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ABSTRACT. The Savage-Hutter model is generalized by including a velocity-dependent
drag in addition to the usual Coulomb dry friction at the base of the avalanche. Both linear
and quadratic velocity dependencies are considered, with either constant or asymptotically
constant drag coeflicients for large thickness h. The singular nature of the constant coefficient
model for small A is demonstrated and it is shown that the asymptotic model allows the tail of
the avalanche to move at a finite velocity. The inclusion of velocity drag changes the stress
state in the avalanche and new earth-pressure relations are derived and investigated.

INTRODUCTION

In the Savage and Hutter (1989, 1991) model for the flow of
dense granular materials, such as snow, ice or rock ava-
lanches, the Coulomb dry [riction at the base does not
increase in response to increased flow rates. As a result, the
velocity of an accelerating avalanche does not tend to a
finite limit but continues to increase without bound. This is
physically unrealistic. Velocity-dependent basal-drag laws
have therefore been used in both point mass (e.g. Voellmy,
1955) and continuum models (e.g. Hutter and Greve, 1993)
to bring the avalanche to a steady terminal velocity. In this
paper some of the features of these models are discussed.

GOVERNING EQUATIONS

In the Savage-Hutter (199]) theory, curvilinear coordinates
(x, z) were defined, which lie parallel to, and normal to, the
local slope topography. The leading-order depth-integrated
mass balance is

dh du

— L

dt dx
where h is the avalanche thickness, u is the down-slope
velocity and d/dt = 9/t + ud/dx is the total derivative.
The leading-order depth-integrated momentum balance is

=0 (1)

du
h— =
pr dt

where pis the avalanche density, gis the gravitational accel-
eration, C is the local slope inclination angle, 7 is the basal
shear traction and K, is the earth-pressure coefficient.

The basic idea behind the generalization of the Savage—
Hutter model is to decompose the basal shear stress 7 into
two contributions:

ol
pghsin( + 7 — pghcos ¢ K, % (2)

T =7 1y (3)
The first contribution 7. is simply the conventional
Coulomb dry-friction law and the second term 7, is an addi-
tional velocity-dependent drag relation, that is

e —(u/\u]}pb" tan é, } (4)

Tu = —pleru + ea|ulu)
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where pP is the normal pressure at the base of the ava-
lanche, 6 is the basal angle of friction and ¢; > 0 and
¢2 2 0 are linear and quadratic drag coefficients, respec-
tively. Savage and Hutter (1991) showed that to leading or-
der the normal basal pressure p°. = ph(gcosC + ku?),
where £ is the local curvature of the chute. In this paper it
is assumed that £ = 0 for simplicity.

Two models are considered for the linear and quadratic
drag coeflicients ¢; and e,. The first is the simplest possible
model in which the drag coeflicients are equal to the con-
stants ¢ > 0 and ¢; > 0, respectively. The second model
assumes that for larger avalanche thicknesses the drag coelli-
cients approach the same constant values but that for smaller
avalanche thicknesses ¢; and 3 are proportional to h. That is,

(1). a=g¢, €3 = C5,

(2). e =ch/(hi+h), ea=ch/(h+ h)} (5)

where the parameter h; is constant. Note, that the first of
these models is a special case of the second, as the latter re-
duces to the former when iy = 0. For ease of reference, the
first model, and the second model with A; = 0, is termed the
constant coefficient model and the second model with h; > 0 s
called the asymptotically constant model or asymptotic model.

On substituting the drag relations (4) into Equation (2),
the depth-integrated momentum balance reduces to

du . dh
ha =gh— (ciu+ es|u|u) — ghcos (I\ﬂ.% (6)
where the driving force
g = gcos((tan( — (u/|ul) tan é). (7)

For small avalanche thicknesses the constant and asymp-
totic models have a very different behaviour. Provided the
solutions remain regular, the limit as # — 0 of the momen-
tum halance in Equation (6) is

(1). cu+clulu=0, h =0, } (8)
(2). 0=0; hy>0;
for the constant coeflicient and asymptotic models, respec-
tively. Tt follows that for the constant coefficient model the
velocity u = 0 at all points where the avalanche thickness
h =0, i.e. at the boundaries of a finite-mass avalanche.
These boundaries can only move if the derivatives dh/dx
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and/or du/0x become singular. Whereas in the asymptotic
model, and the original Savage—Hutter theory, the momen-
tum balance is trivially satisfied at h = 0 and the velocity is
determined by continuity.

