NONRELATIVISTIC LIMIT FOR THE TRAVELLING WAVES OF THE PSEUDORELATIVISTIC HARTREE EQUATIO[N](#page-0-0)

YUA[N](https://orcid.org/0009-0003-2816-4269)HUI CHEN®^{[®] and QIN[G](https://orcid.org/0000-0001-9120-468X)XUAN WANG}

(Received 18 July 2024; accepted 3 October 2024)

Abstract

We consider the pseudorelativistic Hartree equation

 $i\partial_t \psi =$ ($\sqrt{-c^2\Delta + m^2c^4} - mc^2\psi - (|x|^{-1} * |\psi|^2)\psi$ with $(t, x) \in \mathbb{R} \times \mathbb{R}^3$,

which describes the dynamics of pseudorelativistic boson stars in the mean-field limit. We study the travelling waves of the form $\psi(t, x) = e^{it\mu}\varphi_c(x - vt)$, where $v \in \mathbb{R}^3$ denotes the travelling velocity. We prove that φ_c converges strongly to the minimiser φ_{∞} of the limit energy $E_{\infty}(N)$ in $H^1(\mathbb{R}^3)$ as the light speed $c \to \infty$, where $E_{\infty}(N)$ is the corresponding energy for the limit equation

$$
-\frac{1}{2m}\Delta\varphi_{\infty}+i(\nu\cdot\nabla)\varphi_{\infty}-(|x|^{-1} * |\varphi_{\infty}|^2)\varphi_{\infty}=-\lambda\varphi_{\infty}.
$$

Since the operator $-\Delta$ is the classical kinetic operator, we call this the nonrelativistic limit. We prove the existence of the minimiser for the limit energy $E_{\infty}(N)$ by using concentration-compactness arguments.

2020 *Mathematics subject classification*: primary 35Q75; secondary 35A15, 35S05.

Keywords and phrases: nonrelativistic limit, pseudorelativistic Hartree equation, concentration compactness.

1. Introduction and main results

We study the pseudorelativistic Hartree equation

$$
i\partial_t \psi = (\sqrt{-c^2 \Delta + m^2 c^4} - mc^2) \psi - (|x|^{-1} * |\psi|^2) \psi \quad \text{with } (t, x) \in \mathbb{R} \times \mathbb{R}^3.
$$
 (1.1)

In the physical context, the parameter $m > 0$ is the mass of a particle and the symbol \star stands for the convolution on \mathbb{R}^3 . The pseudoralativistic operator $\sqrt{c^2\Lambda + m^2c^4}$ is in the physical context, the parameter $m > 0$ is the mass of a particle and the symbol $*$ stands for the convolution on \mathbb{R}^3 . The pseudorelativistic operator $\sqrt{-c^2\Delta + m^2c^4}$ is defined via multiplication in the Fourier space with the symbol $\sqrt{c^2}|\xi|^2 + m^2c^4$ for $\xi \in \mathbb{R}^3$ which describes the kinetic energy of a relativistic particle with mass $m > 0$. $\xi \in \mathbb{R}^3$, which describes the kinetic energy of a relativistic particle with mass $m > 0$. The convolution kernel $|x|^{-1}$ represents the Newtonian potential in appropriate physical units.

Q. Wang was partially supported by the National Natural Science Foundation of China (grant no. 11801519).

[©] The Author(s), 2024. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.

2 2 Y. Chen and Q. Wang [2]

A great deal of work has been devoted to the pseudorelativistic Hartree equation. Fröhlich *et al.* [\[4\]](#page-11-0) proved the existence of travelling solitary waves for [\(1.1\)](#page-0-1) with $c = 1$ by using concentration-compactness arguments [\[10,](#page-11-1) [11\]](#page-11-2) and Lenzman considered local and global well-posedness for Equation (1.1) with $c = 1$ [\[7\]](#page-11-3). Lenzmann [\[8\]](#page-11-4) and Guo and Zeng [\[5\]](#page-11-5) studied the uniqueness of the ground state for the pseudorelativistic Hartree energy using the nonrelativistic limit of (1.1) . For further work on travelling wave solutions of Equation (1.1) , we refer the reader to [\[3,](#page-10-0) [6,](#page-11-6) [13\]](#page-11-7).

We focus on travelling solitary waves of the form

$$
\psi(t,x) = e^{it\mu}\varphi_c(x - vt),\tag{1.2}
$$

with some $\mu \in \mathbb{R}$ and travelling velocity $v \in \mathbb{R}^3$ such that $|v| < 1$. Substituting [\(1.2\)](#page-1-0) into [\(1.1\)](#page-0-1) yields

$$
(\sqrt{-c^2\Delta + m^2c^4} - mc^2)\varphi_c + i(\nu \cdot \nabla)\varphi_c - (|x|^{-1} * |\varphi_c|^2)\varphi_c = -\mu\varphi_c, \qquad (1.3)
$$

which can be viewed as an Euler–Lagrange equation for the minimising problem

$$
E_c(N) := \inf \Big\{ \mathcal{E}_c(\psi) : \psi \in H^{1/2}(\mathbb{R}^3), \mathcal{N}(\psi) = \int_{\mathbb{R}^3} |\psi(x)|^2 \, dx = N \Big\},\tag{1.4}
$$

where

$$
\mathcal{E}_c(\psi):=\frac{1}{2}\langle \psi,(\sqrt{-c^2\Delta+m^2c^4}-mc^2)\psi\rangle+\frac{i}{2}\langle \psi,(v\cdot\nabla)\psi\rangle-\frac{1}{4}\int_{\mathbb{R}^3}\bigg(\frac{1}{|x|}*|\psi|^2\bigg)|\psi|^2\,dx,
$$

and the space $H^{1/2}(\mathbb{R}^3)$ is defined by $H^{1/2}(\mathbb{R}^3) := \{ \psi \in L^2(\mathbb{R}^3) : (1 + |\xi|)^{1/2} \hat{\psi} \in L^2(\mathbb{R}^3) \}$, with the norm with the norm

$$
\|\psi\|_{H^{1/2}(\mathbb{R}^3)}^2 := \int_{\mathbb{R}^3} (1+|\xi|) |\hat{\psi}(\xi)|^2 d\xi < \infty.
$$

