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Abstract
The problem of optimizing the parameters of a laser pulse compressor consisting of four identical diffraction gratings
is solved analytically. The goal of optimization is to obtain maximum pulse power, completely excluding both beam
clipping on gratings and the appearance of spurious diffraction orders. The analysis is carried out in a general form for
an out-of-plane compressor. Two particular ‘plane’ cases attractive from a practical point of view are analyzed in more
detail: a standard Treacy compressor (TC) and a compressor with an angle of incidence equal to the Littrow angle (LC).
It is shown that in both cases the LC is superior to the TC. Specifically, for 160-cm diffraction gratings, optimal LC
design enables 107 PW for XCELS and 111 PW for SEL-100 PW, while optimal TC design enables 86 PW for both
projects.
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1. Introduction

In 100-PW laser projects[1–9], where Nd:glass laser pulses
with an energy of about 10 kJ are used for pumping, the
output pulse energy is limited by the laser-induced dam-
age threshold of the compressor diffraction gratings. The
damage threshold of gratings by nanosecond pulses is much
higher than by femtosecond ones[10]. Therefore, despite there
being less energy incident on the last grating than on the
first one, the laser damage threshold of the last grating is of
major importance. Thus, the maximum output energy W is
proportional to the squared beam size d, threshold value of
fluence wth (in the plane normal to the beam wave vector),
reflection coefficient R of the grating and fill-factor η, taking
into account fluence inhomogeneity in the beam:

W = Rηwthd2. (1)

Here, we assume that the beam has a square cross-section.
Increasing wth and R is a technological task that is beyond the
scope of this paper. The fill-factor η depends on the energy
and spectral properties of the spatial noise of the beam, in
particular, on the root mean square (rms) and effective spatial
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frequency[11]. Both of these parameters can be significantly
reduced by using an asymmetric compressor[5,12–14] or a
compressor with an out-of-plane geometry[15]. The purpose
of this work is to search for the following compressor
parameters: angle of incidence on the first grating α, distance
between the gratings along the normal L and groove density
N that allow obtaining the maximum value of W. Bearing
in mind that wth does not depend on the angle of incidence
α on the grating[16,17], we will assume that wth, R and η are
constants that do not depend on the compressor parameters.
Thus, an optimal compressor design (α, L, N) is a design that
ensures a maximum value of d2. Note that in Equation (1),
R is to the power of one rather than four, as laser-induced
damage restrictions are important only for the last grating.

The main restriction on increasing d is the fact that on the
second grating the beam size should not be larger than the
grating length Lg. A standard compressor[18] consists of iden-
tical gratings, with the gratings of the first and second pairs
being antiparallel to each other (see Figure 1(a)). We will
further call such a compressor a Treacy compressor (TC).
The TC is used in the vast majority of high-power lasers[19].
The maximization of d was considered in Ref. [20] in the
ω0 � � approximation (ω0 is the center frequency and �

is the bandwidth). For pulses with a duration of less than
50 fs, this approximation is not accurate. However, in this
case it can be readily shown that, for a given dispersion
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Figure 1. TC (a) and LC (b). The second half of the compressor (third and fourth gratings) is absolutely symmetric to the first one, so it is not shown in the
figure. The angle of reflection in the diffraction plane is β < 0, which explains the minus sign in the figure. The angle of reflection in the plane orthogonal
to the diffraction plane is always equal to the angle of incidence γ .

of a chirped pulse and given N, d is proportional to cosα.
Then, from Equation (1) it can be found that for increasing
W it is necessary to decrease α. However, the decrease
in α makes decoupling impossible, that is, the condition
that the second grating must not overlap with the input
beam cannot be fulfilled. It is obvious that decoupling is
impossible if α ≈ αL, where αL is the Littrow angle. As
will be shown below for a general case, that is, outside the
ω0 � � approximation, at certain parameters an optimal
compressor is a TC with α < αL.

