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SOME ADDITION THEOREMS OF GROUP THEORY 
WITH APPLICATIONS TO GRAPH THEORY 

H. P. YAP 

I. Introduction and definitions. Let G be an additive group with non­
empty subsets 5 and T. Let S ± T = {s ± /; s G S, t G T}, let 5 be the set 
complement of S in G, and let |5 | be the cardinality of S. We abbreviate {/}, 
where / G G to / . If S + S and 5 have no element in common, then we say 
that 5 is a sum-free set in G or that 5 is sum-free in G. If 5 is a sum-free set 
in G and if for every sum-free set T in G, \S\ ^ \T\, then 5 is said to be a 
maximal sum-free set in G. We denote by X(G) the cardinality of a maximal 
sum-free set in G. We say that S is in arithmetic progression having difference d 
if S = {sy s + d, . . . , 5 + nd} for some s, d G G and some integer n ^ 0. 

If \G\ is finite, then the following four cases are exhaustive and mutually 
exclusive. 

Case 1. |G| is even. 
Case 2. |G| is odd and |G| has at least one prime factor congruent to 2 

modulo 3. 
Case 3. \G\ has no prime factor congruent to 2 modulo 3 but has 3 as a factor. 
Case 4. Every prime factor of |G| is congruent to 1 modulo 3. 
In [2], the following theorems for finite abelian groups G were proved. 

THEOREM 1.1. In Case 1, let \G\ = 2m. Then \(G) = m and if S is a maximal 
sum-free set in G, S = H where H is a subgroup of G. 

THEOREM 1.2. In Case 2, let \G\ = pm, where p = Zk + 2 is the smallest 
prime factor congruent to 2 modulo 3 of \G\. Then 

X(G) = (k + l)m. 

Moreover, if S is a maximal sum-free set in G, then S is a union of cosets of 
some subgroup H, of order m, of G, S/H is in arithmetic progression, and 
SKJ (S + S) = G. 

THEOREM 1.3. In Case 3, X(G) = |G|/3. Moreover, if S is a maximal sum-free 
set in G, then S is a union of cosets of some subgroup H, of order |G|/3m, of G, 
where m is an integer such that 3m||G|, and one of the following holds: 

(i) \S + S\ = 2|5| - \H\, 
(ii) \S + S\ = 2\S\ and S U (S + S) = G. 
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THEOREM 1.4. In Case 4, we have 

f | G | ( l - i ) g X ( G ) ^ l ( | G | - l ) , 

where m = max \n\ n is the order of g, g Ç G]. 

It is clear that if 5 is sum-free in G, then (5 — S) O 5 = 0. In this paper 
we answer the following questions. Suppose that A* is the collection of all 
subsets of cardinality \(G) of a finite abelian group G; what is the maximum 
cardinality, denoted by i(Gx), of subsets M of G such that (M - M) C\ A = 0 
for i É i * ? Suppose that M* is the collection of all subsets M, of cardinality 
i(G\)j of G; what is the maximum cardinality of subsets A, denoted by d(G\)t 

of G such that (M - M) C\ A = 0 for M (EM*? 
We find that the results obtained here can be applied to the construction 

of certain classes of group-graphs satisfying some critical conditions. By a 
group-graph (G, RA), we mean a graph with G, RA as follows: G is an additive 
group with a non-empty subset A. The relation i^A Ç (G, G) is the set of all 
ordered pairs (g, g') such that g, gf Ç G and g — g' G ^4. 

Since RA depends only on A, we shall henceforth write (G, A) for (G, i?A). 
A group-graph (G, ^4) can be interpreted as an ordinary graph as follows. 

Take each element g of G to be a vertex on the paper. Let g, g' G G. If 
g — g' Ç A but gr — g $ ^4, then draw a directed line segment joining g to g'; 
if £ "~" g' ê ^. and g' — g G ^4, then draw an undirected line segment joining 
g and g'; if g — g7 $ A, and gr — g g ^4, then no line segment is drawn joining 
g and g'. 

It has been proved [5; 6] that every group-graph is point-symmetric. (The 
definition of a group-graph in [5] is different from the definition given above, 
but it can be proved that for the undirected case the two definitions are 
equivalent.) 

