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Abstract

We consider the pseudorelativistic Hartree equation

i∂tψ = (
√
−c2Δ + m2c4 − mc2)ψ − (|x|−1 ∗ |ψ|2)ψ with (t, x) ∈ R × R3,

which describes the dynamics of pseudorelativistic boson stars in the mean-field limit. We study the
travelling waves of the form ψ(t, x) = eitμϕc(x − vt), where v ∈ R3 denotes the travelling velocity. We prove
that ϕc converges strongly to the minimiser ϕ∞ of the limit energy E∞(N) in H1(R3) as the light speed
c→ ∞, where E∞(N) is the corresponding energy for the limit equation

− 1
2m
Δϕ∞ + i(v · ∇)ϕ∞ − (|x|−1 ∗ |ϕ∞|2)ϕ∞ = −λϕ∞.

Since the operator −Δ is the classical kinetic operator, we call this the nonrelativistic limit. We prove the
existence of the minimiser for the limit energy E∞(N) by using concentration-compactness arguments.

2020 Mathematics subject classification: primary 35Q75; secondary 35A15, 35S05.

Keywords and phrases: nonrelativistic limit, pseudorelativistic Hartree equation, concentration
compactness.

1. Introduction and main results

We study the pseudorelativistic Hartree equation

i∂tψ = (
√
−c2Δ + m2c4 − mc2)ψ − (|x|−1 ∗ |ψ|2)ψ with (t, x) ∈ R × R3. (1.1)

In the physical context, the parameter m > 0 is the mass of a particle and the symbol
∗ stands for the convolution on R3. The pseudorelativistic operator

√
−c2Δ + m2c4 is

defined via multiplication in the Fourier space with the symbol
√

c2|ξ|2 + m2c4 for
ξ ∈ R3, which describes the kinetic energy of a relativistic particle with mass m > 0.
The convolution kernel |x|−1 represents the Newtonian potential in appropriate physical
units.
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A great deal of work has been devoted to the pseudorelativistic Hartree equation.
Fröhlich et al. [4] proved the existence of travelling solitary waves for (1.1) with c = 1
by using concentration-compactness arguments [10, 11] and Lenzman considered local
and global well-posedness for Equation (1.1) with c = 1 [7]. Lenzmann [8] and Guo
and Zeng [5] studied the uniqueness of the ground state for the pseudorelativistic
Hartree energy using the nonrelativistic limit of (1.1). For further work on travelling
wave solutions of Equation (1.1), we refer the reader to [3, 6, 13].

We focus on travelling solitary waves of the form

ψ(t, x) = eitμϕc(x − vt), (1.2)

with some μ ∈ R and travelling velocity v ∈ R3 such that |v| < 1. Substituting (1.2) into
(1.1) yields

(
√
−c2Δ + m2c4 − mc2)ϕc + i(v · ∇)ϕc − (|x|−1 ∗ |ϕc|2)ϕc = −μϕc, (1.3)

which can be viewed as an Euler–Lagrange equation for the minimising problem

Ec(N) := inf
{
Ec(ψ) : ψ ∈ H1/2(R3),N(ψ) =

∫
R3
|ψ(x)|2 dx = N

}
, (1.4)

where

Ec(ψ) :=
1
2
〈ψ, (
√
−c2Δ + m2c4 − mc2)ψ〉 + i

2
〈ψ, (v · ∇)ψ〉 − 1

4

∫
R3

( 1
|x| ∗ |ψ|

2
)
|ψ|2 dx,

and the space H1/2(R3) is defined by H1/2(R3) := {ψ ∈ L2(R3) : (1 + |ξ|)1/2ψ̂ ∈ L2(R3)},
with the norm

‖ψ‖2H1/2(R3) :=
∫
R3

(1 + |ξ|)|ψ̂(ξ)|2 dξ < ∞.

We recall from [4] the following Gagliardo–Nirenberg type inequality: for any
v ∈ R3 with |v| < 1 and ψ ∈ H1/2(R3),∫

R3

( 1
|x| ∗ |ψ|

2
)
|ψ|2 dx ≤ 2

N∗(v)
〈ψ, (
√
−Δ + iv · ∇)ψ〉〈ψ,ψ〉, (1.5)

where 2/N∗(v) is the best constant and N∗(v) is given by

N∗(v) := 〈Qv, Qv〉 = ‖Qv‖2L2 .

