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Abstract
We propose a notion of multi-scale stability conditions with the goal of providing a smooth compactification of
the quotient of the space of projectivized Bridgeland stability conditions by the group of autoequivalence. For the
case of the 3CY category associated with the 𝐴𝑛-quiver, this goal is achieved by defining a topology and complex
structure that relies on a plumbing construction.

We compare this compactification to the multi-scale compactification of quadratic differentials and briefly
indicate why even for the Kronecker quiver, this notion needs refinement to provide a full compactification.
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1. Introduction

Spaces of Bridgeland stability on a triangulated category D have been introduced in [Bri07]. By
definition, these spaces Stab(D) are non-compact; in fact, they admit a C-action that allows to rescale
the central charges. The projectivizations PStab(D) = C\Stab(D) are still non-compact, since the ratio
of masses of some objects may go to zero. Recently, several partial compactifications have been proposed
([BDL20; Bol20; KKO22; BPPW22]), whose merits we compare at the end of the introduction. Our goal
is to provide a generalized notion of stability conditions that could provide a smooth compactification
in the sense of orbifolds of the quotient C\Stab(D)/Aut (D). In this paper, we achieve this goal for the
𝐶𝑌3-categories D3

𝑄 where Q is a quiver of 𝐴𝑛-type.
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Our approach is motivated by the isomorphism of Bridgeland-Smith [BS15] of Stab(D3
𝑄) with spaces

of quadratic differentials with simple zeros and the generalization of this isomorphism to differentials
with higher order zeros constructed in our previous paper [BMQS22]. Its main result states that these
are isomorphic to spaces of stability conditions on quotient categories D3

𝑄/D3
𝑄𝐼

for some subquivers
𝑄𝐼 ⊂ 𝑄. In both contexts, simple and higher order zeroes, part of the isomorphism is given by identifying
central charges of (simple and stable) objects with the distance between zeroes with respect to the metric
induced by a quadratic differential. A first and naive idea would be to interpret collision of zeroes of
a quadratic differential as the vanishing of central charges. To get a smooth compactification, this idea
has to be refined.

Our approach is also motivated by the smooth compactification [BCGGM3] of strata of differentials
by multi-scale differentials. From there, we take the idea that if central charges go to zero, we ‘zoom
in’ (i.e., we rescale and get another nonzero ‘central charge’ on a subcategory). This ‘central charge’,
in turn, might vanish on some simple objects and forces us to rescale again, thus arriving at a filtration
of subcategories. From multi-scale differentials, we also borrow the observation that the result of the
rescaling process is only well defined up to multiplication by a common scalar factor, resulting in the
definition of equivalence below.

Combining these ideas, we can now paraphrase our main notion; see Definition 4.1 for the precise
formulation. A non-split multi-scale stability condition (A•, 𝑍•) on a triangulated category consists of
◦ a multi-scale heart A• = (A𝑖) (i.e., a collection A𝐿 ⊂ · · ·A1 ⊂ A0 of abelian categories), and
◦ a multi-scale central charge (i.e., a collection 𝑍• = (𝑍𝑖)𝐿

𝑖=0 of nonzero Z-linear maps on the
Grothendieck groups 𝑍𝑖 : 𝐾 (A𝑖) → C, where 𝑍𝑖 factors through Ker(𝑍𝑖−1)),

with the following properties. First, the categories A𝑖 are hearts of the ‘vanishing’ triangulated subcate-
gories V𝑍

𝑖 ⊂ D generated by objects 𝐸 ∈ A𝑖−1 such that the central charge of the previous filtration step
vanishes (i.e., 𝑍𝑖−1(𝐸) = 0). Second, the central charges 𝑍𝑖 map simples in A𝑖 \A𝑖+1 to the semi-closed
upper half-plane H. (This implies that V𝑍

𝑖+1 ∩A𝑖 is a Serre subcategory of A𝑖 .) Third, the induced quo-
tient heart with quotient central charge (A𝑖 , 𝑍 𝑖) is a stability condition in the usual sense of [Bri07] on
the quotient category V𝑍

𝑖 /V𝑍
𝑖+1. We say that two non-split multi-scale stability conditions are equivalent

if the induced quotients (A𝑖 , 𝑍 𝑖) are projectively equivalent for all 𝑖 ≥ 1. We denote by MStab(D) the
set of equivalence classes of those multi-scale stability conditions and add a circle (e.g., MStab◦(D)) to
denote a specific connected component or a set of reachable stability conditions.

In this paper, we only consider multi-scale stability conditions that are non-split and thus drop this
adjective from now on. In Section 1.2 below, we will explain why this notion needs refinements to
provide compactifications for more general categories D, even for other 𝐶𝑌3 quiver categories D3

𝑄.
We recall that for D3

𝑄 of type 𝐴𝑛, the group of autoequivalences Aut◦(D3
𝐴𝑛
) preserving a connected

component of Stab(D3
𝐴𝑛
) (modulo those acting trivially) is an extension of Z/(𝑛 + 3)Z by the spherical

twist group ST(𝐴𝑛), which is isomorphic to a braid group; see Section 3.3.
Theorem 1.1. The quotient MStab◦(D3

𝐴𝑛
)/Aut◦(D3

𝐴𝑛
) of the space of multi-scale stability conditions

has a structure of a complex orbifold. The projectivization of this orbifoldC\MStab◦(D3
𝐴𝑛
)/Aut◦(D3

𝐴𝑛
)

is a compactification of the space of projectivized stability conditions up to autoequivalence
C\Stab◦(D3

𝐴𝑛
)/Aut◦(D3

𝐴𝑛
)

As a complex orbifold, the space C\Stab◦(D3
𝐴𝑛
)/Aut◦(D3

𝐴𝑛
) is simply the moduli space of curves

M0,𝑛+2. The compactification C\MStab◦(D3
𝐴𝑛
)/Aut◦(D3

𝐴𝑛
) is, however, not equal to the Deligne-

Mumford compactification M0,𝑛+2. It is rather a blowup of the latter, as we explain in Section 6.

1.1. Techniques

One important technique is the plumbing of a multi-scale stability condition, depending on complex
numbers 𝜏𝑖 for 𝑖 = 0, . . . , 𝐿, that builds a usual stability condition. If 𝜏𝑖 ∈ 𝑖R− is purely imaginary
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Figure 1. Quadratic differential illustrating a degenerating sequence in Stab◦(D3
𝐴2
) and a rotated

situation.

for all i, the result is just the top level heart A0 together with a central charge that is a rescaled linear
combination of the 𝑍𝑖 . One should envision that the size of 𝑍𝑖 is 𝑒−𝜋𝑖𝜏𝑖 , thus very small for 𝜏𝑖 close
to −𝑖∞, and this is continuously completed by declaring that 𝜏𝑖 = −𝑖∞ means no plumbing at all.
The process of plumbing becomes interesting for 𝜏𝑖 not purely imaginary. This involves rotating A𝑖 .
The higher level hearts A𝑖−1 etc. then have to be modified to still contain the rotated heart while still
providing the same quotient heart. This modification of the representative, however, causes that the
plumbing action of (𝜏1, . . . , 𝜏𝐿) ∈ −H𝐿 is not the action of a semigroup: the semigroup addition and
the action only almost commute, with an error that goes to zero as 𝜏𝑖 → −𝑖∞.

In this way, we give MStab◦(D3
𝐴𝑛
) a topology by declaring neighborhoods of a multi-scale stability

conditions to be plumbings with 𝑡𝑖 := 𝑒−𝜋𝑖𝜏𝑖 small composed with a small deformation of the stability
condition. However, this space is not locally compact. In fact, for 𝑛 = 2, the space is isomorphic to
H ∪ P1(Q) with the horoball topology, as we will explain in Section 6.4.

The complex orbifold structure on the quotient MStab◦(D3
𝐴𝑛
)/Aut◦(D3

𝐴𝑛
) is locally given by the

functions 𝑡𝑖 together with the central charges 𝑍𝑖 . This statement requires to control the stabilizer of a
neighborhood of the multi-scale stability condition. We show that this stabilizer contains a finite index
subgroup isomorphic to Z𝐿 .

For compactness ofC\Stab◦(D3
𝐴𝑛
)/Aut◦(D3

𝐴𝑛
), the obvious idea is to normalize in a given sequence

of multi-scale stability conditions the mass of the largest simple to be one, and then define an order on
the set of simples corresponding to the speed in which their central charges go to zero. The level sets
for this order will then correspond to the index set of the limiting multi-scale stability condition. The
challenge for this idea arises if the central charge of a stable but nonsimple object tends to zero despite
the normalization while the central charge of its simple factors do not. This forces the central charge of
some simple object to tend to the positive real axis.

Consider, for example, the sequence 𝜎𝑛 = (A, 𝑍𝑛) of stability conditions on D3
𝐴2

, all supported on a
fixed heart A and with

𝑍𝑛 (𝑆1) = −1 + 𝑖/𝑛, 𝑍𝑛 (𝑆2) = 1 + 𝑖/𝑛 . (1)

See Figure 1 for the picture of the corresponding quadratic differential. In the limit 𝑛 → ∞, the central
charge vanishes precisely on the subcategory generated by the nontrivial extension E of 𝑆1 by 𝑆2. Since
E is not simple, it does not define a nontrivial Serre subcategory of A, contradicting a consequence of
our definition of multi-scale stability condition.

The solution to find the limiting object is to rotate the sequence by 𝜆𝑛 so that 𝑍𝜆𝑛𝜎𝑛 (𝑆2) ∈ H−;
see Figure 1 on the right. The heart A is replaced by A0 := 𝜇𝑆2A, the tilt one would usually perform
also inside Stab(D3

𝐴2
) if the central charge of the simple 𝑆2 approaches the positive real axis. Now

E is simple, and the vanishing category V𝑍
1 generated by E has the property that V𝑍

1 ∩ A0 is Serre
in A0. The limiting multi-scale stability condition consists of the filtration A0 ⊃ A1 = 〈𝐸〉 together
with 𝑍0(𝑆2 [1]) = −1 and 𝑍0(𝐸) = 0 as well as 𝑍1 (𝐸) arbitrary nonzero in view of the notion of
equivalence.
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1.2. Obstructions to generalization

Continuing the idea of proof for compactness, we consider one of the simplest cases beyond 𝐴𝑛-type
quivers, stability conditions on the𝐶𝑌3-category of the Kronecker quiver, or, in the language of quadratic
differentials (see [BS15, Example 12.5]), the stratum Q(−3,−3, 1, 1) with two triple poles and two
simple zeros. We again consider a situation where the central charge of a stable but nonsimple object
tends to zero within the normalization that the mass of the largest simple is approximately one. Now
using a small rotation does not seem to help. The compactification of strata of differentials ([BCGGM3;
BCGGM2]) that we recall in Section 6 hints to the reason for this problem.

The boundary strata of the compactification are encoded by level graphs, whose vertices correspond
to components of stable curves and where a vertex 𝑣1 is above a vertex 𝑣2 if the differential tends to
zero on 𝑣2 more quickly than on 𝑣1. In terms of multi-scale stability conditions, we find the same level
structure (given by index of A𝑖) and components (given by the components of the ext-quiver on the
simples in A𝑖). However, for differentials, we allow for horizontal degenerations (i.e., edges between
vertices on the same level). In this degeneration of the Kronecker quiver alluded to above (with central
charge as in (1)), we should normalize the sequence to keep the length of the “short” stable object E (i.e.,
the extension of 𝑆1 by 𝑆2 or geometrically the length of the core curve of the cylinder) constant. This
happens at the expense of letting the mass of both simples go to infinity. In the geometric picture, the
surface splits into two subsurfaces with quadratic differentials of type (−3,−2, 1). It would be interesting
to enlarge the concept of non-split multi-scale differentials so as to include this ‘splitting’ of the
category.

It seems quite plausible that the current definition of (non-split) multi-scale stability condition
provides a partial compactification ofC\Stab◦(D3

𝑄)/Aut◦(D3
𝑄) to a complex orbifold for general quiver

categories (or whenever Stab◦(D) is of tame type). This requires to overcome several technical problems
that we highlight along with the definition of the topology in Section 4. Currently, we rely on the fact
that hearts in D3

𝐴𝑛
have finitely many indecomposables.

1.3. Comparison to other compactifications

We are aware of four other papers aiming to compactify spaces of stability conditions. Bolognese [Bol20]
uses a metric completion to give a partial compactification. The Thurston-type compactifications of
Bapat, Deopukar and Licata [BDL20] and Kikuta-Koseki-Ouchi [KKO22] use the tuple of all masses
to get a map from the space of projectivized stability conditions to some projective space and take the
closure there. The space of lax stability conditions of Broomhead, Pauksztello, Ploog, Woolf [BPPW22]
allows some of the masses of semistable objects to be zero but requires a modified support property and
zero being an isolated point of the set of all masses.

Common to all these approaches is that they aim to (partially) compactify the space PStab(D)
of projectivized stability conditions, whereas we compactify its quotient by Aut◦(D3

𝐴𝑛
). Moreover,

in all these four papers, the boundary or boundary strata are real codimension one, whereas in our
approach, the boundary has complex codimension one since we construct a complex orbifold. We
mention that [BCGGM3, Section 15] proposes a real-oriented blowup of the complex orbifold, thus
a real manifold with corners, to which the GL+

2 (R)-action extends. This real-oriented blowup con-
struction can certainly also be incorporated into a modified definition of multi-scale stability condi-
tions. In this real blowup, there are real codimension one boundary strata, which parametrize stability
conditions on a quotient category by a rank one subcategory together – this is an effect of the real
blowup – with the phase of the simple with vanishing mass. This seems to agree with the codimen-
sion one boundary strata of [BPPW22]. Since both approaches, ours and [BPPW22], use stability
conditions on quotient categories and the difficulties often stem from lifting problems, it would be
interesting to compare or combine them. However, this does not seem to solve the problem of get-
ting a compact space in a more general setting, as we see no subsitute for the missing ‘horizontal
degenerations’.
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2. Background and notation

In this section, we recall basic material about stability conditions, quivers and their 𝐶𝑌3-categories D3
𝑄.

References for this include [HRS96; GM03; BBD82; Bri07; Bri09; Nee14; DWZ08; Kel11].

2.1. Notation and fundamental assumptions

We fix some notation that will be used throughout. Let k denote an algebraically closed field, and
any category is additive, k-linear and essentially small. We deal with finite-dimensional abelian and
triangulated categories of modules (resp., dg modules) over a finite-dimensional algebra (resp., a dg
algebra). Whenever we define a subcategory, we mean that there is a fully faithful functor that we assume
to be the embedding.

Given subcategories A1,A2 of an abelian or a triangulated category C, and a set of objects B, we
define (usually omitting the subscript C)

A1 ⊥C A2 := {𝑀 ∈ C | ∃ s.e.s or triangle 𝑇 → 𝑀 → 𝐹 s.t. 𝑇 ∈ A1, 𝐹 ∈ A2},
if Hom(𝐻1, 𝐻2) = 0 for any 𝐻1 ∈ A1 , 𝐻2 ∈ A2.

We define 〈B〉 depending on the context to be the abelian category generated byB, the thick triangulated
category generated by B, the torsion-free class or the torsion class generated by B.

Let A be an abelian category. It is called a (finite) length category if any object 𝐸 ∈ A admits a finite
sequence of subobjects

0 = 𝐸0 ⊂ 𝐸1 ⊂ · · · ⊂ 𝐸𝑚 = 𝐸

such that all 𝐸𝑖/𝐸𝑖−1 are simple. It is called finite if, moreover, it has finitely many simple objects. If an
abelian category is finite, its Grothendieck group is generated by the isomorphism classes of its simples.

Let D be a triangulated category. For simplicity, we make the strong assumption that its Grothendieck
group is a finite rank lattice 𝐾 (D) � Z⊕𝑛. This is not the general situation, though it will hold for the
most relevant categories considered later. The main reason for such an hypothesis is to simplify the
definition of a (multi-scale) stability condition.

Definition 2.1. A bounded t-structure on a triangulated category D is the datum of a full additive
subcategory P ⊂ D stable under positive shift such that P ⊥ P⊥ = D, and moreover, D is generated by
∪𝑚∈Z

(
P [𝑚] ∩ P⊥[−𝑚]

)
. The heart of a bounded t-structure is the subcategory P ∩ P⊥[1].

The heart A of a bounded t-structure is an abelian category. The cohomological functor 𝐻0 : D → A
realizes an isomorphism at the level of Grothendieck groups

𝐻0
∗ : 𝐾 (A) � 𝐾 (D).

Moreover, a bounded t-structure is uniquely determined by its heart as P = 〈H[𝑖], 𝑖 ≥ 0〉. For this
reason, we will speak about a t-structure or its heart interchangeably.

There is a partial order on hearts A1 ≤ A2 defined by P1 ⊃ P2, or equivalently, P⊥
1 ⊃ P⊥

2 . A heart
H will be called intermediate with respect to a fixed heart A if A ≤ H ≤ A[1].

2.2. Torsion pairs and tilting

A torsion pair for an abelian category A consists of a pair (T ,F) of full additive subcategories of A
called torsion class and torsion-free class, such that A = T ⊥ F . In other words, a torsion pair mimics
a bounded t-structure at abelian level. In fact, a torsion pair in the heart of a bounded t-structure A in a
D defines new bounded t-structures with hearts
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𝜇♯
FA := T ⊥D F [1], 𝜇♭

T A := F ⊥D T [−1] .

They are called, respectively, the forward tilt at F (resp. backward tilt at T ), [HRS96]. They are related
by 𝜇♯

T [−1]𝜇
♭
T A = A and 𝜇♭

F [1]𝜇
♯
FA = A. The forward tilt of A at a torsion-free class is intermediate

with respect to A; the backward tilt of A at a torsion class is intermediate with respect to A[−1].
In a finite abelian category, torsion and torsion-free classes are closed under extensions and are

characterized by being closed under quotients and subobjects, respectively. This implies that any Serre
subcategory is both torsion and torsion-free class. When we tilt at a torsion(-free) class 〈𝑆〉 generated by
a simple object S, we speak about a simple tilt, and we simplify the notation to 𝜇♯

𝑆A and 𝜇♭
𝑆A. Suppose

A is a finite heart with simple objects Sim(A) := {𝑆1, . . . , 𝑆𝑛}, which are rigid (i.e., have no nontrivial
self-extensions), and let 𝑆 ∈ Sim(A). Then

Sim 𝜇♯A = {𝑆[1]} ∪ {Cone
(
𝑆

𝑒𝑣→ 𝑆[1] ⊗ Ext1(𝑇, 𝑆)∗
)
[−1], 𝑆 ≠ 𝑇 ∈ SimA}

Sim 𝜇♭A = {𝑆[−1]} ∪ {Cone
(
𝑆[−1] ⊗ Ext1 (𝑆, 𝑇) 𝑒𝑣→ 𝑇), 𝑆 ≠ 𝑇 ∈ SimA}.