For α ≈ αL, decoupling may be provided employing an
out-of-plane compressor[21] that is used, for example, for
spectral beam combining[22] and for compressing narrow-
beam pulses[23]. In this work we propose to use an out-of-
plane compressor for increasing output power by decreasing
α down to α = αL and α < αL, inclusive. Both multi-
layer dielectric[24] and gold gratings[16,24] in the out-of-plane
geometry may have a reflection coefficient R almost the
same as in the out-of-plane geometry. It is important to
note that for α = αL the out-of-plane compressor ‘turns out’
to be plane again (Figure 1(b)), which greatly simplifies
its experimental implementation. Such a compressor will
be referred to as a compressor with an angle of incidence
equal to the Littrow angle (LC). The LC has a number
of additional advantages[24], one of which is the use of
multilayer dielectric gratings, the reflection band of which
rapidly narrows with increasing α −αL, which makes them
unfit for the TC in wideband lasers[25]. An important issue
of radiation polarization in the out-of-plane compressor was
discussed in detail in Ref. [24].

Analytical expressions that allow for finding the com-
pressor parameters that provide maximum values of d for
both the TC and LC will be obtained in Section 2. Optimal

designs of both compressors for the XCELS project[4] will be
discussed in detail in Section 3. An analogous optimization
for the pulse parameters of the SEL-100 PW project[1,3,10]

will be made in Section 4.

2. Maximum beam size for the TC and the LC

We will first consider a general case of an out-of-plane
compressor when the angles of incidence on the first grating
in two planes γ and α are arbitrary. The TC (Figure 1(a))
and LC (Figure 1(b)) are its particular cases at γ = 0 and
α = αL, respectively. Note that, both in the TC and LC, the
gratings of the first and second pairs are antiparallel (mirror)
to each other in the planes orthogonal to the incident beam.
The case of non-parallel gratings is considered, for example,
in Ref. [26]. The maximum beam size will be determined
using the following procedure. We choose the coordinate
system (x,y,z) as shown in Figure 1: the y-axis is parallel
to the direction of the grooves, and the x-axis in the (x,z)
diffraction plane is directed at an angle α to the surface of
the grating. The coordinate origin coincides with the point
of incidence of the beam on the first grating. Let us find
the spectral phase �

(
ω,kx,ky

)
accumulated in the beam on

reflection from the first grating, propagation to the second
grating, reflection from the second grating and propagation
to the z = 0 plane. The first derivatives of � with respect
to kx,ky up to the sign are equal to the beam coordinates
X (ω) and Y (ω) in the z = 0 plane. These coordinates will
allow, for geometric reasons, one to determine the maximum
beam size d depending on the parameters of the compressor
and the input pulse. The expression for � is available in
Refs. [18, 27]; in the chosen coordinate system it has the
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following form:

�
(
ω,kx,ky

) = Lkzx

(
cosθ + cos

(
α + atan

kx

kz

))
, (2)

where k2
zx = ω2

c2 − k2
y , k2

z = ω2

c2 − k2
x − k2

y and θ is the angle of
reflection from the grating:

sinθ
(
ω,kx,ky

) = −2π

kzx
N + sin

(
α + atan

kx

kz

)
. (3)

Hereinafter, we assume the minus first diffraction order.
In the chosen reference frame, the transverse wave vectors
are related to the incidence angles α and γ as kx = 0,
ky = ω

c sinγ . Taking into account the large beam size we
neglect diffraction, that is, the second derivatives of � with
respect to kx,ky. Then, upon differentiation of Equation (2)
with allowance for Equation (3) we find the derivatives of
interest to us:

� ′
kx

(
ω,kx = 0,ky = ω

c
sinγ

)
= −X (ω) = −L

sin(β +α)

cosβ
,

(4)

� ′
ky

(
ω,kx = 0,ky = ω

c
sinγ

)
= −Y (ω) = −L tanγ

1+ cos (β +α)

cosβ
,

(5)

1
2
� ′′

ωω

(
ω = ω0,kx = 0,ky = ω

c
sinγ

)
= GVD

= − L
ω0c

cosγ
(sinα − sinβ0)

