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On the condition number of a Kreiss matrix
Stéphane Charpentier, Karine Fouchet, and Rachid Zarouf

Abstract. In 2005, N. Nikolski proved among other things that for any r ∈ (0, 1) and any K ≥ 1,
the condition number CN(T) = ∥T∥ ⋅ ∥T−1∥ of any invertible n-dimensional complex Banach space
operators T satisfying the Kreiss condition, with spectrum contained in {r ≤ ∣z∣ < 1}, satisfies the
inequality CN(T) ≤ CK(T)∥T∥n/rn where K(T) denotes the Kreiss constant of T and C > 0 is
an absolute constant. He also proved that for r ≪ 1/n, the latter bound is asymptotically sharp as
n →∞. In this note, we prove that this bound is actually achieved by a family of explicit n × n Toeplitz
matrices with arbitrary singleton spectrum {λ} ⊂ D / {0} and uniformly bounded Kreiss constant.
Independently, we exhibit a sequence of Jordan blocks with Kreiss constants tending to∞ showing
that Nikolski’s inequality is still asymptotically sharp as K and n go to∞.

1 Introduction

Let T be an invertible bounded operator on a complex Banach space X. In numerical
analysis, it is a matter of interest to estimate the quantity CN(T) ∶= ∥T∥∥T−1∥, called
the condition number of T. Roughly speaking, the condition number of T measures
the greatest loss of precision that the linear system AT = x can exhibit over all inputs
and their potential errors. The condition numbers of matrices are also intimately
related to many problems from matrix analysis, such as the study of the distribution
of the eigenvalues of classical random matrices appearing in mathematical statistics.
We refer the reader to, e.g., [10, Chapter 3] or [3, 15], and the references therein.

Let us denote by L(X) the algebra of all bounded operators on X, and for n ∈ N, let
the notationB(n) (resp.H(n)) stand for the set of all n-dimensional complex Banach
spaces (resp. Hilbert spaces). When X belongs to H(n), one can easily deduce from
the polar decomposition that

CN(T) ≤ ∏
i

∣λ i(T)∣−1∥T∥n , T ∈ L(X),(1.1)

where λ i(T), i = 1, . . . , n, are the eigenvalues of T counting multiplicity. This inequal-
ity is clearly sharp since equality occurs if T is the n × n identity matrix. When turning
to the Banach setting, the analogous problem becomes more involved and was first
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On the condition number of a Kreiss matrix 1377

considered in the 70s by B. L. Van der Waerden, W. A. Coppel, and J. J. Schäffer. In
view of (1.1), it is natural to seek for estimates of the quantity

C(n) ∶= inf {C > 0 ∶ CN(T) ≤ C∏
i
∣λ i(T)∣−1∥T∥n , T ∈ L(X) invertible, X ∈ B(n)} .

(1.2)

A normalization reduces this problem to that of estimating the norm of the inverse
of contractive invertible operators (that is, those with norm less than or equal to 1).
Namely, denoting by C(X) ⊂ L(X) the class of contractive matrices on X, C(n)
coincides with the quantity

inf {C > 0 ∶ ∥T−1∥ ≤ C ∏
i

∣λ i(T)∣−1 , T ∈ C(X), T invertible, X ∈ B(n)}

= sup{∏
i

∣λ i(T)∣∥T−1∥ ∶ T ∈ C(X), T invertible, X ∈ B(n)} ,(1.3)

which turns out to be easier to handle. In 1970, Schäffer [14] proved the general
estimate C(n) ≤

√
en, and showed that the inequality

∏
i

∣λ i(T)∣∥T−1∥ ≤ 2(1.4)

holds for invertible contractions T acting on C
n endowed with the �1-norm or

with the l∞-norm, (and that (1.4) is sharp in both cases). This led him to make
the conjecture—nowadays known as Schäffer’s conjecture—that C(n) = 2, n ∈ N. The
latter was disproved first by Gluskin, Meyer, and Pajor [4], J. Bourgain [4],1 and later
by Queffélec [11], who obtained that C(n) ≥ c

√
n for some absolute constant c > 0,

proving that the initial upper estimate given by Schäffer is optimal (see below for more
precise statements with respect to our motivations).

In order to introduce our motivations and for the sake of general interest, we
shall briefly survey recent extensions and refinements of the solutions to Schäffer’s
conjecture that have been developed at the light of new theoretical approaches, and
that are natural to the study of the condition number of matrices. It will imply the
introduction of a number of notations that, hopefully, will be still kept limited.