As stated in [4], an optimiser Qv of (1.5) with Qv ∈ H1/2(R3) and Qv � 0 satisfies
√
−ΔQv + i(v · ∇)Qv −

( 1
|x| ∗ |Qv|2

)
Qv = −Qv.

The constant N∗(v) is subject to the bounds (1 − |v|)N∗(0) ≤ N∗(v) ≤ N∗(0) = N∗,
say. From [4], for |v| < 1 there exists a critical constant N∗(v) such that travelling
waves exist if 0 < N < N∗(v) with the light speed c = 1. Lenzmann in [8] has given the
existence of the ground state for Ec(N) with v = 0 for 0 < N < cN∗. For v � 0, using
similar arguments to [4], it is easy to show the existence of a minimiser of Ec(N). This
gives the following existence theorem.
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[3] The pseudorelativistic Hartree equation 3

THEOREM 1.1. Assume that m > 0, v ∈ R3 and |v| < 1. Then there exists a positive
constant N∗(v), depending only on v, such that, for 0 < N < cN∗(v), the problem (1.4)
has a minimiser ϕc ∈ H1/2(R3).

We are interested in the limiting behaviour of minimisers for (1.4) as we pass to the
limit c→ ∞, which is called the nonrelativistic limit. We will show that the minimiser
of (1.4) converges strongly in H1(R3) to the minimiser of the problem

E∞(N) := inf
{
E∞(ψ) : ψ ∈ H1(R3),N(ψ) =

∫
R3
|ψ(x)|2 dx = N

}
, (1.6)

where E∞(ψ) is given by

E∞(ψ) :=
1

4m

∫
R3
|∇ψ|2 dx +

i
2
〈ψ, (v · ∇)ψ〉 − 1

4

∫
R3

( 1
|x| ∗ |ψ|

2
)
|ψ|2 dx.

Any minimiser ϕ∞ for (1.6) must satisfy the corresponding Euler–Lagrange equation

− 1
2m
Δϕ∞ + i(v · ∇)ϕ∞ −

( 1
|x| ∗ |ϕ∞|

2
)
ϕ∞ = −λϕ∞ (1.7)

for some Lagrange multiplier λ ∈ R.
We first establish the existence of a minimiser for E∞(N).

THEOREM 1.2. Assume that v ∈ R3 and |v| < 1, m > 0 is sufficiently small and

1
2m

∫
R3
|∇ψ|2 dx + 〈ψ, iv · ∇ψ〉 ≥ 0 for any ψ ∈ H1(R3).

Then the problem (1.6) has at least one minimiser.

The next result shows the H1 convergence for the solution of (1.3) to a solution of
the limit equation (1.7) as c→ ∞. This is the main theorem of this paper.

THEOREM 1.3. Under the assumptions of Theorem 1.2, let ϕc be a minimiser of Ec(N)
with fixed N satisfying 0 < N < cN∗(v). Then, as c→ ∞,

ϕc → ϕ∞ strongly in H1(R3), (1.8)

where ϕ∞ is a minimiser of E∞(N).

REMARK 1.4. Theorem 1.2 ensures the existence of minimisers of E∞(N) in the
nonrelativistic limit for small m. Thus, we need the assumption that m > 0 is
sufficiently small in Theorem 1.3.

Lenzmann in [8] considered the nonrelativistic limit of a solution to (1.3) with v = 0.
We have to handle an additional term v · ∇, which needs careful analysis. We note that
radially symmetric solutions to (1.3) do not exist (see [12]). Since ϕc is not a radial
function, we cannot use the method in [8] which invokes Newton’s theorem to derive
the lower bound for the Lagrange multiplier −μ. Inspired by the work of Choi et al.
[2], we find a new way to deal with the problem. In a similar way to [2, Lemma 4.3],
we obtain the lower bound Hc ≥ B|ξ| for the operator Hc =

√
c2|ξ|2 + m2c4 − mc2 + δ
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with δ > 0, where B = min{2δ1/2/(2
√

5m)1/2, c/2}. Based on this inequality and the
Gagliardo–Nirenberg inequality, we deduce that ϕc is uniformly bounded in H1/2(R3).
Then we can derive the upper bound for μ and the uniform boundedness of ‖ϕc‖H1(R3).

The organisation of the paper is as follows. In Section 2, we consider the
nonrelativistic limit and complete the proof of Theorem 1.3. In Section 3, we give
the existence result of the limit energy functional by using concentration-compactness
arguments.

We use the following notation.