2

2cos3β0
, (6)

where the angle of reflection β = β (ω) is found from the
following:

sinβ = −2πc
ω

N
cosγ

+ sinα, (7)

and β0 = β (ω0). The expression for GVD (Equation (6))
is derived in Ref. [21], and Equation (7) can be found in
Refs. [22, 28]. The expression for GVD (Equation (6)) with
allowance for Equation (7) is the same as for GVD for the
TC but with the substitution L → Lcosγ ;N → N/cosγ .
From Equations (2) and (3) it can be readily shown that
this remark is true for all frequency derivatives, that is, for
all dispersion orders. This circumstance can be used for
high-order dispersion management of the entire laser system,
including the stretcher, acousto-optics spectral phase control
and compressor.

We will consider only the case when the beam is not
clipped on the second grating (the case of clipping has been
considered in detail in a number of works, e.g., Refs. [3, 5,
12, 29, 30], and will be briefly discussed in Section 4), so we
will assume straight away that the beam size on the second
grating coincides with its length Lg and height Hg. Taking

this into account, from Figure 1 the following can be found:

Lg = d+ | Xb −Xr | cosγ

cosα
, (8)

Hg = d +|Yb −Yr|cosγ

cosγ
+ (d −|Xb −Xr|) tanγ tanα, (9)

where Xb = X (ωb),Xr = X (ωr), Yb = Y (ωb), Yr = Y (ωr) and
ωb,r are the high-frequency and low-frequency boundaries
of the pulse spectrum. When deriving Equations (8) and
(9), we took into account that Xb,r and Yb,r are the beam
coordinates in the plane perpendicular to the z-axis, but not
in the plane normal to the beam, and also that the gratings are
tilted in two planes (the second term in Equation (9)). From
Equations (8) and (9) with allowance for Equations (4)–(6)
we obtain the following:

Lg = d
cosα

+Ldisp
1

cosγ

2cos3β0

(sinα − sinβ0)
2 |atanβb − atanβr|,

(10)

Hg = d
(

1+ tanα sinγ

cosγ

)
+Ldisp

2cos3β0 |tanγ |
(sinα − sinβ0)

2

×
(

1
cosγ

∣∣∣∣1+ cos (βb +α)

cosβb
− 1+ cos (βr +α)

cosβr

∣∣∣∣
−sinα |atanβb − atanβr|

)
, (11)

where Ldisp =| GVD |ω0c and βb = β (ωb),βr = β (ωr). The
absence of beam clipping along the x-coordinate leads to
limitations on the beam size d, which follows from Equa-
tion (10):

d < dg =
(

Lg −Ldisp
1

cosγ

2cos3β0

(sinα − sinβ0)
2 |tanβb − tanβr|

)
cosα.

(12)

This expression is identical for the TC and LC. In the
ω0 � � approximation, Equation (12) transforms to the
expression obtained in Ref. [20] under this approximation.
The second limitation on d is the need to ensure decoupling
of the beams, that is, non-overlapping of the second grating
with the incident beam. For the TC, decoupling is attained
in the direction of the x-axis (Figure 1(a)). Obviously, for
this the minimum beam displacement | Xmin | should be
larger than the beam size d plus the minimum required
technological gap g:

| Xmin |> d +g. (13)

For α > αL (the case in Figure 1(a)), Xmin = Xr, and for
α < αL, vice versa, Xmin = Xb. Taking this into account, from
Equations (4) and (13) we obtain for the TC the following
expression:
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d < di = JLdisp −g for the TC, (14)

where

J =
⎧⎨
⎩

sin(βr+α)

cosβr

2cos3β0
(sinα−sinβ0)2 for α > αL

|sin(βb+α)|
cosβb

2cos3β0
(sinα−sinβ0)2 for α < αL

. (15)

