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Ideals with approximate unit
in semicrossed products

Charalampos Magiatis

Abstract. We characterize the ideals of the semicrossed product C0(X) ×ϕ Z+, associated with
suitable sequences of closed subsets of X, with left (resp. right) approximate unit. As a consequence,
we obtain a complete characterization of ideals with left (resp. right) approximate unit under the
assumptions that X is metrizable and the dynamical system (X , ϕ) contains no periodic points.

1 Introduction and notation

The semicrossed product is a nonself-adjoint operator algebra which is constructed
from a dynamical system. We recall the construction of the semicrossed product
we will consider in this work. Let X be a locally compact Hausdorff space, and let
ϕ ∶ X → X be a continuous and proper surjection (recall that a map ϕ is proper if
the inverse image ϕ−1(K) is compact for every compact K ⊆ X). The pair (X , ϕ)
is called a dynamical system. An action of Z+ ∶= N ∪ {0} on C0(X) by isometric
∗-endomorphisms αn , n ∈ Z+ is obtained by defining αn( f ) = f ○ ϕn . We write
the elements of the Banach space �1(Z+, C0(X)) as formal series A = ∑n∈Z+ U n fn
with the norm given by ∥A∥1 = ∑n∈Z+ ∥ fn∥C0(X). Multiplication on �1(Z+, C0(X)) is
defined by setting

(U n f )(U m g) = U n+m(αm( f )g),
and extending by linearity and continuity. With this multiplication, �1(Z+, C0(X)) is
a Banach algebra.

The Banach algebra �1(Z+, C0(X)) can be faithfully represented as a (concrete)
operator algebra on a Hilbert space. This is achieved by assuming a faithful action of
C0(X) on a Hilbert spaceH0. Then we can define a faithful contractive representation
π of �1(Z+, C0(X)) on the Hilbert space H =H0 ⊗ �2(Z+) by defining π(U n f ) as

π(U n f )(ξ ⊗ ek) = αk( f )ξ ⊗ ek+n .

The semicrossed product C0(X) ×ϕ Z+ is the closure of the image of �1(Z+, C0(X))
in B(H) in the representation just defined. We will denote an element π(U n f ) of
C0(X) ×ϕ Z+ by U n f to simplify the notation.
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258 C. Magiatis

For A = ∑n∈Z+ U n fn ∈ �1(Z+, C0(X)), we call fn ≡ En(A) the nth Fourier coeffi-
cient of A. The maps En ∶ �1(Z+, C0(X)) → C0(X) are contractive in the (operator)
norm of C0(X) ×ϕ Z+, and therefore they extend to contractions En ∶ C0(X) ×ϕ
Z+ → C0(X). An element A of the semicrossed product C0(X) ×ϕ Z+ is 0 if and
only if En(A) = 0, for all n ∈ Z+, and thus A is completely determined by its Fourier
coefficients. We will denote A by the formal series A = ∑n∈Z+ U n fn , where fn =
En(A). Note, however, that the series ∑n∈Z+ U n fn does not in general converge
to A [6, II.9]. The kth arithmetic mean of A is defined to be Āk = 1

k+1 ∑
k
l=0 S l(A),

where S l(A) = ∑l
n=0 U n fn . Then, the sequence {Āk}k∈Z+ is norm convergent to A

[6, Remark, p. 524]. We refer to [3, 4, 6] for more information about the semicrossed
product.

Let {Xn}∞n=0 be a sequence of closed subsets of X satisfying

Xn+1 ∪ ϕ(Xn+1) ⊆ Xn ,(∗)

for all n ∈ N. Peters proved in [7] that the subspace I = {A ∈ C0(X) ×ϕ Z+ ∶
En(A)(Xn) = {0}} is a closed two-sided ideal of C0(X) ×ϕ Z+. We will write this as
I ∼ {Xn}∞n=0. We note that if A ∈ I ∼ {Xn}∞n=0, then U n En(A) ∈ I for all n ∈ Z+. Peters
proved in [7] that there is a one-to-one correspondence between closed two-sided
ideals I ⊆ C0(X) ×ϕ Z+ and sequences {Xn}∞n=0 of closed subsets of X satisfying (∗),
under the assumptions that X is metrizable and the dynamical system (X , ϕ) contains
no periodic points. Moreover, he characterizes the maximal and prime ideals of the
semicrossed product C0(X) ×ϕ Z+ in this case.