First of all, it is a natural problem to wonder how does the constant C(n) behave,
if in its equivalent definition (1.3) one replaces the class of all invertible contractions
by some other classical sets of invertible operators. Generally speaking, let P be a
property, and for T ∈ L(X), let the notation T ∈ P mean that the operator T satisfies
the property P. We set

C(n,P) ∶= sup{∏
i

∣λ i(T)∣∥T−1∥ ∶ T ∈ P, T ∈ L(X) invertible, X ∈ B(n)} .(1.5)

Thus, for example, C(n) = C(n,C) if T ∈ C means “T is a contraction.” For properties
P that define too large classes of operators, it may happen that C(n,P) = ∞. It is
obviously the case if P is satisfied by any invertible operator acting on any Banach

1The same article [4] contains an appendix with a stronger estimate due to Bourgain.
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space (indeed, consider all the matrices λIn , ∣λ∣ > 1, where In is the identity matrix
of size n). In this situation, studying C(n,P) is not relevant for estimating condition
numbers. On the contrary, ifP is a property for which C(n,P) < ∞, then by definition
it holds

CN(T) ≤ C(n,P)∏
i

∣λ i(T)∣−1∥T∥

for any T ∈ P. In this case, estimating C(n,P) becomes especially relevant for
properties P that are satisfied by operators that are not necessarily contractions since,
for such operators, it may give upper estimates of condition numbers that are better
than that given by Schäffer’s inequality (the latter is valid for any invertible operator).

In 2005, Nikolski [8] developed a new approach to achieve estimates of C(n,P)
by using functional calculus on spaces of functions holomorphic on the unit disk
D ∶= {z ∈ C ∶ ∣z∣ < 1}. The idea is that for certain properties P and any Banach space
X, an invertible operator T ∈ L(X) satisfies P if and only if ∥ f (T)∥ ≤ K∥ f ∥AP

for
any f in some algebra AP of holomorphic functions on D and for some absolute
constant K > 0. To make it shorter, we will say in this case that property P obeys an
AP-functional calculus. Then, for such properties P, estimating ∥T−1∥ from above
for T ∈ P reduces to estimating ∥ f ∥AP

or ∥ f ∥AP/mT AP
from above for any f ∈ AP

satisfying the Bézout identity z f + mT h = 1, where mT is the minimal polynomial of
T and h is any function in AP. For example, it is well known and easily seen that the
property C of being a contraction obeys a W-functional calculus (with constant 1)
where W refers to the Wiener space consisting of all functions f analytic in D, such
that ∥ f ∥W ∶= ∑k≥0 ∣ f̂ (k)∣ < ∞, and where f̂ (k) denotes the kth Taylor coefficient of f.
It is also readily checked that given K ≥ 1, the property PBK satisfied by all Banach
space power bounded operators T such that supn ∥T n∥ ≤ K obeys a W-functional
calculus (with constant K), which leads to the same estimates for C(n,PBK) and
C(n,C), up to an absolute constant. We also refer the reader to [18, Paragraph 2.3]
for more explanations of the above Nikolski’s strategy. Another standard class of
operators obeying a functional calculus over a function algebra is that of Kreiss
operators. It is defined, for K ≥ 1, by the property KK given for any Banach operator
T by T ∈ KK if and only if the following resolvent estimate holds:

∥(ζ − T)−1∥ ≤ K(∣ζ ∣ − 1)−1 , ∣ζ ∣ > 1.(1.6)

For a given operator T, the infimum of all constants K satisfying (1.6) is called the
Kreiss constant of T. This class of operators satisfying KK is an important one in
numerical analysis [9, 17]. Note that every contraction is a Kreiss operator with Kreiss
constant less than or equal to 1 and that there exist Kreiss operators that are not
contractive. In [8], Nikolski made use of the fact that KK obeys a Besov functional
calculus, according to a result by Vitse [22], to obtain the following theorem.

Theorem 1.1
1. [8, Theorem 3.26] Let X be a complex Banach space, and let T ∈ L(X) be a Kreiss

operator with Kreiss constant K ≥ 1. Then
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On the condition number of a Kreiss matrix 1379

∥T−1∥ ≤ CK n
∏n

i=1 ∣λ i ∣
,(1.7)

where (λ1 , . . . , λn) ∈ Dn denotes the eigenvalues of T and C an absolute constant.
2. (Particular case of [8, Theorem 3.31]) For any (λ1 , . . . , λn) ∈ Dn , there exists an

invertible Kreiss operator T with eigenvalues (λ1 , . . . , λn) such that

∥T−1∥ ≥ c n
∏n

i=1 ∣λ i ∣
⎛
⎝

c′ −
n
∏
j=1

(1 + ∣λ i ∣)
⎞
⎠

,(1.8)

where c > 0 and c′ > 1 are absolute constants.