See, for example, [KQ15]. Note also that the simple tilting of a finite heart in D is another finite heart.
In some cases, tilting at a torsion (or torsion-free) class can be decomposed into a finite sequence of
simple tilts.

Proposition 2.2. Suppose that A is a finite heart.

1. Tilting at a torsion-free class in A containing only finitely many indecomposables is equivalent to
performing a sequence of simple forward tilts.

2. Conversely, suppose 𝑎1, . . . , 𝑎𝑘 is a finite sequence of objects in A such that 𝑎𝑖 ∈ A is simple in
𝜇♯

𝑎𝑖−1 . . . 𝜇
♯
𝑎1A. Then 𝜇♯

𝑎𝑘
. . . 𝜇♯

𝑎1A = 𝜇♯
FA, where F = 〈𝑎0, . . . , 𝑎𝑘〉.

3. More generally, for any two torsion-free classes F1 ⊂ F2 with F2 having finitely many indecom-
posables, there is a sequence of simple tilts at objects 𝑎𝑖 such that 𝜇♯

F2
= 𝜇♯

𝑎𝑘
· · · 𝜇♯

𝑎1𝜇
♯
F1

and
F2 = 〈F1, 𝑎1, · · · , 𝑎𝑘〉.

Proof. For the proof of the first two items, see [Woo10, Proof of Proposition 2.4] and use the relation
𝜇♯
T [−1] (𝜇

♭
T A) = A to convert the statement about backward tilts in loc. cit. to the given version. The

last statement follows from [HLŠV22, Section 7.1] (see, in particular, Proposition 7.5). �

2.3. Bridgeland stability conditions

Recall from [Bri07] that a stability condition 𝜎 on a triangulated category D is a pair 𝜎 = (A, 𝑍),
consisting of the heart of a bounded t-structure A, together with a central charge 𝑍 ∈ Hom(𝐾 (A),C)
(i.e., a group homomorphism that maps the class of nonzero elements in A to the semi-closed half plane
H := {𝑟𝑒𝜋𝑖𝜃 ∈ R|𝑟 ∈ R>0, 0 < 𝜃 ≤ 1} and that satisfies the support property and Harder-Narasimhan
condition of loc. cit). We fix a finite rank lattice K and a surjective morphism 𝜈 : 𝐾 (A) → 𝐾 and
require that Z factors through 𝜈. In the case 𝐾 (A) � Z𝑛, we require that 𝐾 = 𝐾 (A) and 𝜈 = id.

We use that stability conditions can equivalently be specified as a 𝜎 = (P , 𝑍) using a central charge
and a slicing, compatible in the sense that 𝐸 ∈ P (𝜙) implies 𝑍 ([𝐸]) = 𝑚 exp(𝜋𝑖𝜙) for some positive
𝑚 ∈ R.

An object 𝐸 ∈ D is called 𝜎-semistable if 𝐸 ∈ P (𝜙) for some 𝜙 ∈ R. It is called 𝜎-stable if it is
simple in P (𝜙). This notion makes sense because any subcategory P (𝜙) is abelian if P = {P (𝜙)}𝜙∈R
is a slicing compatible with 𝑍 ∈ Hom(𝐾 (D),C).

Let 𝜆 ∈ C, and suppose 0 < 𝜖 = Re(𝜆) ≤ 1. We observe, and will use later, that 𝜎-semistable
objects X in the heart A (equivalently Z-semistable objects) with 1 − 𝜖 ≤ 𝜙(𝑋) < (≤)1 and those with
0 < 𝜙(𝑋) ≤ (<)1 − 𝜖 , for 𝜖 ∈ (0, 1), form a torsion pair (T𝜆,F𝜆) in A due to the Harder-Narasimhan
condition.
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The space of stability conditions is a complex manifold Stab(D). There are two natural commuting
actions:

◦ a left action by C, by rescaling the central charge and tilting the heart, if 0 < Re(𝜆) ≤ 1,

𝜆 · (A, 𝑍) = (𝜇♯
F𝜆

A, 𝑒−𝜋𝑖𝜆𝑍) ,

◦ and a right action by Aut(D) via pullback,

Φ.(A, 𝑍) =
(
ΦA, 𝑍 ◦ [Φ]−1)

)
,

where [Φ] is the map induced by Φ on 𝐾 (D).

In particular, the shift [1] acts as 𝜆 = 1. Note that theC-action does not change the notion of semistability
and stability.

We denote by Stab◦(D) a connected component, specified by the context. The stability manifold
Stab(D) is tiled into subsets Stab(A) of stability conditions supported on the heart A. The component
Stab◦(D) is called finite type if it is the union of Stab(A) over finite hearts. It is called of tame type if
the C-orbits of Stab(A) for all finite type hearts cover Stab◦(D).

We let Aut◦(D) be the subgroup of Aut(D) consisting on autoequivalences of D that preserve the
component Stab◦(D), and we define Nil◦(D) ⊂ Aut◦(D) the subgroup of negligible autoequivalences
(i.e., those that act trivially on Stab◦(D)). We use fancy fonts like

Aut◦(D) = Aut◦(D)/Nil◦(D) (2)

to denote the quotient groups by negligible autoequivalences. It is the quotient spaces
C\Stab(D)/Aut (D) by these actions that we want to compactify.

2.4. Quivers with potential, module and Ginzburg categories

In this paper, (𝑄,𝑊) is a quiver 𝑄 = (𝑄0, 𝑄1, 𝑠, 𝑡) with potential W (i.e., a formal sum of cycles) up to
right-equivalence; see [DWZ08; KY11] for standard results. We assume that (𝑄,𝑊) has no loops and
no 2-cycles, that the set of vertices 𝑄0 and the set of arrows 𝑄1 are finite, and that the potential defines
a bilateral ideal 𝜕𝑊 = 〈𝜕𝑎𝑊 | 𝑎 ∈ 𝑄1〉 ⊂ 𝑘𝑄 such that the Jacobian algebra,

J (𝑄,𝑊) := 𝑘𝑄/𝜕𝑊,

obtained by quotienting the completed path algebra by the ideal defined by the potential, is finite
dimensional. Note that in our case of interest, 𝑘𝑄/𝜕𝑊 = 𝑘𝑄/𝜕𝑊 . For a ring J , we denote by ModJ
the abelian category of left modules and by modJ the abelian category of finitely generated left
modules. The category modJ (𝑄,𝑊) is finite with simple objects Sim(modJ (𝑄,𝑊)) = {𝑆1, . . . , 𝑆𝑛},
where 𝑛 = |𝑄0 |.

If 𝐼 ⊂ 𝑄0 is a collection of vertices of (𝑄,𝑊), by (𝑄𝐼 ,𝑊𝐼 ), we mean the restriction of (𝑄,𝑊)
to I. It is another finite quiver with potential, possibly disconnected, defined by (𝑄𝐼 )0 = 𝐼, (𝑄𝐼 )1 =
{𝑎 : 𝑖 → 𝑗 ∈ 𝑄1 | 𝑖, 𝑗 ∈ 𝐼}, and with source, tail functions and potential obtained by restriction from
(𝑄,𝑊) to I. We call it a (full) subquiver. The complement of I in 𝑄0 will be denoted 𝐼𝑐 .

The mutation of a quiver with potential (𝑄,𝑊) at a vertex i is an operation that produces another
quiver with the same set of vertices and a new set of arrows and a new potential, defined as follows.
From𝑄1, keep all arrows not incident to i; replace any arrow a with either 𝑠(𝑎) or 𝑡 (𝑎) equal to i with its
opposite; add an arrow [𝑎𝑏] : 𝑘1 → 𝑘2 for any pair of consecutive arrows 𝑎 : 𝑘1 → 𝑖 and 𝑏 : 𝑖 → 𝑘2;
finally, remove any two-cycles. The new potential is the formal sum of W and

∑
𝑎,𝑏∈𝑄1 [𝑎𝑏]𝑏

∗𝑎∗.
The Ginzburg algebra of (𝑄,𝑊) is a dg algebra denoted Γ(𝑄,𝑊) and introduced in [Gin06; KY11].

It does not depend on the mutation class of a quiver with potential.
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Definition 2.3. The perfectly-valued derived category pvd(Γ) associated with a dg algebra Γ is the
subcategory of the derived category D(Γ) consisting on dg modules with finite dimensional total
cohomology.

Once we fixed (𝑄,𝑊) and 𝐼 ⊂ 𝑄0, we write J = J (𝑄,𝑊), Γ = Γ(𝑄,𝑊), and J𝐼 = J (𝑄𝐼 ,𝑊𝐼 ),
Γ𝐼 = Γ(𝑄𝐼 ,𝑊𝐼 ). We have the following inclusion of triangulated categories, [KY11]

pvd(Γ) ⊂ per(Γ) ⊂ D(Γ).

It is proven in [KY11] that the standard t-structure with heart ModJ in the derived category D(Γ)
restricts to per(Γ) and pvd(Γ), on which it defines a bounded t-structure with heart modJ , that we call
standard as well.

The perfectly valued derived category of the Ginzburg algebra of a quiver with potential is 3-Calabi-
Yau, which means that for any objects 𝐸, 𝐹 ∈ pvd(Γ), there is a natural isomorphism of k-vector spaces
𝜈 : Hom(𝐸, 𝐹) ∼→ Hom(𝐹, 𝐸 [3])∨. Moreover, the simple objects in the standard heart modJ are
spherical in pvd(Γ); see [Kel11, Lemma 4.4] and [KQ15, Corollary 8.5].

If two quivers with potential (𝑄,𝑊) and (𝑄 ′,𝑊 ′) are related by mutations, then D(Γ(𝑄,𝑊)) �
D(Γ(𝑄 ′,𝑊 ′)) and pvd(Γ(𝑄,𝑊)) � pvd(Γ(𝑄 ′,𝑊 ′)). Therefore, modJ (𝑄 ′,𝑊 ′) is viewed as another
heart of bounded t-structure of pvd Γ(𝑄,𝑊). We recall that, in general, not all bounded t-structures
have this shape.

It is clear that any property of pvd(Γ) and mod(J ) also holds for pvd(Γ𝐼 ) and modJ𝐼 .
As explained in [KY18], the Ginzburg algebra Γ𝐼 is isomorphic to Γ/Γ𝑒Γ, where 𝑒 =

∑
𝑖∈𝐼 𝑐 𝑒𝑖 is

the idempotent in Γ associated to the complement 𝐼𝑐 = 𝑄0 \ 𝐼. However, the dg algebra 𝑒Γ𝑒 is the
endomorphism algebra of the projective module Γ𝑒 =

∑
𝑖∈𝐼 𝑐 Γ𝑒𝑖 in D(Γ), and the Verdier quotient

D(Γ)/D(Γ𝐼 ) coincides with D(𝑒Γ𝑒). Similarly, J𝐼 = J /J 𝑒J and the quotient perfectly valued and
abelian categories that will be relevant in the rest of the paper are pvd 𝑒Γ𝑒 and mod 𝑒J 𝑒:

0 �� pvd Γ𝐼
��

𝐻 0

��

pvd Γ

𝐻 0

��

�� pvd 𝑒Γ𝑒 ��

𝐻 0

��

0

0 �� modJ𝐼
�� modJ �� mod 𝑒J 𝑒 �� 0.

The last line is part of a recollement of abelian categories, described, for instance, in [Psa18].
In the rest of the paper, we let

◦ D3
𝑄 be the 3-Calabi-Yau triangulated category pvd Γ(𝑄,𝑊).

The case of primary interest will be quivers of type 𝐴𝑛 – that is, that can be obtained with by finite
sequence of mutations from the quiver

𝐴𝑛 := •1 �� •2 �� · · · �� •𝑛 , 𝑛 ≥ 1.

Any restriction of a quiver of type 𝐴𝑛 is a union of quivers of type 𝐴𝑚’s.
Given an 𝐴𝑛-configuration, and the abelian category modJ (𝐴𝑛), we denote by 𝑆𝑖 the simple module

associated with the vertex i. For 𝑖 ≤ 𝑘 , we denote by 𝑆𝑖...𝑘 the J (𝐴𝑛)-module defined inductively as
the indecomposable fitting into the short exact sequence

0 → 𝑆𝑘+1 → 𝑆𝑖...(𝑘+1) → 𝑆𝑖...𝑘 → 0. (3)

The 𝑆𝑖...𝑘 , are the projective resolutions 𝑃𝑖 of 𝑆𝑖 in the abelian subcategory 〈𝑆𝑖 , . . . , 𝑆𝑘〉 which is of
𝐴(𝑘−𝑖) -type by construction.
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3. Stability manifolds for marked surfaces

Decorated marked surfaces are one of the natural sources for quiver categories. They are well studied
thanks also to the Bridgeland-Smith isomomorphism [BS15] to spaces of quadratic differentials with
simple zeros. We recall this result here, together with the generalization in our previous paper [BMQS22].
This setup contains our main case study, the 𝐴𝑛-quiver, and serves as motivation for the use of quotient
categories. Triangulations of decorated marked surfaces will serve as reference points to pick out the
right connected components of stability manifolds needed in the later sections.

3.1. The stability manifold of a decorated marked surface

A natural way to construct quivers is from triangulations of surfaces, and we will use this formalism to
keep track of connected components of stability spaces and later the multi-scale stabilty conditions.

A marked surface S = (S,M, P) consists of a connected bordered differentiable surface with a fixed
orientation, with a finite set M = {𝑀𝑖}𝑏

𝑖=1 of marked points on the boundary 𝜕S =
⋃𝑏

𝑖=1 𝜕𝑖 , and with a
finite set P = {𝑝 𝑗 }𝑝

𝑗=1 of punctures in its interior S◦ = S − 𝜕S, such that each connected component of
𝜕S contains at least one marked point.

A decorated marked surface SΔ (abbreviated as DMS) is obtained from a marked surface S by
decorating it with a set Δ = {𝑧𝑖}𝑟

𝑖=1 of points in the surface interior S◦. These points are called finite
critical points or finite singularities.

An open arc is an (isotopty class of) curve 𝛾 : 𝐼 → SΔ such that its interior is in S◦
Δ \ Δ and its

endpoints are in the set of marked points M. An (open) arc system {𝛾𝑖} is a collection of open arcs on
SΔ such that there is no (self-)intersection between any of them in S◦

Δ \ Δ . A triangulation T of SΔ is a
maximal arc system of open arcs, which, in fact, divide SΔ into triangles.

The quiver𝑄T with potential𝑊T associated to a triangulationT is constructed as follows. The vertices
correspond to the open arcs in T, the arrows of 𝑄T correspond to oriented intersection between open
arcs in T, so that there is a 3-cycle in 𝑄T locally in each triangle, and the potential 𝑊T is the sum of all
such 3-cycles.

For a fixed initial triangulation T0, we denote by ΓT0 = Γ(𝑄T0 ,𝑊T0) the Ginzburg algebra associated
with the quiver associated with T0 we let D3

𝑄T0
= pvd(ΓT0) or simply D3

𝑄 the corresponding 𝐶𝑌3-
category. Finally, we define Stab◦(D3

𝑄) to be the connected component of the space of Bridgeland
stability conditions on D3

𝑄 containing stability conditions supported on the standard heart H0 of 𝑄T0 .
In this paper, we fix throughout a DMS S of type 𝐴𝑛. It is a disc with 𝑏 = 1 boundary component,

which has 𝑛 + 3 marked points, 𝑟 = 𝑛 + 1 finite critical points in its interior, and no punctures. We use
this reference surface and a reference triangulation on it to define the component Stab◦(D𝐴𝑛 ). Recall
from [BS15, Theorem 9.9 and Section 12.1] that the subgroup Aut◦(D𝐴𝑛 ) ⊂ Aut(D𝐴𝑛 ) preserving a
connected component of Stab(D𝐴𝑛 ) is an extension of Z/(𝑛 + 3)Z by the spherical twist group ST(𝐴𝑛).

In this language, the main theorem of Bridgeland-Smith (for a general 𝐶𝑌3-quiver category D3
𝑄

associated with a triangulation of SΔ , see [BS15] for the excluded cases) reads:

Theorem 3.1 [BS15; KQ20]. There is an isomorphism of complex manifolds

𝐾 : FQuad◦(SΔ ) → Stab◦(D3
𝑄) . (4)

This map K is equivariant with respect to the action of the mapping class group MCG(SΔ ) on the domain
and of the automorphism group Aut◦(D) on the range. These groups act properly discontinuously on
domain, resp. range.

Here, FQuad◦(SΔ ) is a space of framed quadratic differentials with simple zeros atΔ , whose definition
we recall along with the examples in Section 6. Its generalization to nonsimple zeros motivates the notion
of collapse and the use of quotient categories, which we recall in Section 3.2.
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As a technical tool, we introduce the exchange graph EG(SΔ ), the directed graph whose vertices
are the triangulations of SΔ and whose edges are given by (forward) flips of the triangulation. The
exchange graph EG(D) of a triangulated category is the directed graph whose vertices are the finite
hearts and whose edges are given by forward tilts at simples in the heart. We denote by EG◦(SΔ ) the
connected component containing the initial triangulation T0 and by EG◦(D3

𝑄) the connected component
corresponding to the standard heart modJ (𝑄T0 ,𝑊T0). A key step in the proof of Theorem 3.1 is the
isomorphism

EG◦(SΔ ) � EG◦(D3
𝑄) (5)

of exchange graphs.

3.2. Stability manifolds of certain quotient categories

Higher order zeros are modeled by the collapse of a subsurface Σ ⊂ SΔ in a DMS. We use this to deduce
information on certain components of the stability manifold of the quotient categories D3

𝑄/D3
𝑄𝐼

. We
decompose Σ into connected components Σ𝑖 , and we provide each boundary component of Σ𝑖 with an
integer enhancement 𝜅𝑖 𝑗 . To match the hypothesis with [BMQS22], we suppose throughout that 𝜅𝑖 𝑗 ≥ 3
and consider Σ as a marked surface with 𝜅𝑖 𝑗 points on each boundary component.

To topologically formalize the collapse ofΣ, we define a weighted DMS (wDMS for short) to be a DMS
with a weight function w : Δ → Z≥−1, where the total weight is required to be | |w| | = 4𝑔−4+ |M| +2𝑏.
Contracting Σ ⊂ SΔ and replacing each boundary component by a decoration point in Δ with weight
w𝑖 𝑗 = 𝜅𝑖 𝑗 −2 defines a wDMS that we usually denote by Sw. In the sequel (as in [BMQS22]), we restrict
to the case of no punctures 𝑝 = 0, no unmarked boundary components and w : Δ → Z≥1.