Donsig, Katavolos, and Manousos obtained in [4] a characterization of the Jacob-
son radical for the semicrossed product C0(X) ×ϕ Z+, where X is a locally compact
metrizable space and ϕ ∶ X → X is a continuous and proper surjection. Andreolas,
Anoussis, and the author characterized in [2] the ideal generated by the compact
elements and in [1] the hypocompact and the scattered radical of the semicrossed
product C0(X) ×ϕ Z+, where X is a locally compact Hausdorff space and ϕ ∶ X → X
is a homeomorphism. All these ideals are of the form I ∼ {Xn}∞n=0 for suitable families
of closed subsets {Xn}∞n=0.

In the present paper, we characterize the closed two-sided ideals I ∼ {Xn}∞n=0 of
C0(X) ×ϕ Z+ with left (resp. right) approximate unit. As a consequence, we obtain a
complete characterization of ideals with left (resp. right) approximate unit under the
additional assumptions that X is metrizable and the dynamical system (X , ϕ) contains
no periodic points.

Recall that a left (resp. right) approximate unit of a Banach algebra A is a net
{uλ}λ∈Λ of elements of A such that:
(1) for some positive number r, ∥uλ∥ ≤ r for all λ ∈ Λ,
(2) lim uλ a = a (resp. lim auλ = a), for all a ∈ A, in the norm topology of A.
A net which is both a left and a right approximate unit of A is called an approximate
unit of A. A left (resp. right) approximate unit {uλ}λ∈Λ that satisfies ∥uλ∥ ≤ 1 for all
λ ∈ Λ is called a contractive left (resp. right) approximate unit.

We will say that an ideal I of a Banach algebraA has a left (resp. right) approximate
unit if it has a left (resp. right) approximate unit as an algebra.
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2 Ideals with approximate unit

In the following theorem, the ideals I ∼ {Xn}∞n=0 with right approximate unit are
characterized.

Theorem 2.1 Let I ∼ {Xn}∞n=0 be a nonzero ideal of C0(X) ×ϕ Z+. The following are
equivalent:
(1) I has a right approximate unit.
(2) Xn = Xn+1, for all n ∈ Z+.

Proof We start by proving that (1)⇒ (2). Let I ∼ {Xn}∞n=0 be an ideal with right
approximate unit {Vλ}λ∈Λ . We suppose that there exists n ∈ Z+ such that Xn+1 ⊊ Xn .
Let

n0 =min{n ∈ Z+ ∶ Xn+1 ⊊ Xn},

x0 ∈ Xn0/Xn0+1, and f ∈ C0(X) such that f (x0) = 1, f (Xn0+1) = {0}, and ∥ f ∥ = 1.
Then, for A = U n0+1 f , we have A ∈ I and

∥AVλ − A∥ ≥ ∥En0+1(AVλ − A)∥ = ∥ f E0(Vλ) − f ∥ ≥ ∣( f E0(Vλ) − f )(x0)∣ = 1,

for all λ ∈ Λ, since x0 ∈ Xn0 and E0(Vλ)(Xn0) = 0, which is a contradiction. Therefore,
Xn = Xn+1 for all n ∈ Z+.

For (2)⇒ (1), assume that Xn = Xn+1 for all n ∈ Z+. By (∗), we get that ϕ(X0) ⊆ X0.
We will show that if {uλ}λ∈Λ is a contractive approximate unit of the ideal C0(X/X0)
of C0(X), then {U 0uλ}λ∈Λ is a right approximate unit of I. Since ∥uλ∥ ≤ 1, we have
∥U 0uλ∥ ≤ 1.

Let A ∈ I and ε > 0. Then there exists k ∈ Z+ such that

∥A− Āk∥ <
ε
4

,

where Āk is the kth arithmetic mean of A. Since Xn = X0, En(Āk) ∈ C0(X/X0) and
{uλ}λ∈Λ is an approximate unit of C0(X/X0), there exists λ0 ∈ Λ such that

∥E l(Āk)uλ − E l(Āk)∥ <
ε

2(k + 1) ,

for all l ≤ k and λ > λ0. So, for λ > λ0, we get that

∥AU 0uλ − A∥ = ∥AU 0uλ − ĀkU 0uλ + ĀkU 0uλ − Āk + Āk − A∥
≤ ∥AU 0uλ − ĀkU 0uλ∥ + ∥ĀkU 0uλ − Āk∥ + ∥A− Āk∥

< ∥ĀkU 0uλ − Āk∥ +
ε
2

≤
k
∑
l=0
∥E l(Āk)uλ − E l(Āk)∥ +

ε
2

< ε,

which concludes the proof. ∎
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In the following theorem, the ideals I ∼ {Xn}∞n=0 with left approximate unit are
characterized.