We recall from [\[4\]](#page-11-0) the following Gagliardo–Nirenberg type inequality: for any $v \in \mathbb{R}^3$ with $|v| < 1$ and $\psi \in H^{1/2}(\mathbb{R}^3)$,

$$
\int_{\mathbb{R}^3} \left(\frac{1}{|x|} * |\psi|^2 \right) |\psi|^2 dx \le \frac{2}{N_*(v)} \langle \psi, (\sqrt{-\Delta} + iv \cdot \nabla) \psi \rangle \langle \psi, \psi \rangle, \tag{1.5}
$$

where $2/N_*(v)$ is the best constant and $N_*(v)$ is given by

$$
N_*(v) := \langle Q_v, Q_v \rangle = ||Q_v||_{L^2}^2.
$$

As stated in [\[4\]](#page-11-0), an optimiser Q_v of [\(1.5\)](#page-1-1) with $Q_v \in H^{1/2}(\mathbb{R}^3)$ and $Q_v \neq 0$ satisfies

$$
\sqrt{-\Delta}Q_v + i(v \cdot \nabla)Q_v - \left(\frac{1}{|x|} * |Q_v|^2\right)Q_v = -Q_v.
$$

The constant $N_*(v)$ is subject to the bounds $(1 - |v|)N_*(0) \le N_*(v) \le N_*(0) = N_*$, say. From [\[4\]](#page-11-0), for $|v| < 1$ there exists a critical constant $N_*(v)$ such that travelling waves exist if $0 < N < N_*(v)$ with the light speed $c = 1$. Lenzmann in [\[8\]](#page-11-4) has given the existence of the ground state for $E_c(N)$ with $v = 0$ for $0 < N < cN_*$. For $v \neq 0$, using similar arguments to [\[4\]](#page-11-0), it is easy to show the existence of a minimiser of $E_c(N)$. This gives the following existence theorem.

THEOREM 1.1. *Assume that* $m > 0$, $v \in \mathbb{R}^3$ *and* $|v| < 1$ *. Then there exists a positive constant N*_∗(*v*)*, depending only on v, such that, for* $0 < N < cN_∗(v)$ *, the problem* [\(1.4\)](#page-1-2) *has a minimiser* $\varphi_c \in H^{1/2}(\mathbb{R}^3)$.

We are interested in the limiting behaviour of minimisers for (1.4) as we pass to the limit $c \to \infty$, which is called the *nonrelativistic limit*. We will show that the minimiser of [\(1.4\)](#page-1-2) converges strongly in $H^1(\mathbb{R}^3)$ to the minimiser of the problem

$$
E_{\infty}(N) := \inf \Big\{ \mathcal{E}_{\infty}(\psi) : \psi \in H^1(\mathbb{R}^3), \mathcal{N}(\psi) = \int_{\mathbb{R}^3} |\psi(x)|^2 dx = N \Big\},\tag{1.6}
$$

where $\mathcal{E}_{\infty}(\psi)$ is given by

$$
\mathcal{E}_{\infty}(\psi) := \frac{1}{4m} \int_{\mathbb{R}^3} |\nabla \psi|^2 dx + \frac{i}{2} \langle \psi, (\nu \cdot \nabla) \psi \rangle - \frac{1}{4} \int_{\mathbb{R}^3} \left(\frac{1}{|x|} * |\psi|^2 \right) |\psi|^2 dx.
$$

Any minimiser φ_{∞} for [\(1.6\)](#page-2-0) must satisfy the corresponding Euler–Lagrange equation

$$
-\frac{1}{2m}\Delta\varphi_{\infty} + i(\nu \cdot \nabla)\varphi_{\infty} - \left(\frac{1}{|x|} * |\varphi_{\infty}|^2\right)\varphi_{\infty} = -\lambda\varphi_{\infty}
$$
 (1.7)

for some Lagrange multiplier $\lambda \in \mathbb{R}$.

We first establish the existence of a minimiser for $E_{\infty}(N)$.

THEOREM 1.2. *Assume that* $v \in \mathbb{R}^3$ *and* $|v| < 1$ *, m* > 0 *is sufficiently small and*

$$
\frac{1}{2m}\int_{\mathbb{R}^3} |\nabla \psi|^2 dx + \langle \psi, iv \cdot \nabla \psi \rangle \ge 0 \quad \text{for any } \psi \in H^1(\mathbb{R}^3).
$$

Then the problem [\(1.6\)](#page-2-0) has at least one minimiser.

The next result shows the H^1 convergence for the solution of [\(1.3\)](#page-1-3) to a solution of the limit equation [\(1.7\)](#page-2-1) as $c \to \infty$. This is the main theorem of this paper.

THEOREM 1.3. *Under the assumptions of Theorem [1.2,](#page-2-2) let* φ_c *be a minimiser of* $E_c(N)$ *with fixed N satisfying* $0 < N < cN_*(v)$ *. Then, as* $c \rightarrow \infty$ *,*

$$
\varphi_c \to \varphi_\infty \quad \text{strongly in } H^1(\mathbb{R}^3), \tag{1.8}
$$

where φ_{∞} *is a minimiser of* $E_{\infty}(N)$ *.*

REMARK 1.4. Theorem [1.2](#page-2-2) ensures the existence of minimisers of $E_{\infty}(N)$ in the nonrelativistic limit for small *m*. Thus, we need the assumption that $m > 0$ is sufficiently small in Theorem [1.3.](#page-2-3)

Lenzmann in [\[8\]](#page-11-4) considered the nonrelativistic limit of a solution to [\(1.3\)](#page-1-3) with $v = 0$. We have to handle an additional term $v \cdot \nabla$, which needs careful analysis. We note that radially symmetric solutions to [\(1.3\)](#page-1-3) do not exist (see [\[12\]](#page-11-8)). Since φ_c is not a radial function, we cannot use the method in [\[8\]](#page-11-4) which invokes Newton's theorem to derive the lower bound for the Lagrange multiplier $-\mu$. Inspired by the work of Choi *et al.* [\[2\]](#page-10-1), we find a new way to deal with the problem. In a similar way to [\[2,](#page-10-1) Lemma 4.3], we obtain the lower bound $H_c \geq B|\xi|$ for the operator $H_c = \sqrt{c^2|\xi|^2 + m^2c^4} - mc^2 + \delta$

4 Strategy 2 Strategy 2

with $\delta > 0$, where $B = \min\{2\delta^{1/2}/(2\sqrt{5}m)$
Gagliardo–Nirenberg inequality we deduc ^{1/2}, *c*/2}. Based on this inequality and the that φ , is uniformly bounded in $H^{1/2}(\mathbb{R}^3)$ Gagliardo–Nirenberg inequality, we deduce that φ_c is uniformly bounded in $H^{1/2}(\mathbb{R}^3)$.
Then we can derive the upper bound for *u* and the uniform boundedness of local mona-Then we can derive the upper bound for μ and the uniform boundedness of $\|\varphi_c\|_{H^1(\mathbb{R}^3)}$.
The organisation of the paper is as follows In Section 2, we consider the

The organisation of the paper is as follows. In Section [2,](#page-3-0) we consider the nonrelativistic limit and complete the proof of Theorem [1.3.](#page-2-3) In Section [3,](#page-8-0) we give the existence result of the limit energy functional by using concentration-compactness arguments.