To categorify the collapse, we homotope the initial triangulation T0 such that the arcs intersect the
boundary of Σ in the marked points and such that T0 |Σ is a triangulation of this subsurface. In this
way, Σ becomes a DMS with a triangulation, and we may form the 𝐶𝑌3-category D3 (Σ). We define the
Verdier quotient category

D(Sw) := D3(SΔ )/D3(Σ). (6)

As in Section 3.1, there are two exchange graphs associated with this situation, one based on ‘flips’
and topology and the other based on tilts of hearts. The isomorphism (7) below between these graphs is
one of reasons to work with the quotient categories.

A partial triangulation A of Sw is a collection of open arcs that triangulates the subsurface of
SΔ whose complement is homeomorphic to Σ, and such that each boundary component 𝑐𝑖 𝑗 of Σ is
homeomorphic in Sw \ A to a (𝜅𝑖 𝑗 = 𝑤𝑖 𝑗 + 2)-gon, possibly with ends points identified.

On the set of partial triangulation A, there is an operation of forward flip of an arc 𝛾 ∈ A, defined
by moving both endpoints counterclockwise one edge bounding the subsurface of SΔ \ (A \ {𝛾}) that
contains 𝛾. This generalizes the usual notion of flip of triangulations; see [BMQS22, Figure 2]. We
define the exchange graph EG(Sw) to be the (infinite) directed graph whose vertices are the partial
triangulations of the decorated surface Sw and whose edges are given by forward flips.

Definition 3.2. Let V ⊂ D be a thick triangulated subcategory. We say that a heart A of D is
V-compatible if A ∩ V is a Serre subcategory of A.

We call a heart A of D/V of quotient type if there is a V-compatible heart A of D whose essential
image in D/V is A.

We define the principal component EG•(Sw) to be the full subgraph of partial triangulations that admit
a refinement to a triangulation in EG◦(SΔ ) (i.e., the full subgraph given by triangulations reachable by a
finite number of flips from T0). We define the principal component EG•(D(Sw)) to be the full subgraph
of EG(D(Sw)) consisting of hearts of quotient type that admit a representative in the distiguished

https://doi.org/10.1017/fms.2024.106 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2024.106


Forum of Mathematics, Sigma 11

component EG◦(D(SΔ )). It is a priori not clear that these definitions yield connected components. This
is proven along with [BMQS22, Theorem 5.9], which moreover states that

EG•(Sw) � EG•(D(Sw)) (7)

and that both graphs are (𝑚, 𝑚)-regular.
We now define the principal component of the stability manifold Stab(D(Sw)) to be

Stab•(D(Sw)) = C ·
⋃

H∈EG• (D (Sw))

Stab(H). (8)

The terminology is justified by the following results:

Proposition 3.3 [BMQS22]. The space Stab•(D(Sw)) is union of connected components of
Stab(D(Sw)).

Referring to Section 6 for the definition of framed quadratic differentials, we recall here the gener-
alization of the Bridgeland-Smith isomorphism that serves as motivation for definition of multi-scale
stability conditions using the comparison to compactification of strata; see Section 6.

Theorem 3.4 (Theorem 1.1 of [BMQS22]). There is an isomorphism of complex manifolds

𝐾 : FQuad•(Sw) → Stab•(D(Sw))

between the principal part of the space of Teichmüller-framed quadratic differentials and the principal
part of the space of stability conditions on D(Sw).

3.3. Braid groups and spherical twists

Motivated by the relation to groups of autoequivalences given in (17) and (18) below, we recall a few
basic properties of the braid groups 𝐵𝑛+1 on 𝑛 + 1 strands; see, for example, [FM12, Section 9]. The
standard generators are the 𝜏𝑖 twisting the strands i and 𝑖 + 1. They satisfy the defining standard braid
relations.

𝜏𝑖𝜏𝑗𝜏𝑖 = 𝜏𝑗𝜏𝑖𝜏𝑗 if |𝑖 − 𝑗 | = 1, and 𝜏𝑖𝜏𝑗 = 𝜏𝑗𝜏𝑖 if |𝑖 − 𝑗 | ≥ 2. (9)

The pure braid group is the kernel of the homomorphism recording the strand permutation – that is, sits
in the exact sequence

0 → PB𝑛+1 → 𝐵𝑛+1 → 𝑆𝑛+1 → 0 . (10)

The center of 𝐵𝑛+1 is cyclic, generated by the element

𝜃𝑛 = (𝜏1𝜏2 · · · 𝜏𝑛)𝑛+1 (11)

except for the case where of 𝑛 = 1, since 𝐵2 is cyclic where thus 𝜃2 is the square of the generator. In all
cases, the element 𝜃𝑛 as defined above also belongs to the pure braid group PB𝑛+1. As a special case of
the Birman exact sequence, we obtain

1 → 𝐹𝑛+1 → PB𝑛+1 → PB𝑛 → 1 , (12)

where 𝐹𝑛+1 is the free group on 𝑛 + 1 generators. This exact sequence is split by adding the extra strand.
Iterating this, we obtain for each r consecutive integers a natural homomorphism

𝜑𝑟 ,𝑛 : PB𝑟+1 → PB𝑛+1 . (13)
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Via this homomorphism, we define for 𝐼 = {1, . . . , 𝑟} the elements 𝜃𝐼 ,𝑛 := 𝜑𝑟 ,𝑛 (𝜃𝑟 ) ∈ 𝐵𝑛+1. These
correspond to a full rotation of a disc encircling precisely the points in I.

More generally, we will define the braid group 𝐵𝑄 associated with a quiver Q; see [Qiu16, Definition
10.1 and Proposition 10.4]. It is generated by an element �̃�𝑖 for each vertex of the quiver and defined by
the relations

�̃�𝑖 �̃�𝑗 �̃�𝑖 = �̃�𝑗 �̃�𝑖 �̃�𝑗 if |𝑖 − 𝑗 | = 1
�̃�𝑖 �̃�𝑗 = �̃�𝑗 �̃�𝑖 if |𝑖 − 𝑗 | ≥ 2,

𝑅𝑖 = 𝑅 𝑗 for each cycle 1 → 2 → · · · → 𝑚 → 1 ,
(14)

where 𝑅𝑖 = �̃�𝑖 �̃�𝑖+1 · · · �̃�𝑚�̃�1 · · · �̃�𝑖−1. In the case 𝑄 = 𝐴𝑛, we retrieve the above definition of 𝐵𝐴𝑛 = 𝐵𝑛+1.
We will be most interested in the case that Q is of type 𝐴𝑛 though not necessarily equal to 𝐴𝑛. Suppose
the vertices in the index set I form a subquiver of type 𝐴𝑟 . Then the braid group of the restricted
quiver 𝐵𝑄𝐼 � 𝐵𝑟+1, and we let 𝜃𝑟 be its central element. Inclusion of strands again defines a natural
homomorphism 𝜑𝐼 ,𝑛 : 𝐵𝑄𝐼 → 𝐵𝑛+1, and we define in this more general context 𝜃𝐼 ,𝑛 := 𝜑𝐼 (𝜃𝑟 ).

Given a quiver (𝑄,𝑊) and its Ginzburg algebra Γ, we let ST(Γ) ≤ Aut(pvd(Γ)) be the spherical twist
group (see Seidel-Thomas [ST01]) of pvd(Γ) – that is, the subgroup generated by the set of spherical
twists Φ𝑆 for all simples S of Γ, where the twist functor Φ𝑆 is defined by

Φ𝑆 (𝑋) = Cone(𝑆 ⊗ Hom•(𝑆, 𝑋) → 𝑋) . (15)

This uses that in the case D = D3
𝑄, as a consequence of [KQ15, Corollary 8.5], all the simples in any

heart of D are spherical.

Remark 3.5. For a heart A with simples 𝑆1, ..., 𝑆𝑛 listed in an order such that dim(Ext1 (𝑆 𝑗 , 𝑆𝑖)) = 0
for 𝑗 < 𝑖 and dim(Ext1(𝑆𝑖 , 𝑆 𝑗 )) = 0 for 𝑗 > 𝑖, the mutated heart 𝜇♯

𝑆𝑖
(A) has simples

𝑆1, ..., 𝑆𝑖−1, 𝑆𝑖 [1],Φ−1
𝑆𝑖
(𝑆𝑖+1), ...,Φ−1

𝑆𝑖
(𝑆𝑛)

compare [BS15, Proof of Proposition 7.1]. Moreover,

𝜇♯
𝑆 [1]𝜇

♯
𝑆A = Φ−1

𝑆 A . (16)

We write ST(𝐴𝑛) for spherical twist group of a quiver of type 𝐴𝑛.

Proposition 3.6 [ST01; Qiu16; Qiu18]. There is an isomorphism ST(Γ) � 𝐵𝑄 between the twist groups,
sending the standard generators 𝜏𝑖 → Φ𝑆𝑖 to the standard generators. In particular, the group ST(𝐴𝑛)
is isomorphic to the braid group 𝐵𝑛+1.

We now apply this to understand the groups of autoequivalences forD = pvd(Γ). By [BS15, Theorem
9.9], there is an exact sequence

1 → ST (D3
𝑄) → Aut◦(D3

𝑄) → MCG(S) → 1, (17)

where ST (D3
𝑄) is the quotient of ST(D3

𝑄) by its subgroup of negligible automorphisms. In the special
case D3

𝑄 = 𝐷3
𝐴𝑛

, the mapping class group is MCG(Δ ,M𝑛+3) � Z/(𝑛+3), so there is an exact sequence

1 → 𝐵𝑛+1 → Aut◦(D3
𝐴𝑛
) → Z/(𝑛 + 3) → 1. (18)

See, for example, [BS15, Section 12.1].
In Section 5.3, we need the following action on Grothedieck groups to control the effect of the action

of 𝜃𝐼 ,𝑛.
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Lemma 3.7 [Ike17, Section 4]. On 𝐾 (D3
𝑄), a spherical twist Φ𝑆𝑖 induces a group homomorphism [Φ𝑖]

defined by

[Φ𝑖] ([𝐸]) = [𝐸] − 𝜒([𝑆𝑖], [𝐸]) [𝑆𝑖], (19)

where 𝜒(·, ·) denotes the Euler pairing.

4. Multi-scale stability conditions

We start with a definition that makes sense for general triangulated categories with finite rank
Grothendieck group. We will then define a C-action and a notion of plumbing stability conditions that
will be used to give a topology on the set of multi-scale stability conditions. In all these steps, we have
to be much more restrictive, essentially restricting to D = D3

𝐴𝑛
. We indicate the technical difficulties

needed to overcome in order to generalize to 𝐶𝑌3-quiver categories or beyond.

Definition 4.1. Let D a triangulated category with rank(𝐾 (D)) < ∞. A multi-scale stability condition
on D consists of an equivalence class of the following data:

◦ a multi-scale heart A• = (A𝑖) – that is, a collection A𝐿 ⊂ · · ·A1 ⊂ A0 of abelian categories), and
◦ a multi-scale central charge – that is, a collection 𝑍• = (𝑍𝑖)𝐿

𝑖=0 of nonzero Z-linear maps on the
Grothendieck groups 𝑍𝑖 : 𝐾 (A𝑖) → C,

with the property that

◦ the abelian category A𝑖 is generated by the nonzero objects E in A𝑖−1 with 𝑍𝑖−1(𝐸) = 0 for all 𝑖 ≥ 1,
◦ the abelian category A𝑖 is a heart of V𝑖 , which is defined as V0 = D and for all 𝑖 ≥ 1 as the thick

triangulated subcategory of V𝑖−1 generated by A𝑖 ,
◦ the map 𝑍𝑖 factors through 𝐾𝑖−1 := Ker(𝑍𝑖−1),
◦ the induced heart A𝑖 = A𝑖/A𝑖+1 together with the induced central charge 𝑍𝑖 : 𝐾 (V𝑖/V𝑖+1) → C form

a stability condition in the usual sense on V𝑖/V𝑖+1 for all 𝑖 = 0, . . . , 𝐿.

Two multi-scale stability conditions (A•, 𝑍•) and (A′
•, 𝑍

′
•) are equivalent if

i) there is equality of triangulated categories V𝑖 = V ′
𝑖 for 𝑖 = 0, . . . 𝐿,

ii) the induced stability conditions (𝐴𝑖 , 𝑍 𝑖) and (𝐴𝑖
′
, 𝑍

′
𝑖) are projectively equivalent for 𝑖 = 1, . . . , 𝐿,

and are equal for 𝑖 = 0.

Two multi-scale stability conditions (A•, 𝑍•) and (A′
•, 𝑍

′
•) are projectively equivalent if the projective

equivalence in ii) above holds for 𝑖 = 0, . . . , 𝐿.

We write [A•, 𝑍•] for an equivalence class, and (A•, 𝑍•) for a representative of a multi-scale stability
condition. Moreover, we denote by V• the collection of nested triangulated subcategories (V𝑖) defined
by (A•, 𝑍•). Sometimes write V𝑍

𝑖 for the categories V𝑖 defined above to indicate the dependence on 𝑍•.
The definition relies on the following lemma for the quotient hearts to be meaningful.

Lemma 4.2. The subcategory A𝑖+1 is Serre in A𝑖 and A𝑖+1 = V𝑖+1 ∩ A𝑖 for all i (i.e., A𝑖+1 is V𝑖+1-
compatible in the sense of Definition 3.2). In particular, the inclusion 𝜄 : V𝑖+1 → V𝑖 is t-exact with
respect to A𝑖+1 and A𝑖 , and A𝑖 induces a quotient heart in V𝑖/V𝑖+1. Moreover, 𝐾 (V𝑖/V𝑖+1) = 𝐾𝑖/𝐾𝑖+1
so that 𝑍𝑖 descends to 𝑍𝑖 , as required.

Proof. Serreness ofA𝑖+1 ⊂ A𝑖 follows from the additivity of 𝑍𝑖 on short exact sequences and the fact that
𝑍𝑖 takes values in a strictly convex sector in C. The second statement follows from the observation that
𝑍𝑖 (𝑋) = 0 for any 𝑋 ∈ V𝑖+1. Serreness ofA𝑖+1 ⊂ A𝑖 guarantees that V𝑖+1 consists on objects ofV𝑖 whose
cohomology with respect toA𝑖 is concentrated inA𝑖+1, and that the t-structure restricts, so the next claim
follows from [AGH19, Proposition 2.20] or [CR17, Lemma 3.3]. For the last, observe that 𝐾𝑖+1 is the
image of 𝜄∗ : 𝐾 (A𝑖+1) → 𝐾𝑖 and that the right exact sequence 𝐾 (A𝑖+1) → 𝐾 (A𝑖) → 𝐾 (A𝑖/A𝑖+1) → 0
is used to compute the Grothendieck group of the quotient category. �
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Let MStab(D) be the set of all multi-scale stability conditions on D. The integer L in Definition 4.1
will be referred to as the number of levels below zero of the stability condition. A usual stability condition
has 𝐿 = 0.

Reachability

We now fix a component Stab◦(D) of the stability manifold of D. If D = D3
𝑄3

is a quiver category, we
use an initial triangulation T0 of a DMS as in Section 3.1 to single out this components.

A multi-scale stability condition (A•, 𝑍•) is called reachable if the top level heart A0 supports
stability conditions in Stab◦(D). We denote the set of all reachable multi-scale stability conditions
on D by MStab◦(D), and the set of reachable multi-scale stability conditions with the same V• by
MStab◦(D,V•).

In the next section, we will informally call a multi-scaled stability conditions with at least one level
below zero a boundary point, and finally prove this is actually the case.

Groups of autoequivalences

For general D, we define the group Aut(D,V) to be the autoequivalences that stabilize V . For D = D3
𝑄,

we use bullets to denote those autoequivalences that moreover stabilize the principal components defined
in Section 3.2.

Lemma 4.3. The factor group

Aut lift(D/V) := Aut•(D,V)/Aut•(V) (20)

acts properly discontinuously on Stab•(D/V).
The stabilizer 𝐻 [𝜎 ] ⊂ Aut lift(D/V) of a projectivized stability condition [𝜎] is a finite extension of

a subgroup Z in the center of Aut lift(D/V). In case D = D3
𝐴𝑛

, the group Z is the center, generated by 𝜃𝑛

defined in (11).

Proof. The first statement is shown in the proof of [BMQS22, Theorems 8.1, 8.2], summarized here in
Theorem 3.4 (see, in particular, the part about the orbifold structure, together with Equation (5.7)).

For the second statement we may pass, thanks to the first statement, to the finite index subgroup
of the stabilizer 𝐻 [𝜎 ] of a projective stability condition that acts trivially on a neighborhood of the
unprojectivized 𝜎. As in the proof of [BMQS22, Theorems 8.2], since the action of C and Aut lift(D/V)
commute, the second statement follows. The last claim is a restatement of braid group properties from
Section 3.3. �

4.1. Numerical data of multi-scale stability conditions of type 𝐴𝑛

From here on, we restrict to the caseD = D3
𝐴𝑛

. In this case, we can completely describe the subcategories
and hearts that appear in a multi-scale stability condition.

Lemma 4.4. If (A•, 𝑍•) is a multi-scale stability condition and A0 = modJ𝑄, then A1 = modJ𝑄𝐼 ,
where I is a subset of the vertices of Q, and V1 = pvd Γ𝐼 .

Moreover, there is a bijection of the subcategories V𝑍
1 with homotopy classes of decorated marked

subsurfaces Σ ⊂ SΔ , such that each component Σ 𝑗 for 𝑗 ∈ 𝐽 is of type 𝐴𝑛 𝑗 (i.e., a disc with 𝑛 𝑗 + 1
decoration points in its interior and 𝑛 𝑗 + 3 marked points at its boundary). Here, 𝑛 𝑗 ≥ 1 and the
decomposition is constrained precisely by

∑
𝑗∈𝐽 (𝑛 𝑗 + 1) ≤ 𝑛 + 1, where equality is allowed if and only

if |𝐽 | ≥ 2.

Using this notation, we say that V𝑍
1 is a subcategory of type 𝜌 := (𝑛1, . . . , 𝑛 |𝐽 | ). Iterating this over

all V𝑖 appearing in a multi-scale stability condition, we say that [A•, 𝑍•] is of type 𝝆 = (𝜌𝑖)𝐿
𝑖=1, where

𝜌𝑖 is the type of V𝑖 .
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Proof. Consider A1 ⊂ V𝑍
1 . Since A1 ⊂ A0 is Serre, it is generated by a subset S1 ⊂ Sim(A0) of the

simples of A0, those whose 𝑍0-image is zero. By the correspondence summarized in Section 2.4, this
defines the subquiver 𝑄𝐼 and shows A1 = modJ𝐼 .