Theorem 2.2 Let I ∼ {Xn}∞n=0 be a nonzero ideal of C0(X) ×ϕ Z+. The following are
equivalent:
(1) I has a left approximate unit.
(2) X0 ⊊ X and ϕn(X/Xn) = X/X0, for all n ∈ Z+.
(3) ϕ(X/X1) = X/X0 and ϕ(Xn+1/Xn+2) = Xn/Xn+1, for all n ∈ Z+.

Proof We start by proving that (1) ⇒ (2). Let I ∼ {Xn}∞n=0 be an ideal with left
approximate unit {Vλ}λ∈Λ .

First, we prove that X0 ⊊ X. We suppose that X0 = X. Then E0(Vλ) = 0, for all
λ ∈ Λ, and hence for every U n f ∈ I, we have

∥VλU n f −U n f ∥ ≥ ∥En(VλU n f −U n f )∥ = ∥E0(Vλ) ○ ϕn f − f ∥ = ∥ f ∥,

for all λ ∈ Λ, which is a contradiction. Therefore, X0 ⊊ X.
Now, we prove that ϕn(X/Xn) = X/X0, for all n ∈ Z+. We suppose that there exists

n ∈ Z+ such that ϕn(X/Xn) /⊆ X/X0 and let

n0 =min{n ∈ Z+ ∶ ϕn(X/Xn) /⊆ X/X0}.

The set X/Xn0 is nonempty, since Xn0 ⊆ X0 ⊊ X. Then, there exist x0 ∈ X/Xn0 such
that ϕn0(x0) ∈ X0 and a function f ∈ C0(X) such that f (x0) = 1, f (Xn0) = {0}, and
∥ f ∥ = 1. If A = U n0 f , by the choice of f, we have that A ∈ I, ∥A∥ = 1 and

∥Vλ A− A∥ ≥ ∥En0(Vλ A− A)∥
= ∥E0(Vλ) ○ ϕn0 f − f ∥
≥ ∣(E0(Vλ) ○ ϕn0 f − f )(x0)∣
= 1,

for all λ ∈ Λ, since ϕn0(x0) ∈ X0 and E0(Vλ)(X0) = {0}, which is a contradiction.
Therefore, ϕn(X/Xn) ⊆ X/X0. Furthermore, by (∗), we get that ϕn(Xn) ⊆ X0, for all
n ∈ Z+, and hence

X = ϕn(X) = ϕn(Xn ∪ (X/Xn)) = ϕn(Xn) ∪ ϕn(X/Xn) ⊆ X0 ∪ ϕn(X/Xn).

Since ϕn(X/Xn) ⊆ X/X0 and ϕ is surjective, ϕn(X/Xn) = X/X0, for all n ∈ Z+.
For (2) ⇒ (1), assume that X0 ⊊ X and ϕn(X/Xn) = X/X0, for all n ∈ Z+. We

will show that if {uλ}λ∈Λ is a contractive approximate unit of the ideal C0(X/X0)
of C0(X), then {U 0uλ}λ∈Λ is a left approximate unit of I. Since ∥uλ∥ ≤ 1, we have
∥U 0uλ∥ ≤ 1.

Let A be a norm-one element of I and ε > 0. Then there exists k ∈ Z+ such that

∥A− Āk∥ <
ε
4

,
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where Āk is the kth arithmetic mean of A. For l ≤ k, let

Dε(E l(Āk)) = {x ∈ X ∶ ∣E l(Āk)(x)∣ ≥
ε

4(k + 1)} .

Since A ∈ I, we have E l(Āk)(X l) = {0} and hence Dε(E l(Āk)) ⊆ X/X l . Further-
more, since ϕn(X/Xn) = X/X0, for all n ∈ Z+, we have that ϕ l(Dε(E l(Āk))) ⊆ X/X0.
Moreover, the set Dε(E l(Āk)) is compact, since E l(Āk) ∈ C0(X), and hence the set
ϕ l(Dε(E l(Āk))) is also compact. By Urysohn’s lemma for locally compact Hausdorff
spaces [8, p. 39], there is a norm-one function v l ∈ C0(X) such that

v l(x) = {
1, x ∈ ϕ l(Dε(E l(Āk))),
0, x ∈ X0 .