We use the following notation.

-
- \rightarrow denotes weak convergence.
• \langle , \rangle denotes the *L*² inner product.
- $f * h$ denotes the convolution on \mathbb{R}^3 .
- \hat{f} denotes the Fourier transform of the function f (see [\[9\]](#page-11-9)).
- The value of the positive constant *C* is allowed to change from line to line and also in the same formula.
- $X \leq Y$ ($X \geq Y$) denotes $X \leq CY$ (respectively, $X \geq CY$) for some appropriate positive constant *C*.
- $v \cdot \nabla = \sum_{k=1}^{3} v_k \partial_{x_k}$, where $v \in \mathbb{R}^3$ is some fixed vector.

2. The nonrelativistic limit

Before considering the nonrelativistic limit, we prove some preliminary lemmas.

LEMMA 2.1. Let $H_c = \sqrt{c^2 |\xi|^2 + m^2 c^4} - mc^2 + \delta$ with $\delta > 0$ independent of c. Then
 $H > B |\xi|$ where $B = \min\{2\delta^{1/2}/(2\sqrt{5}m)^{1/2} \}$ c/21 is a constant *H_c* $\geq B|\xi|$, where $B = \min\{2\delta^{1/2}/(2\sqrt{5}m)^{1/2}, c/2\}$ *is a constant.*

PROOF. Factorising out *mc*² from the square root, we write

$$
H_c = mc^2 \left(\sqrt{1 + \left| \frac{\xi}{mc} \right|^2} - 1 \right) + \delta = mc^2 f \left(\left| \frac{\xi}{mc} \right|^2 \right) + \delta,
$$

where $f(t) = \sqrt{1+t} - 1$. By a Taylor expansion, if $0 \le t \le 4$, then there is some *t*[∗] ∈ [0, 4] such that

$$
f(t) = \sqrt{1+t} - 1 = f(0) + f'(t_*)t = \frac{t}{2\sqrt{1+t_*}} \ge \frac{t}{2\sqrt{5}}.
$$

Hence, if $|\xi|$ < 2*mc*, then

$$
H_c = mc^2 \left(\sqrt{1 + \left|\frac{\xi}{mc}\right|^2} - 1\right) + \delta = mc^2 f \left(\left|\frac{\xi}{mc}\right|^2\right) + \delta
$$

$$
\ge mc^2 \frac{|\xi/mc|^2}{2\sqrt{5}} + \delta = \frac{|\xi|^2}{2\sqrt{5}m} + \delta \ge \frac{2\delta^{1/2}}{(2\sqrt{5}m)^{1/2}} |\xi|,
$$

using the fact that $a^2 + b^2 \ge 2ab$ for the last inequality.

On the other hand, if $|\xi| \geq 2mc$, then

$$
H_c = c|\xi| \sqrt{1 + \left| \frac{mc}{\xi} \right|^2 - mc^2 + \delta} \ge c|\xi| - mc^2 + \delta \ge c|\xi| - \frac{c|\xi|}{2} + \delta \ge \frac{c}{2}|\xi|.
$$

This establishes Lemma [2.1.](#page-3-1)

LEMMA 2.2. *If* φ_c *is a minimiser of* $E_c(N)$ *, then* $\{\varphi_c\}$ *is uniformly bounded in* $H^{1/2}(\mathbb{R}^3)$ *.* PROOF. By [\(1.5\)](#page-1-1),

$$
2\mathcal{E}_c(\varphi_c)
$$

$$
= \langle \varphi_c, (\sqrt{-c^2 \Delta + m^2 c^4} - mc^2) \varphi_c \rangle + i \langle \varphi_c, (v \cdot \nabla) \varphi_c \rangle - \frac{1}{2} \int_{\mathbb{R}^3} \left(\frac{1}{|x|} * |\varphi_c|^2 \right) |\varphi_c|^2 dx
$$

\n
$$
\geq \langle \varphi_c, (\sqrt{-c^2 \Delta + m^2 c^4} - mc^2) \varphi_c \rangle + i \langle \varphi_c, (v \cdot \nabla) \varphi_c \rangle - \frac{N}{N_*(v)} \langle \varphi_c, (\sqrt{-\Delta} + iv \cdot \nabla) \varphi_c \rangle
$$

\n
$$
= \int_{\mathbb{R}^3} \left(\sqrt{c^2 |\xi|^2 + m^2 c^4} - mc^2 \right) |\hat{\varphi}_c(\xi)|^2 d\xi - \int_{\mathbb{R}^3} (v \cdot \xi) |\hat{\varphi}_c(\xi)|^2 d\xi
$$

\n
$$
- \frac{N}{N_*(v)} \int_{\mathbb{R}^3} (|\xi| - v \cdot \xi) |\hat{\varphi}_c(\xi)|^2 d\xi.
$$

It follows from Lemma [2.1](#page-3-1) that

$$
2\mathcal{E}_c(\varphi_c) + \delta N
$$

\n
$$
\geq B \int_{\mathbb{R}^3} |\xi| |\hat{\varphi}_c(\xi)|^2 d\xi - \int_{\mathbb{R}^3} (v \cdot \xi) |\hat{\varphi}_c(\xi)|^2 d\xi - \frac{N}{N_*(v)} \int_{\mathbb{R}^3} (|\xi| - v \cdot \xi) |\hat{\varphi}_c(\xi)|^2 d\xi.
$$

For *c* > 1 sufficiently large, *B* = min{ $2\delta^{1/2}/(2\sqrt{5}m)^{1/2}$, *c*/2} = $2\delta^{1/2}/(2\sqrt{5}m)^{1/2}$.