For the second claim, we show the chain of equalities

V1 = pvd𝐽𝐼 (Γ) = pvdΓ/Γ𝑒Γ (Γ) = pvd(Γ𝐼 ) ,

where pvd𝑅 (D) ⊂ pvd(D) is the full subcategory with cohomologies in mod 𝑅. The first follows using
the characterization of A0 as a heart in terms of a decomposition of objects in pvd𝐽𝐼 (Γ) into triangles
and Serreness of modJ𝐼 in A0, as in Lemma 4.2. For the second, we just intersect Γ𝐼 = Γ/Γ𝑒Γ with
𝐻0Γ = J . The last equality follows from [KY18, Corollary 6.4 (b)], where we can take 𝐵 = Γ/Γ𝑒Γ = Γ𝐼

thanks to Theorem 7.1 in loc. cit.
Conversely, choosing 𝑍0 to be zero for any subset of the simples andH-valued for the complementary

set of simples defines a subcategory V𝑍
1 that can be be completed to a multi-scale stability condition.

We now translate into the language of Section 3. Let T be the triangulation of the DMS SΔ corre-
sponding to A0. Dual to the open arcs forming the triangulation, there are closed arcs connecting the
decorating points. These are in canonical bijection to the simples in A0, see, for example, the summary
in [BMQS22, Theorem 7.2]. Let A∨

1 = {𝜂𝑆 , 𝑆 ∈ S1} be the closed arcs corresponding to A1 and A1 the
set of dual closed arcs. Let Σ = Σ1 be the subsurface consisting of a tubular neighborhood of A∨

1 , and
let Σ ( 𝑗) denote its connected components. They are all homotopic to a disc containing a certain number,
say 𝑛 𝑗 + 1, of simple zeros with one boundary component. Homotoping the open arcs in A0 so that they
intersect Σ minimally, we deduce from duality that precisely those in A1 have nontrivial intersection
with Σ. We may thus mark 𝜅 ( 𝑗) = 𝑛 𝑗 +3 points on the boundary of Σ ( 𝑗) and restrict the arcs inA1 to arcs
in Σ connecting these boundary points so that A1 |Σ is a triangulation of Σ. In fact, the quiver associated
with each subsurface Σ ( 𝑗) is of type 𝐴𝑛 𝑗 .

The constraints for 𝑛 𝑗 reflect that the total number of decoration points in SΔ has to be at least two
and the fact that there is at least one simple outside A1 (i.e., a closed arc not contained in Σ). This
arc has to connect Σ with a decoration point outside Σ (the case of strict inequality) or connects two
components (the case |𝐽 | ≥ 2). �

As a consequence, we may associate with each subsurface Σ (𝑖)
𝑗 a subcategory V ( 𝑗)

𝑖 of V𝑖 , that jointly
gives an orthogonal decomposition of V𝑖 . We refer to V ( 𝑗)

𝑖 as the components of V𝑖 .
Recall the notion of principal components from Section 3.2.

Corollary 4.5. Suppose that (A•, 𝑍•) ∈ MStab◦(D3
𝐴𝑛
). Then the quotient hearts A𝑖 ⊂ V𝑖/V𝑖+1 support

a stability condition in the principal component Stab•(V𝑖/V𝑖+1) of the stability manifold of V𝑖/V𝑖+1 for
all 𝑖 = 0, . . . , 𝐿.

Proof. In fact, they belong to the one corresponding to the triangulation A𝑖 |Σ𝑖 , extending the notation
of the previous proof in the obvious way. �

4.2. The C-action

Extending the C-action from usual stability conditions to multi-scale stability conditions is a crucial
ingredient for the subsequent plumbing construction.

Proposition 4.6. Recall that we suppose D = D3
𝐴𝑛

. Then there is an action of C denoted by
(𝜆, [A•, 𝑍•]) ↦→ 𝜆 · [A•, 𝑍•] =: [A′

•, 𝑍
′
•] on MStab◦(D), such that

(i) the collection of subcategories V𝑍
𝑖 = V𝑍 ′

𝑖 =: V𝑖 is preserved,
(ii) 𝑍 ′

𝑖 = 𝑒−
√
−1𝜋𝜆𝑍𝑖 , and

(iii) 𝜆 · (A𝑖 , 𝑍 𝑖) = (A′
𝑖 , 𝑍

′
𝑖) is the usual C-action on Stab(V𝑖/V𝑖+1).
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Thanks to Proposition 4.6, proven below, we define the projectivized space of multi-scale stability
conditions PMStab◦(D) = MStab◦(D)/C. In this language, note that retaining just the filtration steps
from a level j onward (i.e., the datum of tuples (A≥ 𝑗 , 𝑍≥ 𝑗 ) together with the ambient triangulated
category V𝑍

𝑗−1) gives by definition an element in PMStab◦(V𝑍
𝑗−1) with 𝐿 − 𝑗 + 1 levels below zero.

The restrictionD = D3
𝐴𝑛

stems from two requirements in the proof. First, we need finite type. Second,
we need a way to lift tilts from quotient categories to D itself. We have shown this for quiver categories
in [BMQS22] and isolate this step in the following notion.

Definition 4.7. Given a thick triangulated subcategory V ⊂ D, a heart A of D and a simple object S in
A \ (V ∩A), we call a heart A′ with A = A′ := A′/(V ∩A′) a convenient representative with respect
to (the forward tilt at) S if A′ is V-compatible and if

ext1 (𝑇, 𝑆) := dim(Ext1(𝑇, 𝑆)) = 0 for all simples 𝑇 ∈ V ∩A′ . (21)

It means that a simple tilt of A at S induces a simple tilt of A at 𝑆.

Lemma 4.8. Suppose D = D3
𝑄. For every V-compatible finite heart A and every simple S, there exists

a convenient representative A′, which can be obtained from A by a finite sequence of simple tilts at
simples in A ∩ V .

If A′ is a convenient representative for S, then 𝜇♯
𝑆A′ is V-compatible and

𝜇♯
𝑆A′ = 𝜇♯

𝑆A′ . (22)

Proof. See [BMQS22, Proposition 5.8]. �

In the following, we will give an explicit procedure for finding a convenient representative ifD = D3
𝐴𝑛

,
that will be useful later.

Lemma 4.9. Recall that we supposeD = D3
𝐴𝑛

. LetA be a heart compatible withV , and let 𝑆0 ∈ A\A∩V
be simple. Then there exist a (possibly empty) set of indecomposables {𝑆1, . . . , 𝑆1...𝑚, 𝑆

′
1, . . . , 𝑆

′
1...𝑚′ } ⊂

A∩V explicitly defined in the proof below, such that (𝜇♯
𝑆′

1...𝑚′
· · · 𝜇♯

𝑆′
1
) (𝜇♯

𝑆1...𝑚
· · · 𝜇♯

𝑆1
) (A) is a convenient

representative of A with respect to 𝑆0.

Proof. Observe that for any simple 𝑆 ∈ A, the number of (isomorphism classes of) simples T in A
satisfying ext1(𝑇, 𝑆) = 1 is at most 2, since A = rep(𝑄,𝑊) with (𝑄,𝑊) a quiver of 𝐴𝑛-type or, more
generally, since it comes from a triangulation of a surface. If there are no simples in A ∩ V with this
property, thenA is convenient with respect to 𝑆0, and we are done. Otherwise, we fix a simple 𝑆1 ∈ A∩V
with

ext1(𝑆1, 𝑆0) = 1, (23)

and we define 𝑆1, . . . , 𝑆𝑚 as the maximal collection of simples in A ∩ V , with

ext1 (𝑆𝑖 , 𝑆𝑖−1) = 1 and ext1 (𝑆𝑖+1, 𝑆𝑖−1) = 0 (24)

for 𝑖 ≥ 1. Note that the second condition in (24) singles out exactly one among the two possible objects
with nontrivial extension with 𝑆𝑖 . Consequently, the collection is uniquely specified for a given A, and
the definition is well posed. See Figure 2 for an example of the corresponding ext-quiver.

Tilting A at 𝑆1 produces a configuration of simples in 𝜇♯
𝑆1
A � 𝑆0 such that the sequence of objects

defined by (23),(24) in 𝜇♯
𝑆1
A has length 𝑚 − 1 and consists of 𝑆12, 𝑆3, . . . , 𝑆𝑚, as displayed in Figure 3

using the correspondence between simple tilts and mutations.
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Figure 2. (Partial) ext-quiver containing the 𝐴𝑚+1-configuration of 𝑆0, 𝑆1, . . . , 𝑆𝑚 defined in the text.
The small red dots correspond to simples in A ∩ V , while the big blue dots correspond to simples of A
not in V .

Figure 3. Mutation at 𝑆1 of the ext-quiver of Figure 2.

Figure 4. The result of mutating at 𝑆1, 𝑆12, . . . , 𝑆1...𝑚 the ext-quiver of Figure 2.

Tilting inductively at 𝑆1...𝑖 (recall the notation from (3)), the procedure leads to a configuration
where such a sequence has length 0, as desired, see Figure 4. We define X = 〈𝑆1...𝑚, . . . , 𝑆1〉 so that
𝜇♯
X := 𝜇♯

𝑆1...𝑚
· · · 𝜇♯

𝑆1
by Proposition 2.2. By construction, X ⊂ A ∩ V and 𝜇♯

XA = A ⊂ D/V .
Suppose now that there exists another simple 𝑆′1 ≠ 𝑆1 satisfying (23). Proceeding in the same way,

we define 𝑆′𝑖 using (23) and (24) and define inductively 𝑆′1...𝑖 for 𝑖 = 1, . . . , 𝑚′ as above. They are not in
〈𝑆1, . . . , 𝑆𝑚+1〉, due to the second condition in (24). Then, with X ′ = 〈𝑆′1...𝑚, . . . , 𝑆

′
1〉,

𝜇♯
X ′𝜇

♯
X (A) = (𝜇♯

𝑆′
1...𝑚′

· · · 𝜇♯
𝑆′

12
𝜇♯

𝑆′
1
) (𝜇♯

𝑆1...𝑚
· · · 𝜇♯

𝑆12
𝜇♯

𝑆1
) (A)

is a convenient representative of A with respect to 𝑆0. �

Proof of Proposition 4.6. Here and in many cases in the sequel, all aspects of the proof are visible in
the situation with just two levels (i.e., 𝐿 = 1), and for expository simplicity, we restrict to this case and
if needed we mention briefly in the end how to proceed by induction. Suppose Re𝜆 ≥ 0; the other case
is analogous.

For a rescaling by 𝑒−𝜋𝑖𝜆 with 𝜆 ∈ 𝑖R and for a rotation (𝜆 ∈ R) so that the phase of no simple in A0
with nonzero central charge exceeds (0, 1], we just apply (ii) to the multi-scale central charge, and all
the other conditions still hold. It thus suffices to consider general rotations (i.e., 𝜆 ∈ (0, 1]), repeating
the process �𝜆� many times.

We denote by F1
𝜆 ⊂ A1 the torsion-free class induced by the action of 𝜆 on (A1, 𝑍1). Similarly, we

let F𝜆 ⊂ A0 be the analogous torsion-free class for the 𝜆-action on (A0, 𝑍0). We can decompose the tilt
at F𝜆 as a composition of tilts at finitely many simple torsion-free classes F 𝑖 = 〈𝑋𝑖〉 ⊂ A0 according
to Proposition 2.2.

The subcategory F1
𝜆 is a torsion-free class in A0, and we first forward-tilt A0 and A1 at F1

𝜆 . Then
we inductively ‘lift’ the simple tilt at 𝑋𝑖 at 𝜇♯

F 𝑖−1
A0

(𝑖−1)
(with A0

(0)
= A0) to the upper level in the

following way. If 𝑆 = 𝑋1, we apply Lemma 4.8 and forward tiltA0 to arrive at a convenient representative
A′

0 = 𝜇♯
XA0 for S. Second, we tilt forward at S, and third, we perform the backward tilt at X [1]. At the

end, we arrive at a heart A′′
0 on which 𝑍0 is still well defined, and with the following properties:

(1) V ′′
0 = V0, since after each of the three steps, the simples annihilated by 𝑍0 generate the same

category;
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(2) the quotient heart A′′
0 coincides with 𝜇♯

𝑆A0, thanks to (22);
(3) the intersection A′′

0 ∩ V0 = A1, since the forward and backward tilts cancel on A1.

Repeating this process for all i, in the end, we change the central charge as required by (ii). Using (1) at
each step ensures (i), and (2) together with (3) at each step ensure (iii). This procedure indeed defines
an action of C, since the equivalence class of the multi-scale stability condition is uniquely determined
by the conditions (i)–(iii). It obviously agrees with the C-action on Stab(V0/V1). �

For later use, we record that the ‘lifts’ of the tilts at F 𝑖 used in the previous proof are actually tilts at
explicit torsion-free classes F𝑖 .

Lemma 4.10. Recall that D = D𝐴𝑛 , and let A• = (A0,A1) and 𝑍• = (𝑍0, 𝑍1). For 𝜆 ∈ R≥0 such that

◦ 𝜆 · (A0, 𝑍0) = (𝜇♯
𝑆0
A0, 𝑒

−𝜋𝜆𝑍0) in Stab◦(D/V), and
◦ there are no indecomposables in A1 with phase 𝜙𝑍1

less than or equal to 𝜆,

the action by 𝜆 on [A•, 𝑍•] gives [A′
•, 𝑍

′
•] with nested hearts

A′
0 = 𝜇♯

FA0, A′
1 = A1,

for F = 〈𝑆′01...𝑚′ , . . . 𝑆
′
01, 𝑆01...𝑚, . . . 𝑆01, 𝑆0〉, using the same notation as in proof of Lemma 4.9.

Moreover, F ⊂ 〈𝑆0,A1〉 \A1.

Proof. Suppose for simplicity 𝑚 > 0, 𝑚′ = 0 in the notation of Lemma 4.9. We know that
A′

0 = 𝜇♭
X [1]𝜇

♯
𝑆0
𝜇♯
XA0 by the procedure described in the proof of Proposition 4.6. Since

〈𝑆0, 𝑆01, . . . , 𝑆01...𝑚, 𝑆1, . . . , 𝑆1...𝑚〉 = 〈𝑆1, 𝑆12, . . . , 𝑆1...𝑚, 𝑆0〉,

we deduce that

(𝜇♯
𝑆1...𝑚

· · · 𝜇♯
𝑆1
) (𝜇♯

𝑆01...𝑚
· · · 𝜇♯

𝑆01
)𝜇♯

𝑆0
(A) = 𝜇♯

𝑆0
(𝜇♯

𝑆1...𝑚
· · · 𝜇♯

𝑆1
) (A),

and hence, 𝜇♯
F (A) = 𝜇♭

X [1]𝜇
♯
𝑆0
𝜇♯
X (A). �

We use the subsequent lemma as a preparation for Proposition 5.2 below.

Lemma 4.11. Let F𝑖 for 𝑖 = 1, . . . , 𝑟 be the torsion-free classes lifting the classes F 𝑖 ⊂ A0
(𝑖−1)

appearing in the proof of Proposition 4.6 and explicitly described by Lemma 4.10. ThenF 𝑗∩F𝑖 [1] = {0}
for any 𝑗 > 𝑖. Moreover, for any 𝑟 ′ ≤ 𝑟 , the result of the sequence of forward-tilts at F𝑖 of A0 for
𝑖 = 1, . . . , 𝑟 ′ is intermediate with respect to A0.

Proof. By Lemma 4.10, the class F𝑖 is generated by a simple object X in A(𝑖−1) together possibly with
extensions of X with A(𝑖−1) ∩ V1. Similarly is F𝑖−1 for an object Y, with 𝜋(𝑋) ≠ 𝜋(𝑌 ) in D/V1; hence
𝑋 ≠ 𝑌 , and also 𝑋 ≠ 𝑌 [1] (since the central charge defines a stability condition on the quotient). None
of the extensions of X with A1 can be in V1, nor they can just be extensions of 𝑌 [1] with V1. Hence,
F𝑖 ∩ F𝑖−1 [1] = {0} and F𝑖−1 [1] ⊂ ⊥F𝑖 . This is the start for an inductive argument. In fact, we deduce
that 𝜇♯

F2
𝜇♯
F1
A0 ⊃ F2 [1],F1 [1]. Now the previous argument shows that F3 does not intersect F2 [1]

and F1 [1] nontrivially, and we may proceed with the induction.
The last part of the statement then follows from standard facts in tilting theory. �

5. The topology on the space of multi-scale stability conditions

The goal of this section is to provide the space of multi-scale stability conditions MStab◦(D3
𝐴𝑛
) with

a natural topology so that the quotient by autoequivalences acquires a complex structure (Section 5.3)
and so that the further taking the quotient by the C-action gives a compact space (Section 5.4). The
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definition of neighborhoods is based on the plumbing construction of Section 5.1 and explicitly given
in Section 5.2. The name of the construction is derived from [BCGGM3]; see also Section 6 where a
plumbing construction is performed on Riemann surfaces and where we will see that the constructions
are analogous.

5.1. Plumbing of stability conditions

The plumbing construction takes as input a multi-scale stability condition (A•, 𝑍•) and a collection
𝝉 = (𝜏1, . . . , 𝜏𝐿) ∈ −H𝐿 and outputs an honest stability condition. More generally, we will allow 𝝉 to
take the formal value 𝜏𝑗 = −𝑖∞ for j in any fixed subset 𝐽 ⊂ {1, . . . 𝐿} and let −H∞ = −H ∪ {−𝑖∞}.
The result of the plumbing construction will then be a multi-scale stability condition with |𝐽 | levels
below zero, the extreme case 𝝉 = (−𝑖∞)𝐿 being the identity, no plumbing at all. Using all tuples 𝝉 with
each entry of large (or infinite) imaginary part and then allowing small deformations of the resulting
generalized stability conditions at each level will provide a neighborhood of (A•, 𝑍•).

For simplicity, we start with a multi-scale stability conditions (A•, 𝑍•) with 𝐿 = 1 and let V = V𝑍
1 .

Proposition 5.1. Suppose that the representative (A•, 𝑍•) of a multi-scale stability condition has
precisely one level below zero. For 𝜏 ∈ −H, there is a (honest) stability condition (A′, 𝑍 ′) = 𝜏∗(A•, 𝑍•),
the plumbing of (A•, 𝑍•) with 𝜏, uniquely determined by the conditions

◦ (A′ ∩ V , 𝑍 ′ |𝐾 (V) ) = 𝜏 · (A1, 𝑍1) for the usual C-action,
◦ the quotient central charges agree 𝑍 ′ = 𝑍 ∈ Hom(𝐾 (D/V),C),
◦ the hearts A′ = A0 coincide in D/V .

