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ABSTRACT.

The conditions under which ice fractures and calves icebergs from Antarctic
ice shelves are poorly understood due largely to a lack of relevant observations.
Though previous studies have estimated the stresses at which ice fractures
in the laboratory and through sparse observations, there remains significant
uncertainty in the applicability of these results to naturally deforming glacier
ice on larger scales. Here, we aim to better constrain the stresses under which
ice fractures using remote sensing data by identifying large-scale fractures
on Antarctic ice shelves, calculating the principal stresses from the observed
strain rates, and comparing the stresses of unfractured and fractured areas.
Using the inferred stresses, we evaluate five common fracture criteria: Mohr-
Coulomb, von Mises, strain energy, Drucker-Prager, and Hayhurst. We find
the tensile strength of ice ranges from 202 to 263 kPa assuming the viscous
stress exponent n “ 3, narrowing the range produced by previous observational
studies. For n “ 4, we find tensile strengths of 423 ´ 565 kPa, bringing our
inferences closer to alignment with laboratory experiments. Importantly, we
show that crevassed and uncrevassed areas in the four largest ice shelves are
distinct in principal stress space, suggesting our results apply to all ice shelves
and the broader ice sheet.

INTRODUCTION

The initiation and propagation of macroscale fractures (also known as rifts) on ice shelves acts as a signif-
icant control on the rate of mass loss from the Antarctic Ice Sheet. The propagation of active rifts both
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vertically and laterally can result in the calving of tabular icebergs, which directly contributes ice mass to
the oceans (Evans and others, 2022). Further, even fractures that do not directly result in calving events
can weaken the backstress that ice shelves provide to grounded ice, an effect known as buttressing. The
loss of load-bearing, and thus buttressing ability, of ice shelves can result in accelerated mass flow to the
ocean from the grounded ice, further adding to mass loss and affecting the stability of large regions of the
ice sheet (Reese and others, 2018; Lhermitte and others, 2020; Mitcham and others, 2021; Borstad and
others, 2013, 2017; Sun and others, 2017; Sun and Gudmundsson, 2023; Surawy-Stepney and others, 2023;
Borstad and others, 2016).

Additionally, the development and propagation of fractures can result, in certain cases, in the collapse
of large regions of ice shelves, as occurred in the case of the Larsen B Ice Shelf (Doake and others, 1998;
Banwell and others, 2013). Rapid breakup of ice is also occurring on Thwaites Ice Shelf in possibly a similar
process (Lhermitte and others, 2020; Benn and others, 2021; Surawy-Stepney and others, 2023), and other
regions of Antarctic ice shelves may be vulnerable to similar instabilities (Lai and others, 2020). These
collapses remove the buttressing effect and likely result in acceleration of grounded ice towards the ocean
(Fürst and others, 2016), as has been identified after the Larsen B breakup (Rignot, 2004; Scambos, 2004).
Further, they may have large-reaching consequences for the stability of the Antarctic Ice Sheet, though
the extent of these consequences remains unknown (Pollard and others, 2015; DeConto and Pollard, 2016;
Clerc and others, 2019; Edwards and others, 2019; Robel and Banwell, 2019; Crawford and others, 2021;
Golledge and Lowry, 2021; Bassis and others, 2021; Schlemm and others, 2022).

An important step towards reducing uncertainty in sea level rise projections is understanding how
fracturing affects the flow of upstream ice and implementing this dynamic in models. The current lack
of observations on large-scale ice shelf failure and limited observations on calving events, in addition
to uncertainties in ice rheology and the grain-scale processes through which failure occurs, impede the
predictive capability of models. A strong foundation for understanding material failure already exists.
Fracture criteria, also known as yield criteria or failure envelopes (a relationship between the strength of a
material and the stresses applied to it), are well-studied in material science, several engineering disciplines,
and within the glaciological literature. Many different criteria have been applied to describe the nature of
ice fracture and to model iceberg calving (Pralong and Funk, 2005; Albrecht and Levermann, 2012; Duddu
and Waisman, 2012), as well as materials sometimes used as mechanical analogs for ice (e.g., Drucker and
Prager, 1952; Bhat and others, 1991). Other approaches have included using a pressure threshold (Duddu
and others, 2020) and a strain threshold (Duddu and Waisman, 2012), though these are currently less used
in large-scale ice sheet models. Most numerical models that represent ice fracture and calving use a stress
threshold, which describes a critical stress above which ice fractures (Hulbe and others, 2010; Borstad and
others, 2016; Jiménez and others, 2017; Lai and others, 2020). While many of these studies benchmark
their models against laboratory estimates, few studies have been able to use observations of natural systems
to determine the proper fracture criterion and stress threshold for ice fracture.