• ⇀ denotes weak convergence.
• 〈 , 〉 denotes the L2 inner product.
• f ∗ h denotes the convolution on R3.
• f̂ denotes the Fourier transform of the function f (see [9]).
• The value of the positive constant C is allowed to change from line to line and also

in the same formula.
• X � Y (X � Y) denotes X ≤ CY (respectively, X ≥ CY) for some appropriate positive

constant C.
• v · ∇ = ∑3

k=1vk∂xk , where v ∈ R3 is some fixed vector.

2. The nonrelativistic limit

Before considering the nonrelativistic limit, we prove some preliminary lemmas.

LEMMA 2.1. Let Hc =
√

c2|ξ|2 + m2c4 − mc2 + δ with δ > 0 independent of c. Then
Hc ≥ B|ξ|, where B = min{2δ1/2/(2

√
5m)1/2, c/2} is a constant.

PROOF. Factorising out mc2 from the square root, we write

Hc = mc2
(√

1 +
∣∣∣∣∣ ξmc

∣∣∣∣∣2 − 1
)
+ δ = mc2 f

(∣∣∣∣∣ ξmc

∣∣∣∣∣2
)
+ δ,

where f (t) =
√

1 + t − 1. By a Taylor expansion, if 0 ≤ t ≤ 4, then there is some
t∗ ∈ [0, 4] such that

f (t) =
√

1 + t − 1 = f (0) + f ′(t∗)t =
t

2
√

1 + t∗
≥ t

2
√

5
.

Hence, if |ξ| ≤ 2mc, then

Hc = mc2
(√

1 +
∣∣∣∣∣ ξmc

∣∣∣∣∣2 − 1
)
+ δ = mc2 f

(∣∣∣∣∣ ξmc

∣∣∣∣∣2
)
+ δ

≥ mc2 |ξ/mc|2

2
√

5
+ δ =

|ξ|2

2
√

5m
+ δ ≥ 2δ1/2

(2
√

5m)1/2
|ξ|,

using the fact that a2 + b2 ≥ 2ab for the last inequality.
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On the other hand, if |ξ| ≥ 2mc, then

Hc = c|ξ|

√
1 +
∣∣∣∣∣mc
ξ

∣∣∣∣∣2 − mc2 + δ ≥ c|ξ| − mc2 + δ ≥ c|ξ| − c|ξ|
2
+ δ ≥ c

2
|ξ|.

This establishes Lemma 2.1. �

LEMMA 2.2. If ϕc is a minimiser of Ec(N), then {ϕc} is uniformly bounded in H1/2(R3).

PROOF. By (1.5),

2Ec(ϕc)

= 〈ϕc, (
√
−c2Δ + m2c4 − mc2)ϕc〉 + i〈ϕc, (v · ∇)ϕc〉 −

1
2

∫
R3

( 1
|x| ∗ |ϕc|2

)
|ϕc|2 dx

≥ 〈ϕc, (
√
−c2Δ + m2c4 − mc2)ϕc〉 + i〈ϕc, (v · ∇)ϕc〉 −

N
N∗(v)

〈ϕc, (
√
−Δ + iv · ∇)ϕc〉

=

∫
R3

(
√

c2|ξ|2 + m2c4 − mc2)|ϕ̂c(ξ)|2 dξ −
∫
R3

(v · ξ)|ϕ̂c(ξ)|2 dξ

− N
N∗(v)

∫
R3

(|ξ| − v · ξ)|ϕ̂c(ξ)|2 dξ.

It follows from Lemma 2.1 that

2Ec(ϕc) + δN

≥ B
∫
R3
|ξ||ϕ̂c(ξ)|2 dξ −

∫
R3

(v · ξ)|ϕ̂c(ξ)|2 dξ − N
N∗(v)

∫
R3

(|ξ| − v · ξ)|ϕ̂c(ξ)|2 dξ.

For c > 1 sufficiently large, B = min{2δ1/2/(2
√

5m)1/2, c/2} = 2δ1/2/(2
√

5m)1/2.