On the other hand, although it is not true that every finite point-symmetric 
graph is a group-graph (the Petersen graph is point-symmetric, but not a 
group-graph [9]), it is true that every point-symmetric graph with a prime 
number of vertices is a group-graph [7]. Thus, the results obtained in this 
paper have some significance in graph theory. In fact, if we are interested only 
in group-graphs, we can, by methods similar to that used here, enhance the 
results obtained in this paper. 

The following is an example of a group-graph (G, A): 

G = C4 X C2 = { (i,j); 0 ^ i^ 3, 0 ^ j ^ 1} 

is the direct product of two cyclic groups CA of order 4 and C2 of order 2; 

A = { ( 0 , 1 ) , (1,1), (2,1), (3,1)}. 

Let (G, i ) be a group-graph. Then (G, A) is of degree m if and only if 
\A\ = m. The order of (G, A) is the order of G. (G, A) is undirected if and only 
if —A = A and <G, A) is loopless if and only if 0 £ A. 
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In the subsequent discussions, we shall make use of the following theorems 
[3, Chapter I]. 

THEOREM 1.5 (Mann). Let G be a group with subsets A and B. Then either 
A + B = G or \G\ ^ \A\ + \B\. 

THEOREM 1.6 (Cauchy-Davenport). If A and B are subsets of a group G of 
prime order p, then A + B = G or \A + B\ ^ \A\ + \B\ — 1. 

THEOREM 1.7 (Vosper). Let G be the additive group of residues modulo a 
prime p. Let A and B be subsets of G and C = A + B. Then either \C\ è \A | + 
\B\ or one of the following holds: (i) C = G; (ii) \C\ = p — 1 and B = f — A, 
where f = C; (iii) A and B are in arithmetic progression and have the same 
difference; (iv) \A\ = I or \B\ = 1. 

THEOREM 1.8 (Kneser). Let G be an abelian group with finite subsets A and B. 
Then there exists a subgroup H of G such that 

A+B + H = A+B and \A + B\ ^ \A + H\ + \B + H\-\H\. 

II. The number i(G\) of a finite abelian group G. Throughout this 
section, unless otherwise stated, G stands for a finite abelian group. Let A* 
be the collection of all subsets of cardinality X(G) of G. Let A 6 ^4*. If M is 
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a subset of G such that (M - M) H A = 0 and |If | ^ \M'\ for any subset 
M' of G satisfying (M' — M') P\ A = 0, then we say that i f is a maximal 
subset of G satisfying (ilf — M) C\ A = 0. It is clear that M depends on A. 
We denote by /JL(A) the cardinality of M if M is a maximal subset of G 
satisfying (ilf — i f ) H A = 0. We define 

i(G\) = max/x(^4). 
A£A* 

It is clear that i(G\) is the maximum coefficient of internal stability of 
group-graphs (G, A) of degree X(G) [1, p. 35]. 

If A G .4* and if M is a maximal subset of G satisfying (M — M) C\ A = 0, 
|M| = i(G\), then (A, M) is said to be a pair of critical subsets of G satisfying 
the X-conditions. 

Let 5 be a maximal sum-free set in G, then (S — S) P\ 5 = 0. Thus we 
have the following result. 

LEMMA ILL i(Gx) ^ X(G). 

Now, suppose that (A, M) is a pair of critical subsets of G satisfying the 
X-conditions, then by Theorem 1.8 there exists a subgroup H of G such that 

I f - i f + ^ = M - M and \M - M\ ^ \M + H\ + \-M + H\ - \H\. 

From ilf - I f = M - ilf + H = (ilf + H) - (ilf + if) , we have 

(( i f + H) - (ilf + H))r\A = 0 . 

Since \M + H\ ^ |ilf |, therefore, by the hypothesis, ilf + H = M. Hence 
we have the following result. 

LEMMA 11.2. (A, i f + if) is also a pair of critical subsets of G satisfying the 
\-conditions and thus M is a union of cosets of H. 

