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Abstract
This paper focuses on the design, analysis, and multi-objective optimization of a novel 5-degrees of freedom (DOF)
double-driven parallel mechanism. A novel 5-DOF parallel mechanism with two double-driven branch chains is pro-
posed, which can serve as a machine tool. By installing two actuators on one branch chain, the proposed parallel
mechanism can achieve 5-DOF of the moving platform with only three branch chains. Afterwards, analytical solu-
tion for inverse kinematics is derived. The 5×5 homogeneous Jacobian matrix is obtained by transforming actuator
velocities into linear velocities at three points on the moving platform. Meanwhile, the workspace, dexterity, and
volume are analyzed based on the kinematic model. Ultimately, a stage-by-stage Pareto optimization method is pro-
posed to solve the multi-objective optimization problem of this parallel mechanism. The optimization results show
that the workspace, compactness, and dexterity of this mechanism can be improved efficiently.

1. Introduction
The parallel mechanism typically consists of a moving platform, a fixed base, and at least two branch
chains. It belongs to a kind of mechanism with multi-chain closed loops [1,2]. Parallel mechanism
has a wide development prospection because of its strong load ability, high stiffness, and excellent
dynamic performance [3]. Therefore, many scholars and enterprises have been committed to the design
and research of parallel mechanisms with engineering application value [4].

The number of degrees of freedom (DOF) of traditional parallel mechanisms is usually the same
as the number of branches with driving joints. In other words, the number of branches with driving
joints determines the number of DOF of traditional parallel mechanisms [5]. However, when the parallel
mechanism has more than 3-DOF, multiple branch chains will not only cause the mechanisms’ complex
structure but also lead to easy interference between branch chains [6]. In order to avoid a series of
disadvantages of multi-branch parallel mechanisms, many scholars have carried out systematic research
on the structural configuration. At present, hybrid mechanism, which is composed of parallel and series
structures, is the mainstream idea to solve this kind of problem [7]. The number of DOF of hybrid
mechanism is determined by series structure and parallel structure. The hybrid mechanism not only
makes up for the shortage of working space of the pure parallel mechanism but also overcomes the
low stiffness and cumulative error of the pure series mechanism [8]. The typical hybrid mechanism
is represented by Trivaiant, Tricept and Exechon, etc. [9]. Nevertheless, due to the existence of serial
structure, the end stiffness and positioning accuracy of hybrid mechanisms are not as good as that of the
pure parallel mechanism.

Double-driven parallel mechanism [10] is an alternative to reduce the number of branch chains while
ensuring the number of DOF. Different from the traditional parallel mechanism, the double-driven par-
allel mechanism contains one or more double-driven branch chains (i.e. there are two or more drives
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on one branch chain). The double-driven parallel mechanism still belongs to the closed-loop struc-
ture, which retains the advantages of large stiffness and high positioning accuracy. The research on the
double-driven parallel mechanism is still in its infancy, and there are few design cases. Lu et al. [11]
proposed a three branch chain 5-DOF mechanism with two double-driven branch chains, namely the
2UPS-SPR dual-drive parallel mechanism, and proved that the single-branch multi-drive mechanism
had the advantages of reducing vibration interference between branches, easy to avoid singularity, and
high dexterity. Zhao et al. [12] proposed and studied a double-driven parallel mechanism with sub-
closed loops, concluding that the double-driven parallel mechanism with sub-closed loop structure has
strong posture adjustment and vibration isolation ability. Louis et al. [13] analyzed a double-driven par-
allel mechanism with three double-driven branch chains and three precisely constrained branch chains.
This mechanism has three redundant DOFs, which can be used to avoid singulars and expand the rotat-
ing workspace, although above scholars have designed several double-driven mechanisms and verified
that they have many advantages. Nevertheless, as a new research direction, considering that the struc-
tural strategy has a great influence on the performance of the whole mechanism, driving mode and the
corresponding layout of double-driven chains are still open issues to be further studied [14].

Optimal design is an important research direction in parallel mechanism development [15].
Among, the kinematic design mainly involves the determination of optimal geometric parameters
[16]. Establishing performance indexes [17] is the first step of kinematic multi-objective optimization.
Workspace and dexterity of the mechanism are mainly used as the kinematic performance optimization
indexes so far [18,19]. Considering compactness and economy of parallel mechanisms, the mechanism
volume is also used as the performance index frequently. Wu et al. [20] used kinematic performance
such as mechanism workspace and volume as optimization indexes for multi-objective optimization of
a novel 6-DOF painting robot. Huang et al. [21] used the performance of workspace, stiffness, and dex-
terity as optimization indexes for multi-objective optimization to improve the overall performance of
a reconfigurable parallel mechanism. In conclusion, this paper mainly carries out the kinematic multi-
objective for the new proposed mechanism by using workspace, volume, and dexterity as performance
indexes.

