed) if it is both v -open and g-open (resp., both v -closed and
g-closed).

Note that the v+g-opens do not form a topology, as it is not even closed under arbitrary

union. However, it is still makes sense to talk about connectedness in this setting:

Definition 3.7. Let X be a definable subset of V, an algebraic variety. We say that X is

definably connected if X cannot be written as a disjoint union of two nonempty v+g-open
subsets of X.

We say that X has finitely many definably connected components if X can be written

as a finite disjoint union of v+g-clopen definably connected subsets.

Definition 3.8. Let f : V → W be a definable function from V to W. We say f

is v-continuous if f−1(X) is v -open for X a v -open subset of W, and we define g-
continuous functions similarly. We say f is v+g-continuous if f is both v -continuous and

g-continuous.

Proposition 3.9 (Hrushovski and Loeser). If f is v+g-continuous, X is definably

connected, and f is defined on X, then f(X) is definably connected.

If V is a geometrically or absolutely irreducible variety, then it is definably
connected.

The following is an easy corollary of [4, Theorem 11.1.1]:

Theorem 3.10 (Hrushovski and Loeser). Given a definable subset X ⊆V, where V is

some quasi-projective variety, X has finitely many definably connected components.

We also have the following:

Theorem 3.11. Let V ⊆ An be a closed subvariety. It is bounded if and only if V is

0-dimensional.

Proof. If V is bounded, then it will be definably compact as in [4]. This implies that V

is proper by [4, Proposition 4.2.30], and hence is 0-dimensional. The converse is clear.

We may now prove the following, more precise version of Theorem 1.1 (the case of

curves):

Theorem 3.12. Let p ∈ SG(k) be a residually algebraic type, centered at infinity with

dim(p) = 1. Then dim(Stabμ(p)) = 1.
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Proof. By Proposition 2.16 and the discussion preceding §3.2, it suffices to show that the
μ-stabilizer is infinite. Let X be the Zariski closure of p in G and let a be a point realizing

p. Assume, to the contrary, that Stabμ(p) is finite. Then res
(
μ ·p ·a−1∩G(O)

)
is finite

by Proposition 2.13. Note that μ ·X ·a−1∩G(O) =
⋃

q

(
μ · q ·a−1∩G(O)

)
, where q ranges

over types centered at infinity on X. By Corollary 3.3, there are only finitely many types

centered at infinity on X, so the set X·a−1 ∩G(O) is the intersection of X·a−1 with a

(disjoint) union of finitely many balls μ·g, for g ∈G(k).

Therefore, X·a−1∩G(O) is a nonempty v+g-open subset of X·a−1. However, it is also
a v+g-closed subset of X·a−1, since G(O) is v+g-closed. By Proposition 3.9, X·a−1 is

definably connected, so X·a−1 ⊆G(O)⊆An. However, this is impossible, since it implies

that X·a−1 as an affine curve is bounded in An, contradicting Theorem 3.11.

Remark 3.13 (Relation to o-minimal PS-subgroups). Recall that in the o-minimal

context, for each definable group G and an unbounded semi-algebraic curve γ : (a,b)→G,
we use Hγ to denote the PS-subgroup of γ (or in other words, the o-minimal μ-stabilizer

of the type of γ at b).

In the case when k is C, the μ-stabilizers of a point at infinity in Theorem 3.12 are
closely related to the group Gγ , the Zariski closure of Hγ , as described in the construction

in the beginning of the introduction (both viewed as definable in R).

Namely, assume we are given a complex curve X embedded in the complex affine
algebraic group G, and a point α ∈ X̃\X. Let γ : (a,b)→X be a semialgebraic curve over

R whose limit at b is α (in the sense discussed in the introduction).

Let R be a sufficiently saturated real closed field extending R, and let C be R2, viewed

as an algebraic closure of R. We may view X, G, and γ as definable in R. By [7], one can
compute the PS-subgroup Hγ associated to γ as the μ-stabilizer of tpsa(α/R), the type

of α in the theory of real closed fields.

Let OR be the convex hull of R in R, and let O =OR
2, viewed as a subring of C. Then

C equipped with O as a valuation ring is a model of Tloc, and the type q = tpACVF(α/C)

is contained in p = tpsa(α/R) because the maximal ideal can be viewed as a partial

type. Hence Hγ ⊆ Stabμ(q). However, Stabμ(q) is 1-dimensional and Hγ is infinite, so
Gγ ⊆ Stabμ(q) and the index is finite.