\H\, 

From this lemma, we have 

(i) |G| - X(G) ï£ | M - M\ ^ 2\M\ -

and thus 

M*Q G± - X(G) 1~|, . 
\H\ +2.F 1 , 

where [x] denotes the integer part of x. Hence 

(2) i(Gx) ^ max 
d\\G\ [i |G| - \(G) l ] 

d. 
\G\ L-Z # Z J 

Now we prove the following. 

LEMMA II.3. Let G be a group (not necessarily abelian). If A and B are finite 
subsets of G satisfying \A + B\ = \A\ ^ \B\, then A is a union of cosets of a 
subgroup H of G such that B — B CI H. 
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Proof. Let H be the set of all h G G such that A + h = A. It is clear that i J 
is a subgroup of G and thus 4̂ is a union of right cosets of H. 

Now, from \A + B\ = \A\, it follows that 4 + b = ^ + V for every 
b,b' £ B and thus 4 + & - & ' = 4 for every b, V 6 5 . 

Hence A + B - B = A and therefore B - B Œ H. 
(We note that this lemma generalizes [2, Theorem 7].) 

THEOREM II .1. In Case 1, Ze£ |G| = 2m. 77&ew 

Î(GX) = m = \(G). 

Moreover, if (A, M) is a pair of critical subsets of G satisfying the A-conditions, 
then M — M is a subgroup of G and A = M — M is a maximal sum-free 
set in G. 

Proof. By Theorem 1.5, i(G\) > m and thus by Lemma LI, 

i(G\) = m = A (G). 

Now, if {A, M) is a pair of critical subsets of G satisfying the A-conditions, 
then \M\ = m and since (M — M) C\ A = 0, \A\ = m, therefore 

m ^ \M — M\ ^ |M| = m 

and thus \M — M\ = \M\. Now applying Lemma II.3, M — M is a subgroup 
of G and A = M — M is a maximal sum-free set in G. 

The proof of Theorem II. l is now complete. 

We note that in the above theorem, —A = A,0 g A, and thus by 
[1, p. 46, Theorem 2], it follows that M is a kernel [1, p. 45] of (G, A). 

THEOREM 11.2. In Case 2, let \G\ = pm, where p = 3k + 2 is the smallest 
prime factor congruent to 2 modulo 3 of \G\. Then 

i(Gx) = (* + l)w = X(G). 

Moreover, if {A, M) is a pair of critical subsets of G satisfying the A-condition s, 
Jfeew ikf is <2 wwiow of cosets of a subgroup II, of order m, of G, M/H is in 
arithmetic progression, and A = M — M is a maximal sum-free set in G. 

Proof. From (1), we have (2fe + \)m à \M - M\ ^ 2(k + \)m - \H\. 
Thus \H\ ^ m. We shall first prove that \H\ = m. 

Suppose that \H\ > m. Let 

\H\ = pmi, m = W1W2; 

then p > m2 > 1. Thus 

where (x] denotes the smallest integer greater than or equal to x. 
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Case (i). When m2 = 3m3, 

((k + l)m 1 _ M3fe + 2)mzm1 + mmï\ _ , 
V ^mi J \ ^wi J 

Hence | i f — M| è 2(ra3 + l)pm\ — pm\ = (2k + l)m + m/S + pmu which 
is impossible. 

Case (ii). When ra2 = 3ra3 + 1, 

({k + l ) m l = /(3fe + 2)m3mi + (m3 + (k + l))mi" 
V ^mi J V ^mi 

B u t ^ / 3 > w3 + 1/3, £ /3 = £ + 2/3, therefore 2^/3 > m3 + (jfe + 1). Hence 

' (*+l)ml , 1 
— I = m3 + 1 

and \M - M\ ^ 2(m3 + l)£mi - £wi = (2k + l)m + m/3 + (k + 2/3)mu 

which is impossible. 
We note that m2 ^ 3m3 + 2 since p is the smallest prime factor congruent 

to 2 modulo 3 of |G|. Hence \H\ = m and from (1), again, we have 

(2k + l)m ^ |M - 7kf| ^ 2|M| - w ^ (2fe + l)m. 

It follows that \M\ = (k + \)m and \M - M\ = 2|M| - | # | . Thus 

| ( l f - M)/H\ = 2 |M/H| - 1. 