The first part of this theorem implies

C(n,KK) ≤ CKn and CN(T) ≤ CKn ∏
i

∣λ i(T)∣−1∥T∥(1.9)

for any T ∈ KK . In passing, we point out that for any given K ≥ 1, there exists an
absolute constant C′ such that ∥T∥ ≤ C′K for any T ∈ KK (to see it, one can use the
Riesz–Dunford functional calculus). Moreover, letting the λ i ’s tend to 0 sufficiently
fast in (1.8), one can deduce that for fixed K, the inequality C(n,KK) ≤ CKn is made
sharp with respect to n → ∞ for sequences of operators with spectrum shrinking to
0. It follows from the approach used by Nikolski that these extremal operators are
model operators acting on model spaces (with adequate norms). Then three questions
naturally arise.

Question 1 Is it possible to find operators with fixed degenerate spectrum that are
extremal for C(n,KK) ≤ CKn, n → ∞?

Question 2 Can one choose these operators among classes of structured matrices
(e.g., Toeplitz matrices)?

Question 3 Is the inequality C(n,KK) ≤ CKn sharp simultaneously when K and n
go to ∞?

The aim of this note is to propose a solution to these three questions. For con-
tractions, the same questions have already been investigated for a long time. A
brief exposition of these investigations and a statement of our results requires the
introduction of the following natural quantities:
• CH

n (r,P) ∶= sup{∥T−1∥ ∶ T ∈ P, T ∈ L(X) invertible, X ∈ H(n), rmin(T) ≥ r};
• CB

n (r,P) ∶= sup{∥T−1∥ ∶ T ∈ P, T ∈ L(X) invertible, X ∈ B(n), rmin(T) ≥ r};
• τHn (r,P) ∶= sup{∥T−1∥ ∶ T ∈ P∩T, T ∈L(X) invertible, X ∈H(n), rmin(T)≥ r};
• τBn (r,P) ∶= sup{∥T−1∥ ∶ T ∈ P ∩ T, T ∈ L(X) invertible, X ∈B(n), rmin(T)≥ r},
where rmin(T) stands for the smallest eigenvalues of T, where T denotes the property
of being a Toeplitz operator, and where the notation P ∩P′ means that P and P′ are
simultaneously satisfied.

If P = C, and in the Hilbert setting, it is known that for any r ∈ (0, 1), CH
n (r,C) =

r−n . This result probably dates back to the 19th century and is sometimes attributed
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to L. Kronecker. A description of matrices achieving the supremum was obtained by
Nikolski [8, Theorem 2.1], using the abovementioned functional calculus approach.
In the Banach setting, none of the results given in [4, 12] lead to sharp estimates of
CB

n (r,C). Indeed, while Schäffer’s inequality [14] gives the upper estimates

CB
n (r,C) ≤

√
enr−n ,(1.10)

the lower estimates obtained in [4, 11] are not enough to prove that (1.10) is sharp
with respect to r, n: Gluskin–Meyer–Pajor [4], Bourgain (see [4]), and Queffélec [11],
respectively, stated

CB
n (1 − 1

n
,C) ≥ c

√
n

log n
1

log log n
, CB

n (1 − 1
n

,C) ≥ c
√

n
log n

, CB
n (1 − 1

n
,C) ≥ c

√
n,

where c is an absolute constant. In all these estimates, it appears that r and n are
correlated (in particular, the spectrum of the extremal operators is not fixed).

When P = KK , we recall that the first point of Theorem 1.1 gives that for any
r ∈ (0, 1),

CB
n (r,KK) ≤ CK n

rn ,(1.11)

where C is an absolute constant, whereas the second one yields the asymptotic
sharpness of (1.11) as n → ∞, only for r ≪ 1/n.

A somewhat natural approach to attack third the question of exhibiting operators
with fixed spectrum that are asymptotically extremal for (1.10) and (1.11) may consist
in looking for such operators in classes of structured matrices such as Jordan blocks,
which are special cases of Toeplitz matrices. More generally, Toeplitz or Hankel
matrices, which play a crucial role in matrix analysis and operator theory, are natural
candidates. Yet, in the Banach setting, the proofs given in [4, 11] are far from providing
with explicit examples achieving C(n,C)—and a fortiori with extremal Toeplitz
matrices with degenerate spectrum. In the Hilbert setting, we recall that Nikolski
characterized matrices that are extremal for CH

n (r,C) for any r in [8] and asked for
the existence of Toeplitz matrices satisfying this characterization. Szehr and the last
author obtained in [19] the equalities