Even within models that use a stress threshold, the magnitude of the critical stress or the relationship
of the critical stress to principal stresses are not generally agreed upon. Various models use critical stresses,
also known as the strength of ice, ranging from 0.1 to 1 MPa, an order of magnitude difference (Duddu
and Waisman, 2013; Krug and others, 2014; Pralong and Funk, 2005; Pralong and others, 2003; Åström
and others, 2013, 2014; Benn and others, 2017). These thresholds are based on laboratory experiments
and glaciological observations. Laboratory experiments provide a range of values from 500 kPa to as
high as 5 MPa (Currier and Schulson, 1982; Lee and Schulson, 1988; Druez and others, 1989; Petrovic,
2003), while observations have found a lower range of tensile strengths from 76 kPa to 1 MPa (Vaughan,
1993; Ultee and others, 2020; Chudley and others, 2021; Grinsted and others, 2024). Ultee and others
(2020) found the tensile strength of ice to be „ 1 MPa by considering relatively undeformed and intact
ice on Vatnajokull Ice Cap in Iceland and determining the highest stresses present in unfractured ice
using linear-elastic mechanics (no assumed n value). While this provides a useful baseline for ice strength
in relatively undeformed and undamaged ice, the exact applicability to the conditions on Antarctic ice
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shelves, where ice has a longer history of deformation, and thus more accumulated damage or impurities,
remains unclear. Vaughan (1993), using stresses calculated from observed strain rates (and assuming
n “ 3), found the tensile strength of ice in regions of Antarctica ranged from 90-320 kPa, below the lower
bound of strengths estimated by laboratory experiments. However, due to limited observations available in
the early 1990s, the broader applicability of Vaughan’s results to the entire Antarctic Ice Sheet is unclear.
Grinsted and others (2024) finds tensile strengths of „ 150 ´ 250 kPa, and Chudley and others (2021)
finds an even lower critical stress of 76 kPa for fractures on the Greenland Ice Sheet, again assuming
n “ 3. The difficulty of measuring stresses in-situ necessitates an assumption of ice rheology to calculate
the critical stress threshold, which introduces inconsistencies between observations and laboratory-derived
stress measurements. It is vital to understand the differences that assumptions in ice rheology make in
estimates of tensile strength, as variables such as deformation mechanism, flow speed, and other material
properties of the ice that vary regionally can affect rheology and therefore strength (Mellor, 1979; Currier
and Schulson, 1982; Ranganathan and others, 2021b; Ranganathan and Minchew, 2024). This knowledge
gap makes a complete study of the stress threshold across the Antarctic Ice Sheet, capturing many different
flow regimes, necessary and motivates this study.

Here, we use high-resolution, remotely sensed observations of surface strain-rate fields (Gardner and
others, 2018) and optical imagery of ice fractures (Haran and others, 2014, 2019, 2021), to estimate surface
stresses around areas of large-scale rifting. We use these stresses to evaluate and calibrate fracture criteria
that may be used in ice sheet models to represent rifting and calving. We consider five such criteria in
this study — Mohr-Coulomb, von Mises, strain energy, Drucker-Prager, and Hayhurst — each of which
we describe in some detail. Due to more recent and abundant satellite data, we can capture and evaluate
numerous fractures across Antarctic ice shelves, enabling a more complete look at fracturing in different
regions of the Antarctic Ice Sheet.

METHODS

Identifying fractures

We manually identify fractures on Amery (AIS), Larsen C (LCIS), Ronne-Filchner (RFIS), and Ross
(RIS) Ice Shelves as these ice shelves are large, contain easily identifiable large-scale fractures and fractures
isolated from larger fracture fields or other areas with accumulated damage that could influence ice rheology,
and, in particular to the AIS and LCIS, have fractures that contribute to iceberg calving events after 2014.
We do not initially investigate more rapidly-changing areas of Antarctica such as the ice shelves in the
Amundsen Sea Embayment, as the dynamic nature of these ice shelves introduces many uncertainties into
rheological processes. We will examine the ice shelves of the Amundsen Sea Embayment later on to test
the applicability of our derived framework on more complex areas of Antarctica.