The expression analogous to Equation (14) was presented
in Ref. [20] in different notation. For the LC, decoupling
occurs in the direction of the y-axis and requires that the
minimum beam displacement | Ymin | cosγ should be larger
than d + g. Since the gratings are tilted in two planes, then
strictly speaking, g is a function of the angles α and γ ,
but further for simplicity we will assume g = const. The
most stringent condition for decoupling is for frequency ωb:
| Yb | cosγ > d + g. With this taken into account, from
Equation (5) we obtain the following:

d < di = ILdisp −g for the LC, (16)

where

I = |tanγ | 1+ cos (βb +α)

cosβb

2cos3β0

(sinα − sinβ0)
2 . (17)

In addition to meeting the conditions in Equations (12),
(14) and (16), it is essential that there are no diffraction
orders other than the minus first one. This condition is
always more stringent for radiation with frequency ωb. Let
us introduce the function Π (α), which is equal to zero if at
least one of these diffraction orders is as follows:

�(α) =
{

0 if sinα < 1− 2πc
ωb

N
cosγ

or sinα > 4πc
ωb

N
cosγ

−1
1 if otherwise

.

(18)

The two conditions on the top line correspond to the first
and minus second order of diffraction, respectively. Thus,
the maximum beam size D, determined by simultaneous
fulfillment of the three above conditions, has the following
form:

D = min
{
dg;di

}
�(α), (19)

where dg and Π (α) are found from Equations (12) and
(18) for both compressors, and di from Equation (14) for
the TC and from Equation (16) for the LC. Note that the
above expressions for the LC are valid for any out-of-plane
compressor, that is, for any angle α, as we have not used the
condition α = αL when deriving these expressions.

It is convenient to conduct further discussion on the
example of specific parameters of a compressed pulse, which
will be addressed in the next two sections. Here, for reference

we provide useful formulas for L and αL that follow from
Equations (6) and (7):

L = |GVD|ω0c
1

cosγ

2cos3β0

(sinα − sinβ0)
2 , (20)

sinαL = πc
ω0

N
cosγ

. (21)

3. Optimization of the TC and the LC for the XCELS
project

Let us consider the parameters for the XCELS project[4]:
Lg = 138 cm, λ0 = 910 nm, �λ = 150 nm, g = 2 cm and
2GVD = –4.4 ps2. Here, 2GVD is the dispersion of two
grating pairs, that is, like above, GVD is the dispersion
of one grating pair. As an example, the dependence of a
number of parameters on α for N = 1050/mm is plotted
in Figure 2. The yellow line shows the Littrow angle for
clarity. The green curve dg in Equation (12) corresponds to
the restrictions on the beam size imposed by the condition of
the absence of beam clipping. The blue curve di corresponds
to the restrictions on the beam size imposed by the need for
decoupling in the diffraction plane for the TC (Equation (14);
Figure 1(a)) and in the orthogonal plane for the out-of-plane
compressor (Equation (16); Figure 1(b)). The black square
wave shows the range of angles in which there are no other
diffraction orders (Equation (18)): the first order is possible
to the left of the square wave, and the minus second order
to the right. Finally, the red dashed curve combines the three
above restrictions for the D(α) relation (Equation (19)). The
maximum value of this curve corresponds to the maximum
beam size (at N = 1050/mm) and, therefore, the maximum
output energy and pulse power after the compressor. The
behavior of the curve D(α) greatly depends on N for both
the TC and LC (Figure 3). The curves in Figure 3(a) (for the
TC) have two local maxima. At large N the global maximum
is at α > αL, and at small N is at α < αL.

The parameters of an out-of-plane compressor can be
optimized in a wide range of angles α, including α< αL.
All of the above expressions are valid for any α. In what will
follow we will restrict consideration to the case of the LC
(α = αL, Figure 1(b)), which is interesting from the prac-
tical point of view. Recently, the possibility of developing
gratings having length Lg = 160 cm and the parameters of
a compressor with such gratings have been discussed in the
literature[5,16]. Here, we will find parameters of the optimal
compressor for XCELS for two options: Lg = 138 cm and
Lg = 160 cm.