τHn (r,C) = cHn (r,C) = 1
rn ,

for any r ∈ (0, 1) (see also [23] where the weaker estimate τHn (r,C) ≥ 2−1r−n is
obtained) and, in 2021, they proved that for some absolute constant c > 0,

CB
n (r,C) ≥ τBn (r,C) ≥ c

√
n

rn

for any r ∈ (0, 1) and any n large enough, so that (1.10) is sharp. Moreover, they
provided with explicit examples of extremal Banach space Toeplitz operators with
arbitrary degenerate spectrum [20]. Worth insisting, these extremal Toeplitz opera-
tors may be chosen with spectrum equal to {λ} , λ arbitrary in D / {0}.
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Our main contribution in this note is to follow their strategy and to obtain an
analogous result for Kreiss operators, giving a solution to Questions 1 and 2. More
precisely, we will prove the following result.

Theorem 1.2 (For a more precise statement, see Theorem 2.1) For a fixed K ≥ 1, there
exists an absolute constant c > 0 such that

CB
n (r,KK) ≥ τBn (r,KK) ≥ c n

rn

for any r ∈ (0, 1) and n large enough.
Moreover, the extremal Toeplitz matrices in the second inequality can be chosen with

a degenerate spectrum arbitrary in D / {0}.

This implies the sharpness of (1.11) as n → ∞ for any r ∈ (0, 1). With respect to
numerical analysis, this theorem says that degenerate Toeplitz matrices may be ill-
conditioned in high dimensions. The outline of the proof will be similar to that
proposed by Szehr and Zarouf in [20] for contractions, but the techniques will differ.
We mention that Theorem 2.1 was announced in [2], without a proof.

Our second result concerns the asymptotic sharpness of Nikolski’s upper bound
(5.1) when K is permitted to grow unboundedly as n → ∞. It is indeed a natural
question to ask whether the dependency on K in (5.1) can be improved or not. We will
show that (5.1) is also sharp in the following sense: there exists a sequence of Jordan
blocks Tn ∈ L(X), where X = (Cn , ∣∣⋅∣∣ l 1), such that K (Tn) → ∞ as n → ∞ and

∣det (Tn)∣ ∥T−1
n ∥

K (Tn)
≥ cn,

for some absolute constant c > 0 (see Proposition 4.1). We mention that the use of
Jordan blocks as extremal matrices in the context of Kreiss matrices is rather classical
(see, for example, [21]).

The organization of the paper is as follows. The next section contains the prereq-
uisites and the statement of Theorem 2.1. The latter is proved in the third section.
Section 4 contains the proof of the asymptotic sharpness of (5.1) with respect to K
and n (Proposition 4.1). In the last section, we present—for the interested reader—a
short and simple proof of the upper estimate (5.1) in Theorem 1.1.

Notation Throughout the paper, we will use the notation f ≲ g meaning that f ≤ cg,
where c is some absolute constant. The notation f ≃ g will mean that f ≲ g and g ≲ f .

2 Background and statement of the main result

Let us denote by H(D) the space of analytic functions in D and by H∞ the Banach
algebra of bounded analytic functions in D, endowed with the supremum norm on D.
The standard Hardy space H2 is defined as the subspace of H(D) consisting of those
functions f for which

∥ f ∥2
H2 ∶= sup

0≤r<1
∫
T

∣ f (rz)∣ 2dm(z) < ∞,
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where m is the normalized Lebesgue measure on the unit circle T ∶= {z ∈ C ∶ ∣z∣ = 1}.
Endowed with ∥ ⋅ ∥H2 , H2 is a Hilbert space with inner product given by

⟨ f , g⟩ = ∑
k≥0

f̂ (k)ĝ(k).(2.1)

By Fatou’s theorem, H2 can be identified with the (Hilbert) subspace of L2(∂D) so
that ⟨ f , g⟩ = 1

2π ∫
π
−π f (e i t)g(e i t)dt, where f and g in the right-hand side of the last

equality denote, without possible confusion, the almost everywhere radial limits of f
and g, respectively.

Given λ ∈ D, we denote by bλ the Blaschke factor associated with λ, namely

bλ ∶= z − λ
1 − λz

.

Let σ = {λ1 , . . . , λn} ⊂ D be a finite sequence. We shall consider the model space KBσ

given by

KBσ ∶= (Bσ H2)⊥ = H2 ⊖ Bσ H2 ,

where

Bσ ∶=
n
∏
k=1

bλk

is the finite Blaschke product associated with σ = {λ1 , . . . , λn}. Any such space KBσ is
an n-dimensional subspace of H2. Now, for 1 ≤ k ≤ n, let fk ∶= 1

1−λk z
and observe that

∥ fk∥H2 = (1 − ∣λk ∣2)
−1/2. Then set

e1 = f1

∥ f1∥H2
and ek =

k−1
∏
j=1

bλ j

fk

∥ fk∥H2
, k = 2, . . . , n.