Note that the plumbing procedure depends on a chosen representative. For the definition of the
topology, we will use that the set {𝜏 ∗ (A•, 𝑍•), − Im(𝜏) > 𝐶} for any fixed C does not depend on this
representative, since the change of representative results in translation of the corresponding 𝜏 by a real
number. We use that

𝐾 (A0) = 𝐾 (A0) ⊕ 𝐾 (A1) given by Sim(A0) = Sim(A0)
∐

Sim(A1) (25)

(see, for example, the survey [Psa18, Proposition 2.9]) to define two projections

𝜋0 : 𝐾 (D) � 𝐾 (A0) → 𝐾 (A0), 𝜋1 : 𝐾 (D) � 𝐾 (A0) → 𝐾 (A1) . (26)

Using these projections, we combine central charges as

𝑍0 ⊕ 𝑍1 := 𝑍0 ◦ 𝜋0 + 𝑍1 ◦ 𝜋1 .

Proof. The heart of 𝜏 · (A1, 𝑍1) equals 𝜇♯
FA1 for some torsion-free class F ⊂ A1 ⊂ A0. We take

A′ = 𝜇♯
FA0, and by [BMQS22, Lemma 5.6], the last condition holds. Since 𝜇♯

FA1 ⊂ A′ and since
A′ is a finite heart thanks to D = D3

𝐴𝑛
, we can use the observation (25) to get the decomposition

𝐾 (A′/𝜇♯
FA1) ⊕𝐾 (𝜇♯

FA1) and define 𝑍 = 𝑍0 ⊕ 𝑒−𝜋𝑖𝜏𝑍1. This is indeed a central charge, since 𝑍 (𝑆) ∈ H
for all simples 𝑆 ∈ A1 by the hypothesis on 𝑍0 and 𝑍1. �

Next, we generalize to the action of 𝝉 = (𝜏,−𝑖∞, . . . ,−𝑖∞) on a multi-scale stability condition
(A•, 𝑍•). In this case, we apply Proposition 5.1 to the first two levels ((A0,A1), (𝑍0, 𝑍1)) and record
as 𝝉-image the tuple

(𝜏,−𝑖∞, . . . ,−𝑖∞) · (A•, 𝑍•) = (A′,A2,A3 . . . , 𝑍
′, 𝑍2, 𝑍3, . . .) (27)

(i.e., the top two levels have been merged to obtain a multi-scale stability condition with 𝐿 − 1 levels
below zero).
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This construction also gives a recipe for the plumbing 𝝉 ∗ (A•, 𝑍•) of a multi-scale stability condition
(A•, 𝑍•) by a general 𝝉 ∈ −H𝐿

∞. We take j to be the highest index with 𝜏𝑗 ≠ −𝑖∞. Then we apply
the preceding construction to the multi-scale stability condition (A≥ 𝑗 , 𝑍≥ 𝑗 ) on V𝑍

𝑗 and iterate with the
action of the remaining coordinates 𝝉′ = (𝜏1, · · · , 𝜏𝑗 , · · · ). It will turn out that the plumbing procedure
is not quite independent of the order of the levels at which we perform the plumbing step, only nearly
so. The reason is that already one-level plumbing and rotation are only nearly compatible. We need a
quantitative version of this fact.
Proposition 5.2. Let (A•, 𝑍•) be a fixed representative of a multi-scale stability condition with 𝐿 = 1.
Let 𝜏 ∈ −H, 𝜆 ∈ C, with

0 ≤ Re𝜆, 0 ≤ Re 𝜏, and 0 ≤ Re(𝜆 + 𝜏) < 1. (28)

Then the hearts of the two stability conditions

�̃� := (Ã, 𝑍) := 𝜆 · (𝜏 ∗ (A•, 𝑍•)) and �̂� := (Â, 𝑍) := 𝜏 ∗ (𝜆 · (A•, 𝑍•)) (29)

are intermediate hearts with respect to A0, and the difference of the central charges may be coarsely
estimated by ���(𝑍 − 𝑍) (𝑆 𝑗 )

��� ≤ ℓ · |𝑒−𝜋𝑖 (𝜆+𝜏) |
∑

𝑆𝑖 ∈A1
simple

|𝑍1 (𝑆𝑖) | (30)

for any simple 𝑆 𝑗 ∈ Sim(A0), where ℓ is the number of classes of indecomposables in 𝐾 (A0).
We recall from [Bri16, Proposition 7.4] that the local homeomorphism given by the forgetful map

Stab(D) → Hom(𝐾 (D),C) is actually injective when restricted to all hearts that are intermediate with
respect to a given heart A0 (i.e., in [A0,A0 [1]]). Consequently, to show that �̃� and �̂� are nearby, it
suffices to estimate the differences of the central charges if Ã, Â ∈ [A0,A0 [1]].

Proof. The result of plumbing is given by definition as (A, 𝑍) := 𝜏 ∗ (A•, 𝑍•) with

A = 𝜇♯
F𝜏

A0 ⊃ 𝜇♯
F𝜏

A1, F𝜏 = 〈𝐸 ∈ A1, 𝑍1-semistable s.t. 𝜙𝑍1 (𝐸) ≤ Re 𝜏〉

𝑍 := 𝑍0 ⊕ 𝑒−𝑖 𝜋𝜏 · 𝑍1 .

We first consider the case where
(★) there is exactly one isomorphism class [𝑆0] ∈ 𝐾 (A) of a Z-stable object in A with phase

0 < 𝜙𝑍 (𝑆0) ≤ Re𝜆, and moreover, [𝑆0] ∉ 𝐾 (V) .
(Note that 𝑆0 must be simple in A.) In this case, the stability condition �̃� is given by 𝑍 = 𝑒−𝑖 𝜋𝜆𝑍 and
Ã = 𝜇♯

𝑆0
A = 𝜇♯

F̃
A0 with F̃ = 〈F𝜏 , 𝑆0〉. In particular, Ã ∈ [A0,A0 [1]].

However, the heart Â is obtained by 𝜏-plumbing the multi-scale heart (A1 ⊂ 𝜇♯
FA0), where

F = 〈𝑆0, 𝑆01, . . . 〉 ⊂ A0 is explicitly described in Lemma 4.10, since assumption (★) implies that the
torsion-free class in A0 of objects with phase 0 < 𝜙𝑍0

≤ Re𝜆 is generated by 𝑆0. Consequently,

Â = 𝜇♯
G𝜇

♯
FA0, where G = 〈𝐸 ∈ A1, 𝑍1-semistable s.t. 𝜙𝑍1 (𝐸) ≤ Re 𝜏〉.

Since G ⊂ 𝜇♯
FA0 ∩ V1 and 𝜇♯

FA1 = A1, we deduce G ∩ F [1] = {0}, and consequently (by the same
arguments as in Lemma 4.11), we deduce A0 ≤ 𝜇♯

FA ≤ Â = 𝜇♯
G𝜇

♯
FA0 ≤ A0 [1] in the partial order

from Section 2.1.
To compare central charges, note that the plumbing procedure happens over two different decompo-

sitions of 𝐾 (D): one induced by 𝐾 (A0/A1) ⊕𝐾 (A1), and the other induced by 𝐾 (𝜇♯
FA0/A1) ⊕𝐾 (A1).
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The change of basis 𝐾 (𝜇♯
FA0) � 𝐾 (A0) = 𝐾 (A0/A1) ⊕𝐾 (A1) has the form of a block lower-triangular

matrix

[𝜇F ]−1 =

(
𝐶𝑛−𝑘 0
𝐵10 1𝑘

)
,

where the entries of 𝐵10 = (𝑏𝑖 𝑗 )𝑖 𝑗 have absolute value at most 1, where we hardly control the block
𝐶𝑛−𝑘 , and where the block 1𝑘 expresses that V is preserved. Using the projections 𝜋0 and 𝜋1 onto the
summands 𝐾 (A0/A1) ⊕ 𝐾 (A1), we find

𝑍 = 𝑒−𝜋𝑖𝜆𝑍0 ◦ 𝜋0 + 𝑒−𝜋𝑖 (𝜆+𝜏)𝑍1 ◦ 𝜋1

and

𝑍 = 𝑒−𝜋𝑖𝜆𝑍0 ◦ �̂�0 + 𝑒−𝜋𝑖 (𝜏+𝜆)𝑍1 ◦ �̂�1

= 𝑒−𝜋𝑖𝜆𝑍0 ◦ 𝜋0 + 𝑒−𝜋𝑖 (𝜏+𝜆)𝑍1 ◦ (𝜋1 + 𝐵10𝜋0),
(31)

where we see 𝐵10 as a map 𝐾 (A0/A1) → 𝐾 (A1). Now consider the simples in A0. For 𝑆 𝑗 ∈ A1, the
two expressions agree. For 𝑆 𝑗 a simple of A0 not in A1, we find���(𝑍 − 𝑍) (𝑆 𝑗 )

��� =
��� ∑
𝑆𝑖 ∈A1
simple

(𝑒−𝜋𝑖 (𝜆+𝜏)𝑏𝑖 𝑗 )𝑍1(𝑆𝑖)
��� ≤ |𝑒−𝜋𝑖 (𝜆+𝜏) | ·

∑
𝑆𝑖 ∈A1
simple

|𝑍1 (𝑆𝑖) |.

We now drop the assumption (★) and allow for multiple indecomposables 𝑋 ∈ A with
0 < 𝜙𝑍 (𝑋) ≤ Re𝜆 .

The assumption (28) still guarantees that Ã ∈ [A0,A0 [1]], and 𝑍 = 𝑒−𝜋𝑖𝜆𝑍0 ◦𝜋0 + 𝑒−𝜋𝑖 (𝜆+𝜏)𝑍1 ◦𝜋1,
as before.

The result of 𝜆 · (A•, 𝑍•) is a multi-scale stability condition 𝜎′ with nested hearts A′
1 ⊂ A′

0 that
can be explicitly obtained as in the proof of Proposition 4.6 by performing a forward-tilt at F1

𝜆 and a
sequence of forward-tilts at torsion-free classes F𝑖 described in Lemma 4.10 and Lemma 4.11. At each
step, at the 0 level, the matrix of the change of basis has the form of a block lower triangular matrix, with
a block 𝐵10̄ =

∏
𝑖 𝐵

(𝑖)
10̄ , whose entries have absolute value ≤ ℓ′𝑖 , bounded by the number ℓ′𝑖 of classes of

indecomposables in F1
𝜆 or F𝑖 . Lemma 4.11 guarantees that the heart A′

0 is intermediate with respect to
A0, and so is the heart of 𝜏 ∗ 𝜎′ thanks to assumption 28. Similarly to (5.1), we obtain���(𝑍 − 𝑍) (𝑆 𝑗 )

��� ≤ |𝑒−𝜋𝑖 (𝜆+𝜏) | · ℓ
∑

𝑆𝑖 ∈A1
simple

|𝑍1 (𝑆𝑖) |,

where ℓ is the number of classes of indecomposables in 𝐾 (A0). Last, the case Re𝜆 = 0 is just easier,
and the argument above shows that in such a case, 𝜆 · (𝜏 ∗ (A•, 𝑍•)) = 𝜏 ∗ (𝜆 · (A•, 𝑍•)). �

Remark 5.3. The same observation shows that the plumbing (with fixed parameter 𝜏 ∈ −H) of a path
𝛾 ∈ MStab◦(D3

𝐴𝑛
) \ Stab◦(D3

𝐴𝑛
) is not continuous. Discontinuities occur when some simple (not at

bottom level) is tilted. However, the size of the jumps decreases with |𝑒−𝜋𝑖𝜏 |. More precisely, suppose
that 𝐿 = 1 and that 𝛾 is a path for which at precisely one value 𝑡0 ∈ [0, 1], such a tilt occurs. Then the
hearts of the two stability conditions

𝜎+ := (A+, 𝑍+) := lim
𝑡→𝑡+0

(𝜏 ∗ 𝛾(𝑡)) and 𝜎− := (A−, 𝑍−) := lim
𝑡→𝑡−0

(𝜏 ∗ 𝛾(𝑡))

https://doi.org/10.1017/fms.2024.106 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2024.106


22 A. Barbieri, M. Moller and J. So

are intermediate hearts with respect to the top level heart A0 of lim𝑡→𝑡−0
𝛾(𝑡0), and the difference of the

central charges may be coarsely estimated by��(𝑍+ − 𝑍−)(𝑆 𝑗 )
�� ≤ ℓ · |𝑒−𝜋𝑖𝜏 |

∑
𝑆𝑖 ∈A1
simple

|𝑍1 (𝑆𝑖) | (32)

for any simple 𝑆 𝑗 ∈ Sim(A0), where ℓ is the number of classes of indecomposables in 𝐾 (A0). The
proof is exactly the same as for the previous proposition.

Let again 0 ≤ Re(𝜏) < 1, and decompose 𝜏 = 𝜏𝑅 + 𝑖𝜏𝐼 into its real and imaginary part. We observe
that the plumbing in Proposition 4.6 can be viewed a composition of three steps: First, we apply the
action of 𝜏𝑅, resulting in a tilt at a torsion-free class F ⊂ A1 and turning 𝑍1 by 𝑒−𝜋𝑖𝜏𝑅 resulting in
some other representative (ARe(𝜏)

• , 𝑍Re(𝜏)
• ) of the multi-scale stability condition. Second, we rescale

𝑒−𝜋𝑖𝜏𝑅𝑍1 by 𝑒𝜋𝜏𝐼 , and finally, we form the direct sum Z and drop the lower levels to get an honest
stability condition. The observation that [𝜇♯

F ]
−1 in the previous proof preserves V1 and the first step just

described does preserve V1 as well, together imply the following corollary where we relax the bound
for Re(𝜏) appearing in Proposition 5.2.

Corollary 5.4. Let (A•, 𝑍•) be a fixed representative of a multi-scale stability condition with 𝐿 = 1.
Let 𝜏 ∈ −H, 𝜆 ∈ C, with 0 ≤ Re(𝜆) < 1. Then the hearts of the two stability conditions

�̃� := (Ã, 𝑍) := 𝜆 · (𝜏 ∗ (A•, 𝑍•)) and �̂� := (Â, 𝑍) := 𝜏 ∗ (𝜆 · (A•, 𝑍•))

are intermediate hearts with respect to ARe(𝜏)
0 , and the difference of the central charges may be coarsely

estimated as in (30).

Remark 5.5. For 𝜆 ∈ 2Z and any 𝜏 ∈ −H, plumbing and the 𝜆-action commute (i.e., the hearts �̃� and
�̂� from (29) agree).

5.2. Neighborhoods in the space MStab◦(D3
𝐴𝑛
).

We work here with a representative (A•, 𝑍•) of a multi-scale stability condition and let

𝜹 = (𝛿1, . . . , 𝛿𝐿)

be a tuple of (small) positive real numbers where 𝛿 𝑗 will control the size of plumbing of level j. Moreover,
we fix a collection of positive real numbers

𝜺 = (𝜀𝐽 ) for any 𝐽 ⊂ {0, . . . , 𝐿}.

The following Definition 5.6 captures the idea that neighborhoods of boundary points consist of the
multi-scale stability conditions, described heuristically as follows. Suppose 𝐿 = 1 for simplicity. We
write 𝜖0, 𝜖1, 𝜖01 for 𝐽 = {0}, {1}, {0, 1}, respectively. Then

◦ we may plumb by 𝜏 with large negative imaginary part (so that the lower level stability condition
(A1, 𝑒

−𝜋𝑖𝜏𝑍1) stays small in size) and wiggle the result in Stab◦(D3
𝐴𝑛
) by a small amount (by a size

controlled by 𝜀01);
◦ alternatively, we may not plumb (i.e., 𝜏 = −𝑖∞) and wiggle in Stab◦(V1) and Stab◦(D/V1) a bit (by

sizes controlled by 𝜀𝑖) on level i, for 𝑖 = 0, 1.

We say that a stability condition (A′
•, 𝑍

′
•) with 𝐿 ′ ≤ 𝐿 levels below zero arises by plumbing of

size at most 𝜹 from (A•, 𝑍•) if there is 𝜏 ∈ (−H∞)𝐿) with |𝑒−𝜋𝑖𝜏 𝑗 | < 𝛿 𝑗 for 𝑗 = 1, . . . , 𝐿 and
(A′

•, 𝑍
′
•) = 𝜏 ∗ (A•, 𝑍•). For a such a stability condition, we denote the new vanishing categories by V ′

𝑖 .
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Say levels in the interval 𝐽𝑖 = { 𝑗1, . . .} ⊂ {0, . . . , 𝐿} have been plumbed to form the new level i. (This
implies by definition that 𝜏𝑗1 = −𝑖∞.)

We define the natural inner product on 𝐾 (V ′
𝑖 /V ′

𝑖+1)
∨ = Hom(𝐾 (V ′

𝑖 /V ′
𝑖+1),C) by using as an or-

thonormal basis the basis 𝑍𝑆𝑖 dual to the simples of A0. (Note that this norm depends on the heart A0
and its simples, but the norm around any other multi-scale stability condition 𝜎† = (A†

•, 𝑍
†
• ) is compa-

rable, scaling by a factor 𝐶 = 𝐶 (𝜎, 𝜎†) given by the operator norm of the identity map with respect to
the to norms.)

Definition 5.6. We define the set 𝑉𝜺,𝜹 (A•, 𝑍•) to be the set of all multi-scale stability conditions
(A′′

• , 𝑍
′′
• ) with 𝐿 ′ levels below zero such that

(1) there is a multi-scale stability condition (A′
•, 𝑍

′
•) with 𝐿 ′ ≤ 𝐿 levels that arises by plumbing of size

at most 𝜹 from (A•, 𝑍•), and
(2) the multi-scale stability condition (A′′

• , 𝑍
′′
• ) is in a neighborhood of (A′

•, 𝑍
′
•) in

∏
Stab◦(V ′

𝑖 /V ′
𝑖+1)

which maps to the product of 𝜀𝐽 -balls on 𝐾 (V ′
𝑖 /V ′

𝑖+1)
∨ under the forgetful map retaining just the

quotients of the multi-scale central charges. Here, J is the interval that is plumbed to produce level i.

A neighborhood of (A•, 𝑍•, ) is a set in MStab◦(D𝐴𝑛 ) that contains 𝑉𝜺,𝜹 (A•, 𝑍•, ) for some 𝜺 and 𝜹.

This definition includes the case that 𝐿 = 0 and that (A, 𝑍) is an honest stability condition, in which
case, the neighborhoods have to contain the 𝜀-balls in the norm with orthonormal bases given by the
simples of A, since the deformation of stability conditions is locally controlled by the deformation of
the central charge. This gives the second part of the following lemma.

Lemma 5.7. The system of neighborhoods given in Definition 5.6 defines a topology on MStab(D3
𝐴𝑛
)

whose restriction to Stab(D3
𝐴𝑛
) is the usual topology where the forgetful map retaining the central

charge is a local homeomorphism.