Multi-objective optimization mainly includes two aspects: optimization method and optimization
algorithm [22]. As for the multi-objective optimization method, there are mainly two strategies [23].
The first method is to define the sum of the weights of multiple performance indexes as a comprehen-
sive index (the sum of the weight factors is equal to 1), commonly called the comprehensive objective
method [24]. The second method is known as the Pareto optimization method, which obtains non-
dominated solution sets for multiple performance indexes [25]. The determination of weight factors
in the comprehensive objective method is subjective and requires a large amount of computing time,
so its optimization efficiency is low [26]. Because Pareto optimization is an after-the-fact decision, this
method is usually given priority in multi-objective optimization [27]. The Pareto front is defined as the
set of all optimal solutions produced by Pareto optimization. Solutions on the Pareto front are all equal
and can be regarded as the optimal solution of Pareto optimization [28]. Russo et al. [29] designed a
parallel mechanism with 3-UPR architecture based on the Pareto optimization method. The kinematic
performance of this mechanism, such as workspace and manipulator dexterity, is improved. Qi et al.
[30] used Pareto optimization to determine the optimal structural parameters of a novel parallel tracking
mechanism. However, in the above studies, it is a challenge to select the optimal solution according to
weight combinations in Pareto optimization. Generally, the performance graph that displays the relation
between design variables and the performance can be used intuitively to select the final optimization
result from the Pareto front [31]. And for the traditional Pareto optimization, Pareto front of the two
optimization indexes can be drawn as a curve, which can be visually displayed on a two-dimensional
plane. However, the Pareto front of three or more optimization indexes is a hypersurface, which cannot
be visually displayed by two-dimensional graphics, thus increasing the difficulty in determining the final
optimization results [32]. Therefore, it is very meaningful to improve the traditional Pareto optimization
process so as to intuitively select the final optimization results and reduce the difficulty of optimiza-
tion results selection. Finally, as for the optimization algorithm, the intelligence optimization algorithm,
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(a) (b)

Figure 1. The 3-PRS parallel mechanism. (a) Topology structure of 3-PRS parallel mechanism.
(b) Sprint Z3.

such as genetic algorithm (GA) and particle swarm optimization (PSO) algorithm [33], is often used in
a real-life engineering setting. The main disadvantage of GA is that many parameters need to be selected
by experiences, such as the operator parameters of crossover rate and mutation rate [34]. Different from
the crossover and mutation operating of GA, PSO is easier to be implemented because the search is
determined according to its speed [35]. Yun et al. [36] found that fitness value of the PSO algorithm is
better than that of the GA in the optimization of a 3PUPU parallel mechanism. Wang et al. [37] used the
PSO algorithm to optimize the workspace, input coupling rate, natural frequency, and stiffness perfor-
mance of a planar 3-DOF parallel mechanism. The efficiency of PSO algorithm is widely recognized.
Therefore, the PSO algorithm is selected as the optimization algorithm in this paper.

In this paper, a novel 5-DOF parallel mechanism with two double-driven branch chains is proposed
and analyzed based on the idea of double-driven. And the kinematic multi-objective optimization prob-
lem is systematically studied based on a novel stage-by-stage Pareto optimization method. The structure
of this paper is as follows. Section 2 introduces design ideas of the proposed mechanism and carries out
the DOF analysis. In Section 3, the kinematics problem is studied. The inverse kinematic solution and
5×5 dimensional Jacobian matrix are obtained. Section 4 analyzes the kinematic performance of the
proposed mechanism. In Section 5, a stage-by-stage Pareto optimization method is proposed to perform
multi-objective optimization of the parallel mechanism. Conclusions are drawn in Section 6.

2. Design and DOF analysis of the parallel mechanism
2.1. Mechanism design
Based on the idea of double-driven, this paper is devoted to designing a double-driven parallel struc-
ture with 5-DOF. The parallel mechanism with three branch chains, especially 3-PRS [38] (P denotes
actuated prismatic joint, R denotes revolute joint, S denotes spherical joint) parallel mechanism, is usu-
ally used as the base mechanism for designing double-driven parallel mechanism because of its simple
structure and high stability, etc.

The topology structure of the 3-PRS parallel mechanism is shown in Fig. 1(a). The 3-PRS parallel
mechanism has three PRS branch chains of the same structure. Two ends of the three branches are con-
nected with the moving platform and fixed base, respectively. At present, the 3-PRS parallel mechanism
has been widely used in the field of machine tool processing, such as Sprint Z3 [39] shown in Fig. 1(b).

Inspired by the idea of double-driven, a novel 5-DOF parallel mechanism is designed based on the
3-PRS parallel mechanism, shown in Fig. 2(a). As the main improvement, an additional actuated rev-
olute joint (i.e. R) is added to two branch chains of the 3-PRS parallel mechanism, respectively. And,
the third PRS branch chain is replaced with a PUU branch chain to meet the movement requirements
of the mechanism. Here, U represents universal joint. As a result, the proposed PUU-2PRRS parallel
mechanism can realize 5-DOF of moving platform with only three branch chains. However, the structure
uses rotationally driven double-driven branch chains, resulting in a load close to the moving platform.
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(a) (b)

Figure 2. Novel double-driven parallel mechanism. (a) PUU-2PRRS parallel mechanism.
(b) PUU-2PR(RPRR)S parallel mechanism.

(a) (b)

(c)

Figure 3. 3D model of the PUU-2PR(RPRR)S parallel mechanism. (a) The PUU-2PR(RPRR)S parallel
mechanism. (b) PUU branch chain. (c) Double-driven branch chain.

The layout of the drive motor of the parallel mechanism has an important influence on its overall
performance. Generally speaking, the drive motor close to the fixed base can ensure the maximum
stiffness. Therefore, the PUU-2PRRS parallel mechanism needs to be improved.

It is notable that the actuated revolute pair on the double-driven branch chains would cause large
deformation and great difficulty in control. To solve this problem, the PUU-2PR(RPRR)S parallel mech-
anism with sub-closed-loop is designed. The actuated revolute joint is designed as a sub-closed-loop
(i.e. RPRR). The sub-closed-loop changes the rotation drive to a linear drive. By introducing the sub-
closed-loop structure, drive the motor and other loads near the fixed base. What is more, the vibration,
manufacturing costs, and control difficulty of the mechanism can be reduced effectively. Finally, the
topology of the PUU-2PR(RPRR)S parallel mechanism is shown in Fig. 2(b). According to the topolog-
ical structure of Fig. 2(b), the 3D model structure of this mechanism is designed. As shown in Fig. 3(a),
a PUU branch chain and two double-driven branch chains connect the moving platform to the fixed
base in the PUU-2PR(RPRR)S parallel mechanism. Figure 3(b) shows the structure of the PUU branch
chain. PUU branch consists of a guide rail and a fixed-length rod which are connected by a universal
joint. Figure 3(c) shows the structure of the double-driven branch chain (i.e. PR(RPRR)S branch chain).
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Table I. Structure parameters of the PUU-2PR(RPRR)S parallel mechanism.