It is known that (ek)1≤k≤n defines an orthonormal basis of KBσ , called the Malmquist–
Walsh basis [6, p. 117].

The central object of Nikolski’s approach in [8] is the model operator MBσ

defined by

MBσ ∶ { KBσ → KBσ ,
f ↦ PBσ (z f ),

where PBσ denotes the orthogonal projection on KBσ . The matrix representation M̂Bσ

of MBσ with respect to the Malmquist–Walsh basis (ek)1≤k≤n is as follows (see [18,
Proposition III.4]):

(M̂Bσ )i j =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0, if i < j,
λ i , if i = j,
(1 − ∣λ i ∣2)1/2(1 − ∣λ j ∣2)1/2 ∏i−1

μ= j+1 (−λ̄μ) , if i > j,
(2.2)

where (M̂Bσ )i j stands for the i , j entry of M̂Bσ . The reader may consult [6, 7] for a
complete description of model spaces and model operators.
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For the proof of Theorem 2.1, we shall focus on the case where σ = {λ, . . . , λ}
(namely, λ1 = ⋯ = λn = λ with the previous notations). In this case,

KBσ = span{ zk−1

(1 − λ̄z)n
∶ k = 1, . . . , n}

and the Malmquist–Walsh basis βλ ∶= (ek)1≤k≤n is given by

ek(z) ∶= (1 − ∣λ∣2)1/2

1 − λ̄z
( z − λ

1 − λ̄z
)

k−1
, k = 1, . . . , n.

Moreover, one can also show that KBσ coincides as a set with the n-dimensional
Banach space consisting of all rational functions of degree at most n with poles located
at 1/λ. We may and shall equip KBσ with the Banach norm

∥ f ∥B∞ ∶= sup
z∈D

(1 − ∣z∣ 2) ∣ f (z)∣ < ∞, f ∈ KBσ .

Then (KBσ , ∣∣⋅∣∣B∞) is a (Banach) subspace of the Besov space B∞ defined as

B∞ = { f ∈ H(D) ∶ ∣∣ f ∣∣B∞ = sup
z∈D

(1 − ∣z∣ 2) ∣ f (z)∣ < ∞} .

Our main theorem states as follows.

Theorem 2.1 Let λ ∈ D / {0} be fixed, and let Tλ denote the operator acting on
(KBσ , ∣∣⋅∣∣B∞) whose matrix with respect to βλ is given by

Mλ ∶=

⎛
⎜⎜⎜⎜⎜
⎝

λ 1 − ∣λ∣ 2 −λ̄(1 − ∣λ∣ 2) . . . (−λ̄)n−2(1 − ∣λ∣ 2)
0 λ 1 − ∣λ∣ 2 ⋱ ⋮
0 ⋱ λ ⋱ −λ̄(1 − ∣λ∣ 2)
⋮ ⋱ ⋱ ⋱ 1 − ∣λ∣ 2

0 . . . 0 0 λ

⎞
⎟⎟⎟⎟⎟
⎠

.

Then Tλ satisfies the Kreiss condition and the inequality

∣∣T−1
λ ∣∣ ∗ ≥ c(λ) n

∣λ∣n ,(2.3)

where c(λ) > 0 and where ∣∣ ⋅ ∣∣∗ is the operator norm induced by ∣∣⋅∣∣B∞ . In particular,
for any r ∈ (0, 1),

cBn (r,KK) ≥ τBn (r,KK) ≳ n
rn ,

as n → ∞.

The proof of Theorem 2.1—displayed in the next section—is based on a duality
argument already used in [20]. Considering Kreiss operators, we will here make use
of the Besov functional calculus developed in [22] and the duality between the Besov
spaces B∞ and B1, where

B1 = { f ∈ H(D) ∶ ∣∣ f ∣∣B1 ∶= ∫
D

∣(z2 f (z))′′∣dA(z) < ∞} ,(2.4)
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where A stands for the normalized Lebesgue measure on D. This duality is given by
the relation (with equivalence of the norms, see [22, p. 1815] for details)

B⋆1 = B∞(2.5)

for the Cauchy duality (2.1).