Case I: Fix *N* with $0 < N < cN_*$ and suppose that $0 < N < N_*(v) < cN_*(v)$. Let Case 1: Fix N with $0 < N$
 $\delta = \sqrt{5m}/2$. Then $B = 1$ and √

$$
2\mathcal{E}_c(\varphi_c) + \frac{\sqrt{5m}}{2}N \ge \left(1 - \frac{N}{N_*(v)}\right) \int_{\mathbb{R}^3} (|\xi| - v \cdot \xi) |\hat{\varphi}_c(\xi)|^2 d\xi
$$

$$
\ge \left(1 - \frac{N}{N_*(v)}\right) (1 - |v|) \int_{\mathbb{R}^3} |\xi| |\hat{\varphi}_c(\xi)|^2 d\xi.
$$
 (2.1)

In the last inequality, we use the fact that $|\xi| - v \cdot \xi \ge (1 - |v|)|\xi|$. Since φ_c is a minimiser of $\mathcal{E}_c(\psi)$, the operator inequality $\sqrt{-c^2\Delta + m^2c^4} - mc^2 \le -\Delta/2m$ yields

$$
\mathcal{E}_c(\varphi_c) \le \mathcal{E}_c(\varphi_\infty) \le \mathcal{E}_\infty(\varphi_\infty). \tag{2.2}
$$

Combining [\(2.1\)](#page-4-0) with [\(2.2\)](#page-4-1) and noting that $\mathcal{E}_{\infty}(\varphi_{\infty})$ < 0 gives

$$
\left(1 - \frac{N}{N_*(\nu)}\right) (1 - |\nu|) \int_{\mathbb{R}^3} |\xi| |\hat{\varphi}_c(\xi)|^2 d\xi \le 2\mathcal{E}_c(\varphi_c) + \frac{\sqrt{5}m}{2}N
$$

$$
\le 2\mathcal{E}_\infty(\varphi_\infty) + \frac{\sqrt{5}m}{2}N \le \frac{\sqrt{5}m}{2}N. \tag{2.3}
$$

Since $|v| < 1$, we have $(1 - N/N_*(v))(1 - |v|) > 0$.

Case II: Fix *N* with $0 < N < cN_*$ and suppose that $0 < N_*(v) \le N < cN_*(v)$. We can take $\delta = 8\sqrt{5}m(N/N_*(v))^2$ in Lemma 2.1. Then $R = 4N/N_*(v)$ and as in (2.1) take $\delta = 8\sqrt{5m(N/N_*(v))^2}$ in Lemma [2.1.](#page-3-1) Then $B = 4N/N_*(v)$ and, as in [\(2.1\)](#page-4-0),

$$
2\mathcal{E}_c(\varphi_c) + 8\sqrt{5}m\left(\frac{N}{N_*(v)}\right)^2 N
$$

\n
$$
\geq \frac{4N}{N_*(v)}\int_{\mathbb{R}^3} |\xi| |\hat{\varphi}_c(\xi)|^2 d\xi - \int_{\mathbb{R}^3} |v||\xi| |\hat{\varphi}_c(\xi)|^2 d\xi - \frac{N}{N_*(v)}\int_{\mathbb{R}^3} (|\xi| - v \cdot \xi) |\hat{\varphi}_c(\xi)|^2 d\xi
$$

\n
$$
\geq \frac{N}{N_*(v)} (3 - 2|v|) \int_{\mathbb{R}^3} |\xi| |\hat{\varphi}_c(\xi)|^2 d\xi.
$$

Since $|v| < 1$, we have $(N/N_*(v))(3 - 2|v|) > 0$ and, as in [\(2.3\)](#page-4-2), we obtain

$$
\frac{N}{N_{*}(\nu)}(3-2|\nu|)\int_{\mathbb{R}^{3}}|\xi||\hat{\varphi}_{c}(\xi)|^{2}d\xi \le \frac{8\sqrt{5}mN^{3}}{N_{*}^{2}(\nu)}.
$$
\n(2.4)

By combining [\(2.3\)](#page-4-2) and [\(2.4\)](#page-5-0), we conclude that there exists a constant $C_1 > 0$, which is independent of *c*, such that

$$
\int_{\mathbb{R}^3} |\xi| \, |\hat{\varphi}_c(\xi)|^2 \, d\xi \leq C_1.
$$

This completes the proof of Lemma [2.2.](#page-4-3) \Box

LEMMA 2.3. *If* $m > 0$, $v \in \mathbb{R}^3$ *and* $|v| < 1$, *then* $E_{\infty}(N) < 0$.

PROOF. Fix $\psi(x) \in H^1(\mathbb{R}^3)$ with $\int_{\mathbb{R}^3} |\psi|^2 dx = N$. Let $\psi^{\lambda}(x) = \lambda^{3/2} \psi(\lambda x)$ with $\lambda > 0$.
Then $||\psi^{\lambda}||^2 = ||\psi||^2 = N$. By the definition of $\mathcal{E}(\psi)$. Then $\|\psi^{\lambda}\|_{L^2}^2 = \|\psi\|_{L^2}^2 = N$. By the definition of $\mathcal{E}_{\infty}(\psi)$,

$$
\mathcal{E}_{\infty}(\psi^{\lambda}(x)) = \frac{\lambda^2}{2} \left\langle \psi, \frac{-\Delta}{2m} \psi \right\rangle + \frac{\lambda i}{2} \left\langle \psi, (v \cdot \nabla) \psi \right\rangle - \frac{\lambda}{4} \int_{\mathbb{R}^3} \left(\frac{1}{|x|} * |\psi|^2 \right) |\psi|^2 dx.
$$

Case I: If $i\langle \psi, (v \cdot \nabla) \psi \rangle < 0$ and λ is small enough, then, clearly, $\mathcal{E}_{\infty}(\psi^{\lambda}) < 0$.

Case II: If $i\langle \psi, (v \cdot \nabla) \psi \rangle \ge 0$, then

$$
\mathcal{E}_{\infty}(\psi^{\lambda}(-x)) = \frac{\lambda^2}{2} \Big\langle \psi, \frac{-\Delta}{2m} \psi \Big\rangle - \frac{\lambda i}{2} \langle \psi, (v \cdot \nabla) \psi \rangle - \frac{\lambda}{4} \int_{\mathbb{R}^3} \Big(\frac{1}{|x|} * |\psi|^2 \Big) |\psi|^2 \, dx.
$$

If λ is small enough, then $\mathcal{E}_{\infty}(\psi^{\lambda}(-x)) < 0$.

Combining Cases *I* and *II* gives $E_{\infty}(N) < 0$. This completes the proof.

LEMMA 2.4. Let φ_c be a minimiser of $E_c(N)$ satisfying the assumptions of Theorem [1.1](#page-2-4) *and let* μ *be the associated Lagrange multiplier to* φ_c . Then there exists a constant $K > 0$ *such that* $|\mu| \leq K$, where the constant $K > 0$ is independent of $c > 0$.