Structure parameters Meaning
l1 (mm) Distance from point B1 to point C1

l2 (mm) Distance from point Ci+1 to point Di(i = 1, 2)
l3 (mm) Distance from point Bi+1 to point Di(i = 1, 2)
l4 (mm) Distance from point Di to point Fi(i = 1, 2)
l5 (mm) Distance from point Di to point Ei(i = 1, 2)
b (mm) Distance from point B1 to point B4

gi (mm) Distance from point O1 to point Ci(i = 1, 2, 3) or the distance from point
Ei−3 to point Fi−3(i = 4, 5)

Figure 4. Simplified schematic diagram of the PUU-2PR(RPRR)S parallel mechanism.

PR(RPRR)S branch consists of a guide rail, the lower connecting rod, and the upper connecting rod
which are in turn connected by two revolute joints. The connection between the upper connecting rod
and the lower connecting rod also adopts a telescopic rod-driven sub-closed-loop rotation component
(i.e. RPRR).

All three chain guides are mounted on the same plane of the fixed base. The guide rails of the two
double-driven branch chains are perpendicular to each other.

In order to facilitate the study of the PUU-2PR(RPRR)S parallel mechanism, its mechanism
schematic structure is established as shown in Fig. 4. O1 is taken as the origin to set up the fixed Cartesian
coordinate system O1 − x1y1z1. It is the intersection point of three linear guides on the plane C1C2C3.
z1-axis is perpendicular to the base guide rail installation plane, y1-axis is in the same direction as O1C1,
and x1-axis satisfies the right-hand rule. The structure parameters of the PUU-2PR(RPRR)S parallel
mechanism are shown in Table I.

O2 is taken as the origin to set up the moving Cartesian coordinate system O2 − x2y2z2. It is the
geometric center of the isosceles right triangle �B1B2B3. x2-axis is in the same direction as B3B2, y2-axis
is in the same direction as O2B1, and z2 -axis satisfies the right-hand rule.

2.2. DOF of the PUU-2PR(RPRR)S parallel mechanism
Screw theory is the main method to calculate the DOF of parallel mechanisms [40]. As shown in Fig. 5,
the local coordinate system C1 − x11y11z11 is established in the PUU branch chain. x11-axis and y11-axis
are in the same direction as the two axes of universal joint, respectively.
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Figure 5. Sketch of the PUU branch chain.

RC1
O1 is the transformation matrix from O1 − x1y1z1 to C1 − x11y11z11. It can be expressed as

RC1
O1 =
⎡
⎢⎣

cβ12 0 sβ12

0 1 0

−sβ12 0 cβ12

⎤
⎥⎦ (1)

where s denote sine and c denote cosine. β12 is the angle between x11-axis and x1-axis.
The coordinates of B1 in C1 − x11y11z11 can be denoted as

BC1
1 = ( 0 −l1cα13 l1sα13 )T (2)

where α13 is the angle between C1B1 and C1O1.
The kinematic screw system of the PUU branch chain in C1 − x11y11z11 can be expressed as

$1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

$11 = (O3×1; e2) = ( 0 0 0 ; 0 1 0)T

$12 = (e2; O3×1) = ( 0 1 0 ; 0 0 0)T

$13 = (e1; O3×1) = ( 1 0 0 ; 0 0 0)T

$14 = (e1; C1BC1
1 × e1) = ( 1 0 0 ; 0 l1sα13 l1cα13)T

$15 = (s15; C1BC1
1 × s15) = ( 0 cθ25 sθ25 ; −l1(cα13sθ25 + sα13cθ25) 0 0)T

(3)

where e1 = [ 1 0 0 ]T, e2 = [ 0 1 0 ]T, O3×1 = [ 0 0 0 ]T, C1BC1
1 = BC1

1 . s15 = [0 cθ25 sθ25

]T is the unit
vector along $15, and θ25 is the angle between y11-axis and s15.

Based on the reciprocity between screw systems, the reciprocal screw system of the PUU branch
chain can be expressed as

$r
1 = ( sθ25 0 0 0 0 L1

)T (4)

where L1 = l1(cα13sθ25 + sα13cθ25).
Similarly, the screw theory is used to prove that two double-driven branch chains have no constraints.
The reciprocal screw system of Eq. (4) needs to be converted to the fixed Cartesian coordinate system

O1 − x1y1z1. It can be calculated by

$r =
⎡
⎣ RC1

O1 O3×3

[
O1C1×

]
RC1

O1 RC1
O1

⎤
⎦ · $r

1 (5)

where
[
O1C1×

]=
⎡
⎢⎣

0 0 g1

0 0 0

−g1 0 0

⎤
⎥⎦.
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Submitting Eqs. (1) and (4) into Eq. (5), $r can be represented as

$r = ( sθ25cβ12 0 −sθ25sβ12 (L1 − sθ25g1)sβ12 0 (L1 − sθ25g1)cβ12

)T (6)

From Eq. (6), the PUU-2PR(RPRR)S parallel mechanism has only one constraint. In other words,
the PUU-2PR(RPRR)S parallel mechanism has 5-DOF. Additionally, in O1 − x1y1z1, $r is a spiral rather
than pure rotation or line displacement. So the PUU-2PR(RPRR)S parallel mechanism has a parasitic
motion [41] in the generalized coordinate system.