3 Proof of Theorem 2.1

Proof of Theorem 2.1 In the whole section, σ = {λ, . . . , λ} ⊂ D / {0} is fixed. First,
using the orthonormality of the Malmquist–Walsh basis, we can see that the adjoint of
MBσ acting on (KBσ , ∣∣⋅∣∣B∞) coincides with Tλ̄ . So, in order to prove that Tλ is a Kreiss
operator, it is enough to show that M̂Bσ

∗
—the adjoint of M̂Bσ —satisfies the Kreiss

condition, namely that there exists some constant K > 0 such that for any ∣ζ ∣ > 1,

∥(ζ − M̂Bσ

∗)
−1
∥
∗
≤ K (∣ζ ∣ − 1)−1 .(3.1)

Let us fix ζ , ∣ζ ∣ > 1. By definition, the adjoint of MBσ coincides with the backward
shift operator

S∗ ∶ f ↦ f − f (0)
z

acting on KBσ .
Thus, using the Cauchy duality (2.5), we further have ∥(ζ − M̂Bσ

∗)
−1
∥
∗
∶=

∥(ζ − S∗)−1∥
∗

. Now, considering the shift operator (S f )(z) = z f (z) acting on the
whole space B1 (and recalling that S is the adjoint of the operator S∗ acting on B∞),
we have ∥(ζ − S∗)−1∥

B∞→B∞
= ∥(ζ − S)−1∥

B1→B1
. The B1-functional calculus [22]

then tells us that for any f ∈ B1,

∥(ζ − S)−1 f ∥
B1

≤ K1 ∥ f ∥B1
∥ 1

ζ − z
∥
B1

for some constant K1 > 0 (see also [8, p. 143] and the references therein for more details
on the last inequality). It remains to observe that

∥ 1
ζ − z

∥
B1

≤ K2 (∣ζ ∣ − 1)−1 ,

whence there exists K3 > 0 such that

∥(ζ − S∗)−1∥
B∞→B∞

= ∥(ζ − S)−1∥
B1→B1

≤ K3 (∣ζ ∣ − 1)−1 .

Since ∥(ζ − S∗)−1∥
∗
≤ ∥(ζ − S∗)−1∥

B∞→B∞
, this yields (3.1) and the fact that Tλ is a

Kreiss operator.
In order to derive (2.3), it is enough to show that ∥(M̂Bσ

∗)
−1
∥
∗
≥ c(λ) n

∣λ∣n for some

constant c(λ) > 0. To do so, we apply (M̂Bσ

∗)
−1

to the test vector X0 = (0, . . . , 0, 1),
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i.e., to the rational function R(z) = en(z). We set

g ∶= (M̂Bσ

∗)
−1

X⊺0 = (S∗)−1en ,

where X⊺0 is the transpose of X0. We have

S∗g = g − g(0)
z

= en ,

which means that

g = zen + g(0)

= (1 − ∣λ∣2)1/2

1 − λz
zbn−1

λ + g(0)

= (1 − ∣λ∣2)1/2 z(z − λ)n−1

(1 − λz)n
+ g(0).

The condition g ∈ KBσ imposes that g is a rational function with lim∣z∣→∞ g(z) = 0,
and hence

g(0) = −(1 − ∣λ∣2)1/2 lim
z→+∞

z(z − λ)n−1

(1 − λz)n

= (−1)n+1 (1 − ∣λ∣2)1/2

λ
n .

It follows that

∥g∥B∞ = sup
z∈D

(1 − ∣z∣ 2) ∣g(z)∣

≥ ∣g(0)∣

= (1 − ∣λ∣2)1/2

∣λ∣n .

Let us now estimate ∣∣en ∣∣B∞ from the above. Defining b̃λ(z) = −bλ(z) = λ−z
1−λz

, we have
b̃λ ○ b̃λ = id - where id denotes the identity function on D—and the H∞ norm is
invariant under the composition by b̃λ . Therefore,

∣∣en ∣∣B∞ = sup
z∈D

(1 − ∣z∣ 2) ∣(1 − ∣λ∣2)1/2

1 − λz
(bλ(z))n−1∣

= sup
z∈D

(1 − ∣z∣ 2) ∣(1 − ∣λ∣2)1/2

1 − λz
b̃λ(z)n−1∣

= (1 − ∣λ∣2)1/2 sup
z∈D

(1 − ∣b̃λ(z)∣ 2) ∣ 1
1 − λb̃λ(z)

zn−1∣ .
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Since

1 − ∣b̃λ(z)∣ 2 = (1 − ∣λ∣2)(1 − ∣z∣2)
(1 − λz)(1 − λz)

≤ 1 + ∣λ∣
1 − ∣λ∣ (1 − ∣z∣2)

and ∣1 − λb̃λ(z)∣ ≥ (1 − ∣λ∣), we get

∣∣en ∣∣B∞ ≤ ( 1 + ∣λ∣
1 − ∣λ∣ )

3/2

sup
z∈D

(1 − ∣z∣ 2) ∣z∣ n−1

≤ 2( 1 + ∣λ∣
1 − ∣λ∣ )

3/2

sup
z∈D

(1 − ∣z∣) ∣z∣ n−1 .