PROOF. First, we claim that $\mu > 0$. The minimiser φ_c of $E_c(N)$ satisfies the Euler–Lagrange equation [\(1.3\)](#page-1-3). Multiplying by φ_c and integrating gives

$$
-\mu N = 2\mathcal{E}_c(\varphi_c) - \frac{1}{2}\int_{\mathbb{R}^3} \left(\frac{1}{|x|} * |\varphi_c|^2\right) |\varphi_c|^2 dx.
$$

We recall the operator inequality

$$
\sqrt{-c^2\Delta + m^2c^4} \le -\frac{1}{2m}\Delta + mc^2,
$$

which follows directly in the Fourier domain and we note that $\sqrt{1+t} \le t/2 + 1$ for all $t > 0$. Since φ_{t+1} is a minimiser of $F_n(N)$ we have $\mathcal{E}_n(\varphi_{t+1}) \le \mathcal{E}_n(\varphi_{t+1})$ all $t \ge 0$. Since φ_c is a minimiser of $E_c(N)$, we have $\mathcal{E}_c(\varphi_c) \le \mathcal{E}_c(\varphi_\infty) \le \mathcal{E}_\infty(\varphi_\infty)$. Consequently, by Lemma [2.3,](#page-5-1)

$$
-\mu N = 2\mathcal{E}_c(\varphi_c) - \frac{1}{2}\int_{\mathbb{R}^3} \left(\frac{1}{|x|} * |\varphi_c|^2\right) |\varphi_c|^2 dx \leq 2\mathcal{E}_c(\varphi_c) \leq 2\mathcal{E}_\infty(\varphi_\infty) < 0.
$$

This implies that $\mu > 0$.

Next, we prove the upper bound for μ . By [\(1.3\)](#page-1-3),

$$
-\mu N = \langle \varphi_c, (\sqrt{-c^2 \Delta + m^2 c^4} - mc^2) \varphi_c \rangle + i \langle \varphi_c, (v \cdot \nabla) \varphi_c \rangle - \int_{\mathbb{R}^3} \left(\frac{1}{|x|} * |\varphi_c|^2 \right) |\varphi_c|^2 dx.
$$

Since $\sqrt{-c^2\Delta + m^2c^4} - mc^2 > 0$, by [\(1.5\)](#page-1-1),

$$
-\mu N \geq i \langle \varphi_c, (v \cdot \nabla) \varphi_c \rangle - \int_{\mathbb{R}^3} \left(\frac{1}{|x|} * |\varphi_c|^2 \right) |\varphi_c|^2 dx
$$

$$
\geq i \langle \varphi_c, (v \cdot \nabla) \varphi_c \rangle - \frac{2N}{N_*(v)} \langle \varphi_c, (\sqrt{-\Delta} + iv \cdot \nabla) \varphi_c \rangle.
$$

Therefore,

$$
\mu N \leq \frac{2N}{N_*(v)} \langle \varphi_c, (\sqrt{-\Delta} + iv \cdot \nabla) \varphi_c \rangle - i \langle \varphi_c, (v \cdot \nabla) \varphi_c \rangle.
$$

By a Fourier transform and Plancherel's theorem [\[9,](#page-11-9) Theorem 5.3], using similar arguments to those in the proof of [\[4,](#page-11-0) Lemma A.4],

$$
i\langle \varphi_c, (v \cdot \nabla) \varphi_c \rangle = - \int_{\mathbb{R}^3} (v \cdot \xi) |\hat{\varphi}_c(\xi)|^2 d\xi.
$$

Since $\sqrt{-\Delta} + iv \cdot \nabla \leq \sqrt{-\Delta}$, this yields

$$
\mu N \leq \frac{2N}{N_*(v)} \langle \varphi_c, \sqrt{-\Delta} \varphi_c \rangle + |v| \langle \varphi_c, \sqrt{-\Delta} \varphi_c \rangle \lesssim \| \varphi_c \|_{H^{1/2}(\mathbb{R}^3)},
$$

where we use the fact that $v \cdot \xi \le |v||\xi|$. Since φ_c is uniformly bounded in $H^{1/2}(\mathbb{R}^3)$, we can find a constant $K > 0$ such that $\mu < K$.

This completes the proof of Lemma [2.4.](#page-5-2)

LEMMA 2.5. If φ_c *is a minimiser of E_c(N), then there exists a constant M > 0 independent of c such that* $||\varphi_c||_{H^1(\mathbb{R}^3)} \leq M$.

PROOF. Since $\|\varphi_c\|_{L^2}^2 = N$, we only need to derive a uniform bound for $\|\nabla \varphi_c\|_{L^2}$. It follows from (1.3) that follows from [\(1.3\)](#page-1-3) that

$$
c^{2} || \nabla \varphi_{c} ||_{L^{2}}^{2} + m^{2} c^{4} || \varphi_{c} ||_{L^{2}}^{2}
$$

\n
$$
= \langle \sqrt{-c^{2} \Delta + m^{2} c^{4}} \varphi_{c}, \sqrt{-c^{2} \Delta + m^{2} c^{4}} \varphi_{c} \rangle
$$

\n
$$
= \langle (-\mu + mc^{2} + |x|^{-1} * |\varphi_{c}|^{2} - iv \cdot \nabla) \varphi_{c}, (-\mu + mc^{2} + |x|^{-1} * |\varphi_{c}|^{2} - iv \cdot \nabla) \varphi_{c} \rangle
$$

\n
$$
= \mu^{2} N - 2\mu mc^{2} N - 2\mu \langle \varphi_{c}, (|x|^{-1} * |\varphi_{c}|^{2}) \varphi_{c} \rangle + 2\mu \langle \varphi_{c}, iv \cdot \nabla \varphi_{c} \rangle + m^{2} c^{4} N
$$

\n
$$
+ 2mc^{2} \langle \varphi_{c}, (|x|^{-1} * |\varphi_{c}|^{2}) \varphi_{c} \rangle - 2mc^{2} \langle \varphi_{c}, iv \cdot \nabla \varphi_{c} \rangle - \langle v. \nabla \varphi_{c}, v \cdot \nabla \varphi_{c} \rangle
$$

\n
$$
+ \langle (|x|^{-1} * |\varphi_{c}|^{2}) \varphi_{c}, (|x|^{-1} * |\varphi_{c}|^{2}) \varphi_{c} \rangle - 2 \langle (|x|^{-1} * |\varphi_{c}|^{2}) \varphi_{c}, iv \cdot \nabla \varphi_{c} \rangle.
$$

To bound the terms on the right, we note that Kato's inequality $|x|^{-1} \le |\nabla|$ implies that

$$
|||x|^{-1} * |\varphi_c|^2||_{L^{\infty}} \leq \langle \varphi_c, |\nabla|\varphi_c\rangle \leq ||\varphi_c||_{L^2} ||\nabla\varphi_c||_{L^2}.
$$
\n(2.5)