We identify fractures using 2014-2015 Landsat-8 derived 240m x 240m effective strain rate fields (Gard-
ner and others, 2018) and MODIS Mosaic of Antarctica (MOA) 2014 optical imagery (Haran and others,
2014; Scambos and others, 2007). We look for linear features with high strain rates in the strain-rate
data, and linear, fracture-like features in MOA imagery on each ice shelf, and trace the identified features
in QGIS. From these traces, we create two datasets: one of crevasse features that can be identified on
both optical imagery and strain rate fields, and one of crevasse features that can be identified only on
optical imagery. We refer to the first category as “active crevasses” and the latter “inactive crevasses”.
The purpose of searching for high-strain-rate crevasses is to filter out crevasses that may have advected
downstream to a stress state different from the conditions under which they formed. We aim to include
active crevasses rather than inactive crevasses to gain a better understanding of the stresses associated
with fracture propagation, and note that inactive crevasses may exist at stress states similar to those of
unfractured ice. We avoid including crevasses that exist close to large chains of crevasses or other features
indicative of ice damage, as damage can introduce uncertainties into rheological parameters such as the
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Fig. 1. Fractures observed via optical imagery (dark green) and strain rate (neon green) data over the four ice
shelves of interest: (a) Ronne-Filchner (RFIS), (b) Amery (AIS), (c) Larsen C (LCIS), and (d) Ross (RIS). Ice
upstream of the grounding line is masked in grey (Morlighem, 2019) and not considered in estimates of ice strength.
(e) An example of identified crevasses on the RIS as seen on MOA2014 (left) and strain rate fields (right). (f) An
example of active crevasses on the RIS as seen on MOA2014 (left) and strain rate fields (right). The inset in (a)-(d)
shows ice velocity over Antarctica (Rignot and others, 2017), with the aforementioned ice shelves boxed in red. We
do not mask grounded ice in the inset.
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flow rate parameter A. In optical imagery, it is difficult to distinguish the depth of crevasses, and as such,
both surface crevasses and full-thickness rifts are likely included in our datasets, and in either case, the
high strain rates across the crevasse indicate widening. We find a total of 36 active crevasses out of a total
of 110 crevasses identified on optical imagery (Figure 1). Of the 36 active crevasses, we find 4 on AIS, 9
on LCIS, 9 on RFIS, and 14 on RIS. We sample principal deviatoric stresses at each pixel overlapped by
a fracture trace on our calculated stress fields.

To compare the difference in stress states present in crevassed ice and uncrevassed ice, we sample
principal deviatoric stresses of unfractured ice upstream of areas of crevasse fields and in unfractured areas
near the calving front. We avoid sampling stresses in suture zones, as previous studies have shown crevasse
propagation is slowed or stopped by suture zones, suggesting the ice present in such areas has a higher
tensile strength (Borstad and others, 2017; Hulbe and others, 2010; Glasser and others, 2009; Holland and
others, 2009). By comparing the stresses present in relatively undamaged and actively-crevassed ice, as
close to the crevasses as the data allow, we can delineate a stress threshold, or failure envelope, at which
ice will fail. The spatial resolution of the data are too coarse to allow for constraints on the intensification
of stresses near fracture tips.

Stress Calculations

To study the conditions under which ice fractures, we calculate deviatoric stresses on ice shelves from
observed horizontal strain rate fields and the assumptions of incompressible ice and negligible vertical
shear. We calculate the strain rate tensor at each map location from the gradient of the Landsat-8 derived
surface velocity fields (Gardner and others, 2018). We calculate the gradient using a 2nd-order Savitsky-
Golay filter and a 2 km window, as in Minchew and others (2017). The principal strain rates are the
eigenvalues of the strain rate tensor. We calculate the effective strain rates (the square root of the second
invariant (I2) of the 3D strain-rate tensor) from principal strain rates as

9ϵE “

b

I2p 9ϵijq “

b

9ϵ2
1 ` 9ϵ2

2 ` 9ϵ2
3. (1)

where 9ϵ1 is the most tensile horizontal principal strain rate and 9ϵ2 is the least tensile horizontal principal
strain rate. We adopt the sign convention of positive tensile values ( 9ϵ1 ě 9ϵ2). We take ice to be incom-
pressible (i.e., 0 “ 9ϵ1 ` 9ϵ2 ` 9ϵ3). We then solve for 9ϵ3 and substitute into Equation 1, solving for effective
strain rate in terms of only the horizontal principal strain rates:

9ϵE “

b

9ϵ2
1 ` 9ϵ2

2 ` 9ϵ1 9ϵ2 (2)

Because shear stresses at the upper and lower surfaces of the ice shelf are negligible, one principal stress or
strain rate is always vertical, defined as normal to the surface and approximately aligned with the gravity
vector. For convenience, we denote the vertical principal components of strain rate (and, later, stress) with
a subscript 3 regardless of their values relative to the horizontal principal components. We then calculate
the principal deviatoric stresses using the viscous constitutive relation

2η 9ϵij “ τij (3)

where 9ϵij denotes the elements of the strain rate tensor, τij denotes the elements of the deviatoric stress
tensor, and η is the dynamic viscosity of ice, here taken to be isotropic. Adopting Glen’s Flow Law (Glen,
1955), we calculate the dynamic viscosity as
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Table 1. Definition of variables and parametric values used in this work.