The correctness of the result is judged by the modified Grübler–Kutzbach formula. The DOF of the
parallel mechanism can be calculated as

N = d(n0 − g − 1) +
g∑

k=1

fk + v0 − ξ = 6 × (10 − 11 − 1) + 17 + 0 − 0 = 5 (7)

where N is the number of DOF, d represents the space dimensionality, n0 is the number of components,
g is the number of various hinges, fk means the number of DOF for the k-th motion pair, v0 is the number
of redundant constraints, and ξ is the number of local DOF.

3. Kinematics of the parallel mechanism
3.1. Parasitic motion analysis
For the limited DOF parallel mechanism (i.e. the number of DOF is less than 6), motions in the desired
DOF directions generally would generate constrained motions in the remaining directions (i.e. parasitic
motion). From Section 2.2, the PUU-2PR(RPRR)S parallel mechanism has a parasitic motion. In order
to obtain the inverse kinematic solution, it is necessary to analyze this parasitic motion thoroughly.

The orientation of O2 − x2y2z2 with respect to O1 − x1y1z1 is expressed by XYZ Euler angle, (α β γ ).
It can be expressed as

R = Rot (x, α) · Rot
(

y
′
, β
)

· Rot
(

z
′ ′
, γ
)

=
⎡
⎢⎣

cβcγ −cβsγ sβ

cαsγ + sαsβcγ cαcγ − sαsβsγ −cβsα

sαsγ − cαsβcγ sαcγ + cαsβsγ cαcβ

⎤
⎥⎦ (8)

where R is the corresponding transformation matrix from O1 − x1y1z1 to O2 − x2y2z2.
The coordinates of point O2 in O1 − x1y1z1 are expressed as

O2 = ( x y z)T (9)

The position coordinates of point Ci(i= 1, 2, 3) in O1 − x1y1z1 can be expressed as

C1 = (0 g1 0)
T , C2 =

(√
2

2
g2

√
2

2
g2 0

)T

, C3 =
(

−
√

2

2
g3

√
2

2
g3 0

)T

(10)

The position coordinates of point Bi(i = 1, 2, 3, 4) on the moving platform in O2 − x2y2z2 can be
expressed as

BO2
1 =
(

0
2b

3
0

)T

, BO2
2 =
(

b −b

3
0

)T

BO2
3 =
(

−b −b

3
0

)T

, BO2
4 =
(

0 −b

3
0

)T

(11)

Using the coordinate transformation approach, the position coordinates of point Bi(i = 1, 2, 3, 4) in
O1 − x1y1z1 can be expressed as

Bi = O2 + RBO2
i (i = 1, 2, · · ·, 4) (12)

Because the fixed-length rod in the PUU branch chain is connected by two universal joints, the
guide axis e2 of the PUU branch chain and the center line O2B1 of the moving platform are coplanar
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with the fixed-length rod. Submitting Eqs. (9), (10), and (12), then this geometric relationship can be
expressed as

x sin α + (z cos β + x sin β cos α) tan γ = 0 (13)

After the simplification of Eq. (13), the analytical form of γ can be expressed as

γ = arctan

( −x sin α

z cos β + x sin β cos α

)
(14)

It can be obtained from Eq. (14) that the PUU-2PR(RPRR)S parallel mechanism has five independent
DOFs (i.e. x, y, z, α, and β). γ is the parasitic motion of the PUU-2PR(RPRR)S parallel mechanism.

3.2. Inverse kinematics
Inverse kinematic problem (IKP) [42] is the premise for kinematic performance analysis and motion
control of the parallel mechanism. The IKP of the PUU-2PR(RPRR)S parallel mechanism is defined
as follows: when the position and orientation of the moving platform (i.e. x, y, z, α, and β) are known,
solve the actuator parameters (i.e. g1, g2, g3, g4 and g5 ).

According to the geometric relations shown in Fig. 4, the following equation can be obtained as:∣∣B1C1

∣∣= ∣∣O1C1 − O1B1

∣∣ (15)

Submitting Eqs. (10) and (12) into Eq. (15), g1 can be expressed as

g1 = y + 2b

3
(cαcγ − sαsβsγ ) +

√
l1

2 −
(

x − 2b

3
cβsγ

)2

−
(

z + 2b

3
(sαcγ + cαsβsγ )

)2

(16)

BiCi and O1Ci(i = 2, 3) are perpendicular to each other. This geometric relationship can be expressed
as

BiCi · O1Ci = 0(i = 2, 3) (17)

Submitting Eqs. (10) and (12) into Eq. (17), g2 and g3 can be represented as⎧⎪⎪⎪⎨
⎪⎪⎪⎩

g2 =
√

2

2

(
x + y + b (sαsβcγ + cαsγ + cβcγ ) − b

3
(cαcγ − sαsβsγ − cβsγ )

)

g3 =
√

2

2

(
−x + y − b (cαsγ + sαsβcγ − cβcγ ) − b

3
(cαcγ + cβsγ − sαsβsγ )

) (18)

Similarly, as shown in Fig. 6, the geometric relations for the PR(RPRR)S branch chain can be written
as ∣∣EiFi

∣∣2 = ∣∣DiEi

∣∣2 + ∣∣DiFi

∣∣2 − 2
∣∣DiEi

∣∣ · ∣∣DiFi

∣∣ · cos φi(i = 1, 2) (19)

where φi = π − arccos

(
l2

2+l3
2−|Bi−1Ci−1|2

2l2l3

)
is the angle between DiEi and DiFi (i = 1, 2).