On the other hand, since $v \cdot \nabla \le |v||\nabla|$ and $|v| < 1$,

$$
|\langle \varphi_c, iv \cdot \nabla \varphi_c \rangle| \le \langle \varphi_c, |\nabla|\varphi_c \rangle \le ||\varphi_c||_{L^2} ||\nabla \varphi_c||_{L^2}.
$$
 (2.6)

From [\(2.5\)](#page-7-0) and [\(2.6\)](#page-7-1),

$$
c^{2} \|\nabla \varphi_{c}\|_{L^{2}}^{2} \leq \mu^{2} N + 2\mu N^{1/2} \|\nabla \varphi_{c}\|_{L^{2}} + 2mc^{2} N^{3/2} \|\nabla \varphi_{c}\|_{L^{2}} + 2mc^{2} N^{1/2} \|\nabla \varphi_{c}\|_{L^{2}} + N^{2} \|\nabla \varphi_{c}\|_{L^{2}}^{2} + 2N \|\nabla \varphi_{c}\|_{L^{2}}^{2}.
$$

From Lemma [2.4,](#page-5-2) μ is uniformly bounded. As $c \to \infty$, N is fixed and m is sufficiently small we conclude that there exists a constant $M > 0$ such that $\|\nabla u\|_{L^2} \leq M$. By small, we conclude that there exists a constant $M > 0$ such that $\|\nabla \varphi_c\|_{L^2} \leq M$. By choosing $M > 0$ possibly larger, we arrive at the bound in the lemma. choosing $M > 0$ possibly larger, we arrive at the bound in the lemma.

PROOF OF THEOREM [1.3.](#page-2-3) First, we claim that $\{\varphi_c\}$ is a minimising sequence of $E_\infty(N)$. Since φ_c is a ground state of $E_c(N)$,

$$
0 \le E_{\infty}(N) - E_c(N) \le \mathcal{E}_{\infty}(\varphi_c) - \mathcal{E}_c(\varphi_c)
$$

=
$$
\frac{1}{2} \int_{\mathbb{R}^3} \bar{\varphi}_c \left(\frac{-\Delta}{2m} - (\sqrt{-c^2 \Delta + m^2 c^4} - mc^2) \right) \varphi_c \, dx.
$$
 (2.7)

From the proof of [\[1,](#page-10-2) Lemma 6.1],

$$
\lim_{c \to \infty} \left\langle f, \left(\sqrt{-c^2 \Delta + m^2 c^4} - mc^2 + \frac{1}{2m} \Delta \right) \varphi_c \right\rangle = 0 \quad \text{for all } f \in H^1(\mathbb{R}^3). \tag{2.8}
$$

This is easy to verify for a test function $f \in C_0^{\infty}(\mathbb{R}^3)$ by taking the Fourier transform and observing that

$$
\sqrt{c^2 \xi^2 + m^2 c^4} - mc^2 - \frac{\xi^2}{2m} \to 0 \quad \text{for every } \xi \in \mathbb{R}^3 \text{ as } c \to \infty.
$$

By a simple density argument, [\(2.8\)](#page-7-2) extends to all $f \in H^1(\mathbb{R}^3)$. Therefore,

$$
\lim_{c \to \infty} \int_{\mathbb{R}^3} \bar{\varphi}_c \left[\frac{-\Delta}{2m} - (\sqrt{-c^2 \Delta + m^2 c^4} - mc^2) \right] \varphi_c \, dx = 0. \tag{2.9}
$$

From [\(2.7\)](#page-7-3) and [\(2.9\)](#page-7-4), we conclude that, as $c \to \infty$,

 $E_c(N) \to E_\infty(N)$ and $\mathcal{E}_\infty(\varphi_c) \to E_\infty(N)$.

Hence, ${\varphi_c}$ is a minimising sequence of $E_{\infty}(N)$. Combining this with the existence of a minimiser for $E_{\infty}(N)$ gives (1.8) and completes the proof of Theorem 1.3. a minimiser for $E_\infty(N)$ gives [\(1.8\)](#page-2-5) and completes the proof of Theorem [1.3.](#page-2-3)

3. The existence of a minimiser for $E_{\infty}(N)$

In this section, we prove the existence of a minimiser for the limit energy $E_{\infty}(N)$.

LEMMA 3.1. *If* { φ_c } *is a minimising sequence for* $E_\infty(N)$ *, then* $E_\infty(N)$ *is a continuous function of N.*

PROOF. Let $\{\varphi_c\}$ be a minimising sequence for $E_\infty(N)$ such that $\lim_{c\to\infty} \mathcal{E}_\infty(\varphi_c)$ = $E_{\infty}(N)$ with $\|\varphi_c\|_{L^2}^2 = N$. For any $N_1 > 0$,

$$
E_{\infty}(N_1) \leq \mathcal{E}_{\infty} \left(\sqrt{\frac{N_1}{N}} \varphi_c \right) \text{ since } \left\| \sqrt{\frac{N_1}{N}} \varphi_c \right\|_{L^2}^2 = N_1
$$

\n
$$
= \frac{1}{4m} \frac{N_1}{N} \int_{\mathbb{R}^3} |\nabla \varphi_c|^2 dx + \frac{N_1}{2N} \langle \varphi_c, i v \cdot \nabla \varphi_c \rangle - \frac{1}{4} \left(\frac{N_1}{N} \right)^2 \int_{\mathbb{R}^3} \left(\frac{1}{|x|} * |\varphi_c|^2 \right) |\varphi_c|^2 dx
$$

\n
$$
= \mathcal{E}_{\infty}(\varphi_c) + \frac{1}{4m} \left(\frac{N_1}{N} - 1 \right) \int_{\mathbb{R}^3} |\nabla \varphi_c|^2 dx + \frac{1}{2} \left(\frac{N_1}{N} - 1 \right) \langle \varphi_c, i v \cdot \nabla \varphi_c \rangle
$$

\n
$$
- \frac{1}{4} \left[\left(\frac{N_1}{N} \right)^2 - 1 \right] \int_{\mathbb{R}^3} \left(\frac{1}{|x|} * |\varphi_c|^2 \right) |\varphi_c|^2 dx.
$$

Since $\{\varphi_c\}$ is uniformly bounded in $H^1(\mathbb{R}^3)$, the two integrals and $|\langle \varphi_c, i v \cdot \nabla \varphi_c \rangle|$ can be bounded by a constant $C > 0$ which is independent of the light speed c . Thus,

$$
E_{\infty}(N_1) - E_{\infty}(N) \le C \left| \frac{N_1}{N} - 1 \right|.
$$
\n(3.1)