Applying Theorem 1.7, we know that M/H, being a subset of the quotient 
group G/H, or prime order p, is in arithmetic progression. Let 

M/H = {a+jd]j = 0, 1, . . . , * } , a,d ( ^ 0) G G / # . 

Then ((M - i l f ) /#) = {(k + l)d, (k + 2)d, . . . , (2fe + l)d} is sum-free in 
G and thus 

A = (H + (k + l)d) KJ (H+ (k + 2)d) U ...\J (H+ (2k+ l)d), 

d e G,d d H, 
is a maximal sum-free set in G. 

The proof of Theorem 11.2 is now complete. 

We note that M appearing in the above theorem is a kernel of (G, -4). This 
follows from [8, Lemma 1] and [1, p. 46, Theorem 2]. 

THEOREM II.3. In Case 3, let \G\ = 3nm, where (3, m) = 1. Then 

i(Gx) = T~lm = X(G). 

Moreover, if (A, M) Is a pair of critical subsets of G satisfying the X-conditions, 
then one of the following holds: 

(i) \M - M\ = 2\M\ - \H\, 
(ii) \M - M\ = 2\M\ and A VJ (M - M) = G. 
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Proof. If 

1 \G\ - \(G) 1 
2 d + 2. 

d> y-lrn, d\\G\, 

then 
To^-i -,1 

d > 3"_1m, d||G| 
3W m l 

. d + 2 J 

Thusd = 3wWi, 1 ^ mi < m,m = Wim2, m2 = 3g + 1. Therefore çd > 3n-1ra, 
which is impossible. Hence i(Gx) = Zn~1m = A(G). 

From 2|M| ^ \M - M\ ^ 2\M\ - \H\ and Lemma II.2, we have 

2\M/H\ à ICW - M)/ff| ^ 2|M/ff| - 1. 

Thus, one of the following holds: 
(i) \M - M\ = 2\M\ - |£T|f  

(ii) \M - M\ = 2\M\ and thus A = M - M, A U (M - M) = G. 
The proof of Theorem 11.3 is now complete. 

We remark that in the above theorem, if (ii) holds, then, since — A = A 
and 0 g A, by [1, p. 46, Theorem 2], M is a kernel of (G, -4). 

THEOREM 11.4. / ^ Case 4, suppose that G is the additive group of residue classes 
modulo | G |; ^ew 

i(Gx) = (|G| + 2)/3. 

Moreover, if (A, M) is a pair of critical subsets of G satisfying the X-condition s, 
fie» IM - M\ = 2\M\ - 1 and A U (M - M) = G. 

Proof. Suppose that \G\ = 3& + 1. Let 

M = {a, a + d, . . . , a + kd\, (d, \G\) = 1. 
Then 

M - M = {0, ±d , d=2d, . . . , ±kd], 
and 

4 = M - M = {(k + I K (* + 2 K • • • , 2Jfed). 

Hence ^(Gx) ^ * + 1. 
On the other hand, from (1), we have 2k + 1 ^ \M - M\ ^ 2|Af| - | # | . 

If |M| > k + 1, then \H\ ^ 3. Let 

| # | = 3ft + 1, |G|/|ff| = 3ft' + 1. 

Then 36 + 1 = (3ft + l)(3ft' + 1) and thus £ = h'\H\ + h. Hence 

|M| *(^\\H\*{h' + l)\H\, 

from which it follows that 

2A'|H| + 2ft + 1 = 2k + 1 ^ |M - Af| è 2{V + 1)\H\ - \H\ 
= (2h' + 1)\H\, 

which is impossible. Hence i(G\) = k + 1 = (\G\ + 2)/3. 
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Next, if (A, M) is a pair of critical subsets of G satisfying the X-conditions, 
then from (1), we have 

2k + 1 ^ \M - M\ ^ 2\M + H\ - \H\. 

By Lemma 11.2, |iï|||ilf| = k + 1; therefore, 

|ff |j( |M| f |G|) = (k+ l,3fe + 1) = 1. 