Submitting the data in Table I into Eq. (19), g4 and g5 can be represented as⎧⎨
⎩

g4 =
√

l4
2 + l5

2 − 2l4l5 cos φ1

g5 =
√

l4
2 + l5

2 − 2l4l5 cos φ2

(20)

3.3. Homogeneous dimension Jacobin matrix
Jacobian matrix represents the relationship between the end-effector velocity and the drive speeds, which
is the key to the kinematic performance analysis. Its condition number is often used to analyze the
dexterity of the mechanism. However, if the mechanism has both translational and rotational DOF, the
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Figure 6. Partial sketch of the PR(RPRR)S branch chain.

velocity dimension of the moving platform is inconsistent, and its Jacobian matrix has non-homogeneous
physical units, which leads to significant problem in which the computation of the condition number will
vary with the scaling of dimensions [43,44]. To solve this problem, the Jacobian matrix needs to be nor-
malized, and the dimensionally homogeneous Jacobian matrix could be derived by transforming actuator
velocities into linear velocities of points on the moving platform [45]. Here, the key to establishing 5×5
dimensionally homogeneous dimensional Jacobian matrix of the PUU-2PR(RPRR)S parallel mecha-
nism is to find five independent linear velocity components of three non-collinear points on the moving
platform to replace the six-dimensional velocity vector of the moving platform.

Firstly, by taking the time derivative of Eqs. (16), (18), and (20), the following equation can be
obtained:

.

G = J1
.q (21)

where
.

G = [ .
g1

.
g2

.
g3

.
g4

.
g5

]T means the vector composed of five linear driving velocities,
.q =[

.
x

.
y

.
z

.
α

.

β
.

γ
]T

is the six-dimensional velocity vector of the moving platform, J1 is denoted as the
inverse Jacobian matrix, and it can be expressed as

J1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂g1

∂x

∂g1

∂y

∂g1

∂z

∂g1

∂α

∂g1

∂β

∂g1

∂γ

∂g2

∂x

∂g2

∂y

∂g2

∂z

∂g2

∂α

∂g2

∂β

∂g2

∂γ

. . . . . . . . . . . . . . . . . .

∂g5

∂x

∂g5

∂y

∂g5

∂z

∂g5

∂α

∂g5

∂β

∂g5

∂γ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

5×6

(22)

Secondly, the velocity vector of the moving platform can be expressed as
.q = J2 · .q

O2
(23)

where
.q
O2

= [ v′
O2 ω′

O2

]T, v′
O2 and ω′

O2 represent the representation of
[ .
x

.
y

.
z
]T

and
[ .
α

.

β
.

γ
]T in O2 − x2y2z2, respectively. J2 =

[
R O3×3

O3×3 R

]
6×6

is the velocity transformation

matrix from O1 − x1y1z1 to O2 − x2y2z2.
Thirdly, the mapping between the six-dimensional velocity vector of B1 in B1 − x3y3z3 and the six-

dimensional velocity vector of O2 in O2 − x2y2z2 needs to be established. Here, B1 − x3y3z3 is set at
point B1. It has the same axis direction as O2 − x2y2z2.
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The relationship between the linear velocities of B1 and O2 can be expressed as

vB1 = v′
O2 + ω′

O2 × O2B1 , v′
O2 = vB1 + ωB1 × B1O2 (24)

where vB1 = [ vB1x vB1y vB1z

]T, ωB1 = [ωB1x ωB1y ωB1z

]T. vBix, vBiy, vBiz, ωBix, ωBiy and ωBiz are the linear
velocity of Bi (i = 1, 2, 3) along x3, y3, z3 and the angular velocity around x3, y3, z3, respectively.

Combining Eq. (24), the mapping matrix between the six-dimensional velocity vector of B1 in
B1 − x3y3z3 and the six-dimensional velocity vector of O2 in O2 − x2y2z2 can be denoted as[

vB1

ωB1

]
= J3 ·

[
v′

O2

ω′
O2

]
(25)

where J3 =
[

E3 J1
3

O3×3 E3

]
6×6

, E3 =
⎡
⎢⎣

1 0 0

0 1 0

0 0 1

⎤
⎥⎦, J1

3 =
⎡
⎢⎣

0 0 − 2b
3

0 0 0
2b
3

0 0

⎤
⎥⎦.

Fourthly, the mapping matrix between the velocity vector of Bi (i = 1, 2, 3) in B1 − x3y3z3 and the six-
dimensional velocity vector of B1 in B1 − x3y3z3 needs to be established. According to the rigid body
motion relation,

vB2 = vB1 + ωB1 × B1B2 , vB3 = vB1 + ωB1 × B1B3 (26)

where vB2 = [ vB2x vB2y vB2z

]T, vB3 = [ vB3x vB3y vB3z

]T.
The following expression can be obtained by associating Eq. (26):⎡

⎢⎣
vB1

vB2

vB3

⎤
⎥⎦

9×1

=
⎡
⎢⎣

E3 O3×3

E3 J1
4

E3 J2
4

⎤
⎥⎦

9×6

·
[

vB1

ωB1

]
6×1

(27)

where J1
4 =
⎡
⎢⎣

0 0 b

0 0 b

−b −b 0

⎤
⎥⎦, J2

4 =
⎡
⎢⎣

0 0 b

0 0 −b

−b b 0

⎤
⎥⎦.

According to the DOF analysis in Section 2.2, the moving platform cannot rotate around z3, which
means that ωB1z = 0. Then Eq. (27) can be reduced to

J4 · v =
[

vB1

ωB1

]
(28)

where J4 =
[

E5×5

01×5

]
6×5

·

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 1 0 0

1 0 0 0 0

0 0 1 −b −b

0 1 0 0 0

0 0 1 −b b

⎤
⎥⎥⎥⎥⎥⎥⎦

−1

5×5

, v = [ vB1z vB2x vB2z vB3y vB3z

]T.