Typical velocity magnitudes within the interior of a fi-
nite-mass avalanche can be estimated from the case of
steady uniform flow, in which 8/dt =0 and 9/dz = 0.
Assuming that the avalanche is being accelerated down-
slope, & < |¢| < @/2, and that the velocity has the same sign
as the slope inclination angle, sgn(u) = sgn(¢), then Equa-
tion (6) yields the quadratic equation

e 4 eyug — |g'lh =0, (9)

for us, the modulus of the steady uniform flow velocity. Sub-
stituting the asymptotic drag coefficients from Equations
(5), it follows that

=] + \/(c’{)2 +4lges(hy +h) ,
L 2¢ r @ ' (10)

us = |g/|(h1 + h)/, =0

The modulus of the steady uniform velocity u is plotted as a
function of the avalanche thickness h in Figure 1 for each of
the models. For large avalanche thicknesses, the quadratic
drag law implies that the steady velocity u, ~ V'h, whilst
with the linear drag law wu, ~ h, for both constant and
asymptotic models. Tt follows that, in the absence of other
effects, thicker parts of the avalanche will tend to move fas-
ter than thinner sections of the avalanche and therefore
non-linear waves (e.g. Whitham, 1974) and shocks are ex-
pected. In the limit as b — 0, the steady uniform velocity
s — 0 for the constant coefficient model, whilst in the
asymptotic model it tends to a constant finite limit
PP £ 10} )

u™ = ug|,_. This implies that with the asymptotic model

the rear of the avalanche (where an expansion wave devel-
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Fig. 1. The modulus of the steady uniform velocity us is plotted
as a function of h for the quadratic (top) and linear
( bottom ) drag laws, and for both the constant coefficient ( so-
lid ) and asymplotic ( dashed ) models.
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ops) moves with a finite velocity, whilst it remains fixed at
its initial position with the constant coefficient model (Fig. 2).

EARTH-PRESSURE COEFFICIENTS

The inclusion of a velocity-dependent drag increases the
applied shear traction at the base of the avalanche, and will
therefore alter the stress state within the avalanche. This
effect has not been considered in other generalizations of
the Savage—Hutter theory. In this paper, the simple argu-
ments of Savage and Hutter (1989) are paralleled to derive
a new earth-pressure coeflicient K, appropriate for
velocity-dependent drags.

It is assumed that the same simple stress state prevails in
the granular material. That is, one of the principal stresses,
Py, lies perpendicular to the plane of avalanche motion and
the magnitude of one of the remaining principal stresses, p;
or p, is equal to py,. Thus, the three Mohr-stress circles col-
lapse to a single Mohr circle, with principal stresses, p,, p-,
in the zzplane. This stress state can be conveniently visua-
lized on a Mohr circle diagram. All the allowable stress
states lie on the circle

(p—a.)2+‘r2=r2 (1T

with radius 7 and centre @ = (pgy + ps.)/2. The principal
stresses, p, and p., lie on the p axis as illustrated in Figure 3,
and stress state (.., 7¢-) lies diametrically opposite (P, To)-

The snow is assumed to be a Mohr—Coulomb material
that satisfies the yield criterion

T<+ptang (12)

where ¢ is the internal angle of friction. This corresponds to the
domain between the two straight lines on the Mohr-circle dia-
gram inclined at + ¢ to the p axis and intersecting at the origin.
When the material is at yield the Mohr circle of stress is tangent

Fig. 2. A finite mass of granular material is released from rest
on an inclined plane ( a) and flows downslope. With the cons-
tant coefficient model (b) the tail of the avalanche remains
fixed at its initial position and singular gradients occur al the
[front. With the asymplotic model (¢) the tail moves with a
finite velocity and the gradients at the front remain regular.
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T=+p tang

T=—ptang

Fig. 3. The stress state within the avalanche is represented on a
Mohr-cirele diagram. The yield criterion corvesponds lo the
two straight lines inclined at angles = ¢ to the horizontal.
When the material is at yield the Mohr styess eircle is tangent
to the yield lines.

to the Mohr-Coulomb lines 7 = &+ ptan ¢, as illustrated in
Figure 3. and by elementary trigonometry it follows that

r = asin ¢. (13)

The position of the centre of a Mohr circle which satis-

fies the vield criterion (12) is obtained by substituting Equa-
tion (13) into Equation (11) and solving the quadratic to give

a:seczq’)(p:t \/p2 sin® ¢ — 72 cos? ¢ ) (14)

The ecarth-pressure coefficient K, relates the limiting
normal stress in the 2 and z directions, and was defined by
Savage and Hutter (1989) as

A':r = p.r.r‘/p:z- (15)
The in-plane pressure p,, can be eliminated by recalling
that by definition, @ = (py. + p.:)/2, and that at yield a is

given by Equation (14). It follows that the earth-pressure
coefficient for Mohr—Coulomb material at yield is

2
K, = 2sec® q&{l o \/sianf);;:cos?gb } —1. (16)

Savage and Hutter (1989) used the leading-order basal-
stress state to determine the carth-pressure coefficient, K_I,'.’,
at the base of the avalanche. To leading order the basal shear

b = 7. and the normal pressure p°. = pghcos( in
their model. In this paper, the Coulomb dry friction 7 is sup-
plemented by an additional velocity dependent drag 7, so
that to leading order the basal shear stress 'r"{a = Tot T
whilst the normal basal pressure remains the same as above.
The earth-pressure coefficient at the base of the avalanche is
therefore modified. Savage and Hutter (1989) also assumed
that the earth pressure coeflicient remained approximately
constant through the depth of the avalanche, i.e. K, = K,
which 1s also assumed here. It follows that for a Mohr—Cou-
lomb material subjected to both Coulomh dry-friction and

velocity-dependent drag laws the earth-pressure coefficient is

K., = 2sec? ¢{1 VU } _ (17)

stress 7,

where
* * 2
cilul + e3lul

tand + ——=———
g(h + hy) cos [(|

2
U = sin® ¢ — cos® ¢  (18)
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Fig. 4. The basal stress (p°, T°) lies in the shaded region of the
Mohr-circle diagram, instead of on the Coulomb dry-friction
line T = & ptand in the Savage—Hutter model. The two
Mokhr circles through this point corvespond to the passive and
active stress states.