Proof. The only axiom whose verification is nontrivial is the following. Let U be a neighborhood of
𝜎 = [𝐴•, 𝑍•], in the sense of Definition 5.6. Then there is a smaller neighborhood V of this point,
such that U is a neighborhood of each 𝜎† = [A†

•, 𝑍
†
• ] in V. We continue with the case 𝐿 = 1; the

general case works with the same argument. By definition, U contains some 𝑉𝜺, 𝛿 (𝐴•, 𝑍•). The rough
idea is to take 𝑉 = 𝑉𝜺∗ , 𝛿∗ (𝐴•, 𝑍•) for some (𝜺∗, 𝛿∗) smaller than (𝜺, 𝛿) in each entry, so that U contains
𝑉(𝜺−𝜺∗)/𝐶,𝛿−𝛿∗ (𝜎†), just as if we would be working plainly in vector spaces, where 𝐶 = 𝐶 (𝜎, 𝜎†) ≥ 1
accounts for the change of basis in the definition of the norms. We will prove that 𝑉(𝜺−𝜺∗)/𝐶,𝛿−𝛿∗ (𝜎†) is
indeed contained in 𝑉𝜺, 𝛿 (𝜎) for 𝜺∗ carefully chosen. We have to avoid that 𝜀∗0, 𝜀∗1 are large compared to
𝜀∗01 so that any plumbing after deforming (A†

•, 𝑍
†
• ) of the order of 𝜀0, 𝜀1 does not fail of being near 𝜎.

We may thus first take the pair (𝜀∗0, 𝜀
∗
1) so small that any point in the (𝜀∗0, 𝜀

∗
1)-ball in Stab◦(D/V1) ×

Stab◦(V1) can be reached from 𝜎 by a path 𝛾(𝑡) involving at most one tilt, at 𝑡 = 0. Suppose the
chosen 𝜎† = (𝐴†

•, 𝑍
†
• ) ∈ 𝑉𝜺∗ , 𝛿∗ (𝜎) has also 𝐿 = 1 levels below zero, and let 𝛾†(𝑡) be the straight path

connecting 𝜎 and 𝜎†. Let 𝜏 in −H of magnitude at most 𝛿∗, and �̂� = 𝜏 ∗𝜎†, 𝜎′ = 𝜏 ∗𝜎. By the argument
in Proposition 5.2 and the one-tilt hypothesis, the hearts Â and A′ are intermediate with respect to A0,
so the distance between �̂� and 𝜎′ is controlled by their central charges. If the plumbing of the path 𝛾†
is continuous, then

| |𝑍 − 𝑍 ′ | | ≤ 𝜀∗0 + 𝛿
∗
1𝜀

∗
1 . (33)

In the general case of a single tilt, use Remark 5.3 and compare 𝜎′ = 𝜎− with 𝜎+ := (A+, 𝑍+) =
lim𝑡→0+ 𝜏 ∗ 𝛾†(𝑡). Now (32) and the previous estimate in the new notation give the rough estimate

| |𝑍 − 𝑍+| | ≤ 𝜀∗0 + 𝛿
∗
1𝜀

∗
1 and | |𝑍+ − 𝑍 ′ | | ≤ ℓ𝑛𝛿∗1. (34)

The triangle inequality shows that requiring, moreover, 𝜀∗01 ≤ 𝜀∗0 + 𝛿
∗
1(𝜀

∗
1 + ℓ𝑛) does the job. �
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The next lemma will be used in the proofs at the end of this section. We consider a sequence {𝜎𝑗 } 𝑗

of multi-scale stability conditions in MStab◦(D3
𝐴𝑛
).

Lemma 5.8. Fix 𝜆 ∈ C with 0 < Re(𝜆) < 1, and consider the C-action given in Proposition 4.6. Then
a sequence {𝜎𝑗 } 𝑗 converges to 𝜎 in MStab◦(D3

𝐴𝑛
) if and only if {𝜆 · 𝜎𝑗 } 𝑗 converges to 𝜆 · 𝜎.

Proof. Again, we give the details in the case that𝜎 has 𝐿 = 1 levels below zero. Extracting subsequences,
we may assume that all 𝜎𝑗 have the same number of levels below zero. If they are strict multi-scale
stability conditions, the claim follows from the corresponding statement in Stab◦(V1) ×Stab◦(D3

𝐴𝑛
/V1).

The interesting case is that 𝜎𝑗 ∈ Stab◦(𝐷3
𝐴𝑛
) for all j.

Convergence and the definition of neighborhoods implies that 𝜎𝑗 is in an open set𝑉𝜀 𝑗 , 𝛿 𝑗 (𝜎′
𝑗 ), where

𝜎′
𝑗 = 𝜏𝑗 ∗ 𝜎 for some fixed representative of 𝜎 and for both 𝜀 𝑗 → 0 and 𝛿 𝑗 = |𝑒−𝜋𝑖𝜏 𝑗 | → 0 as 𝑗 → ∞.

We apply the action of 𝜆 to this sequence and use Corollary 5.4 to see that 𝜆 · (𝜏𝑗 ∗ 𝜎) is close to
𝜏𝑗 ∗ (𝜆 · 𝜎) in a way controlled by (30). We conclude that 𝜆 · 𝜎𝑗 is in an 𝜀′𝑗 -ball of 𝜆 · (𝜏𝑗 ∗ 𝜎) for
𝜀′𝑗 = 𝜀 𝑗 + ℓ𝛿 𝑗 , which certifies convergence. �

The Hausdorff property
We now start proving that MStab◦(𝐷3

𝐴𝑛
) is a nice topological space.

Lemma 5.9. The space MStab◦(𝐷3
𝐴𝑛
) is second countable.

Proof. The basis of neighborhoods consisting of 𝑉𝜺,𝜹 (A•, 𝑍•) with (A•, 𝑍•) such that the 𝑍𝑖’s map the
collection of simples to a (projectivized) tuple of rational numbers, and with all entries of (𝜺, 𝜹) being
rational, obviously generates the same topology as the one using real numbers. �

Theorem 5.10. For any subgroup𝐺 ⊂ Aut◦(D3
𝐴𝑛
), the quotient MStab◦(D3

𝐴𝑛
)/𝐺 and the projectivized

version PMStab◦(D3
𝐴𝑛
)/𝐺 are Hausdorff topological spaces.

Proof. Since the relevant (quotient) spaces are second countable, being Hausdorff is equivalent to
uniqueness of limits, which we now show. Suppose that the sequence 𝜎𝑗 = [A•, 𝑗 , 𝑍•, 𝑗 ] of multi-scale
stability condition converges to 𝜎 = [A•, 𝑍•] and that the sequence 𝜎′

𝑗 = Φ 𝑗 [A•, 𝑗 , 𝑍•, 𝑗 ], with Φ 𝑗 ∈ 𝐺,
converges to 𝜎′ = [A′

•, 𝑍
′
•] in MStab◦(D3

𝐴𝑛
). We need to show that [A′

•, 𝑍
′
•] = Φ[A•, 𝑍•] for some

Φ ∈ 𝐺. We restrict our argument to the cases that all the 𝜎𝑗 are honest stability conditions, that [A•, 𝑍•]
has 𝐿 = 1 level below zero and that [A′

•, 𝑍
′
•] has 𝐿 ′ ∈ {0, 1}, leaving the inductive arguments to treat

the general case to the reader. Note that the mass 𝑀max (𝜎𝑗 ) of the longest and the mass 𝑀min (𝜎𝑗 ) of
the shortest stable object in 𝜎𝑗 is a notion that is invariant under the action of Aut◦(D3

𝐴𝑛
).

The case 𝐿 ′ = 0 is absurd, since this implies that 𝑀min(𝜎𝑗 )/𝑀max(𝜎𝑗 ) is bounded below, while the
convergence to 𝜎 implies that this ratio tends to zero.

In general, for a sequence 𝜎𝑗 converging to 𝜎 with 𝐿 = 1 and for some cut-off parameter 𝑀 > 1, we
say that a simple S is ‘short’ if its mass is less that 1/𝑀 times the largest mass of a simple, and ‘long’
otherwise.

In the case 𝐿 ′ = 1, consider the set of short stable objects in the sequences 𝜎𝑗 and 𝜎′
𝑗 , respectively.

By definition of the topology, these short stable objects eventually (as 𝐶 → ∞) generate the vanishing
subcategories V and V ′. Consequently, Φ 𝑗V = V ′ for 𝑗 ≥ 𝑁 for some N large enough. Replacing Φ 𝑗 by
Φ−1

𝑁 ◦Φ 𝑗 , we may suppose from now on that V = V ′ and Φ 𝑗 ∈ 𝐺 ∩ Aut◦(D3
𝐴𝑛
,V) for all 𝑗 ≥ 𝑁 . Using

the triangle inequality and the definition of the metric, it is easy to show that also the sequence Φ 𝑗 (𝜎)
converges to𝜎′ in MStab◦(D3

𝐴𝑛
). Since all these objects are now, in fact, in MStab◦(D3

𝐴𝑛
,V), this implies

that Φ 𝑗 (A0, 𝑍0) → (A′
0, 𝑍

′
0) in Stab◦(D3

𝐴𝑛
/V) and Φ 𝑗 [A1, 𝑍1] → [A′

1, 𝑍
′
1] as projectivized stability

conditions in PStab◦(V). Since Aut◦(D3
𝐴𝑛
,V) acts on Stab◦(D3

𝐴𝑛
/V) via Aut lift(D/V), by Lemma 4.3,

the image Im(𝐺) ⊂ Aut◦(D3
𝐴𝑛
/V) acts properly discontinuously on Stab◦(D3

𝐴𝑛
/V). By definition, the

stabilizer in a neighborhood of (A0, 𝑍0) is finite; hence, after passing to a sub-sequence, we may assume
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(again for 𝑗 ≥ 𝑁 , which we assume now throughout) that Φ 𝑗 ≡ Φ
(𝑁 ) ∈ Im(𝐺) ⊂ Aut◦(D3

𝐴𝑛
/V) with

Φ
(𝑁 ) (A0, 𝑍0) = (A′

0, 𝑍
′
0).

On lower level, the stabilizer of [A1, 𝑍1] is not finite. Let H be the stabilizer of the un-projectivized
(A1, 𝑍1). We recall that, by Lemma 4.3, the group H is a finite extension of 𝑍 (𝐵rk(𝐾 (V)) ), which, in turn,
acts trivially on the projectivized [A1, 𝑍1]. This implies that, at the cost of passing to a sub-sequence,
there are 𝑧 𝑗 ∈ 𝑍 (𝐵rk(𝐾 (V)) ) such that Φ 𝑗

(
𝑧 𝑗 [A1, 𝑍1]

)
is, in fact, the same converging sequence, but we

can now work with their representatives in Stab◦(D3
𝐴𝑛
/V) that have finite stabilizer. We can extract a

convergent subsequence with Φ 𝑗 |V (A1, 𝑍1) ≡ (A′
1, 𝑍

′
1). Taken together, this means that there is N large

enough so that Φ𝑁𝜎• = 𝜎′
•.

The case PMStab◦(D3
𝐴𝑛
) is similar: one then has to correct also the top level by a central element to

ensure convergence to some Φ(0) . �

5.3. The complex structure on quotients of boundary neighborhoods in MStab◦(D3
𝐴𝑛
)

Next, we upgrade from a topology to a structure of complex orbifold. This will not be possible on
MStab◦(D3

𝐴𝑛
), but only the quotient by the group of autoequivalences; see Section 6.4 for an illustration

in the case of the 𝐴2-quiver. The first step in this direction is to exhibit a subgroup Tw𝑠 (V•) in the
stabilizer of the boundary such that the quotient MStab◦(D,V•)/Tw𝑠 (V•) is a complex manifold. We
then determine the full stabilizer of these boundary neighborhoods and exhibit the orbifold structure.

We fix once for all a multi-scale stability condition 𝜎• = [A•, 𝑍•] with L levels below zero, and let
V• be the associated sequence of nested vanishing subcategories of D = D3

𝐴𝑛
.

The simple twist group Tw𝑠 (V•)
Recall the numerical data associated with a multi-scaled stability conditions of type 𝐴𝑛 from Section 4.1,
and suppose 𝜎• is of type 𝝆. We focus at a level i, and let V ( 𝑗)

𝑖 be the components of V𝑖 . Suppose that
V ( 𝑗)

𝑖 has type 𝑛( 𝑗)
𝑖 (i.e., the heart V ( 𝑗)

𝑖 ∩ A𝑖 has 𝑛( 𝑗)
𝑖 simples 𝑆1, . . . , 𝑆𝑛

( 𝑗)
𝑖

in the subset S = S (𝑖, 𝑗) of
Sim(A0)). We recall the definition in Section 3.3 of the group elements 𝜃𝐼 ,𝑛.

For I denoting the closed arcs in the subsurface Σ ( 𝑗)
𝑖 , we let

𝔠𝑖, 𝑗 =

{
𝜃𝐼 ,𝑛 if 𝑛( 𝑗)

𝑖 is odd
𝜃2

𝐼 ,𝑛 if 𝑛( 𝑗)
𝑖 is even.

(35)

From 𝝆, we derive another collection of integers (ℓ𝑖)𝐿
𝑖=1. Recall that we define 𝜅 ( 𝑗)

𝑖 = 𝑛
( 𝑗)
𝑖 + 3 to be

the number of marked points on the boundary of Σ ( 𝑗)
𝑖 . We let

�̂�
( 𝑗)
𝑖 =

{
(𝑛( 𝑗)

𝑖 + 3)/2 if 𝑛( 𝑗)
𝑖 is odd

(𝑛( 𝑗)
𝑖 + 3) if 𝑛( 𝑗)

𝑖 is even.
(36)

(This notation is consistent with the enhancements in Section 6.) We define

ℓ𝑖 = lcm{�̂� ( 𝑗)
𝑖 , 𝑗 = 1, . . . , 𝑠𝑖} . (37)

For each level i and each j, we now define the elements

𝔠𝑖 :=
∏

𝑗

𝔠
ℓ𝑖/�̂� ( 𝑗)

𝑖

𝑖, 𝑗 :=
∏

𝑗

𝜃
ℓ𝑖/𝜅 ( 𝑗)

𝑖

𝐼 (𝑖, 𝑗) ,𝑛. (38)

and we define the simple twist group to be Tw𝑠 (V•) := 〈𝔠1, . . . , 𝔠𝐿〉.

https://doi.org/10.1017/fms.2024.106 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2024.106


26 A. Barbieri, M. Moller and J. So

Proposition 5.11. For each level i, the element 𝔠𝑖 ∈ PB𝑛 preserves the neighborhoods 𝑉𝜺, 𝛿 (A•, 𝑍•) for
all (𝜺, 𝛿) small enough.

Implicit in the notation is that the elements 𝔠𝑖, 𝑗 for fixed j commute. In fact, we have the following:

Lemma 5.12. The elements 𝔠𝑖, 𝑗 for all (𝑖, 𝑗) commute. In particular, the simple twist group Tw𝑠 (V•) =
〈𝔠1, . . . , 𝔠𝐿〉 is a free abelian group of rank L.

Proof. For fixed i, the elements 𝔠𝑖, 𝑗 and 𝔠𝑖, 𝑗′ commute by (14) since they correspond to disjoint
subsurfaces, and hence, any two vertices, one in 𝐼 (𝑖, 𝑗) and one in 𝐼 (𝑖, 𝑗 ′), cannot be connected by an
edge in the corresponding quiver. For different level indices 𝑖 < 𝑖′, the elements 𝔠𝑖, 𝑗 and 𝔠𝑖′, 𝑗′ commute
for the same reason if 𝑄𝐼 (𝑖′, 𝑗′) is not a subquiver of 𝑄𝐼 (𝑖, 𝑗) . If it is a subquiver, the elements commute
since 𝜃𝐼 ,𝑛 is (the image of) the central element in the braid group corresponding to 𝑄𝐼 (𝑖, 𝑗) . �

Proof of Proposition 5.11. Focusing on the subcategories above and below i, we may reduce to the case
that (A•, 𝑍•) has 𝐿 = 1 and we consider 𝑖 = 1, thus writing V = V1. Suppose the connected components
V ( 𝑗) have type 𝑛 𝑗 and correspond to the subsurfaces Σ ( 𝑗) . We claim that

𝔠1, 𝑗 (A1 ∩ V ( 𝑗)𝑍1 |𝐾 (V ( 𝑗) ) ) = �̂�
( 𝑗)
1 · (A1 ∩ V ( 𝑗) , 𝑍1 |𝐾 (V ( 𝑗) ) ),

𝔠1, 𝑗𝑍0 = 𝑍0 ∈ Hom(𝐾 (D3
𝐴𝑛
/V),C),

𝔠1, 𝑗A0 = A0 ∈ D3
𝐴𝑛
/V .

(39)

Granting the claim, we conclude that 𝔠1 acts like the shift by ℓ1 on A1 ∩V ( 𝑗) for every j, and thus on the
whole (A1, 𝑍1). Since adding �̂� ( 𝑗)

1 to 𝜏 does not change the norm used in (1) of the topology definition,
the elements stabilize the neighborhoods, as claimed. Since 𝜏 + �̂� ( 𝑗)

1 realizes a plumbing of size at most
𝛿, if 𝜏 does so, the elements stabilize the neighborhoods (as defined by (1)–(2) in Definition 5.6), as
claimed.

The first equality of (39) is [ST01, Lemma 4.14] applied to the subquiver𝑄𝐼 (1, 𝑗) . The second equality
holds by definition of the induced actions on Grothendieck groups; see (19). For the third equality, we
write each spherical twist appearing in the definition of 𝔠1, 𝑗 as a composition of tilts at simples in V
using (16). The claim then follows since such tilts do not change the quotient heart; see [BMQS22,
Lemma 5.6]. �

The complex structure on boundary neighborhoods
Consider a neighborhood𝑉𝜺, 𝛿 (A•, 𝑍•) as given in Definition 5.6. As we stated after (39), the element 𝔠𝑖
acts as the shift by ℓ𝑖 on the i-th level of (A•, 𝑍•). Consequently, plumbing by 𝝉 and plumbing by 𝝉+ℓ𝑖𝑒𝑖

(where 𝑒𝑖 is the i-th unit vector) give the same stability condition in the quotient𝑉𝜺, 𝛿 (A•, 𝑍•)/Tw𝑠 (V•).
Therefore, on this quotient space, the parameters

◦ 𝑡𝑖 = exp{2𝜋
√
−1 𝜏𝑖

ℓ𝑖
} for 𝑖 = 1, . . . , 𝐿,

◦ the ratios of central charges of simples on PStab◦(V 𝑗/V 𝑗+1) for 𝑗 > 0,
◦ the central charges of the simples on Stab◦(D3

𝐴𝑛
/V1)

all together give a complex chart.
Instead of using ratios of central charges, we may equivalently fix a representative (A•, 𝑍•) of the

multi-scale stability condition such that a (‘pivot’) simple 𝑆𝑖 in each A𝑖 for 𝑖 > 0 has 𝑍 (𝑆𝑖) = 1, and
use central charges of the remaining (non-pivot) simples in Sim(A𝑖) \ Sim(A𝑖+1) together with the 𝑡𝑖
as coordinates.