The maximum size of the beam D, both in the LC and
TC, depends on two parameters: N and α for the TC and
N and γ for the LC. For each N there exists an optimal
value of the angle αopt or γopt at which D is the maximum.
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a) b)

Figure 2. Restrictions on maximum beam size at Lg = 138 cm, N = 1050/mm for the TC (a) and for the out-of-plane compressor at γ = 13◦ (b). Green
curve for dg (Equation (12)) – no beam clipping on the grating; blue curve for di (Equations (14) and (16)) – decoupling needed; black square wave �(α)

(Equation (18)) – range of angles without other diffraction orders (Equation (18)), the first order is possible to the left of the square wave and the minus
second order to the right; the red dashed curve combines all restrictions and shows D (α) (Equation (19)); the yellow line shows the Littrow angle for clarity.

a) b)

Figure 3. Maximum beam size D(α) for the TC (a) and for the out-of-plane compressor (b) for Lg = 138 cm and N = 950/mm (blue), N = 1200/mm (green)
and N = 1400/mm (red).

The relations Dopt(N) = D(N,αopt) for the TC and Dopt(N) =
D(N,γopt) for the LC are shown in Figures 4(a) and 4(b) by
triangles for Lg = 138 cm and by squares for Lg = 160 cm. For
Lg = 138 cm, the maximum value of the beam size Dm is the
same for the LC and TC. For the TC, Dopt(N) has a well-
pronounced maximum at N = 950/mm, whereas for the LC,
conversely, it has a plateau in the N range of 1000/mm to
1250/mm. This is an advantage of the LC, since it gives
freedom to choose N. The choice of a specific value of N
may be made, for example, for reasons of a higher efficiency,
a higher laser-induced damage threshold of the grating, etc.
Note that Dm = 78 cm is much larger than the beam diameter
in the initial XCELS design (see Table 1). An analogous
plateau in the N range of 950/mm to 1150/mm is observed
in the Dopt(N) function for the LC at Lg = 160 cm. In this

case, the LC is obviously more preferable, since it enables a
larger value of Dm: 96 cm versus 86 cm for the TC.

The circles and diamonds in Figure 4(a) correspond to the
dependence of α−αL on N. It is clearly seen that for large N,
α > αL, which corresponds to a standard compressor design
for high-power lasers. At the same time, for small N, the
maximum beam size Dm is attained at α < αL. This is also
well seen in Figure 3(a) (left-hand maximum in the blue
curve above the right-hand maximum). We are not aware of
the usage of the TC with α < αL in high-power lasers. The
circles and diamonds in Figure 4(b) show γ (N) at which
α = αL. In the region of the Dopt(N) plateau, that is, at
N = 950/mm to 1200/mm, γ = 10◦ −20◦, which falls within
the range where the efficiency of the gratings almost does not
decrease[16,24].
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Table 1. Compressor parameters.

XCELS SEL-100 PW
λ = (910±75) nm λ = (925±100) nm

Lg = 138 cm Lg = 160 cm Lg = 160 cm

TC[4] TC (new) LC TC LC TC LC
N, mm–1 1200 950 1100 950 1000 1000 1100
α, degree 46.2 12.2 30.5 36.0 27.4 38.8 31.3
γ , degree 0 0 11.6 0 11.2 0 14.8
Dm, cm 66 78 78 86 96 75 85
Hg, cm 66 78 94 86 112 75 110
Wa, J 1006 1410 1410 1720 2130 1284 1670
τ , fs 20 20 20 20 20 15 15
P, PW 50 71 71 86 107 86 111

aGiven that Rηwth = 0.231 J/cm2 in the plane normal to the beam.

a) b) N, mm–1N, mm–1

Figure 4. Curves for compressor parameters for XCELS for the TC (a) and the LC (b) with grating length Lg = 138 cm (blue) and Lg = 160 cm (red).
Squares and triangles – beam size Dopt at optimal angles α and γ ; circles and diamonds – difference between the incidence angle in the diffraction plane
and the Littrow angle (α −αL) (a) and the incidence angle in the plane orthogonal to the diffraction plane γ (b); plus signs and asterisks in (b) – grating
height Hg.