Studying the function r ↦ (1 − r)rn−1 for r ∈ (0, 1), we can check that the supremum
in the last inequality is attained at ∣z∣ = 1 − 1/n. We conclude that

∣∣en ∣∣B∞ ≤ 2
n − 1

( 1 + ∣λ∣
1 − ∣λ∣ )

3/2

(1 − 1
n
)

n

≤ 2
e(n − 1) ( 1 + ∣λ∣

1 − ∣λ∣ )
3/2

.

In particular,

∣∣ (M̂Bσ

∗)
−1

X⊺0 ∣∣B∞
∣∣X⊺0 ∣∣B∞

= ∣∣g∣∣B∞
∣∣en ∣∣B∞

≥ e(1 − ∣λ∣)2

25/2
(n − 1)
∣λ∣n ,

which completes the proof. ∎

4 On the sharpness of (5.1) with respect to K and n

In the previous sections, we were interested in the sharpness of the inequality
det(T)∥T−1∥ ≤ CK(T)n (see (5.1)) for Kreiss matrices T with Kreiss constant K(T)
less than some constant K. In this section, we will consider this inequality for all Kreiss
matrices and prove that (5.1) is sharp as n and K tend to ∞. Relaxing the bound on the
Kreiss constants will allow us to exhibit sequences of Jordan blocks that are extremal
for (5.1).

For a > 1 and λ ∈ D fixed, let Jλ stand for the Jordan block of size n

Jλ ∶=

⎛
⎜⎜⎜⎜⎜
⎝

λ a 0 . . . 0
0 λ a ⋱ ⋮
0 ⋱ λ ⋱ 0
⋮ ⋱ ⋱ ⋱ a
0 . . . 0 0 λ

⎞
⎟⎟⎟⎟⎟
⎠

.(4.1)
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From now on, we denote by ∥ ⋅ ∥ the operator norm induced by the �1- or the �∞-norm
of Cn . Observe that for any z ∈ C, z ≠ λ, the matrix (zIn − Jλ)−1 is well defined and is
the Toeplitz matrix given by

(zIn − Jλ)−1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1
z−λ

a
(z−λ)2

a2

(z−λ)3 . . . an−1

(z−λ)n

0 1
z−λ

a
(z−λ)2 ⋱ ⋮

0 ⋱ 1
z−λ ⋱ a2

(z−λ)3

⋮ ⋱ ⋱ ⋱ a
(z−λ)2

0 . . . 0 0 1
z−λ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.(4.2)

Then

∥(zIn − Jλ)−1∥ = 1
∣z − λ∣ n

∣z − λ∣ n − ∣a∣ n

∣z − λ∣ − ∣a∣ .(4.3)

In the following proposition, we exhibit sequences of Jordan blocks that are
extremal for (5.1), with respect to the dimension n and the Kreiss constant K.

Proposition 4.1 There exists (λn)n , λn > 1, such that limn K (Jλn) = ∞ and

∣det (Jλn)∣ ∥J−1
λn

∥
K (Jλn)

≃ n as n → ∞.(4.4)

Proof By (4.3) with z = 0 and since det (Jλ) = λn , we have ∣det (Jλ)∣ ∥J−1
λ ∥ =

∣λ∣n−∣a∣n
∣λ∣−∣a∣ . We need to check that

K (Jλn) = sup
∣z∣>1

∣z∣ − 1
∣z − λn ∣ n

∣z − λn ∣ n − ∣a∣ n

∣z − λn ∣ − ∣a∣ ≃ 1
n

∣λn ∣ n − ∣a∣ n

∣λn ∣ − ∣a∣

for some (λn)n . From now on, we assume that λn = 1/n. Since the function x ↦
x−n an−1

a−x is decreasing on [0, +∞[ and since ∣z − λn ∣ ≥ ∣z∣ − λn for any ∣z∣ > 1, we have

K (Jλn) = sup
t>1

t − 1
(t − 1/n)n

(t − 1/n)n − ∣a∣ n

(t − 1/n) − ∣a∣ .