is a function of avalanche thickness and velocity. This is an
important new feature of the model. The change in the
assumed stress state is illustrated schematically in Figure 4.
The basal stress (p”, 7°) no longer lies on the Coulomb dry-
friction line 7 = £ptané, but, because of the additional
velocity-dependent drag, it is defined within the whole of
the shaded region.

The earth-pressure coeflicient can take two limiting
values, K,  and K",.W, corresponding to whether the stress
state is active or passive. Savage and Hutter (1989) introduced
the ad hoc definition that a dilatation occurs in the active
regime and a compression in the passive regime, i.c.

K,= { Ky, Ouf0x >0
I\'rp:u

dufdz < 0,
although other definitions are possible (Tai and Gray,
1998). The larger of the two circles in Figure 4 corresponds
to the passive stress state and the smaller to the active stress
state.

In order to obtain real values of the earth-pressure coel-
ficient, the function ¥ in Equation (18) must be greater or
equal to zero, In the original Savage—Hutter theory, when
c] = ¢; =0, the function ¥ > 0 provided 6 < ¢ and the
active and passive stress states are defined for all values of h
and u

Kyp = 2s86c’ qﬁ(l F {1 — cos’ psec’ 15}']3) —l (20

(19)

Here, the conditions are considerably stricter. For fixed
values of the velocity modulus, |u], the function W is positive
ifand only if

(1) h 2 h(), h{ = 0,

(2). h>hy—h, h >0, (21)
where

iy = cilu| + C'.'§|u.|2 % 1B, (22)

"~ geos|(|(tan ¢ — tand) —
Thus, for the constant coeflicient model the avalanche thick-
ness must be greater than some positive thickness hy
throughout the whole of the avalanche domain in order to
obtain a well-posed problem. For a finite-mass avalanche,
where there are necessarily regions close to the boundaries
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Fig. 5. The active (solid) and passive (dashed ) earth-pres-
sure coeffictents are plotted as a_function of h. The constant
coefficient model (top) contains a region for small h where
K, is not defined. When hy = hy the earth pressure is
defined for all hwith the asymptotic model ( bottom ).

where h < hy, the earth-pressure coefficient is complex and
the problem is ill-posed. For a finite-mass avalanche, in
which h > 0, the asymptotic model is well-posed if hy = hyg
and is ill-posed if by < hy. The domains in which the earth
pressure is defined are illustrated in Figure 5.
For fixed values of the avalanche thickness h the function
¥ is greater or equal to zero provided
|’U.‘ < Up (23)

where the maximum velocity

—¢; + /() + 4lgles(ha + )

= 2 s Gl (24)
Uy = |g|(h1 + )/ ¢, c; =0
and
G = gcos|C|(tan ¢ — tan ). (25)

That is, for both the constant coeflicient and asymptotic
models, with either linear or quadratic drag laws, there is
an upper limit to the allowable velocity magnitude. Above
this limit the earth pressure is not defined and the model is
ill-posed. This is illustrated in Figure 6 for the case of quad-
ratic drag. Indeed, if ¢ = & then the shear stress will exceed
that allowed by the Mohr-Coulomb criterion as soon as the
velocity becomes non-zero.

CONCLUSIONS

The asymptotic model for the velocity-dependent drag coel-
ficients has a number of points to recommend it above the
constant coefficient model. First, the singular nature of the
solution at the front of the avalanche is removed and, sec-
ondly, the tail of the avalanche can move with a finite
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Hig. 6. The active (solid) and passive (dashed) earth-pres-
sure coefficients are plotted as a function of u for the quadratic
drag law.

velocity. Not only is this good for numerical methods but it
is also physically more realistic. In addition, if the new
earth-pressure coefficient (Equation (17)) is used, then the
asymptotic model ensures that &, is well defined for small
avalanche thicknesses, provided that the parameter hy is
suitably chosen.

The velocity-magnitude restriction (23) on the new
earth-pressure coefficient is severe. A comparison of the
steady uniform flow velocity u, with the maximum permis-
sible velocity 1, shows that

ty < By === €] £ 4. (26)

That is, the steady uniform velocity is less than the maxi-
mum permissible velocity if and only if the slope-inclination
angle modulus is less than the material’s internal angle of
friction. If the inclination angle exceeds this amount and
the slope is long enough, the earth-pressure coefficients at
the nose of the avalanche become undefined and the
problem becomes ill-posed.

It is clear that the Mohr—Coulomb constitutive relation
cannot support the shear stresses imposed at the base of the
avalanche in many physical situations. This is seen as evi-
dence that a further rate-dependent contribution to the con-
stitutive relation must be included to obtain a universally
applicable theory.
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