Case I: Fix N with 0 < N < cN∗ and suppose that 0 < N < N∗(v) < cN∗(v). Let
δ =
√

5m/2. Then B = 1 and

2Ec(ϕc) +

√
5m
2

N ≥
(
1 − N

N∗(v)

) ∫
R3

(|ξ| − v · ξ)|ϕ̂c(ξ)|2 dξ

≥
(
1 − N

N∗(v)

)
(1 − |v|)

∫
R3
|ξ| |ϕ̂c(ξ)|2 dξ. (2.1)

In the last inequality, we use the fact that |ξ| − v · ξ ≥ (1 − |v|)|ξ|. Since ϕc is a minimiser
of Ec(ψ), the operator inequality

√
−c2Δ + m2c4 − mc2 ≤ −Δ/2m yields

Ec(ϕc) ≤ Ec(ϕ∞) ≤ E∞(ϕ∞). (2.2)

Combining (2.1) with (2.2) and noting that E∞(ϕ∞) < 0 gives(
1 − N

N∗(v)

)
(1 − |v|)

∫
R3
|ξ| |ϕ̂c(ξ)|2 dξ ≤ 2Ec(ϕc) +

√
5m
2

N

≤ 2E∞(ϕ∞) +

√
5m
2

N ≤
√

5m
2

N. (2.3)

Since |v| < 1, we have (1 − N/N∗(v))(1 − |v|) > 0.
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Case II: Fix N with 0 < N < cN∗ and suppose that 0 < N∗(v) ≤ N < cN∗(v). We can
take δ = 8

√
5m(N/N∗(v))2 in Lemma 2.1. Then B = 4N/N∗(v) and, as in (2.1),

2Ec(ϕc) + 8
√

5m
( N
N∗(v)

)2
N

≥ 4N
N∗(v)

∫
R3
|ξ| |ϕ̂c(ξ)|2 dξ −

∫
R3
|v||ξ| |ϕ̂c(ξ)|2 dξ − N

N∗(v)

∫
R3

(|ξ| − v · ξ)|ϕ̂c(ξ)|2 dξ

≥ N
N∗(v)

(3 − 2|v|)
∫
R3
|ξ| |ϕ̂c(ξ)|2 dξ.

Since |v| < 1, we have (N/N∗(v))(3 − 2|v|) > 0 and, as in (2.3), we obtain

N
N∗(v)

(3 − 2|v|)
∫
R3
|ξ| |ϕ̂c(ξ)|2 dξ ≤ 8

√
5mN3

N2
∗ (v)

. (2.4)

By combining (2.3) and (2.4), we conclude that there exists a constant C1 > 0, which
is independent of c, such that ∫

R3
|ξ| |ϕ̂c(ξ)|2 dξ ≤ C1.

This completes the proof of Lemma 2.2. �

LEMMA 2.3. If m > 0, v ∈ R3 and |v| < 1, then E∞(N) < 0.

PROOF. Fix ψ(x) ∈ H1(R3) with
∫
R3 |ψ|2 dx = N. Let ψλ(x) = λ3/2ψ(λx) with λ > 0.

Then ‖ψλ‖2L2 = ‖ψ‖2L2 = N. By the definition of E∞(ψ),

E∞(ψλ(x)) =
λ2

2

〈
ψ,
−Δ
2m

ψ
〉
+
λi
2
〈ψ, (v · ∇)ψ〉 − λ

4

∫
R3

( 1
|x| ∗ |ψ|

2
)
|ψ|2 dx.

Case I: If i〈ψ, (v · ∇)ψ〉 < 0 and λ is small enough, then, clearly, E∞(ψλ) < 0.

Case II: If i〈ψ, (v · ∇)ψ〉 ≥ 0, then

E∞(ψλ(−x)) =
λ2

2

〈
ψ,
−Δ
2m

ψ
〉
− λi

2
〈ψ, (v · ∇)ψ〉 − λ

4

∫
R3

( 1
|x| ∗ |ψ|

2
)
|ψ|2 dx.

If λ is small enough, then E∞(ψλ(−x)) < 0.
Combining Cases I and II gives E∞(N) < 0. This completes the proof. �

LEMMA 2.4. Let ϕc be a minimiser of Ec(N) satisfying the assumptions of Theorem 1.1
and let μ be the associated Lagrange multiplier to ϕc. Then there exists a constant
K > 0 such that |μ| ≤ K, where the constant K > 0 is independent of c > 0.