It is worth noting the LC drawback: the grating height
Hg is larger than the beam size. The dashed curves in
Figure 4(b) show Hg(N) plotted by Equation (11). At the
same time, the increase in Hg required for the LC is not
so great – compare the curves for Hg(N) and Dopt(N) –
and may well be implemented in practice. In any case,
160-cm-long gratings have a height of about 100 cm, which
is just a little bit smaller than the requirements for the LC
for XCELS and SEL-100 PW (see Table 1). Still another LC
drawback is that in a general case the choice of input beam
polarization is nontrivial. This issue was studied in detail
in Ref. [24]. From the analysis made in Ref. [24] it follows
that vertical incident polarization, when the field is normal
to the direction of the grooves, is optimal (Figure 1(b)).
The experiment[24] carried out at γ = 15◦ showed that in
this case the reflection coefficient of one grating R and the
efficiency of the entire compressor differ negligibly from
the corresponding parameters at γ = 0. These results were
obtained for a wavelength of 800 nm and N = 1480/mm; they
need clarification for other wavelengths and groove densities.

The main parameters of the TC and LC for the XCELS
project are presented in Table 1. For comparison of different
designs, it also contains values of maximum beam energy W

calculated by Equation (1), given that Rηwth = 0.231 J/cm2,
which corresponds to R = 0.92, and the value of safe fluence
ηwth = 0.251 J/cm2 in the plane normal to the beam, that is,
0.174 J/cm2 on the grating surface at α = 46◦[4]. Note that this
is a rather conservative estimate, since gratings with wth =
0.4 J/cm2 and wth = 0.57 J/cm2 in the plane normal to the
beam are reported in Refs. [16] and [31], and η = 1.31[4,10] or
η = 1.41[5] are considered in the literature for η. The Fourier-
transform-limited pulse in XCELS has a duration of 17 fs,
whereas the values of maximum power in Table 1 are given
for a 20 fs pulse, which is more realistic in practice. It is clear
from the table that the new TC and LC designs with a grating
length of 138 cm allow for increasing the output power by a
factor of 1.42, that is, up to 71 PW. With the use of 160 cm
× 112 cm gratings in the LC, over 100 PW may be achieved.

4. The TC and the LC for SEL-100 PW

Let us consider the parameters for the SEL-100 PW
project[1,3,10,32]: Lg = 160 cm, 2GVD = –4.2 ps2, λ0 =
925 nm, �λ = 200 nm and g = 2 cm. For these values,
the optimal parameters for the TC and LC are listed in

https://doi.org/10.1017/hpl.2024.18 Published online by Cambridge University Press

https://doi.org/10.1017/hpl.2024.18


New grating compressor designs for XCELS 7

Table 1. Since the pulse spectrum width in the SEL-100 PW
is 1.33 times larger than that in XCELS, for a correct
comparison we assume the 15-fs pulse duration to be 1.33
times shorter than in XCELS. It is seen from the table that,
for a grating size of 160 cm × 75 cm, the optimal design
of the TC provides an output power of 86 PW. In this case,
the angle of incidence α differs from the Littrow angle only
by 11.5◦. The LC allows for achieving a significantly higher
power of 111 PW with 160 cm × 110 cm gratings. The
angle γ , in this case, despite being larger than in the other
designs presented in Table 1, still falls within the range in
which the grating efficiency almost does not reduce[16,24].