Next, we check compatibility (i.e., we compare two charts defined around points in
𝑉𝜺, 𝛿 (A•, 𝑍•)/Tw𝑠 (V•) and 𝑉 ′

𝜺′, 𝛿′ (A′
•, 𝑍

′
•)/Tw𝑠 (V ′

•) with 𝐿 ≠ 𝐿 ′) in the case of nontrivial intersec-
tion of the neighborhoods. In particular, we check compatibility with the existing complex structure on
Stab◦(D3

𝐴𝑛
). Fix 𝜎 = (A•, 𝑍•) with 𝐿 = 1, consider a point 𝜎′ = (A′

•, 𝑍
′
•) ∈ 𝑉𝜺, 𝛿 (A•, 𝑍•), and suppose

first that 𝐿 = 1 and 𝜎′ = (A, 𝑍) is actually an honest stability condition. We now use the definition of
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the plumbed central charge according to Proposition 5.1 and the ‘pivot’ viewpoint for coordinates. We
find that the central charge 𝑍 ′

0 (𝑆) of a simple 𝑆 ∈ Sim(A) is equal to 𝑍0(𝑆) if 𝑆 ∉ Sim(A1) or equal to
𝑡1𝑍1 (𝑆) if 𝑆 ∈ Sim(A𝑖). Since 𝑡1 ≠ 0 near 𝜎′, this coordinate change is a biholomorphism. Similarly,
the compatibility holds if 𝐿 > 1 and if the neighboring point 𝜎′ has 𝐿 ′ > 0 below zero, the coordinate
change map being given by a product of 𝑡 𝑗 ’s times 𝑍𝑖 (𝑆) for 𝑆 ∈ Sim(A𝑖) \ Sim(A𝑖+1). We summarize
this discussion:
Proposition 5.13. The quotients of the boundary neighborhoods 𝑉𝜺, 𝛿 (A•, 𝑍•) by the simple twist
group Tw𝑠 (V•) admit a complex structure compatible with the complex structure around any point
(A′

•, 𝑍
′
•) ∈ 𝑉𝜺, 𝛿 (A•, 𝑍•) with less that L levels below zero.

The orbifold structure
The following proposition ensures that the complex structure on Tw𝑠 (V•)-quotients of neighborhoods
actually gives the structure of an orbifold on the quotient space MStab◦(D3

𝐴𝑛
)/Aut (D3

𝐴𝑛
).

Proposition 5.14. The stabilizer in Aut (D3
𝐴𝑛
) of a multi-scale stability condition𝜎• = (A•, 𝑍•) contains

Tw𝑠 (V•) as a finite index subgroup.
Proof. For the intended finiteness assertion, we may restrict attention from Aut (D3

𝐴𝑛
) to the group of

spherical twists ST(𝐴𝑛) � 𝐵𝑛+1 thanks to (18).
Suppose that 𝐿 = 1, and suppose, moreover, that the lower level is connected. Consider the intersection

G of the stabilizer 𝐻𝜎• with ST(𝐴𝑛). We know that any 𝜌 ∈ 𝐺 stabilizes V and fixes the (lower level)
stability condition on V projectively. This implies as in the proof of Lemma 4.3 that after passing to a
finite index subgroup of𝐺 = 𝐻𝜎• ∩ST(𝐴𝑛), we may assume that 𝜌 |V as an element of Aut◦(V) is central
(i.e., a power of 𝜃𝐼 ,𝑛) since the C-action and the action of autoequivalences commute. Consequently,
〈𝔠1〉 = Tw𝑠 (V•) ⊂ 𝐺 of finite index.

Suppose still 𝐿 = 1 but now that the lower level has, say, k connected components V ( 𝑗) . Now the
preceding argument implies that after passing to a finite index subgroup G of the stabilizer (thereby
getting rid of potential nontrivial pointwise stabilizers of (V1, 𝑍1)), any 𝜌 |V ( 𝑗) for 𝜌 ∈ 𝐺 is central in the
autoequivalence group of each component of V ( 𝑗) (i.e., a power of the 𝔠1, 𝑗 ). We now use that, moreover,
the elements in G act by simultaneously rescaling the restrictions of (V1, 𝑍1) to the components V ( 𝑗)

by definition of the equivalence relation of multi-scale stability condition. We deduce that G is a cyclic
group. Since the exponents in the definition of 𝔠1 were chosen to projectivize simultaneously (raise the
first equation of (39) to the right power), the claim follows in this case.

For 𝐿 > 1, a new phenomenon occurs: Suppose A𝑖 ∩ V ( 𝑗)
𝑖 = A𝑖+1 ∩ V ( 𝑗′)

𝑖+1 for certain components
V ( 𝑗)

𝑖 and V ( 𝑗′)
𝑖+1 of the vanishing subcategories at level i and 𝑖 + 1. This is possible if 𝑍𝑖 |A𝑖∩V ( 𝑗)

𝑖
= 0

and the required non-vanishing of 𝑍𝑖 is ensured on some other component V (𝑘)
𝑖 of V . Then the

condition ‘projectively equivalent’ in the definition of a multi-scale stability condition imposes no con-
straint relating the action on (A𝑖 ∩ V ( 𝑗)

𝑖 , 𝑍𝑖 |V ( 𝑗)
𝑖
) and (A𝑖 ∩ V (𝑘)

𝑖 , 𝑍𝑖 |V (𝑘)
𝑖

). We capture this problem as
follows:

We write G for the finite index subgroup of the stabilizer that acts trivially on each (V𝑖 , 𝑍𝑖). Let E
be the set of (homotopy classes of) seams of the subsurfaces corresponding to the components V ( 𝑗)

𝑖 ,
and identify Z𝐸 with the group generated by the 𝜃𝐼 (𝑖, 𝑗) ,𝑛 (i.e., the group generated by the twist around
these seams). Then there is a natural embedding 𝐺 → Z𝐸 . The image is contained for each level i by
𝐶𝑖 − 1 constraints due to simultaneous projectivization, where 𝐶𝑖 is the number of components where
A𝑖 ∩V ( 𝑗)

𝑖 ≠ A𝑖+1∩V ( 𝑗′)
𝑖+1 (i.e., where the seam of the subsurface at level i does not agree with the seam of

the subsurface at level 𝑖 + 1). Since
∑𝐿

𝑖=1 𝐶𝑖 = 𝐸 and since these constraints are obviously independent,
we conclude that G is a free group of rank L. Since Tw𝑠 (V•) ⊂ 𝐺 is also free group of rank L, this must
be an inclusion of finite index. �

The group G appearing in the last paragraph of the proof should be called the full twist group
Tw(V•) in analogy with the full twist group of level graphs appearing in [BCGGM3, Section 6]; see
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also Section 6. The factor group Tw(V•)/Tw𝑠 (V•) is thus responsible for the orbifold structure of
MStab◦(D3

𝐴𝑛
)/Aut(D3

𝐴𝑛
).

5.4. Compactness

Our goal is the following:

Theorem 5.15. For any finite index subgroup 𝐺 ⊂ Aut(D3
𝐴𝑛
) the quotient space PMStab◦(D3

𝐴𝑛
)/𝐺 is

compact.

Proof. Since PMStab◦(D3
𝐴𝑛
)/𝐺 is second countable, because G is countable, compactness is equivalent

to being sequentially compact. Given a sequence 𝜎𝑚 of stability conditions, we want to extract a con-
vergent sub-sequence after rescaling the family appropriately. Since the quotient space Stab◦(D3

𝐴𝑛
)/𝐺

has finitely many chambers (given by undecorated triangulations of the disc) and since the stability
spaces of quotient categories involved in PMStab◦(D3

𝐴𝑛
)/𝐺 have the same property (corresponding to

partial triangulations; see [BMQS22]), we may modify 𝜎𝑚 by suitable elements of G and pass to a sub-
sequence and assume that all elements of 𝜎𝑚 belongs to a single chamber. We will, moreover, assume
that 𝜎𝑚 = [A, 𝑍 (𝑚) ] ∈ PStab(A) ⊂ PStab◦(D3

𝐴𝑛
) are honest stability conditions. At the end of the

proof, it will be clear that the general case follows by the same argument, just using an extra index for
the levels of the initial multi-scale stability conditions.

We define a (weak) full order � on Sim(A) by

𝑆1 � 𝑆2 if inf
𝑚∈N

|𝑍 (𝑚) (𝑆1) |/|𝑍 (𝑚) (𝑆2) | > 0 .

Equivalently, 𝑆1 is strictly smaller than 𝑆2 if the ratio of central charges tends to zero. Since there are
finitely many simples, we may index the level sets of this order by integers 0, 1, . . . , 𝐿 and use these to
generate Serre subcategories of A. For consistence of indexing, we assume that A𝐿 is generated by the
set of smallest simples (with respect to �), that A𝐿−1 is generated by Sim(𝐴𝐿) and the set of second
smallest simples, etc., thus arriving at a nested sequence

A𝐿 ⊂ A𝐿−1 ⊂ · · · ⊂ A1 ⊂ A0 = A .

Let’s order the simples of A so that (𝑆1, . . . , 𝑆𝑟0) ∉ Sim(A1), using implicitly the definition
𝑟0 = rk(𝐾 (A0)) − rk(𝐾 (A1)) ≥ 1. Since P𝑛−1 is compact, we may assume after passing to a sub
sequence and choosing appropriated representatives (A, 𝑍 (𝑚) ) of the projectivized stability condi-
tions that the sequence (𝑍 (𝑚) (𝑆1), . . . , 𝑍 (𝑚) (𝑆𝑛)) converges – in fact, to a point 𝑍0 where precisely
the first 𝑟0 entries are different from zero by definition of �. Since 𝑍 (𝑚) (𝑆𝑖) ∈ H, we know that
𝑍0 (𝑆𝑖) ∈ H∪R>0∪{0}. Suppose that 𝑍0 (𝑆𝑖) ∈ R>0 for none of the 𝑆𝑖 . Then we iterate the construction:
We consider (𝑍 (𝑚) (𝑆𝑟0+1), . . . , 𝑍 (𝑚) (𝑆𝑛)) ∈ P𝑛−𝑟0−1 and use rescaling by real numbers and passage
to a subsequence so that this converges to a point 𝑍1. If again, 𝑍1 (𝑆𝑖) ∈ R>0 holds for none of the
𝑆𝑖 ∈ Sim(A𝑖), we continue to construct 𝑍2, . . . 𝑍𝐿 , which we consider as functions 𝑍𝑖 : 𝐾 (A𝑖) → C.
It is now obvious that the tuple 𝜎 := (A•, 𝑍•) is a multi-scale stability condition and that 𝜎𝑛 → 𝜎 by
definition of the plumbing procedure (in fact, plumbing with 𝜏𝑖 ∈ −𝑖R purely imaginary suffices as the
lower levels just need to be rescaled appropriately).

Finally, we have to deal with the case that 𝑍𝑖 (𝑆) ∈ R>0 for some S we excluded so far. We would
like to rotate by some 𝜆 ∈ 𝑆1 and apply Lemma 5.8. We have to be careful since this rotation has to
be applied to (A, 𝑍 (𝑚) ) (not just the central charge) and might change the heart and alter our basic
assumption. To circumvent this problem, we use that for D = D3

𝐴𝑛
, the heart A has only finitely many

stables. Passing to a subsequence, we may assume that there are only finitely many problematic phases
𝑃 ∈ 𝑆1 that arise as limits of phases 𝜙 such P𝑚(𝜙) ≠ ∅ for the slicing P𝑚 associated with 𝜎𝑚 and that
(possibly iteratively) tilting at the torsion pairs defined by those slices, we stay in the same fundamental

https://doi.org/10.1017/fms.2024.106 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2024.106


Forum of Mathematics, Sigma 29

domain of PMStab(D3
𝐴𝑛
) with respect to the action of G. Now we just apply the C-action to the initial

sequence for some 𝜆 such that 1 ∉ 𝑒𝑖𝜆𝑃 and run the argument of the previous paragraph. �

Theorem 5.10, Propositions 5.13 and 5.14 together with Theorem 5.15 complete the proof of
Theorem 1.1.

6. The BCGGM-compactification and examples

In this section, we recall the main features and notions of the smooth compactification (as orbifold or
DM-stack) of the strata of abelian differentials and quadratic differentials by multi-scale differentials,
as constructed in [BCGGM3] together with [CMZ19] (see also [CGHMS23] for the log geometry
viewpoint on this compactification). We focus on the case of the stratum 𝑄𝑛 corresponding to the 𝐴𝑛-
quiver and denote the multi-scale compactification by 𝑄𝑛 and its projectivization by P𝑄𝑛. At the end of
this section, we will assert an isomorphism

𝐾𝑛 : C\𝑄𝑛/𝑆𝑛+1
�−→ C\MStab◦(D3

𝐴𝑛
)/Aut◦(D3

𝐴𝑛
) (40)

of complex orbifolds and give a sketch of proof.
As complex variety, the labeled version of the projectivized stratum P𝑄𝑛 is isomorphic to the

moduli space M0,𝑛+2 of pointed genus zero surfaces and, as such, comes with its Deligne-Mumford
compactification M0,𝑛+2. This kind of compactification of quadratic differential strata is available only
for genus zero differentials. One of the goals in this section is to explain why P𝑄𝑛 is not isomorphic to
M0,𝑛+2.

Spaces of quadratic differentials
Let w = (𝑤1, . . . , 𝑤𝑟 ) be a tuple of integers ≥ −1, and let w− = (𝑤𝑟+1, . . . , 𝑤𝑟+𝑏) be a tuple of integers
≤ −2 in the quadratic case. Let Quad𝑔,𝑟+𝑏 (w,w−) be the moduli space of quadratic differentials (𝑋, z, 𝑞)
on a pointed curve (𝑋, z), where z = (𝑧1, . . . , 𝑧𝑟+𝑏) such that q has signature (w,w−). In this space,
the critical points are labeled. The unlabeled version is denoted by Quad𝑔 (w,w−) (i.e., without the
subscript). We abbreviate

𝑄𝑛 = Quad0,𝑛+2 (1𝑛+1,−𝑛 − 3) and 𝑄 [𝑛] = Quad0(1𝑛+1,−𝑛 − 3) = 𝑄𝑛/𝑆𝑛+1 .

All these spaces come with their projectivized versions, the quotient by theC∗-action, denoted by a letter
P in front. Occasionally, we will compare with spaces of abelian differentials, denoted by ΩM𝑔 (w,w−).
For a fixed weighted DMS Sw as in Section 3.2, we denote by FQuad(Sw) the moduli space of framed
quadratic differentials (𝑋, z, 𝑞, 𝜓) of signature (w,w−) with a (Teichmüller) marking 𝜓 of the real
oriented blowup of X at the poles by the surface Sw. (We suppressed w− in the notation.)

6.1. Enhanced level graphs

Recall (e.g., from [ACG11]) that boundary strata of the Deligne-Mumford compactification M𝑔 are
indexed by the dual graphs of the corresponding stable curves.

Abelian case
The first datum to characterize points in a boundary stratum of the multi-scale compactification of
ΩM𝑔 (w,w−) is the following. An enhanced level graph Γ̂ (for abelian differentials) is the dual graph
of a pointed stable curve (𝑋, ẑ), with a weak total order on the vertices and a natural number 𝜅𝑒, the
enhancement, assigned with each edge. In particular, Γ̂ is connected, unless specified otherwise. The
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Figure 5. Level graphs of two (left) resp. three (right) zeros coming together and their double covers.
Simple zeros and the pole of order −𝑛 − 5 on top level are omitted. The boxed numbers are the 𝜅𝑒.

weak total order is usually given arranging the vertices in levels, indexed by non-positive integers, the top
level being level zero. We call an edge horizontal if it starts and ends at the same level, and vertical
otherwise. We write 𝐸 = 𝐸 (Γ̂) = 𝐸ℎ ∪ 𝐸 𝑣 for this decomposition of the set of edges. We require that
�̂�𝑒 = 0 if and only if e is horizontal.

The enhancement encodes the orders of zeros and poles of the collection of differentials 𝜔𝑣 on the
pointed stable curve (𝑋, ẑ). On the vertex 𝑣 ∈ Γ̂, the differential 𝜔𝑣 is required to have order 𝑤𝑖 if the
i-th marked point (𝑖 = 1, . . . , 𝑟 + 𝑏) is adjacent to v. At (the node corresponding to) a horizontal edge e
adjacent to v, the differential has a simple pole, and the residues at the two ends of e match (i.e., they
add up to zero). At the upper end of a vertical edge e, the differential has a zero of order �̂�𝑒 − 1, at the
lower end a pole of order −�̂�𝑒 − 1. In particular, at each edge, the orders add up to −2. Such a collection
of differentials 𝝎 = (𝜔𝑣 ) is called a twisted differential (of signature (w,w−)) compatible with Γ̂ if,
moreover, the global residue condition (GRC) from [BCGGM1] holds. An enhanced level graph comes
with a vertex genus 𝑔𝑣 for each 𝑣 ∈ 𝑉 , defined by the requirement that 2𝑔𝑣 − 2 is the sum of the adjacent
zero and pole orders. For each signature, there is only a finite number of enhanced level graphs (in
particular, a finite number of enhancements) for which the space of twisted differentials on each vertex
is nonempty.