PROOF. First, we claim that μ > 0. The minimiser ϕc of Ec(N) satisfies the
Euler–Lagrange equation (1.3). Multiplying by ϕc and integrating gives

−μN = 2Ec(ϕc) − 1
2

∫
R3

( 1
|x| ∗ |ϕc|2

)
|ϕc|2 dx.
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[7] The pseudorelativistic Hartree equation 7

We recall the operator inequality
√
−c2Δ + m2c4 ≤ − 1

2m
Δ + mc2,

which follows directly in the Fourier domain and we note that
√

1 + t ≤ t/2 + 1 for
all t ≥ 0. Since ϕc is a minimiser of Ec(N), we have Ec(ϕc) ≤ Ec(ϕ∞) ≤ E∞(ϕ∞).
Consequently, by Lemma 2.3,

−μN = 2Ec(ϕc) − 1
2

∫
R3

( 1
|x| ∗ |ϕc|2

)
|ϕc|2 dx ≤ 2Ec(ϕc) ≤ 2E∞(ϕ∞) < 0.

This implies that μ > 0.
Next, we prove the upper bound for μ. By (1.3),

−μN = 〈ϕc, (
√
−c2Δ + m2c4 − mc2)ϕc〉 + i〈ϕc, (v · ∇)ϕc〉 −

∫
R3

( 1
|x| ∗ |ϕc|2

)
|ϕc|2 dx.

Since
√
−c2Δ + m2c4 − mc2 > 0, by (1.5),

−μN ≥ i〈ϕc, (v · ∇)ϕc〉 −
∫
R3

( 1
|x| ∗ |ϕc|2

)
|ϕc|2 dx

≥ i〈ϕc, (v · ∇)ϕc〉 −
2N

N∗(v)
〈ϕc, (

√
−Δ + iv · ∇)ϕc〉.

Therefore,

μN ≤ 2N
N∗(v)

〈ϕc, (
√
−Δ + iv · ∇)ϕc〉 − i〈ϕc, (v · ∇)ϕc〉.

By a Fourier transform and Plancherel’s theorem [9, Theorem 5.3], using similar
arguments to those in the proof of [4, Lemma A.4],

i〈ϕc, (v · ∇)ϕc〉 = −
∫
R3

(v · ξ)|ϕ̂c(ξ)|2 dξ.

Since
√
−Δ + iv · ∇ ≤

√
−Δ, this yields

μN ≤ 2N
N∗(v)

〈ϕc,
√
−Δϕc〉 + |v|〈ϕc,

√
−Δϕc〉 � ‖ϕc‖H1/2(R3),

where we use the fact that v · ξ ≤ |v||ξ|. Since ϕc is uniformly bounded in H1/2(R3), we
can find a constant K > 0 such that μ < K.

This completes the proof of Lemma 2.4. �

LEMMA 2.5. If ϕc is a minimiser of Ec(N), then there exists a constant M > 0
independent of c such that ‖ϕc‖H1(R3) ≤ M.

PROOF. Since ||ϕc||2L2 = N, we only need to derive a uniform bound for ||∇ϕc||L2 . It
follows from (1.3) that
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c2‖∇ϕc‖2L2 + m2c4‖ϕc‖2L2

= 〈
√
−c2Δ + m2c4ϕc,

√
−c2Δ + m2c4ϕc〉

= 〈(−μ + mc2 + |x|−1 ∗ |ϕc|2 − iv · ∇)ϕc, (−μ + mc2 + |x|−1 ∗ |ϕc|2 − iv · ∇)ϕc〉
= μ2N − 2μmc2N − 2μ〈ϕc, (|x|−1 ∗ |ϕc|2)ϕc〉 + 2μ〈ϕc, iv · ∇ϕc〉 + m2c4N

+ 2mc2〈ϕc, (|x|−1 ∗ |ϕc|2)ϕc〉 − 2mc2〈ϕc, iv · ∇ϕc〉 − 〈v.∇ϕc, v · ∇ϕc〉
+ 〈(|x|−1 ∗ |ϕc|2)ϕc, (|x|−1 ∗ |ϕc|2)ϕc〉 − 2〈(|x|−1 ∗ |ϕc|2)ϕc, iv · ∇ϕc〉.

To bound the terms on the right, we note that Kato’s inequality |x|−1 ≤ |∇| implies that

‖ |x|−1 ∗ |ϕc|2‖L∞ � 〈ϕc, |∇|ϕc〉 � ‖ϕc‖L2‖∇ϕc‖L2 . (2.5)

On the other hand, since v · ∇ ≤ |v||∇| and |v| < 1,

|〈ϕc, iv · ∇ϕc〉| ≤ 〈ϕc, |∇|ϕc〉 ≤ ‖ϕc‖L2‖∇ϕc‖L2 . (2.6)

From (2.5) and (2.6),

c2‖∇ϕc‖2L2 ≤ μ2N + 2μN1/2‖∇ϕc‖L2 + 2mc2N3/2‖∇ϕc‖L2

+ 2mc2N1/2‖∇ϕc‖L2 + N2‖∇ϕc‖2L2 + 2N‖∇ϕc‖2L2 .