Symbol Description Units Value

Stresses

9ϵ Strain Rate a´1 -

τ Deviatoric Stress kPa -

σ Cauchy Stress kPa -

σ˚ Most Tensile Principal Cauchy Stress kPa -

p Pressure kPa -

Viscosity

and Flow

η Dynamic Viscosity kPa s -

n Stress Exponent - 3ras, 4rb,cs

A Flow Rate Parameter kPa´n a´1 -

A0
Prefactor (n “ 3) kPa´3 a´1 2.290 ˆ 104 rds

Prefactor (n “ 4) kPa´4 a´1 12.614rbs

Qc Activation Energy kJ mol´1 60rds

R Ideal Gas Constant J K´1 mol´1 8.314

T Absolute Temperature K -

Tuning

Parameters

µ Internal Friction Coefficient - -

c0 Cohesion kPa -

σt Tensile Strength kPa -

σc Compressive Strength kPa -

m σc{σt - -

α Hayhurst Tensile Stress Coefficient - 0.21res

β Hayhurst von Mises Coefficient - 0.63res

[a] Nye (1953) [b] Goldsby and Kohlstedt (2001) [c] Millstein and others (2022)

[d] Duval and others (1983) [e] Pralong and Funk (2005)
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η “
1

2A1{n
9ϵ
p1´nq{n
E (4)

where n is the stress exponent. We use both n “ 3 and n “ 4 in our analysis (Budd and Jacka, 1989;
Millstein and others, 2022). Glen’s Flow Law also can be written in the familiar scalar notation as

9ϵE “ Aτn
E (5a)

τE “

b

τ2
1 ` τ2

2 ` τ1τ2 (5b)

where τE is the effective deviatoric stress.
To calculate the flow rate parameter, we use the Arrhenius relation

A “ A0 exp
"

´Qc

RT

*

(6)

where Qc is the activation energy (here, we use Qc “ 60 kJ mol´1 (Duval and others, 1983; Glen, 1955;
Goldsby and Kohlstedt, 2001; Weertman, 1983; Duval and Gac, 1982; Thomas, 1973; Paterson, 1977)),
R is the ideal gas constant, T is ice temperature, and take tabulated values of A0 for n “ 3 and n “ 4
(Table 1). We compute spatially varying flow rate parameters using RACMO2 annual means (1974-2014)
ice surface temperatures (Van Wessem and others, 2014), meaning that our calculated deviatoric stresses
are referenced to the surface, and surface temperatures are everywhere colder than -10˝C, motivating our
use of the single value of Qc given above. We neglect the mechanical influence of firn to provide a consistent
reference for readers and because we expect differences in temperature between the top and bottom of a
firn layer to impart a small error relative to uncertainties in the rheological parameters (e.g., Zeitz and
others, 2020; Goldsby and Kohlstedt, 2001; Millstein and others, 2022).

We estimate stress states near ice fractures from observed strain-rates, meaning the estimates of stress
are dependent upon assumptions about ice rheology. Here, we calculate two sets of stress fields from the
same strain rate data, and apply the same criteria to each stress field to compare how assumed rheology
changes estimated tensile strength. We define one stress field using n “ 3 and tabulated A values from
Cuffey and Paterson (2010), and the other using n “ 4 and tabulated A values from Goldsby and Kohlstedt
(2001). We assume a constant coefficient A0 for each n value for the prefactor A. This simplification does
not explicitly account for the effects of ice fabric (Staroszczyk and Morland, 2001; Pettit and others, 2007;
Hruby and others, 2020), grain size (Ranganathan and others, 2021b), ice damage (Borstad and others,
2012; Minchew and others, 2018; Lhermitte and others, 2020), and other factors. We specifically choose
to analyze areas where the variability of A due to damage is likely to be small, such as away from shear
margins and large crevasse fields. Outside of shear margins, ice fabric causes a maximum factor of 2-3
variability in the value of A, which translates to a variability in viscosity, and thus calculated stress (Eq.
4), of approximately 1.3 for n “ 4 to 1.4 for n “ 3 (Hudleston, 2015). Spatial variations in the observed
strain rates (Figure 2) indicate that there should be no systematic nor homogeneous fabrics across the ice
shelves, meaning that the effective fabric induced variations on A will vary between 1 and 3 in a way that
will appear random in principle stress space, where we do the calibrations. Given that A is raised to the
power ´1{n in the expression for viscosity (and thus the calculation of stress), the maximum influence of
fabric on our calculations of stress vary from 1.3 (for n “ 4) to 1.4 (for n “ 3), meaning that the influence
of fabrics in our data will vary between 1 and 1.3 or 1.4 depending on the value of n. Thus, errors in A
within our study area are a minor source of error relative to other uncertainties, and in the interest of
simplicity, reproducibility, and broader applicability of this work, we do not attempt to explicitly account
for fabric. We leave for future work addressing the open question of how to reliably incorporate the effects
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of fabric into estimates of the strength of ice (Ma and others, 2010; Minchew and others, 2018).
While we calculate the deviatoric stresses from observed strain rates and Glen’s Flow Law (Eqs. 3 and