Finally, combining Eqs. (21), (23), (25), and (28), a 5×5 homogeneous Jacobian matrix of the PUU-
2PR(RPRR)S parallel mechanism can be derived as

J · v = ·
G (29)

where J = J1J2J3
−1J4.
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Figure 7. Schematic diagram of rotation angle of spherical joint.

4. Performance analysis
Based on the above IKP and Jacobian matrix, the kinematic performance of the proposed mechanism
can be analyzed. This section mainly analyzes the workspace, mechanism volume, and dexterity of the
PUU-2PR(RPRR)S parallel mechanism.

4.1. Workspace
Workspace is a collection of points that the moving platform can reach under the constraints of rod
length, joint rotation angle, and interference. The workspace size is one of the most important indexes
of parallel mechanisms. The numerical discrete method [46] is a commonly used method for parallel
mechanism workspace analysis.

The PUU-2PR(RPRR)S parallel mechanism has 5-DOF. Using the numerical discrete method, the
workspace solving problem of this mechanism can be converted to solving the position workspace with
a constant posture. The posture space range of the moving platform is given by its design requirements,
that is, −10◦ ≤ α, β ≤ 10◦.

The stroke of driving joints is one of the factors that determine the workspace size. Because the five
driving joints of this mechanism are all linear moving actuators, the travel limit of five driving joints is
composed of the maximum and minimum values that they can reach. The constraints of each driving
joint can be expressed as

gi min ≤ gi ≤ gi max (i = 1, 2, · · · , 5) (30)

where gi max and gi min, respectively, represent the maximum and minimum limit length that can be reached
by the i-th linear actuator.

Additionally, the rotation angle of spherical joint will affect the working space of this mechanism.
As shown in Fig. 7, the rotation angle of spherical joint (i.e. θi ) can be represented by the angle between
the normal direction of spherical joint support and axis direction (i.e. Bi+1Fi) of the upper connecting
rod. θi can be denoted as

θi = arccos
ni · Bi+1Fi∣∣Bi+1Fi

∣∣ (i = 1, 2) (31)

where ni is the unit normal direction vector of the spherical joint support.
In order to avoid interference between each component, the constraint angle of spherical joint is

given by

0 ≤ θi ≤ θmax (i= 1, 2) (32)

where θmax is the maximum limit rotation angle of the spherical joint.
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Figure 8. Workspace of the PUU-2PR(RPRR)S parallel mechanism.

On the premise of meeting the above constraints, the workspace of this mechanism is shown in Fig. 8.
The workspace of the mentioned mechanism is continuous. And the shape is approximately a regular
cylinder. The projection of the working space on the three projection planes shows that this mechanism
has a certain range of motion in all directions.

4.2. Dexterity
The dexterity index is another important index to evaluate the kinematic performance of parallel mech-
anisms. After establishing the homogeneous dimensional Jacobian matrix, the dexterity index can be
expressed as the reciprocal of Jacobian matrix’ condition number.

κ = σmin

σmax

(33)

where σmin and σmax, respectively, represent the minimum singular value and the maximum singular value
of J.

Obviously, from Eq. (33), 0 ≤ κ ≤ 1. The larger the κ is, the better the transmission performance
is. On the contrary, when κ = 0, the mechanism will be in a singular position and the transmission
performance is the worst.

As shown in Fig. 9(a), it is the distribution of dexterity in the position workspace, when the moving
platform is at a constant posture (i.e. α = 0◦ and β = 0◦). From Fig. 9(a), the highest dexterity appears
at the center point of the workspace, that is, OdM

2 = (0 750 650)T. The closer the distance to the edge of
the workspace, the worse the dexterity is. To further analyze the influence of posture, Fig. 9(b) shows
the distribution map of dexterity in the posture workspace, when the moving platform is at a constant
position, that is, OdM

2 . The dotted box is the required posture of this mechanism. It can be seen that the
posture space of this mechanism is roughly located in the area with excellent dexterity.

4.3. Mechanism volume
Mechanism volume refers to the space occupied by the mechanism, which is directly determined by the
structure layout and structure size of the mechanism [47]. Mechanism volume directly affects the size
of the mechanism station. Under the same working conditions, the smaller the size of mechanisms, the
smaller the station reserved for mechanisms in the workshop. The energy consumption for workshop
cleaning and temperature control can be also reduced to ensure the economy of the mechanism.
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(a) (b)

Figure 9. Distribution map of the dexterity in workspace. (a) The distribution map of dexterity in
position workspace. (b) The distribution map of dexterity in posture workspace.

Figure 10. Schematic diagram of the mechanism volume.

Mechanism volume is positively correlated with the size and number of branch chains [48]. Due
to the adoption of double-driven branch chains, the proposed mechanism reduces two branch chains
compared with the traditional 5-DOF mechanism, reducing mechanism volume.

Generally, mechanism volume can be defined as a cube volume, as shown in Fig. 10. The boundary
of the cube can be calculated from the limiting positions of O2, F1, C1 (i.e. O2 lim, F1 lim and C1 lim) and
O1 in the fixed coordinate system. The calculation formula is

Vm = h · max{O2z} · 2 max{F1x} (34)

where h = max{g1} represents the height of the mechanism volume, max{g1} is the distance from C1 lim

to O1, max{O2z} is the coordinate of O2 lim on the z1-axis, and max{F1x} represents the coordinate of F1 lim

on the x1-axis.

5. Multi-objective optimization designs
In order to make the proposed mechanism more suitable for practical engineering, it is necessary to
optimize the structural parameters to exert its best performance. In this section, a stage-by-stage
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Pareto optimization method is proposed to conduct multi-objective optimization design of the PUU-
2PR(RPRR)S parallel mechanism.