From Lemma 2.4, μ is uniformly bounded. As c→ ∞, N is fixed and m is sufficiently
small, we conclude that there exists a constant M > 0 such that ||∇ϕc||L2 ≤ M. By
choosing M > 0 possibly larger, we arrive at the bound in the lemma. �

PROOF OF THEOREM 1.3. First, we claim that {ϕc} is a minimising sequence of E∞(N).
Since ϕc is a ground state of Ec(N),

0 ≤ E∞(N) − Ec(N) ≤ E∞(ϕc) − Ec(ϕc)

=
1
2

∫
R3
ϕ̄c

(−Δ
2m
− (√−c2Δ + m2c4 − mc2))ϕc dx. (2.7)

From the proof of [1, Lemma 6.1],

lim
c→∞

〈
f ,
(√
−c2Δ + m2c4 − mc2 +

1
2m
Δ

)
ϕc

〉
= 0 for all f ∈ H1(R3). (2.8)

This is easy to verify for a test function f ∈ C∞0 (R3) by taking the Fourier transform
and observing that√

c2ξ2 + m2c4 − mc2 − ξ2

2m
→ 0 for every ξ ∈ R3 as c→ ∞.

By a simple density argument, (2.8) extends to all f ∈ H1(R3). Therefore,

lim
c→∞

∫
R3
ϕ̄c

[−Δ
2m
− (
√
−c2Δ + m2c4 − mc2)

]
ϕc dx = 0. (2.9)

From (2.7) and (2.9), we conclude that, as c→ ∞,

Ec(N)→ E∞(N) and E∞(ϕc)→ E∞(N).
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[9] The pseudorelativistic Hartree equation 9

Hence, {ϕc} is a minimising sequence of E∞(N). Combining this with the existence of
a minimiser for E∞(N) gives (1.8) and completes the proof of Theorem 1.3. �

3. The existence of a minimiser for E∞(N)

In this section, we prove the existence of a minimiser for the limit energy E∞(N).

LEMMA 3.1. If {ϕc} is a minimising sequence for E∞(N), then E∞(N) is a continuous
function of N.

PROOF. Let {ϕc} be a minimising sequence for E∞(N) such that limc→∞ E∞(ϕc) =
E∞(N) with ‖ϕc‖2L2 = N. For any N1 > 0,

E∞(N1) ≤ E∞
(√N1

N
ϕc

)
since

∥∥∥∥∥
√

N1

N
ϕc

∥∥∥∥∥2
L2
= N1

=
1

4m
N1

N

∫
R3
|∇ϕc|2 dx +

N1

2N
〈ϕc, iv · ∇ϕc〉 −

1
4

(N1

N

)2 ∫
R3

( 1
|x| ∗ |ϕc|2

)
|ϕc|2 dx

= E∞(ϕc) +
1

4m

(N1

N
− 1
) ∫
R3
|∇ϕc|2 dx +

1
2

(N1

N
− 1
)
〈ϕc, iv · ∇ϕc〉

− 1
4

[(N1

N

)2
− 1
] ∫
R3

( 1
|x| ∗ |ϕc|2

)
|ϕc|2 dx.

Since {ϕc} is uniformly bounded in H1(R3), the two integrals and |〈ϕc, iv · ∇ϕc〉| can be
bounded by a constant C > 0 which is independent of the light speed c. Thus,

E∞(N1) − E∞(N) ≤ C
∣∣∣∣∣N1

N
− 1
∣∣∣∣∣. (3.1)

By similar arguments,

E∞(N) − E∞(N1) ≤ C
∣∣∣∣∣ NN1
− 1
∣∣∣∣∣. (3.2)

From (3.1) and (3.2), it follows that E∞(N1)→ E∞(N) as N1 → N. This completes the
proof of Lemma 3.1. �

LEMMA 3.2. For m > 0 sufficiently small, we have the strict binding inequality

E∞(N) < E∞(α) + E∞(N − α) (3.3)

for 0 < α < N.