Quadratic differentials
We can view the space of quadratic differentials inside the space of abelian differentials (via the canonical
cover construction) as a subspace of surfaces with an involution; see, for example, [CMZ19]. Due to the
involutions, only some of the (abelian) enhanced level graphs appear, encoded as follows. An enhanced
level graph Γ (for quadratic differentials) is the dual graph of a stable curve (𝑋, z) with a level structure
as above and enhancements 𝜅𝑒 associated with the edges 𝑒 ∈ 𝐸 (Γ) with the only difference that we
now aim for twisted quadratic differentials q = (𝑞𝑣 ) compatible with Γ, which comprises the vanishing
according to the signature (w,w−) at the points of z and the following three conditions: at horizontal
edges, 𝑞𝑣 should have a double pole with matching 2-residues, at vertical edges the orders are 𝜅𝑒 − 2 at
the upper end and −𝜅𝑒 − 2 at the lower end, and the collection q satisfies the global residue condition.
This condition (see [BCGGM2] depends on a double cover of enhanced level graphs �̂� : Γ̂ → Γ,
which is a graph morphism with the following conditions. Edges with even 𝜅𝑒 have two preimages
with enhancement �̂�𝑒 = 𝜅𝑒/2. Edges with odd 𝜅𝑒 have one preimage with enhancement �̂�𝑒 = 𝜅𝑒. The
preimage of a vertex with an adjacent leg (marked point or edge) that carries an odd label is a single
vertex. The preimage of a vertex without such an adjacent leg consists of two vertices if the vertex genus
is zero, and one or two vertices otherwise. Here, the vertex genus 𝑔𝑣 is defined by the requirement that
2(2𝑔 − 2) equals the sum of the adjacent zero and pole orders. (All these conditions are necessary for
Γ̂ to be an enhanced level graph compatible with a twisted differential 𝝎 = (𝜔𝑣 ) on a cover, abusively
also denoted by �̂� : 𝑋 → 𝑋 which is on each vertex v the canonical cover corresponding to 𝑞𝑣 and such
that �̂�∗𝑞𝑣 = 𝜔2

𝑣 .) See [BCGGM2] for an example where the double cover is not uniquely determined by
Γ. Again, for given 𝜌, the number of enhanced level graphs that allow a compatible q is finite. Figure 5
shows the double covers of enhanced level graphs for the boundary divisors where two resp. three simple
zeros have come together.
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Adjacency of boundary strata
For an enhanced level graph Γ̂, we denote by 𝐷◦

Γ̂
the open boundary stratum of multi-scale differentials

(defined below) compatible with Γ̂. The boundary strata contained in the closure 𝐷 Γ̂ of 𝐷◦
Γ̂

can
be described by the process of degeneration, or more easily starting with the converse process of
undegeneration. Note that 𝐷 Γ̂ is, in general, not irreducible: the connected components of strata of
meromorphic differentials that make up the twisted differential, or more generally components of strata
with residue conditions, are one source that can create irreducible components

A horizontal undegeneration selects a subset H of the horizontal edges and contracts them. This
results in a morphism 𝛿𝐻 of enhanced level graphs. To define the i-th vertical undegeneration, view
the i-th level passage as a line in the level graph just above level −𝑖 and contract all the edges crossing
that level passage. Again, this results in a morphism 𝛿𝑖 of enhanced level graphs. This can obviously
be generalized for any subset 𝐼 = {𝑖1, . . . , 𝑖𝑛} of the set of levels to yield a graph contraction map 𝛿𝐼 .
These two notions of undegeneration commute, and a general undegeneration is a composition of the
two. A degeneration of level graphs is the inverse procedure.

The complex codimension of a boundary stratum given by a level graph Γ̂ with L levels below zero
and h horizontal edges is ℎ + 𝐿.

Boundary strata of 𝑄𝑛

For these type of strata, the level graphs are strongly constrained.

Lemma 6.1. For the spaces 𝑄𝑛 (i.e., with type (w,w−) = (1𝑛+1,−𝑛 − 3)), the level graphs are trees
without horizontal edges and with all vertex genera 𝑔𝑣 = 0. In particular, for boundary strata of 𝑄𝑛,
the graph Γ determines the double cover Γ̂.

Proof. For the statement about horizontal edges, undegenerate all but one horizontal edge and all levels.
Now note that each top level vertex must have at least one pole of order ≥ 2 or positive genus. For
the second statement, the only ambiguity for Γ̂ given Γ is the ‘criss-cross’ ([BCGGM2, Example 4.3]),
which requires 𝜋1 (Γ) ≠ {𝑒}. �

6.2. Examples

We list the boundary components of P𝑄𝑛 and their adjacency in the two examples of lowest complexity.

The 𝐴2-quiver
The projectivized space P𝑄2 is a smooth compactification of M0,4. Since the construction introduces
no orbifold structure in codimension one (see [BCGGM3, Section 6]), it agrees with M0,4. The three
boundary points correspond to the two-level graph with one edge, two vertices, and the pole together
with one of the three simple zeros on top level. The action of 𝑆3 permutes the three boundary points.

The 𝐴3-quiver
In this case, the projectivized labeled space P𝑄3 is a surface, the largest dimension that can be visualized
on a piece of paper. There are three types of boundary divisors – namely,

𝐷1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−8

1

−7

3

1
1

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, 𝐷2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−8

1

1

−6

2

11

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, 𝐷3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−8

−6

2

−6

2

11 11

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The dual graphs are associated with labeled stable curves, and this requires labeling the simple zeros.
We distinguish the enhanced graph further by remembering the one (case 𝐷1) or two (case 𝐷2) simple
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Figure 6. The boundary of the stratum P𝑄3 = PQuad0,5(14,−8).

zeros on top level, or the grouping in pairs at the end of each cherry (case 𝐷3); see also Figure 6 where
each of these boundary divisors occurs.

The codimension two strata are thus given by ‘slanted cherries’ (one of the lower ends of the level
graph 𝐷3 pushed down further to level −2), which are the intersection point of a 𝐷3-divisor and a
𝐷2-divisor, and a chain over three levels, with the pole and one zero on top, one on middle and two on
bottom level, giving an intersection point of 𝐷1 and 𝐷2. It is easy to check that the boundary strata are
all irreducible here, as depicted in Figure 6.

The action of 𝑆4 is by permutation of the marked zeros and thus on boundary strata by the natural
permutation action on the additional indices of each boundary divisor type 𝐷𝑖 .

The Deligne-Mumford compactification.
For comparison, recall that boundary divisors of M0,5 are in bijection with 2-element subsets of
{1, . . . , 5}. This shows that for the 𝐴3-quiver, the boundary divisors of M0,𝑛+2 are in bijection with
those of type 𝐷1 and 𝐷2. There is a natural forgetful map P𝑄3 → M0,5 that contracts the divisors of
type 𝐷3. The existence of ‘cherry shaped’ divisors like 𝐷3 shows that P𝑄𝑛 is not isomorphic to M0,𝑛+2
for any 𝑛 ≥ 3. See [CGHMS23, Section 7] for more on this birational map.

6.3. Multi-scale differentials

We now give the key definition and explain the remaining terminology subsequently. A quadratic multi-
scale differential of type (w,w−) on a stable pointed curve (𝑋, z) consists of

(i) an enhanced level structure on the dual graph Γ of (𝑋, z),
(ii) a twisted quadratic differential q = (𝑞𝑣 )𝑣 ∈𝑉 (Γ) of type (w,w−) compatible with the enhanced level

structure,
(iii) and a prong-matching ℘ for each node of X joining components of non-equal level.
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Two quadratic multi-scale differentials are considered equivalent if they differ by the action of the level
rotation torus.

We make the same definition for abelian multi-scale differentials, skipping the word ‘quadratic’
everywhere, replacing q by 𝝎 = (𝜔𝑣 ) and applying the abelian conventions for enhanced level graphs.
To motivate the notion of ‘prong-matching’ and ‘level rotation torus’, we start with the following:

Proof of the isomorphism (40), Part I. Our main goal is to define 𝐾−1
𝑛 as a map of sets, starting with a

multi-scale stability condition. If 𝜎 = [A•, 𝑍•] is an honest stability condition, we associate with it a
quadratic differential using the Bridgeland-Smith isomorphism recalled in Theorem 3.1.

Suppose from now on that 𝜎 is a strict multi-scale stability condition, and suppose that the number
of levels below zero is 𝐿 = 1, leaving the bookkeeping for larger L to the reader. By Lemma 4.4, we
may associate with V = V𝑍

1 a type 𝜌 = (𝑛1, . . . , 𝑛 |𝐽 | ), where J is an index set for the components of
V . We associate with 𝜎 the level graph Γ consisting of a tree with one vertex on top level (carrying the
unique pole) and |𝐽 | vertices on bottom level, each of them carrying 𝑛 𝑗 + 1 markings for simple zeros
and enhancement 𝜅 𝑗 = 𝑛 𝑗 + 3. As part of the bijectivity claim for the map 𝜎 ↦→ (𝑋, z, Γ, q, ℘) we are
about to construct, we observe that all possible level graphs with 𝐿 = 1 for quadratic differentials of
type 𝐴𝑛 arise in this way. We now apply the isomorphism from Theorem 3.4 (for the quotient category
D/V) to the stability condition (A0, 𝑍0) on top level. We get the complex structure of the irreducible
component of (𝑋, z) corresponding to the top level vertex 𝑣0 together with the quadratic differential 𝑞𝑣0

on these components. Similarly, we apply this isomorphism (for each V 𝑗 ) to each stability condition
(A1∩V 𝑗 , 𝑍1 |V 𝑗 ) on lower level to get the complex structure and the quadratic differential corresponding
to the vertices 𝑣 𝑗 of Γ on lower level. (For 𝐿 = 1, there is no further quotient, so we can as well apply
Theorem 3.1 on lower level.) The enhancements of Γ were chosen so that the collection q = (𝑞𝑣 )𝑣 ∈𝑉 (Γ)
is indeed a twisted differential compatible with the enhanced level structure. We let z be the unordered
tuple of zeros and poles (different from the nodes of X) of the various differentials 𝑞𝑣 . (We have no
canonical way to label the points z, and this fits with our target being the 𝑆𝑛+1-quotient of 𝑄𝑛.)

We need to be more precise about automorphisms in the application of Theorem 3.4 (or Bridgeland-
Smith) at each level. In fact, above we were using that this isomorphism is equivariant with respect
to the action of the mapping class group MCG(SΔ ) on the domain and of the group Aut◦(D) on the
range (see [BMQS22, Theorem 7.2]). So far, we have given a well-defined map 𝜎 ↦→ (𝑋, z, Γ, q) with
z considered up to the 𝑆𝑛+1-action. �

The missing notions will be motivated by making this map bijective thanks to the prong ℘ and
well defined on equivalence classes. First, observe that the above assignment depended on the stability
conditions up to 𝐺 := Aut◦lift(D/V) ×∏

𝑗∈𝐽 Aut (V 𝑗 ). However, the group fixing the boundary stratum
of 𝜎 is 𝐴 := Aut (D,V), and its natural map 𝜑 : 𝐴 → 𝐺 is not surjective. In fact, each Aut (V 𝑗 ) has
an exact sequence (18), and the braid groups 𝐵𝑛 𝑗+1 for each j as well as Aut◦lift (D/V) are in the image
of 𝜑, but the product of cokernels (each isomorphic to Z/(𝑛 𝑗 + 3)Z) is not hit surjectively. (Apply (18)
to Aut (D,V) and use that the cokernel is generated by the shift to prove this.) As a conclusion, the
equivalence relation generated by autoequivalences on multi-scale stability conditions is coarser than
what is expected for Theorem 3.4 to be a bijection. We thus need an additional datum. To motivate the
following definition, recall that the shift acts (via the correspondence to framed quadratic differentials)
by cyclically shifting the marked points at each pole.

Prong matchings in the abelian case
A prong at a zero of order m of an abelian differential is a tangent vector that coincides with one of
its 𝜅 = 𝑚 + 1 outgoing horizontal directions. A prong at a pole of order |𝑚 | is a tangent vector that
coincides with one of its 𝜅 = |𝑚 | − 1 incoming horizontal directions. (For poles, this is the same as
choosing one of the marked points in 𝑀𝑖 as defined in Section 3.1.) The prongs are labelled cyclically
(by embedding in the plane) in clockwise order in the case of zeros (resp. counterclockwise order in the
case of poles). Given an enhanced level graph Γ̂, a prong-matching ℘̂ = (℘̂𝑒)𝑒∈𝐸𝑣 is a bijection of the
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prongs at the upper and lower even of each edge that reverses the cyclic order. Consequently, there are
𝐾Γ̂ =

∏
𝑒∈𝐸𝑣 �̂�𝑒 different prong matchings for Γ̂.

The level rotation torus
The lower level differential should be projectivized, since only in this way limits are well defined
(compare with the proof of Theorem 5.15) and since only in this way the 𝜎 ↦→ (𝑋, z, Γ, q) will pass to
the equivalence class of 𝜎. However, just rescaling the lower level by C∗ is no longer well defined, as
this comprises rotation and changes the horizontal direction that the notion of prong relies on. There is a
finite unramified cover of C∗ (of course, still abstractly isomorphic to C∗) that naturally acts by rotation
on the differentials 𝝎 and on ℘ simultaneously so that the preimages of 1 ∈ C∗ fix the differential and
permute cyclically each ℘𝑒. This algebraic torus (for general 𝜎 isomorphic to (C∗)𝐿) is called level
rotation torus; see [BCGGM3, Section 6] for the full definition.

Prong matchings and level rotation torus in the quadratic case
Prongs and their matchings are defined as in the abelian case, noting that a zero order m of a quadratic
differential has 𝜅𝑒 = 𝑚 + 2 outgoing horizontal directions (to be counted on a local square root!), and
a pole of order |𝑚 | has 𝜅𝑒 = |𝑚 | − 2 incoming horizontal directions. There are 𝐾Γ =

∏
𝑒∈𝐸𝑣 𝜅𝑒 prong

matchings.
To understand the action of the level rotation torus, the easiest way is to pass to the canonical cover

and use that a prong-matching of the quadratic differential induces a prong-matching of an abelian
differential. Now the equivalence relation given by the level rotation torus is just defined as in the
abelian case, restricted to those abelian multi-scale differentials that actually arise as double covers. See
[CMS23, Section 7] for full details.

Proof of the isomorphism (40), Part II. Finally, we show how to associate with 𝜎 a prong-matching ℘.
We continue with the setting above – in particular, 𝐿 = 1. Consider the ray obtained by plumbing
(𝑖𝑡) ∗ 𝜎 ∈ Stab◦(D𝐴𝑛 ) with a purely imaginary parameter (i.e., without rotation). The limit 𝑡 → ∞ of
the Bridgeland-Smith preimages 𝐾−1(𝑖𝑡 ∗𝜎) is a multi-scale differential with underlying (𝑋, z, Γ, q) as
above, by definition of plumbing and of the topology on 𝑄𝑛. It thus comes with a prong-matching ℘,
and we now set 𝐾−1

𝑛 (𝜎) = (𝑋, z, Γ, q, ℘). (We remark that this ℘ is the only choice if we want 𝐾−1
𝑛 to

be continuous. Formally, in the language of [BCGGM3, Section 7], this is the only prong-matching so
that the comparison diffeomorphisms between the welding of the limiting stable curve and the nearby
plumbed curves is almost turning-number preserving. Informally, when |𝐽 | ≥ 2, the right choice of ℘
differs from a wrong choice of ℘′ by rotating say one prong for the subsurface 𝑗 = 1 on lower level.
With the wrong ℘′, the turning numbers near the subsurface 𝑗 = 1 do not work out. By rotating the
whole lower level using the C-action, turning numbers can be fixed for 𝑗 = 1, but then since |𝐽 | ≥ 2,
the turning numbers will not work out at some other subsurface of lower level.)

To see that 𝐾−1
𝑛 is bijective, note that both the initial failure (due to the cokernel of 𝜑 : 𝐴 → 𝐺)

and the additional datum ℘ capture the possibility of rotating a lower level component independently of
other components. We leave the details to the reader.

To show continuity (and well-definedness mod Aut◦(D3
𝐴𝑛
)), it is best to first lift the map 𝐾−1

𝑛 to a map
from MStab◦(D3

𝐴𝑛
) to the Teichmüller-framed version of 𝑄𝑛, the augmented Teichmüller space in the

sense of [BCGGM3, Section 7]. This is a bordification of FQuad(Sw) on which the mapping class group
acts. One now needs to check that this lifted 𝐾−1

𝑛 is a homeomorphism using the respective definition
of topologies and the equivariance with respect to the mapping class group and Aut◦(D3

𝐴𝑛
)-action.

To show compatibility with the complex structure, one needs to recall that the complex structure on
𝑄𝑛 is defined using plumbing (in the sense of complex geometry). This gives a collection of periods
that defines local coordinates (the perturbed period coordinates in [BCGGM3, Section 9]; in fact, no
modification of the differential is needed for 𝐴𝑛-type since all the residues are zero), and one only needs
to check that they correspond to the coordinates defined in Section 5.3. We leave again the details to the
reader. �
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6.4. Why taking Aut◦(D3
𝐴𝑛
)-quotients? The 𝐴2-quiver revisited

In this subsection, we revisit PMStab(D3
𝐴2
) to show that prior to taking the Aut◦(D3

𝐴𝑛
)-quotient is

neither a compact space (contrary to the Thurston-type compactifications in [BDL20]) nor carries a
complex structure.

In fact, PMStab(D3
𝐴2
) coincides with the upper half plane with cusps H̃ = H ∪ P1

Q
provided with the

horoball topology where a neighborhood basis of ∞ consists of the sets 𝑈𝐶 = {𝜏 : Im(𝜏) > 𝐶} and
a neighborhood basis of 𝑧 ∈ Q are the images of 𝑈𝐶 under a Möbius transformation mapping ∞ to z.
Here, P1

Q
= Q ∪ {∞}, and it is known that PStab(D3

𝐴2
) � H see, for example, [Sut11].

To prove this, we start with a classification of the boundary strata. In this case, necessarily 𝐿 = 1.
Since the Grothendieck group of a vanishing subcategory V of D := D3

𝐴2
has rank 1, all stability

conditions on it are projectively equivalent.
Next we list the possible V . Recall that a heart suporting a stability condition on the space

Stab(D)/sph(D) can be identified with one of the following: the standard heart H0 = 〈𝑆1, 𝑆2〉 or
its shift H0 [1], or 〈𝑆1 [1], 𝐸〉, 〈𝑆1, 𝑆2 [1]〉, 〈𝑆2, 𝐸 [1]〉, where 𝑆2 → 𝐸 → 𝑆1 is a short exact sequence.
In fact, the vanishing category A1 arising from one of the hearts above is generated by one of the inde-
composables 𝑆1, 𝑆2, 𝐸 of H0, those appearing in Figure 1. Therefore, in Stab(D), we associate with any
such V the image of a generating simple in P1 (𝐾 (D)) � P1

Q
and call this map c. We let H0 be the stan-

dard heart of the 𝐴2-quiver and let V1 = 〈𝑆2〉, corresponding to 𝑐(V1) =
( 0

1
)
∈ 𝐾 (D). This subcategory

obviously corresponds to any central charge with 𝑍0(𝑆1) ∈ ±H and 𝑍0 (𝑆2) = 0.
We first consider the action of the Seidel-Thomas group sph(D) � 𝐵3 on H0 and V1. The element 𝜏2

stabilizes V1. The generator of center 𝜃2 of 𝐵3 acts by the shift by [±5] and thus trivially on V1. Given
that 𝐵3/〈𝜃2〉 � PSL2 (Z) [FM12] and that 𝜏2 acts as

( 1 1
0 1

)
on 𝐾 (D3

𝐴2
), the orbits of the action sph(D)

on V1 are in bijection (of cosets) with

𝐵3/〈𝜃2, 𝜏2〉 � PSL2 (Z)/〈
( 1 1

0 1
)
〉 � P1

Q. (41)

The quotient Aut(D)/sph(D) is generated by [−1], which also acts trivially on any V . To summarize,
the orbit Aut(D)·V1 is in natural bijection withP1

Q
via the map c. The resulting spacePMStab(D)/Aut(D)

is the compact orbifold H̃/PSL2(Z).
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