Hence \H\ = 1 and thus 

2k + 1 ^ |M - M\ è 2|Af| - 1 = 2£ + 1, 

from which it follows that \M - M\ = 2|M| - 1 and A \J (M - M) = G. 
The proof of Theorem 11.4 is now complete. 

We remark that in the above theorem, since —A=A and 0 $ A, by 
[1, p. 46, Theorem 2], M is a kernel of (G, A). 

III. The number d(Gx) of a finite abelian group G. Throughout this 
section, G stands for a finite abelian group. Let M* be the collection of all 
subsets If, of cardinality i(G\), of G. Define 

d(Gx) = \G\ - min \M - M\. 
M£M* 

If A C G is such that (M - M) C\ A = 0, M Ç M*, | 4 | = d(Gx), then 
(G, A) is a group-graph with maximum degree such that the coefficient of 
internal stability is i(G\). 

If M e M* is such that \M - M\ = \G\ - d(G\), then M is said to satisfy 
the ^-conditions. 

From (1), we have the following result. 

LEMMA II I . l . d(G\) ^ X(G). 

Now, if M satisfies the ^-conditions, let A = M — M\ then 

(A + M) C\ M = 0. 

By Theorem 1.8, there exists a subgroup K of G such that 

A + M + K = A + M and \A + M\ ^ \A + K\ + \M + K\ - |K|, 

from which it follows that 

(3) |G| - i(Gx) ^\A + M\ ^\A+K\ + \M + K\ - \K\. 

It is clear that the converse of Theorem II . l is also true. In fact, we have 
the following result. 

THEOREM I I I . l . In Case 1, let \G\ = 2m. Then 

d(Gx) = m = X(G). 
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Moreover, if M satisfies the d-conditions, then A = M — M is a maximal 
sum-free set in G. 

Now we prove t h a t the converse of Theorem 11.2 is also true. 

T H E O R E M 111.2. In Case 2, let \G\ = pm, where p = 3ft + 2 is the smallest 
prime factor congruent to 2 modulo 3 of \G\. Then 

d(Gx) = (ft + l)m = X(G). 

Moreover, if M satisfies the d-conditions, then there exists a subgroup K, of order m, 
of G, such that A = M — M and M are unions of cosets of K. Also M/K and 
A/K are in arithmetic progression and have the same difference. 

Proof. From (3), we have 

(2ft + \)m ^ \A + M| ^ \A\ + \M\ - \K\ ^ 2 (ft + \)m - \K\. 

T h u s |JST| è m. 
Using a method similar to tha t in the proof of Theorem 11.2, we can show t h a t 

\K\ > m. T h u s \K\ = m and \A + K\ = (ft + \)m = \A\, \M + K\ = 
(ft + l)m = \M\ and therefore both A and M are unions of cosets of K. Hence 

\(A + M)/K\ = \A/K\ + \M/K\ - 1 

and by Theorem 1.7, we know that A /K and M/K are in ar i thmetic progression 
and have the same difference. 

Finally, by the same method used in the proof of Theorem 11.2, we can 
show t h a t A = M — M is a maximal sum-free set in G. 

Remarks. In Case 2, by using Theorems II .2 and I I I .2 we see t h a t (A, M) 
is a pair of critical subsets of G satisfying the X-conditions if and only if M is 
a subset of G satisfying the ^-conditions and A = M — M is a maximal 
sum-free set in G. Thus , in order to construct a group-graph (G, A) of degree 
\{G) with coefficient of internal stabil i ty i(G\), we first find a subgroup H, 
of order m, of G; then by Theorem 11.2, 

A = H + {(ft + I K (ft + 2)d, . . . , (2ft + l )d}, 

where d G G, d g H. Also, by Theorem 111.2, 

M = H + {a +jd; j = 0, 1, . . . , ft} 

for any a G G. 
For a fixed d £ G, d Q H, let 

M = i J + { a + i ^ ; j = 0, 1, . . 

M i = # + { a 1 + j d ; j = 0, 1, . 

I t is clear tha t if ai ([ a + H, then Mx ^ M. Let 

M' = H + {a' +jd';j = 0, 1, . . . , * } , d ; 6 G, d' $ if. 