Setting x ∶= a/(t − 1/n) and

g(x) ∶= (a + (1/n − 1)x) (xn − 1)
a(x − 1)

gives K (Jλn) = sup0<x< a
1−1/n

g(x). Studying the derivative and the second derivative of
g easily leads to observe that g′ vanish only once in the interval [0, a

1−1/n ]. Moreover,

a computation shows that g′ (a = a
1+1/n−1/n ) > 0, while g′ ( na

n+1 = a
1+2/n−1/n ) < 0 for n
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large enough. Thus, there exists δn ∈ (1/n, 2/n) such that g admits a maximum at
xn ∶= a

1+δn−1/n . Now,

K (Jλn) = g (xn) =
δn (( a

1+δn−1/n )
n
− 1)

a − (1 + δn − 1/n)

≃ an

n

≃ 1
n

∣λn ∣ n − ∣a∣ n

∣λn ∣ − ∣a∣ ,

as n → ∞, as desired. ∎

Remark 4.2 In contrast with the estimate C(n,KK) ≃ Kn (as n → ∞) considered
in the previous sections, it follows from the previous proposition that

C(n,K) ∶= sup{∏
i

∣λ i(T)∣∥T−1∥ ∶ T ∈ K, T ∈ L(X) invertible, X ∈ B(n)} = ∞.

Now, Proposition 4 shows that some sequence of Jordan blocks asymptotically
achieves—up to numerical factor independent of K and n—the supremum

M(n,K) ∶= sup{∏i ∣λ i(T)∣∥T−1∥
K(T) ∶ T ∈ K, T ∈ L(X) invertible, X ∈ B(n)} ,

and provides with an elementary proof of the sharpness of the estimate M(n,K) ≲
n as n → ∞ (which is a consequence of the first part of Theorem 1.1). Note that
Theorem 2.1 obviously also leads to the latter assertion, but not for Jordan blocks and
with more sophisticated arguments.

We shall also notice that, by the Kreiss Matrix Theorem [5, 13, 16], properties PB
and K are equivalent, so C(n,PB) = C(n,K) = ∞. One can wonder whether an
estimate similar to (4.4) can be obtained with supk ∥T k

n ∥ instead of K(Tn), for some
(simple) sequence (Tn)n instead of (Jλn)n .

5 A short and simple proof of Inequality (5.1)

In fact, the statement of Theorem 3.26 in [8] is slightly stronger than the first part of
Theorem 1.1. More precisely, Nikolski proves the following.

Theorem 5.1 Let X be a complex Banach space, and let T ∈ L(X) be a Kreiss operator
with Kreiss constant K ≥ 1. Let us denote by mT = ∏d

i=1(z − λ i) its minimal polynomial,
and assume that (λ1 , . . . , λd) ∈ Dd . Then

∥T−1∥ ≤ CK d
∏d

i=1 ∣λ i ∣
,(5.1)

where C is an absolute constant.
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We will display below a short proof of this more precise result that follows
Nikolski’s approach and is obtained as a combination of Vitse’s [22] functional calculus
for Kreiss operators and the Bonsall–Walsh inequality [1] for rational functions. In
comparison with the proof of [8, Theorem 3.26], its simplicity lies in the choice of a
very simple test function.

A short proof of Inequality (5.1) Let T, (λ1 , . . . , λd), mT , and K be as in the state-
ment of Theorem 1.1. We denote by B the Blaschke product associated with the
sequence (λ1 , . . . , λd) and introduce the test function f given by

f (z) = B(0) − B(z)
zB(0) .

Observe that f is a rational function (analytic in D) that interpolates the function 1/z
on the set (λ1 , . . . , λd). More precisely,

z f (z) − 1 = h(z)mT(z), z ∈ D,

where h(z) = 1
B(0) ∏

d
i=1(λ i z − 1)−1, and therefore T f (T) is the identity matrix. Now,

by [22, Theorem 2.4(3)],

∥T−1∥ = ∥ f (T)∥ ≤ 16Kd
π

∣∣B(0) − B(z)
zB(0) ∣∣ H∞(5.2)

≤ 16Kd
π ∏d

i=1 ∣λ i ∣
max
z∈T

∣B(0) − B(z)∣

≤ 32K
π

d
∏d

i=1 ∣λ i ∣
. ∎

Note that the above proof gives the explicit constant 32
π in (5.1). Yet we expect that

it is not optimal.

Remark 5.1 For completeness, let us give an insight into the first inequality of (5.2).
It is obtained as a combination of Vitse’s functional calculus and the Bonsall–Walsh
inequality: applying [22, Theorem 2.4(1)] to the function f, we get

∥T−1∥ = ∥ f (T)∥ ≤ 2K ∣∣ f ∣∣B1 ,

where B1 is the analytic Besov algebra defined in Section 2, and it remains to apply
the Bonsall–Walsh inequality [1] to the rational function f :

∣∣ f ∣∣B1 ≤ 8
π

deg f ∣∣ f ∣∣ H∞ ,

where deg f stands for the degree of f.
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