4. Proof of the main theorem

4.1. Residually algebraic saturation

We would like to work with saturation in a residually algebraic context, that is to say,

“saturation” without extending the residue field. Thus we make the following definition:

Definition 4.1. A model K of Tloc is (sufficiently) Γ -saturated if every Lval-residually

algebraic type over a (sufficiently) small subset of K is realised in K.

Theorem 4.2. Let L be a (possibly trivially) valued field. Then there is a Γ-saturated

extension of L.
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Proof. Let Γ be a sufficiently saturated ordered abelian group and k the algebraically
closed closure of RES(L). Consider the Hahn series field

k
((
tΓ

))
=

{∑
γ

cγt
γ : cγ ∈ k, {γ : cγ �= 0} is well ordered

}
.

Clearly L embeds into K (see [6], for example). Then, by a result of Poonen ([10, Theorem
2]), k

((
tΓ

))
is a Γ-saturated model (with residue field k).

From now on, K will be a fixed, sufficiently Γ-saturated model K with residue field k,

and we will identify definable sets and p∈SG(k) with their realizations in K. In particular,
we will only consider residually algebraic types, unless otherwise stated.

As a first application, we note the following:

Lemma 4.3. Let p ∈ SG(k) be residually algebraic. Then there is q ∈ pμ, which is μ-
reduced and residually algebraic.

Proof. Let a be a realization of p in K. There is a variety V over k of minimal dimension

that intersects μ ·a. This can be expressed as an Lval-formula, so it is witnessed by some

element of K. Take q to be the Lval-type of this element over k.

We would like to give a syntactic (or geometric) description of types realised in K. To

this end, we need the following. It is a part of Lemma 9.1.1 in [4]. We will only state what

is needed in the proof.

Lemma 4.4. (Hrushovski and Loeser) Let F be a valued field, V be an F-variety, and

X ⊆ V be an F-definable g-open set. Then X(M2) ⊆ X(M1) whenever M1 and M2 are

algebraically closed valued field extensions of F with the same underlying field, and OM1
⊆

OM2
.

We now have the following description:

Proposition 4.5. Let Φ(x) be a small finitely consistent collection of g-open sets, with

parameters in L ⊆ K. Then Φ is realised in K. In addition, if p is an Lval-residually

algebraic type, then it is the intersection of the g-open formulas that it implies.

In other words, every partial type Σ of g-open sets admits an extension to an Lval-

residually algebraic complete type p over the same set of parameters.

Remark 4.6. It is worth pointing out that Proposition 4.5 has an easy proof in the case

when L= k= C [8, Section 3.1].

Proof. Let b be any realisation of Φ in U, and let k be the residue field of L(b). Then

k is the function field of some variety X over k. Fix a valuation val′ of k over k, with

residue field k.
Let M2 be the algebraic closure of L(b) with the induced valuation from U. Consider

a valuation of RES(M2) extending val′. Abusing notation, we call the valuation val′ as
well. Let Ō be the valuation ring of RES(M2). Consider res

−1(Ō)⊆M2; this is again a

https://doi.org/10.1017/S147474802100030X Published online by Cambridge University Press

https://doi.org/10.1017/S147474802100030X


Peterzil-Steinhorn Subgroups and μ-Stabilizers in ACF 1017

valuation ring of the underlying field of M2 over k. We use M1 to denote the same field
as M2 with the valuation determined by res−1(Ō). Note that M1 has residue field k.

Then by Lemma 4.4, φ(M2)⊆ φ(M1) for each φ ∈Φ. In particular, b is a realization of

Φ in M1. But the residue field of M1 is k, so tpM1
(b/L) is residually algebraic and hence

realizable in K.

For the converse, let p be a complete Lval-residually algebraic type. By quantifier

elimination in ACVF, it is given within its Zariski closure by formulas of the form

f(x) �= 0, val(f(x))> val(g(x)), and val(f(x)) = val(g(x)) �=∞. Each formula of the last
form is equivalent to val(f(x)/g(x)) = 0, so that f(x)/g(x) has nonzero residue. Since p

is residually algebraic, the residue is actually a well-determined element b of k, so the

original formula is implied by val(f(x)− bg(x))> val(bg(x)), which is also in p.