It is important to note that the analysis made in this
work completely excludes beam clipping by gratings. The
design of the two-grating compressor for the SEL-100 PW
presented in Ref. [5] implies strong clipping. This leads to
three effects that reduce the focal intensity: pulse stretching
due to narrowing of the spectrum; loss of radiation energy;
and deterioration of focusability. In the example numerically
calculated in Ref. [5], the losses were approximately 11%,
7.8% and 15%, that is, more than 35% in total. It is worthy to
note that these losses cannot be compensated by increasing
the pulse energy at the compressor input, as clipping does
not reduce fluence on the last grating. Therefore, according
to Equation (1) the compressor[5] enables 35% lower focal
intensity than a compressor without clipping for the same
values of wth, R,η and d.

Comparison of the compressor parameters for XCELS
and SEL-100 PW with 160-cm long gratings shows that
for the TC the maximum achievable power is the same –
86 PW; whereas for the LC the SEL-100 PW power is 4%
higher – 111 PW versus 107 PW. However, from a practical
point of view, the XCELS option is preferable, since for
a narrower pulse spectrum, the requirements for both the
compressor gratings and the rest of the optics are lower.
At the same time, XCELS requires 1.33 times higher pulse
energy; hence, deuterated potassium dihydrogen phosphate
(DKDP) crystals with

√
1.33 = 1.15 times larger size are

required.
All spatio-temporal phenomena in the out-of-plane com-

pressor are the same as in the TC if the compressors are
symmetric: L2 = L1;N2 = N1; α2 = α1;γ2 = γ1, where the
indices ‘1’ and ‘2’ correspond to the first and second grating
pairs, respectively. All the compressor variants discussed
above are symmetric. At the same time, they can be easily
modified into asymmetric compressors that ensure reduc-
tion of fluence fluctuations due to the time delay of high-
frequency spatial harmonics[13,15] or spatial dispersion of
the output beam[5,12,14]. In asymmetric compressors, grat-
ing pairs differ from each other: L2 �= L1

[5,12,14]; N2 �= N1,
α2 �= α1

[13]; γ2 �= γ1
[15]. Note that γ2 and γ1 can have not only

different absolute values, but also signs. For example, for an
LC with γ2 = −γ1, in which gratings of the first and second
pairs are parallel in the y-plane and antiparallel (mirror) in

the x-plane, they are two times shorter and two times wider
than for the case γ2 = γ1. For γ1 ≈ 10◦, fluence fluctuations
are radically suppressed. The drawback of such a compressor
is an additional increase in the grating height Hg.

5. Conclusion

Since in high-power femtosecond lasers the output pulse
energy is limited by the laser-induced damage threshold of
the last diffraction grating of the compressor, the optimal
compressor design is the one ensuring maximum size of
the output beam. For given parameters of a chirped pulse
(central frequency, bandwidth, GVD) and a given diffraction
grating length Lg, an analytical expression has been obtained
for the maximum beam size D, at which both the beam clip-
ping on the gratings and the appearance of spurious diffrac-
tion orders are completely excluded. Using this expression,
it is easy to find the optimal compressor parameters that
allow for obtaining maximum D: the distance between the
gratings along the normal L, the groove density N, the angle
of incidence on the first grating in the diffraction plane α

and the angle of incidence on the first grating outside the
diffraction plane γ .

The analysis was performed in a general form for an
out-of-plane compressor, that is, for arbitrary values of the
angles α and γ . Two particular ‘plane’ cases attractive for
practical reasons were considered: a standard TC (γ = 0,
Figure 1(a)) and an LC (α = αL, Figure 1(b)). The LC almost
always ensures a larger value of D than the TC. For the
TC, D(N) has a well-pronounced maximum determining the
choice of N (Figure 4(a)). For the LC, D(N) has the form
of a plateau (Figure 4(b)), which allows for choosing N
within this plateau for technological reasons: the larger the
reflection coefficient, the higher the laser damage threshold.

Optimal TC and LC designs that enable a substantial
output power increase (by tens of percent) were calculated
for the pulse parameters of the XCELS and SEL-100 PW
projects. In particular, for 160-cm-long diffraction gratings,
the optimal TC design allows for obtaining 86 PW for both
projects, and for the optimal LC design 107 and 111 PW for
XCELS and SEL-100 PW, respectively.
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