5.1. Problem statement of multi-objective optimization
5.1.1. Performance indexes for optimization
For the proposed parallel mechanism, the optimization design would focus on working space, mecha-
nism volume, and mechanism dexterity. Therefore, the following indicators are established based on the
dimensionless principle.

Workspace volume ratio. The workspace volume ratio of this mechanism is defined as

λ1 = Vcw

Vow

(35)

where Vow and Vcw represent the workspace of the mechanism before and after optimization, respectively.
And, λ1 ≥ 1 means that the optimized workspace volume is larger than the original workspace volume.

Compactness. The compactness of this mechanism is defined as

λ2 = Vcm

Vom

(36)

where Vom and Vcm represent the mechanism volume obtained before and after optimization, respectively.

Average dexterity ratio. The workspace of the mechanism is discretized into n points. Then the average
dexterity is defined as

κ̄ =

n∑
i=1

κi

n

(37)

where κ̄ is the average dexterity, and κi represents the dexterity of the i-th point.
Then, the average dexterity ratio of this mechanism is expressed as

λ3 = κc

κo

(38)

where κc represents the optimized average dexterity, and κo means the average dexterity calculated by
the initial structural parameters.

5.1.2. Constraints for optimal design
The main purpose of optimization design is to determine each rod length of the proposed PUU-
2PR(RPRR)S parallel mechanism. Here, it is notable that the sub-closed-loop (i.e. RPRR) in the
double-driven branch chain is treated as a rotation driver, and main lengths of the sub-closed-loop can be
derived according to the angle range of the actuated revolute joint, that is, φi. Therefore, for simplicity,
the position of Ei and Di (i = 1, 2) is regarded as fixed. In other words, l4 and l5 are set to fixed values,
that is, l4 = 200 mm, l5 = 400 mm. As the constraints, the design variables and their value ranges are
shown in Table II.

5.1.3. Objective function
From the perspective of kinematic performance and economy, the objective of the optimal design is to
obtain a parallel mechanism with large workspace, high compactness, and high dexterity. According to
the above-defined performance indices, the larger the index λ1 is, the larger the workspace of the parallel
mechanism will be. The smaller the index λ2 is, the better the compactness of the parallel mechanism is.
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Table II. Design variables and value range of
the mechanism.

Optimization parameters Value range
l1 (mm) 800∼1200
l2 (mm) 320∼640
l3 (mm) 480∼960
b (mm) 80∼320

And the larger the index λ3 is, the better the dexterity of the parallel mechanism will be. Therefore, for
consistency, the objective function of the multi-objective optimization problem can be defined as

f (X) = max (f1, f2, f3) = max

(
λ1,

1

λ2

, λ3

)
(39)

where X is the vector composed of design variables.

5.2. Optimization method
Pareto optimization is a widely applied method of multi-objective optimization, and the set of all opti-
mal solutions produced by Pareto optimization is called the Pareto front. All solutions on the Pareto
front can be treated as equally good [49]. However, how to select the final optimization solution on the
Pareto front will be a difficult problem. Generally, the performance graph produced by the Pareto front
is utilized to select the final optimization result [50]. The performance graph graphically presents the
relation between design variables and the performance indices. And for the optimization design with
two objective functions, the Pareto front is a curve. However, for the optimization design with more
than two objective functions, the Pareto front is usually a hypersurface, so its performance graph cannot
be visually displayed [51].

The traditional Pareto optimization method directly obtains the Pareto front which contains all the
indexes, but it cannot be displayed intuitively by the graph. To solve this problem, this paper proposed
to convert the traditional Pareto optimization problem with multiple objectives into a stage-by-stage
Pareto optimization problem, as shown in Fig. 11. The stage-by-stage Pareto optimization only should
determine the priority of each optimization index according to the design requirements. The Pareto front
between two indexes is obtained at each stage and the optimized space can be reduced stage by stage.

For clearly, main steps of the proposed stage-by-stage Pareto optimization are presented as follows.

Step 1. After the priority of optimization indexes is determined, single-objective optimization is
carried out with λ1 to determine the upper limit of f1.

Step 2. Pareto front of f1 and f2 is obtained by the first stage Pareto optimization. This determines the
range of f2 in the second stage Pareto optimization.

Step 3. According to the step 2, Pareto optimization of the following stage is carried out, until the
Pareto front of fn−1 and fn is obtained, where n is the number of optimization indexes.

From Fig. 11, the final optimization result can be selected on the Pareto front of the final stage. The
specific calculation process will be given in the next section with a numerical simulation.

5.3. Final optimized result using stage-by-stage Pareto
In order to verify the proposed multi-objective optimization method, the PUU-2PR(RPRR)S parallel
mechanism is taken as an example.
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Figure 11. Flowchart of multi-objective optimization.

Figure 12. Flowchart of particle swarm optimization algorithm.

According to the flowchart of multi-objective optimization as shown in Fig. 11, a single objective
algorithm with f1 should be conducted first. Here, the PSO is applied, and the corresponding flowchart
is shown in Fig. 12. It is notable that different from the traditional PSO algorithm, the concept of particle
aggregation degree [52] is introduced to avoid the local optimal solution. Figure 13 shows the change
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Figure 13. The optimization results of λ1.

(a) (b)

Figure 14. The Pareto front of stage-by-stage Pareto. (a) The first stage. (b) The second stage.

law of λ1, and the value of λ1 has converged to the optimal solution after 300 iterations. The maximum
value of λ1 is 3.28. It is taken as the upper limit of f1 in the first stage Pareto optimization.