By similar arguments,

$$
E_{\infty}(N) - E_{\infty}(N_1) \le C \left| \frac{N}{N_1} - 1 \right|.
$$
 (3.2)

From [\(3.1\)](#page-8-1) and [\(3.2\)](#page-8-2), it follows that $E_{\infty}(N_1) \to E_{\infty}(N)$ as $N_1 \to N$. This completes the \Box proof of Lemma [3.1.](#page-8-3)

LEMMA 3.2. *For m* > ⁰ *sufficiently small, we have the strict binding inequality*

$$
E_{\infty}(N) < E_{\infty}(\alpha) + E_{\infty}(N - \alpha) \tag{3.3}
$$

for $0 < \alpha < N$ *.*

PROOF. For any $\varepsilon > 0$, there exists $Q \in H^1(\mathbb{R}^3)$ with $||Q||_{L^2}^2 = \lambda < N$ such that $E_\infty(\lambda) \le$
E. (*O*) $\leq F$. (*A*) + ε . Choose $\theta > 1$ such that $\theta \lambda < N$. Then $\mathcal{E}_{\infty}(Q) \leq E_{\infty}(\lambda) + \varepsilon$. Choose $\theta > 1$ such that $\theta \lambda \leq N$. Then

$$
E_{\infty}(\theta \lambda) \leq \mathcal{E}_{\infty}(\sqrt{\theta}Q) = \frac{\theta}{4m} \int_{\mathbb{R}^3} |\nabla Q|^2 dx + \frac{\theta}{2} \langle Q, iv \cdot \nabla Q \rangle - \frac{\theta^2}{4} \int_{\mathbb{R}^3} \left(\frac{1}{|x|} * |Q|^2 \right) |Q|^2 dx
$$

= $\frac{1}{2} (\theta - \theta^2) \left[\frac{1}{2m} \int_{\mathbb{R}^3} |\nabla Q|^2 dx + \langle Q, iv \cdot \nabla Q \rangle \right] + \theta^2 \mathcal{E}_{\infty}(Q).$

For $m > 0$ sufficiently small,

$$
\frac{1}{2m} \int_{\mathbb{R}^3} |\nabla Q|^2 dx + \langle Q, iv \cdot \nabla Q \rangle \ge 0.
$$
 (3.4)

Since $\theta > 1$, we have $E_{\infty}(\theta \lambda) \leq \theta^2 \mathcal{E}_{\infty}(Q)$ and, in addition,

$$
E_{\infty}(\theta \lambda) \le \theta^2 (E_{\infty}(\lambda) + \varepsilon). \tag{3.5}
$$

Next, we claim that

$$
E_{\infty}(N) < \frac{N}{\alpha} E_{\infty}(\alpha) \quad \text{for } 0 < \alpha < N. \tag{3.6}
$$

Indeed, if $E_{\infty}(\alpha) \ge 0$, [\(3.6\)](#page-9-0) obviously holds since $E_{\infty}(N) < 0$. If $E_{\infty}(\alpha) < 0$, taking $\theta = N/\alpha$ $\alpha = \lambda$ and $\varepsilon < (\theta^{-1} - 1)E_{\infty}(\alpha)$ in (3.5) gives (3.6) In the same way replacing $\theta = N/\alpha$, $\alpha = \lambda$ and $\varepsilon < (\theta^{-1} - 1)E_{\infty}(\alpha)$ in [\(3.5\)](#page-9-1) gives [\(3.6\)](#page-9-0). In the same way, replacing α with $N - \alpha$ gives

$$
E_{\infty}(N) < \frac{N}{N - \alpha} E_{\infty}(N - \alpha). \tag{3.7}
$$

Combining [\(3.6\)](#page-9-0) and [\(3.7\)](#page-9-2) yields [\(3.3\)](#page-8-4) and completes the proof of Lemma [3.2.](#page-8-5)

By Lemma [2.5,](#page-6-0) the minimising sequence $\{\varphi_c\}$ is uniformly bounded in $H^1(\mathbb{R}^3)$. Consequently, there exists a subsequence { φ_{c_k} } such that $\varphi_{c_k} \to \varphi_{\infty}$. We now apply the concentration-compactness lemma.

LEMMA 3.3. Let $\{\varphi_c\}$ *be a bounded sequence in* $H^1(\mathbb{R}^3)$ *satisfying* $\|\varphi_c\|_{L^2}^2 = N$. Then, there exists a subsequence $\{a, \}$ satisfying one of the following three possibilities *there exists a subsequence* $\{\varphi_{c_k}\}$ *satisfying one of the following three possibilities.*

(i) *Compactness: there exists a sequence* $\{y_k\}$ *in* \mathbb{R}^3 *such that, for every* $\bar{\varepsilon} > 0$ *, there exists R,* $0 < R < \infty$ *, with*

$$
\int_{|x-y_k|
$$

(ii) *Vanishing: for all* $R > 0$ *,*

$$
\lim_{k\to\infty}\sup_{y\in\mathbb{R}^3}\int_{|x-y|
$$

(iii) *Dichotomy: there exists* $\alpha \in (0, N)$ *such that, for every* $\bar{\varepsilon} > 0$ *, there exist two bounded sequences* $\{\varphi_k^1\}$ *and* $\{\varphi_k^2\}$ *in* $H^1(\mathbb{R}^3)$ *and* $k_0 \ge 0$ *such that, for all* $k \ge k_0$ *,*

$$
\|\varphi_{c_k} - (\varphi_k^1 + \varphi_k^2)\|_p \le \delta_p(\bar{\varepsilon}) \quad \text{for } 2 \le p < 6,
$$

 $with \delta_p(\bar{\varepsilon}) \to 0 \text{ as } \bar{\varepsilon} \to 0, \text{ and, as } k \to \infty, \text{ dist(supp } \varphi_k^1, \text{supp } \varphi_k^2) \to \infty,$

$$
\left|\int_{\mathbb{R}^3} |\varphi_k^1|^2 \, dx - \alpha \right| \leq \bar{\varepsilon} \quad \text{and} \quad \left|\int_{\mathbb{R}^3} |\varphi_k^2|^2 \, dx - (N - \alpha) \right| \leq \bar{\varepsilon}.
$$

Invoking Lemma [3.3,](#page-9-3) we obtain a suitable subsequence φ_{c_k} with $\varphi_{c_k} \to \varphi_{\infty}$, which satisfies either (i), (ii) or (iii). We rule out (ii) and (iii) as follows.