We now apply this result in our context:

Corollary 4.7. Set p ∈ SG(k) and let if be residually algebraic. Then μ(K)·p(K) =
(μ ·p)(K).

Proof. Since K is contained in the monster model, μ(K)·p(K) ⊆ (μ · p)(K). For the

reverse containment, for p residually algebraic, fix a ∈ (μ · p)(K). Recall that it means
that for any φ ∈ p, there is εφ ∈ μ such that |= φ(εφ·a). Since p is residually algebraic, we

may, by Proposition 4.5, assume that each such φ is g-open.

Consider the following partial type: Σ(y) = {φ(y·a)∧μ(y) : φ ∈ p g-open}. Each φ there
is g-open, hence also φ(y·a) (since the group is algebraic), and μ is given by strict

inequalities, so this is a small collection of g-open sets, consistent by assumption.

By the other direction of Proposition 4.5, we can find ε ∈ μ(K) such that ε·a
satisfies p.

Corollary 4.8. Let p be a residually algebraic G-type over k, and let a be a realization

in K. Then Stabμ(p)(k) = res
(
μ(K)·p(K)·a−1∩G(O)

)
.

Proof. Since res
(
μ(K)·p(K)·a−1∩G(O)

)
⊆ res

(
μ(U)·p(U)·a−1∩G(O)

)
, we have

Stabμ(p)(k)⊇ μ(K)·p(K)·a−1∩G(O) by Corollary 2.14. The reverse containment follows

from Corollary 4.7.

4.2. μ-Reduced types and their stabilizers

In this section we prove Corollary 4.11, an analogue of Corollary 3.3 for types of higher
dimension.

Recall that we are working within K, a Γ-saturated model, and all the elements in the

statement are from K, and definable sets are identified with their realization in K.

In particular, we have the following:

Lemma 4.9. If a is μ-reduced and g ∈ G(O), then g · a is also μ-reduced, of the same

dimension.

Proof. Assume ε ·g ·a ∈W with ε ∈ μ and W a variety over k. Since ε ·g ·a= ḡ ·ε′ ·a for

some ḡ ∈G(k) and ε′ ∈ μ, we have ε′ ·a ∈ ḡ−1 ·W, a variety over k of the same dimension

as W.
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The following is an important observation about μ-reduced types:

Proposition 4.10. Let p ∈ SG(k) be a μ-reduced residually algebraic type centered at
infinity, and let a |= p. Let V be the unique irreducible k-variety such that a ∈ V and

dim(V) = dim(p). For any definable set X, assume that X ⊆ G(O)·a∩V is definably

connected and a ∈ X. Then for every b ∈ X we have tp(a/k) = tp(b/k), where tp(·/k)
denotes the Lval-type over k.

Proof of Proposition 4.10. By Lemma 4.9, b is not contained in any proper subvariety

of V, so it is nonzero when evaluated by any regular function on V. Hence every element

of the function field k(V) is well defined as a k-definable function on X.
Assume that the types of a and b are different. By quantifier elimination in ACVF,

without loss of generality, there is f ∈ k(V) such that val(f(a))< 0≤ val(f(b)). We may

further assume that the last inequality is strict, by subtracting the residue.

By [4], it can be easily checked that rational functions are v+g-continuous on their
domain, so the image f(X) is again definably connected. As a definable subset of K, it is a

union of ‘Swiss cheeses’, and by definable connectedness, the Swiss-cheese decomposition

of the image will be of the form B \∪i≤mCi, where B is a ball and Ci’s are disjoint
subballs of B.

Claim. f(X) contains a k-point.

Proof of claim. Since B contains both a point with positive valuation and a point with

valuation ≤ 0, then it must contain O. If f(X) contains no k-point, k must be covered by⋃
i≤mCi. This implies that one of the Ci’s contains at least two points in k and hence

contains O. But this is a contradiction, since it means that there is no point in f(X) with

positive valuation.

Hence, we know that there must be some c ∈ k such that c ∈ f(X). Note, however, that

each element in X is a generic point of V, by Lemma 4.9, and we know that this would

imply that the rational function f is constant – a contradiction to the assumption. Hence
we know that tp(a/k) = tp(b/k).