The stage-by-stage Pareto is also optimized using PSO. Figure 14(a) shows the Pareto front of first
stage. The intersection of f1 ≥ 1 and f2 ≥ 1 on the Pareto front (i.e. the set of solid points in Fig. 14(a))
is the region where both objectives are optimized. Here, points A = [ f I

1m
f I

2M

]
and B = [ f I

1M
f I

2m

]
are two

boundary points in this region as shown in Fig. 14(a).
In order to further reduce interval of feasible solutions, the minimum values of f1 and f2 that meet the

optimization requirements can be set. The setting principle can be expressed as

f II
im

= f I
im

+ εi

(
f I

iM
− f I

im

)
(i = 1, 2, 3) (40)

where εi is the optimized proportion of the i-th index. It is set according to the optimization requirements.
The range of εi is 0 ≤ εi ≤ 1. And in this example, the values of ε1 and ε2 are, respectively, set to 0.3 and
0.1, then f II

1m and f II
2m can be obtained. The range of the next stage of Pareto optimization is determined

by the maximum and minimum values of f2 in the intersection of f1 ≥ f II
1m and f2 ≥ f II

2m (i.e. the blue solid
dot area in Fig. 14(a)).

On the premise that f1 ≥ f II
1m, the Pareto front of the second stage can be obtained, as shown in

Fig. 14(b). The Pareto front of f2 and f3 is reduced in the same way. f II
3m can be calculated by setting

ε3 = 0.3. The intersection of f2 ≥ f II
2m and f3 ≥ f II

3m is chosen as the optimal solution set (i.e. the blue solid
dot area in Fig. 14(b)).
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Table III. Parameters and performance indices of the final solution.

l1 (mm) l2 (mm) l3 (mm) b (mm) λ1 λ2 λ3

753.76 400.11 617.24 125.20 1.25 0.93 1.36

(a) (b)

Figure 15. Distribution map of optimized dexterity. (a) The distribution of the optimized dexterity in
position space. (b) The distribution of the optimized dexterity in posture space.

All the points in the optimal solution set meet the requirements of the optimal design. In order to select
the final solution, ref. [19] proposed to establish a comprehensive performance index. In other words,
the final optimization result can be selected by normalizing the performance index. Each performance
index can be specified as

f N
i = fi − fim

fiM − fim

(i = 1, 2, 3) (41)

where f N
i is the established normalized performance index. fiM and fim are, respectively, the maximum

and minimum values of the i-th objective function on the Pareto front after reduction in Fig. 14(b).

f = f N
2 + f N

3 (42)

The higher the value of f is, the better the comprehensive performance of the mechanism is.
Therefore, the solution with the best comprehensive performance in the optimal solution set is chosen
as the optimal solution. Its structural parameters and corresponding indexes are shown in Table III.

Based on the optimized structural parameters, the optimal mechanism is obtained. The kinematic
performance of the mechanism is improved. Workspace volume is increased by 25%, average dexterity
is increased by 36%, and the volume of the mechanism is reduced by 7%.

Figure 15 shows the distribution map of the optimized dexterity. The dexterity is more evenly dis-
tributed compared to Fig. 9(a) in the same posture, and the maximum dexterity has been improved from
0.165 to 0.206 in the position workspace. Figure 15(b) shows dexterity of OdM

2 in posture workspace.
Compared with Fig. 9(b), the distribution trend of dexterity does not change, but its maximum dexterity
is improved from 0.169 to 0.220.

6. Conclusions
This paper focuses on the design and multi-objective optimization of a 5-DOF double-driven paral-
lel mechanism. The main contributions are (1) a novel PUU-2PR(RPRR)S parallel mechanism with
two double-driven chains is proposed. This 5-DOF parallel mechanism has less branch chains (i.e. three
branch chains), reducing interference between branch chains. (2) A multi-objective optimization method
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based on modified stage-by-stage Pareto is presented to improve multiple kinematics indexes. The pro-
posed stage-by-stage Pareto can achieve intuitive selection of optimization results, reducing the difficulty
of selecting final optimization result from the Pareto front. Conclusions of this paper can be drawn as
follows.

Firstly, based on the idea of double-driven chains, the novel PUU-2PR(RPRR)S mechanism is pro-
posed. On the premise of guaranteeing the number of DOF, the number of branch chains is reduced,
simplifying mechanism’s structure and reducing interference between branch chains. The DOF of this
mechanism is analyzed by using screw theory, which shows that the proposed mechanism has five
independent DOFs and a parasitic motion. Secondly, according to the geometric characteristics of this
mechanism, the analytic form of inverse kinematics solution is derived. Then the 5×5 homogeneous
Jacobian matrix is obtained by transforming actuator velocities into linear velocities at three points on
the moving platform. Furthermore, kinematics characters of the mechanism are analyzed. The proposed
mechanism has a continuous and regular workspace. Due to less number of branch chains, the mecha-
nism has the advantages of small size, better economy, and higher compactness. And it has high dexterity
in both posture space and position space. Finally, a modified stage-by-stage Pareto optimization method
is proposed to solve the multi-objective optimization problem of the parallel mechanism. As the main
improvement, the multi-objective optimization of three or more objectives is transformed into a stage-
by-stage Pareto optimization method with only two objectives in each stage. Therefore, the optimization
range of each objective can be intuitively selected in the form of performance graph, thus reducing the
difficulty of selecting the final optimization results from the Pareto front. After the optimization, optimal
structural parameters of the mechanism are obtained. The volume of working space is increased by 25%,
average dexterity increased by 36%, and volume of the mechanism is reduced by 7%. These results also
prove the effectiveness of the proposed stage-by-stage Pareto optimization method.

In order to further promote the practical engineering application of this proposed novel 5-DOF par-
allel mechanism as a machine tool, stiffness modeling and analysis will be focused in our future work.
Multi-objective optimum design also will be systematically studied by considering both kinematic and
stiffness performance indexes.
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