PROOF. For any ε > 0, there exists Q ∈ H1(R3) with ‖Q‖2L2 = λ < N such that E∞(λ) ≤
E∞(Q) ≤ E∞(λ) + ε. Choose θ > 1 such that θλ ≤ N. Then

E∞(θλ) ≤ E∞(
√
θQ) =

θ

4m

∫
R3
|∇Q|2 dx +

θ

2
〈Q, iv · ∇Q〉 − θ

2

4

∫
R3

( 1
|x| ∗ |Q|

2
)
|Q|2 dx

=
1
2

(θ − θ2)
[ 1
2m

∫
R3
|∇Q|2 dx + 〈Q, iv · ∇Q〉

]
+ θ2E∞(Q).
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For m > 0 sufficiently small,

1
2m

∫
R3
|∇Q|2 dx + 〈Q, iv · ∇Q〉 ≥ 0. (3.4)

Since θ > 1, we have E∞(θλ) ≤ θ2E∞(Q) and, in addition,

E∞(θλ) ≤ θ2(E∞(λ) + ε). (3.5)

Next, we claim that

E∞(N) <
N
α

E∞(α) for 0 < α < N. (3.6)

Indeed, if E∞(α) ≥ 0, (3.6) obviously holds since E∞(N) < 0. If E∞(α) < 0, taking
θ = N/α, α = λ and ε < (θ−1 − 1)E∞(α) in (3.5) gives (3.6). In the same way, replacing
α with N − α gives

E∞(N) <
N

N − αE∞(N − α). (3.7)

Combining (3.6) and (3.7) yields (3.3) and completes the proof of Lemma 3.2. �

By Lemma 2.5, the minimising sequence {ϕc} is uniformly bounded in H1(R3).
Consequently, there exists a subsequence {ϕck } such that ϕck ⇀ ϕ∞. We now apply the
concentration-compactness lemma.

LEMMA 3.3. Let {ϕc} be a bounded sequence in H1(R3) satisfying ‖ϕc‖2L2 = N. Then,
there exists a subsequence {ϕck } satisfying one of the following three possibilities.

(i) Compactness: there exists a sequence {yk} in R3 such that, for every ε̄ > 0, there
exists R, 0 < R < ∞, with ∫

|x−yk |<R
|ϕck |2 dx ≥ N − ε̄.

(ii) Vanishing: for all R > 0,

lim
k→∞

sup
y∈R3

∫
|x−y|<R

|ϕck (x)|2 dx = 0.

(iii) Dichotomy: there exists α ∈ (0, N) such that, for every ε̄ > 0, there exist two
bounded sequences {ϕ1

k} and {ϕ2
k} in H1(R3) and k0 ≥ 0 such that, for all k ≥ k0,

‖ϕck − (ϕ1
k + ϕ

2
k)‖p ≤ δp(ε̄) for 2 ≤ p < 6,

with δp(ε̄)→ 0 as ε̄→ 0, and, as k → ∞, dist(suppϕ1
k , suppϕ2

k)→ ∞,∣∣∣∣∣
∫
R3
|ϕ1

k |2 dx − α
∣∣∣∣∣ ≤ ε̄ and

∣∣∣∣∣
∫
R3
|ϕ2

k |2 dx − (N − α)
∣∣∣∣∣ ≤ ε̄.

Invoking Lemma 3.3, we obtain a suitable subsequence ϕck with ϕck ⇀ ϕ∞, which
satisfies either (i), (ii) or (iii). We rule out (ii) and (iii) as follows.
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Vanishing does not occur. If vanishing occurs, it follows from [4, Lemma A.1] that

lim
k→∞

∫
R3

( 1
|x| ∗ |ϕck |2

)
|ϕck |2 dx = 0.

A similar statement can be found in [10, 11] in the context of other variational
problems. By (3.4), we deduce that

E∞(N) = lim
k→∞
E∞(ϕck ) = lim

k→∞

( 1
4m

∫
R3
|∇ϕck |2 dx +

1
2
〈ϕc, iv · ∇ϕc〉

)
≥ 0,

which contradicts E∞(N) < 0. Thus, vanishing does not occur.
Dichotomy does not occur. If (iii) is true for ϕck , by the same arguments as in [4],

E∞(N) ≥ E∞(α) + E∞(N − α)

for 0 < α < N. This contradicts the strict binding inequality. Thus, dichotomy does not
occur. Therefore, we have compactness.

PROOF OF THEOREM 1.2. From the above arguments, we have shown that there exists
a subsequence ϕck such that Lemma 3.3(i) holds for some sequence {yk} in R3. We now
define the sequence

ϕ̃k := ϕck (· + yk).