Then, there exists λ0 ∈ Λ such that

∥uλv l − v l∥ <
ε

2(k + 1) ,

for all l ≤ k and λ > λ0, and hence

∣uλ(x) − 1∣ < ε
2(k + 1) ,

for all x ∈ ∪k
l=0ϕ l(Dε(E l(Āk))) and λ > λ0. Therefore, if x ∈ ∪k

l=0(Dε(E l(Āk))), then
ϕ l(x) ∈ ∪k

l=0ϕ l(Dε(E l(Āk))) and hence

∥((uλ ○ ϕ l)E l(Āk) − E l(Āk))(x)∥ <
ε

2(k + 1) ,

for all l ≤ k and λ > λ0. On the other hand, if x /∈ ∪k
l=0(Dε(E l(Āk))), then

∣E l(Āk)(x)∣ <
ε

4(k + 1) ,

for all l ≤ k, and hence

∥((uλ ○ ϕ l)E l(Āk) − E l(Āk))(x)∥ <
ε

2(k + 1) .

From what we said so far, we get that

∥U 0uλ A− A∥ < ∥U 0uλ Āk − Āk∥ +
ε
2

≤
k
∑
l=0
∥(uλ ○ ϕ l)E l(Āk) − E l(Āk)∥ +

ε
2

< ε,

for all λ > λ0.
Now, we show that (2) ⇒ (3). We assume that ϕn(X/Xn) = X/X0, for all

n ∈ Z+. Then, ϕ(X/Xn+2) ⊆ X/Xn+1. Indeed, if x ∈ X/Xn+2 and ϕ(x) ∈ Xn+1, then
ϕn+2(x) ∈ X0, by (∗), which is a contradiction. Furthermore, by (∗), we know that
ϕ(Xn+1) ⊆ Xn and hence ϕ(Xn+1/Xn+2) ⊆ Xn/Xn+1 for all n ∈ Z+.
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To prove that ϕ(Xn+1/Xn+2) = Xn/Xn+1 for all n ∈ Z+, we suppose that there exists
n ∈ Z+ such that ϕ(Xn+1/Xn+2) ⊊ Xn/Xn+1. If

n0 =min{n ∈ Z+ ∶ ϕ(Xn+1/Xn+2) ⊊ Xn/Xn+1},

then

ϕ(Xn0+1) = ϕ(Xn0+2 ∪ (Xn0+1/Xn0+2))
= ϕ(Xn0+2) ∪ ϕ(Xn0+1/Xn0+2)
⊆ Xn0+1 ∪ ϕ(Xn0+1/Xn0+2)
⊊ Xn0+1 ∪ (Xn0/Xn0+1)
= Xn0 ,

and hence

ϕ(X) = ϕ(Xn0+1 ∪ (X/Xn0+1))
= ϕ(Xn0+1) ∪ ϕ(X/Xn0+1)
⊆ ϕ(Xn0+1) ∪ (X/Xn0)
⊊ X ,

which is a contradiction, since ϕ is surjective. Therefore, ϕ(Xn+1/Xn+2) = Xn/Xn+1
for all n ∈ Z+.

Finally, we show that (3) ⇒ (2). We assume that ϕ(X/X1) = X/X0 and
ϕ(Xn+1/Xn+2) = Xn/Xn+1, for all n ∈ Z+. Then, X0 ⊊ X. Indeed, if X0 = X, then
I ≡ {0}, which is a contradiction. If n > 1, we have that

ϕ(X/Xn) = ϕ [(X/X1) ∪ (X1/X2) ∪ ⋅ ⋅ ⋅ ∪ (Xn−1/Xn)]
= ϕ(X/X1) ∪ ϕ(X1/X2) ∪ ⋅ ⋅ ⋅ ∪ ϕ(Xn−1/Xn)
= (X/X0) ∪ (X0/X1) ∪ ⋅ ⋅ ⋅ ∪ (Xn−2/Xn−1)
= X/Xn−1 ,

and hence ϕn(X/Xn) = X/X0, for all n ∈ Z+. ∎

Remark 2.3 It follows from the proofs of Theorems 2.1 and 2.2 that if I ∼ {Xn}∞n=0
is an ideal of C0(X) ×ϕ Z+ with a left (resp. right) approximate unit, then it has a
contractive left (resp. right) approximate unit of the form {U 0uλ}λ∈Λ where {uλ}λ∈Λ
a contractive approximate unit of the ideal C0(X/X0) of C0(X).

By Theorem 2.2, if I ∼ {Xn}∞n=0 is an ideal of C0(X) ×ϕ Z+ with a left approximate
unit, then Xn+1 = Xn or Xn+1 ⊊ Xn for all n ∈ Z+. If I ∼ {Xn}∞n=0 and Xn+1 = Xn , for
all n ∈ Z+, we will write I ∼ {X0}. We obtain the following characterization.