Using a similar argument, we have the following, which is the key fact that will replace

Corollary 3.3 for our proof of the main theorem:

Corollary 4.11. Let a ∈ V(K) be μ-reduced, with V the Zariski closure of a over k.

Then there are finitely many types p1, . . . ,pm ∈ SG(k) for some m such that if g ∈G(O)

and g·a ∈V, then tp(g·a/k) = pi for some i.

Proof. From Theorem 3.10, we know that there are only finitely many definably

connected components of the set G(O)·a∩V – call them Xi for i = 1, . . . ,n for some

n. By Proposition 4.10, for each b,b′ ∈ Xi we have tp(b/k) = tp(b′/k). Hence there are
only finitely many types pi with the property in the statement of the corollary.

Here, we state a variant that is similar to [7]:

Corollary 4.12. In the same setting as before, there is an Lval-definable set X over k

containing a, such that for each b ∈ G(O)·a∩X, tp(b/k) = tp(a/k). Furthermore, X is

v+g-open and X·a−1 is v+g-clopen in G(O).

https://doi.org/10.1017/S147474802100030X Published online by Cambridge University Press

https://doi.org/10.1017/S147474802100030X


Peterzil-Steinhorn Subgroups and μ-Stabilizers in ACF 1019

Proof. We see that there are finitely many regular functions fij, gij such that for
the formula val(fij) < val(gij), pi and pj disagree. The set defined by some Boolean

combinations of these formulas containing tp(a/k) will define the set X.

In particular, we have the following:

Corollary 4.13. Stabμ(p)(k) is infinite for each p residually algebraic and centered at

infinity.

Proof. Without loss of generality, we can assume that p is μ-reduced and let a |= p be
any realization and V denote its Zariski closure. We have dimV > 0, since p is centered

at infinity. Also, V is an irreducible k-variety, hence v+g-connected, and so is V·a−1.

By Proposition 2.13, if Stabμ(p)(k) =Gp(k) is finite, V·a−1 ∩G(O) can be covered by
finitely many v+g-open sets, and hence is v+g-open. But V·a−1 \G(O) is also v+g-open

by definition, a contradiction of the fact that nonzero-dimensional affine varieties are not

bounded in the affine space.

It is worth noting that this proof uses the same idea in the 1-dimensional case, where
the key ingredient is the connectedness of irreducible varieties.

4.3. Dimension of the μ-stabilizers

Corollary 4.13 forms the first part of the main theorem. Before proving the other part,

we need some machinery about varieties over O. The main facts can be found in [5].

Definition 4.14. Let O be a valuation ring, L= Frac(O), and k = res(O). By a variety

over O, we mean a flat reduced scheme V of finite type over O. In particular, it has a
generic fiber VL, which is a variety over L, obtained by base change with respect to the

morphism O → L, and a special fiber Vk, which is a variety over k, obtained by base

change with respect to O → k.

Remark 4.15. It is worth noting that since O is a valuation ring, A=O[x1, . . . ,xn]/I is
flat over O if and only if no nonzero element in O is a zero divisor in A.

In particular, if S is any subset of On, then

I = {f ∈ O[x1, . . . ,xn] : f(s) = 0 ∀s ∈ S} ⊆ O [x̄]

is an ideal and A=O[x1, . . . ,xn]/I is flat over O.

We use IL and Ik to denote the ideals generated by I in A⊗L and in A⊗k, respectively.

Then the generic (resp., special) fiber of Spec(A) is Spec(A⊗L/IL) (resp., Spec(A⊗
k/Ik)). Given an affine variety V over L, we may always choose a variety V affine over O
whose generic fiber is V.

The following is [2, Theorem 3.2.4]:

Theorem 4.16 (Halevi). Let K be a model of ACVF and V be an irreducible variety over

OK . If VK has an OK-point, then the OK-points are Zariski dense, and the canonical

map res :VK(OK)→Vk(k) is surjective, where res is given by taking residue pointwise.

https://doi.org/10.1017/S147474802100030X Published online by Cambridge University Press

https://doi.org/10.1017/S147474802100030X


1020 M. Kamensky et al.

Now let us get back to the proof of the main theorem, to prove the part concerning the
dimension.