Since {ϕ̃k} is uniformly bounded in H1(R3), we can pass to a subsequence, still denoted
by {ϕ̃k}, such that {ϕ̃k} converges weakly in H1(R3) to some ϕ∞ ∈ H1(R3) as k → ∞.
Moreover, thanks to the Rellich-type theorem for H1(R3) (see [9, Theorem 8.6]),
ϕ̃k → ϕ∞ strongly in Lp

loc(R3) as k → ∞ for 2 ≤ p < 6. Since∫
|x|<R
|ϕ̃k |2 dx ≥ N − ε̄,

for every ε̄ > 0 and suitable R = R(ε̄) < ∞, we conclude that ϕ̃k → ϕ∞ strongly in
Lp(R3) as k → ∞ for 2 ≤ p < 6. By the same arguments as in [4],

lim
k→∞

∫
R3

( 1
|x| ∗ |ϕ̃k |2

)
|ϕ̃k |2 dx =

∫
R3

( 1
|x| ∗ |ϕ∞|

2
)
|ϕ∞|2 dx.

By weak lower semicontinuity, we conclude that

E∞(N) ≤ E∞(ϕ∞) ≤ lim inf
k→∞

E∞(ϕ̃k) = E∞(N).

This implies that ϕ∞ is a minimiser of E∞(N). �

References
[1] W. Choi and J. Seok, ‘Nonrelativistic limit of standing waves for pseudo-relativistic nonlinear

Schrödinger equations’, J. Math. Phys. 57 (2016), Article no. 021510.
[2] W. Choi, J. Seok and Y. Hong, ‘Optimal convergence rate and regularity of nonrelativistic limit for

the nonlinear pseudo-relativistic equations’, J. Funct. Anal. 274 (2018), 695–722.
[3] A. Elgart and B. Schlein, ‘Mean field dynamics of Boson stars’, Comm. Pure Appl. Math. 60 (2007),

500–545.

https://doi.org/10.1017/S0004972724001114 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972724001114


12 Y. Chen and Q. Wang [12]

[4] J. Fröhlich, B. L. G. Jonsson and E. Lenzmann, ‘Boson stars as solitary waves’, Comm. Math. Phys.
274 (2007), 1–30.

[5] Y. Guo and X. Zeng, ‘The Lieb–Yau conjecture for ground states of pseudo-relativistic Boson stars’,
J. Funct. Anal. 278 (2020), Article no. 108510.

[6] S. Herr and E. Lenzmann, ‘The Boson star equation with initial data of low regularity’, Nonlinear
Anal. 97 (2014), 125–137.

[7] E. Lenzmann, ‘Well-posedness for semi-relativistic Hartree equations of critical type’, Math. Phys.
Anal. Geom. 10 (2007), 43–64.

[8] E. Lenzmann, ‘Uniqueness of ground states for pseudo-relativistic Hartree equations’, Anal. PDE
2 (2009), 1–27.

[9] E. Lieb and M. Loss, Analysis, 2nd edn, Graduate Studies in Mathematics, 14 (American
Mathematical Society, Providence, RI, 2001).

[10] P. Lions, ‘The concentration-compactness principle in the calculus of variations: the locally
compact case, Part I’, Ann. Inst. H. Poincaré Anal. Non Linéaire. 1 (1984), 109–145.

[11] P. Lions, ‘The concentration-compactness principle in the calculus of variations: the locally
compact case, Part II’, Ann. Inst. H. Poincaré Anal. Non Linéaire. 1 (1984), 223–283.

[12] M. Melgaard and F. D. Y. Zongo, ‘Solitary waves and excited states for Boson stars’, Anal. Appl.
20 (2022), 285–302.

[13] Q. Wang, ‘A blow-up result for the travelling waves of the pseudo-relativistic Hartree equation with
small velocity’, Math. Methods Appl. Sci. 44 (2021), 10403–10415.

YUANHUI CHEN, School of Mathematical Sciences,
Zhejiang Normal University, Jinhua 321004, China
e-mail: chyhhui@163.com

QINGXUAN WANG, School of Mathematical Sciences,
Zhejiang Normal University, Jinhua 321004, China
e-mail: wangqx@zjnu.edu.cn

https://doi.org/10.1017/S0004972724001114 Published online by Cambridge University Press

mailto:chyhhui@163.com
mailto:wangqx@zjnu.edu.cn
https://doi.org/10.1017/S0004972724001114

	1 Introduction and main results
	2 The nonrelativistic limit
	3 The existence of a minimiser for E∞(N)