Corollary 2.4 Let I ∼ {X0} be a nonzero ideal of C0(X) ×ϕ Z+. The following are
equivalent:
(1) I has a left approximate unit.
(2) ϕ(X0) = X0 and ϕ(X/X0) = X/X0.
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Proof By Theorem 2.2, we have ϕ(X/X0) = X/X0. By (∗), we have ϕ(X0) ⊆ X0,
and since ϕ is surjective, we get ϕ(X0) = X0. ∎

In the following proposition, the ideals I ∼ {Xn}∞n=1 of C0(X) ×ϕ Z+ with a left
approximate unit are characterized, when ϕ is a homeomorphism.

Proposition 2.5 Let I ∼ {Xn}∞n=1 be a nonzero ideal of C0(X) ×ϕ Z+, where ϕ is a
homeomorphism. The following are equivalent:
(1) I has a left approximate unit.
(2) There exist S , W ⊊ X such that S is closed and ϕ(S) = S, the sets ϕ−1(W),

ϕ−2(W), . . . are pairwise disjoint and ϕk(W) ∩ S = ∅, for all k ∈ Z, and

Xn = S ∪ (∪∞k=n ϕ−k(W)),
for all n ∈ Z+.

Proof The second condition implies the second condition of Theorem 2.2 and
hence the implication (2)⇒ (1) is immediate. We will prove the implication (1)⇒ (2).

We set S = ∩∞n=0 Xn . Clearly, the set S is closed and, by (∗), we have ϕ(S) ⊆ S. We
will prove that ϕ(S) = S. We suppose ϕ(S) ⊊ S. Since ϕ is surjective, there exists x ∈
X/S such that ϕ(x) ∈ S. Moreover, ϕn(x) ∈ S for all n ≥ 1. However, since x ∉ S, there
exists n0 such that x ∉ Xn0 and hence ϕn0(x) ∈ X/X0, by Theorem 2.2, which is a
contradiction since S ∩ (X/X0) = ∅.

By Theorem 2.2, ϕ(Xn+1/Xn+2) = Xn/Xn+1 for all n ∈ Z+ and hence ϕn(Xn/
Xn+1) = X0/X1 or equivalently Xn/Xn+1 = ϕ−n(X0/X1) since ϕ is a homeomorphism.
Furthermore, the sets ϕ−1(X0/X1), ϕ−2(X0/X1), . . . are pairwise disjoint.

We set W = X0/X1. Clearly, ϕk(W) ∩ S = ∅ for all k ∈ Z, since ϕ(S) = S and
ϕ(W) ⊆ X/X0. Also, X0 = S ∪ (X0/X1) ∪ (X1/X2) ∪⋯ and hence

X0 = S ∪ (∪∞k=0ϕ−k(W)).
Finally, for all n ∈ Z+ we have that

X0 = Xn ∪ (∪n
k=1(Xk−1/Xk)) = Xn ∪ (∪n

k=1ϕ
−k+1(W)) = Xn ∪ (∪n−1

k=0ϕ−k(W)),
and so

Xn = X0/(∪n−1
k=0ϕ−k(W)) = S ∪ (∪∞k=n ϕ−k(W)). ∎

In the following corollary, the ideals with an approximate unit are characterized.

Corollary 2.6 Let I ∼ {Xn}∞n=0 be a nonzero ideal of C0(X) ×ϕ Z+. The following are
equivalent:
(1) I has an approximate unit.
(2) Xn = Xn+1, for all n ∈ Z+, and ϕ(X/X0) = X/X0.

Proof (1)⇒ (2) is immediate from Theorem 2.1 and Corollary 2.4.
We show (2)⇒ (1). If Xn = Xn+1, by (∗), we have ϕ(X0) ⊆ X0. Since ϕ(X/X0) =

X/X0 and ϕ surjective, we have ϕ(X0) = X0. Theorem 2.1 and Corollary 2.4 conclude
the proof. ∎
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264 C. Magiatis

Let B be a Banach space, and let C be a subspace of B. The set of linear functionals
that vanish on a subspace C of B is called the annihilator of C. A subspace C of a Banach
space B is an M-ideal in B if its annihilator is the kernel of a projection P on B∗ such
that ∥y∥ = ∥P(y)∥ + ∥y − P(y)∥, for all y, where B∗ is the dual space of B.

Effros and Ruan proved that the M-ideals in a unital operator algebra are the closed
two-sided ideals with an approximate unit [5, Theorem 2.2]. Therefore, we obtain the
following corollary about the M-ideals of a semicrossed product.

Corollary 2.7 Let I ∼ {Xn}∞n=0 be a nonzero ideal of C(X) ×ϕ Z+, where X is
compact. The following are equivalent:
(1) I is an M-ideal.
(2) I has an approximate unit.
(3) Xn = Xn+1, for all n ∈ Z+, and ϕ(X/X0) = X/X0.
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