Proof of Theorem 1.2. The first part of the theorem is the statement of Corollary 4.13,

so it remains to show the equality of dimensions when the type p is μ-reduced. Under this

assumption, let a realize p and let V be its Zariski closure. In particular, V is irreducible.
We first note that if g ∈G(O) and g ·a ∈V, then tp(g ·a/k) will be one of the finitely

many types pi provided by Corollary 4.11. Hence μ ·V·a−1∩G(O) will be a finite union

of cosets of μ ·Gp. Thus it suffices to show that res
(
V·a−1∩G(O)

)
and V have the same

dimension.

As before, the affine K -variety V·a−1 can be viewed as the generic fiber of a variety

V over OK . Furthermore, V has an OK-point, namely e, the identity of the group G. It

follows from Theorem 4.16 that the map res :V·a−1∩G(O)→G is onto the special fiber
of V·a−1. Also, by flatness, the special fiber has the same dimension as the generic fiber,

which is the dimension of p.

This completes the proof of the dimension part in the main result. The solvability of
the group is proved separately, as Theorem 4.20.

The proof also shows that the special fiber, being the image of V·a−1∩G(O), is a finite

union of cosets of Stabμ(p). Therefore, we have established the following:

Corollary 4.17. Let V ⊆ G be a variety over k and let a |= p, where p ∈ SG(k) is a

μ-reduced residually algebraic type centered at infinity. Assume further that the Zariski

closure of p over k is V.
Then the special fiber of V·a−1 is equidimensional–that is, each irreducible component

of it has the same dimension. Moreover, each irreducible component of the special fiber

of V·a−1 is a coset of an algebraic subgroup of G.

4.4. Structure of Stabμ(p)

In this section, we analyze the structure of Stabμ(p). Note that due to trivial constraints

on characteristic, it is not possible to show in general that such a group is torsion-free.
However, in characteristic 0, we can indeed show it is torsion-free.

Lemma 4.18. Let p ∈ SG(k) be residually algebraic and let H be a k-definable linear

subgroup of G with p ∈ H. Then Stabμ(p) computed in G and in H coincide, where H
denotes the group H viewed as a subset in VF.

Proof. The Zariski closure V of p is contained in H in this case, since H is a Zariski

closed subgroup and μG∩H= μH . Hence, the arguments of computing the μ-stabilizers

of p can be carried out in both H and G, and the results will be the same.

The following is the Iwasawa decomposition over non-Archimedean fields, which can be

found in [1, Proposition 4.5.2]:

Theorem 4.19. Let G be a reductive linear algebraic group over k. There is a solvable

subgroup H over k such that G(K) =G(O)·H(K).

For GLn we may take H to be the standard Borel subgroup (upper triangular matrices).
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Theorem 4.20. Let p ∈ SG(k) be centered at infinity and residually algebraic. Then

Stabμ(p) is solvable.

Proof. We can embed G ⊆ GLn over k for some n, and use Lemma 4.18 to reduce to
the case G = GLn. Let H be the Borel. By the Iwasawa decomposition, we have some

g ∈ G(O) such that g−1·a = β ∈ H(K). Let g1 ∈ G(k) be such that g1·g−1 ∈ μ. Hence

g−1
1 ·a∈ μ(K)·β, so Stabμ

(
g−1
1 ·p

)
=Stabμ(q)⊆H. By Lemma 2.9, this group is conjugate

to Stabμ(p), and hence Stabμ(p) is solvable.

Corollary 4.21. If G is not solvable and is irreducible, then there is no μ-reduced

residually algebraic G-type of full dimension.

Remark. We briefly introduce the Zariski–Riemann space of a variety over k, and explain
its connection with our setting.

Definition. Let V be a variety over k. The Zariski–Riemann space of V over k is the

set of valuation rings of k(V ) over k, denoted by RZk(V ).

Note that by quantifier elimination in ACVF, for a linear algebraic group G over k it is
not hard to see that the set RZk(G) is canonically embeddable into the set SG(k). Hence

we can identify RZk(G) with its image in SG(k). Note further that since μ is Zariski

dense in G, we see that for each p ∈ SG(k) there is some q ∈RZk(G) such that p∼μ q.

This argument implies that we can consider the quotient of RZk(G) under μ, which
is exactly the space Sμ

G(k). Note further that the equivalence relation induced by μ on

RZk(G) is independent of the k-closed immersion of G into An, since every embedding

over k will respect μ. We will explore more on the relation induced by μ on RZk(G) in
a subsequent paper.
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