, * } , 

. , * } . 
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By [4, p. 276, Lemma 1], if d' <2 d + H, then M' 7^ M. Thus, for a fixed 
maximal sum-free set A in G, there are altogether pip — l ) / 2 distinct kernels 
of (G, A). 

THEOREM 111.3. In Case 3, we have 

d(Gx) = 2|G|/3 = 2X(G). 

Moreover, if M satisfies the d-conditions, then K = M — M is a subgroup, of 
order |G|/3, of G. 

Proof. Let H be a subgroup, of order |G|/3, of G. Let JV be a coset of i î . 
Then \G\ - \N - N\ = 2|G|/3. Thus 

d(Gx) ^ 2|G|/3. 

Now, let Jkf be a subset of G satisfying the ^-conditions. Then 

\M - M\ = \G\ -\M- M\£ \G\ - \M\ g \G\ - X(G) = 2|G|/3. 

Hence \A\ = \MT=~M\ = 2|G|/3 and thus d(Gx) = 2|G|/3. 
Next, from 2|G|/3 ^ \A + M\ ^ \A + K\ + \M + K\ - \K\, it follows 

that \K\ ^ |G|/3 and thus \K\ = |G|/3. Therefore M is a coset of A' and 
thus M - M = K. 

THEOREM 111.4. In Case 4, suppose that G is cyclic; then 

d{fh) = (|G| - l ) / 3 = X(G). 

Moreover, if M is a subset of G satisfying the d-conditions, then A = M — M 
is such that \A + M\ = \A\ + \M\ - 1, M U (A + M) = G. 

Proof. Let M be a subset of G satisfying the d-conditions. Let \G\ = 3k + 1. 
Then from (3), we have 

2k^\A + M\^\A + K\ + \M+ K\ - \K\. 

U \A\> k, then 2k^\A + M\ ^ (k + 1) + (k + 1) - |2ST|, from which it 
follows that \K\ ^ 3. 

Suppose that \K\ = 3r + 1, |G|/|i£| = 3 5 + 1 . Then 

3^ + 1 = (3r + l ) ( 3 s + 1) 

and thus & = s|i£| + r. Hence 

\A+K\^[~^J\K\ = (s+l)\K\ and |M + X| è (s + 1)\K\. 

Thus 2& = |4 + M\ ^ 2s|i£| + \K\, which is impossible. 
Hence d(Gx) = (|G| - l ) / 3 = X(G). 
Finally, it can be shown that, in the above inequality, \K\ = 1. Therefore 

2k ^\A + M\^ \A\ + \M\ - 1 = 2k and thus 

\A + M\ = \A\ + \M\-1, MKJ {A + If) = G. 

Acknowledgement. I am grateful to Professor P. H. Diananda for helpful 
discussions. 

https://doi.org/10.4153/CJM-1970-136-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1970-136-7


ADDITION THEOREMS 1195 

R E F E R E N C E S 

1. C. Berge, Theory of graphs and its applications (Methuen, London, 1962). 
2. P. H. Diananda and H. P. Yap, Maximal sum-free sets of elements of finite groups, Proc. 

Japan Acad. 45 (1969), 1-5. 
3. H. B. Mann, Addition theorems (Interscience, New York, 1965). 
4. H. B. Mann and J. E. Olson, Sums of sets in the elementary abelian group of type (p, p), 

J. Combinatorial Theory 2 (1967), 275-284. 
5. G. Sabidussi, On a class of fix-point-free graphs, Proc. Amer. Math. Soc. 9 (1958), 800-804. 
6. H. H. Teh and H. P. Yap, Some construction problems of homogeneous graphs, Bull. Math . 

Soc. Xanyang Univ. 1964, 164-196. 
7. J. Turner, Point-symmetric graphs with a prime number of points, J. Combinatorial Theory 

3 (1967), 136-145. 
8. H. P. Yap, The number of maximal sum-free sets in Cp, Nanta Math. 2 (1968), 68-71. 
9. A class of point-symmetric graphs, Nanta Math. 8 (1969), 100-109. 

University of Singapore, 
Singapore 

https://doi.org/10.4153/CJM-1970-136-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1970-136-7