Vanishing does not occur. If vanishing occurs, it follows from [\[4,](#page-11-0) Lemma A.1] that

$$
\lim_{k\to\infty}\int_{\mathbb{R}^3}\left(\frac{1}{|x|}*|\varphi_{c_k}|^2\right)|\varphi_{c_k}|^2\,dx=0.
$$

A similar statement can be found in $[10, 11]$ $[10, 11]$ $[10, 11]$ in the context of other variational problems. By [\(3.4\)](#page-9-4), we deduce that

$$
E_{\infty}(N) = \lim_{k \to \infty} \mathcal{E}_{\infty}(\varphi_{c_k}) = \lim_{k \to \infty} \left(\frac{1}{4m} \int_{\mathbb{R}^3} |\nabla \varphi_{c_k}|^2 dx + \frac{1}{2} \langle \varphi_c, i \nu \cdot \nabla \varphi_c \rangle \right) \geq 0,
$$

which contradicts $E_\infty(N) < 0$. Thus, vanishing does not occur.

Dichotomy does not occur. If (iii) is true for φ_{c_k} , by the same arguments as in [\[4\]](#page-11-0),

$$
E_{\infty}(N) \ge E_{\infty}(\alpha) + E_{\infty}(N - \alpha)
$$

for $0 < \alpha < N$. This contradicts the strict binding inequality. Thus, dichotomy does not occur. Therefore, we have compactness.

PROOF OF THEOREM [1.2.](#page-2-2) From the above arguments, we have shown that there exists a subsequence φ_{c_k} such that Lemma [3.3\(](#page-9-3)i) holds for some sequence {*y_k*} in \mathbb{R}^3 . We now define the sequence

$$
\tilde{\varphi}_k := \varphi_{c_k}(\cdot + y_k).
$$

Since $\{\tilde{\varphi}_k\}$ is uniformly bounded in $H^1(\mathbb{R}^3)$, we can pass to a subsequence, still denoted by $\{\tilde{\varphi}_k\}$ such that $\{\tilde{\varphi}_k\}$ converges weakly in $H^1(\mathbb{R}^3)$ to some $\varphi \in H^1(\mathbb{R}^3)$ as $k \to \infty$ by ${\{\tilde{\varphi}_k\}}$, such that ${\{\tilde{\varphi}_k\}}$ converges weakly in $H^1(\mathbb{R}^3)$ to some $\varphi_\infty \in H^1(\mathbb{R}^3)$ as $k \to \infty$. Moreover, thanks to the Rellich-type theorem for $H^1(\mathbb{R}^3)$ (see [\[9,](#page-11-9) Theorem 8.6]), $\tilde{\varphi}_k \to \varphi_\infty$ strongly in $L^p_{loc}(\mathbb{R}^3)$ as $k \to \infty$ for $2 \le p < 6$. Since

$$
\int_{|x|
$$

for every $\bar{\varepsilon} > 0$ and suitable $R = R(\bar{\varepsilon}) < \infty$, we conclude that $\tilde{\varphi}_k \to \varphi_\infty$ strongly in $L^p(\mathbb{R}^3)$ as $k \to \infty$ for $2 \le n \le 6$. By the same arguments as in [4] $L^p(\mathbb{R}^3)$ as $k \to \infty$ for $2 \leq p < 6$. By the same arguments as in [\[4\]](#page-11-0),

$$
\lim_{k\to\infty}\int_{\mathbb{R}^3}\left(\frac{1}{|x|}+|\tilde{\varphi}_k|^2\right)|\tilde{\varphi}_k|^2\,dx=\int_{\mathbb{R}^3}\left(\frac{1}{|x|}+|\varphi_\infty|^2\right)|\varphi_\infty|^2\,dx.
$$

By weak lower semicontinuity, we conclude that

$$
E_{\infty}(N) \leq \mathcal{E}_{\infty}(\varphi_{\infty}) \leq \liminf_{k \to \infty} \mathcal{E}_{\infty}(\tilde{\varphi}_k) = E_{\infty}(N).
$$

This implies that φ_{∞} is a minimiser of $E_{\infty}(N)$.

References

- [1] W. Choi and J. Seok, 'Nonrelativistic limit of standing waves for pseudo-relativistic nonlinear Schrödinger equations', *J. Math. Phys.* 57 (2016), Article no. 021510.
- [2] W. Choi, J. Seok and Y. Hong, 'Optimal convergence rate and regularity of nonrelativistic limit for the nonlinear pseudo-relativistic equations', *J. Funct. Anal.* 274 (2018), 695–722.
- [3] A. Elgart and B. Schlein, 'Mean field dynamics of Boson stars', *Comm. Pure Appl. Math.* 60 (2007), 500–545.
- [4] J. Fröhlich, B. L. G. Jonsson and E. Lenzmann, 'Boson stars as solitary waves', *Comm. Math. Phys.* 274 (2007), 1–30.
- [5] Y. Guo and X. Zeng, 'The Lieb–Yau conjecture for ground states of pseudo-relativistic Boson stars', *J. Funct. Anal.* 278 (2020), Article no. 108510.
- [6] S. Herr and E. Lenzmann, 'The Boson star equation with initial data of low regularity', *Nonlinear Anal.* 97 (2014), 125–137.
- [7] E. Lenzmann, 'Well-posedness for semi-relativistic Hartree equations of critical type', *Math. Phys. Anal. Geom.* 10 (2007), 43–64.
- [8] E. Lenzmann, 'Uniqueness of ground states for pseudo-relativistic Hartree equations', *Anal. PDE* 2 (2009), 1–27.
- [9] E. Lieb and M. Loss, *Analysis*, 2nd edn, Graduate Studies in Mathematics, 14 (American Mathematical Society, Providence, RI, 2001).
- [10] P. Lions, 'The concentration-compactness principle in the calculus of variations: the locally compact case, Part I', *Ann. Inst. H. Poincaré Anal. Non Linéaire.* 1 (1984), 109–145.
- [11] P. Lions, 'The concentration-compactness principle in the calculus of variations: the locally compact case, Part II', *Ann. Inst. H. Poincaré Anal. Non Linéaire.* 1 (1984), 223–283.
- [12] M. Melgaard and F. D. Y. Zongo, 'Solitary waves and excited states for Boson stars', *Anal. Appl.* 20 (2022), 285–302.
- [13] Q. Wang, 'A blow-up result for the travelling waves of the pseudo-relativistic Hartree equation with small velocity', *Math. Methods Appl. Sci.* 44 (2021), 10403–10415.

YUANHUI CHEN, School of Mathematical Sciences, Zhejiang Normal University, Jinhua 321004, China e-mail: chyhhui@163.com

QINGXUAN WANG, School of Mathematical Sciences, Zhejiang Normal University, Jinhua 321004, China e-mail: wangqx@zjnu.edu.cn