4), yield criteria are often referenced to the Cauchy (or total) stresses, here denoted σij . The deviatoric
and Cauchy stresses are related through the isotropic pressure (the mean of the normal Cauchy stresses)
such that

τij “ σij ´ pδij (7)

where p “ σkk{3 is the pressure, σkk is the trace of the Cauchy stress tensor (summation implied for repeated
indices), and δij is the Kronecker delta. The trace is the first tensor invariant; thus, the principal Cauchy
stresses follow the same definitions and conventions discussed above for the strain rates and deviatoric
stresses. Because shear stresses at the surface of the ice are negligible, one principal stress must be normal
to the surface. We take the principal stress normal to the surface to be σ3 “ ´ρgz. At the surface of the
ice, z “ 0, thus σ3 “ 0, and we can calculate the principal Cauchy stresses at the ice surface from the
observationally inferred deviatoric stresses as

σ1 “ 2τ1 ` τ2 (8a)
σ2 “ 2τ2 ` τ1 (8b)

recalling that τ3 “ ´τ1 ´ τ2 by definition (cf. Eq. 7). The pressure at the surface is then

p “
σ1 ` σ2

3
(9a)

“ τ1 ` τ2 (9b)

Yield Criteria

To determine the tensile and compressive strengths of ice, we plot our inferred stresses in principal devi-
atoric stress space and fit our data with a selection of yield criteria to delineate the boundary between
stresses in uncrevassed and crevassed ice. Yield criteria, also known as failure envelopes, fracture criteria,
failure criteria, etc., are bounds defined by material properties that delineate stresses past which failure
should occur. In this work, we define yielding and failure as the conditions under which ice fractures and
interchange the above terms. Here, we consider fracture to be a phenomenological description of the for-
mation of new surfaces, not a description of the specific mechanisms that create those surfaces (i.e., we do
not distinguish between brittle and ductile fracture). We choose the criteria given by Vaughan (1993) —
Mohr-Coulomb, strain-energy dissipation, and von Mises criteria — plus the Drucker-Prager and Hayhurst
criteria.

Mohr-Coulomb

The Mohr-Coulomb criterion was originally defined for and is commonly used to describe the yield strength
of granular materials like soils and till (Lambe and Whitman, 1969; Davis and Selvadurai, 2002). The basis
of the Mohr-Coulomb criterion is the assumption that the strength of materials arises from a combination
of internal friction and cohesion. A related criteria, the Tresca criteria, is a special case where internal
friction is negligible and has been applied in the glaciological literature (Bassis and Walker, 2011). The
opposite special case, where cohesion is negligible, is commonly used to describe the strength of subglacial
till (e.g., Iverson, 2010; Minchew and others, 2016; Zoet and Iverson, 2020; Ranganathan and others, 2021a).
The Mohr-Coulomb criterion accounts for only the most tensile and most compressive principal stresses,
neglecting the intermediate principal stress, and is often written in a form that relates the shear strength
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Fig. 2. A view of stress regimes on the (a) Ronne-Filchner, (b) Amery, (c) Larsen C, and (d) Ross ice shelves.
Black represents grounded ice (Morlighem, 2019), blue represents a tensile regime (both principal Cauchy stresses
are positive), red represents a compressive regime (both principal Cauchy stresses are negative), and grey represents
a mixed regime (one principal Cauchy stress is positive and the other is negative). These colors correspond to the
background colors in Figure 3. Each color is scaled by the effective deviatoric stress (assuming n=3), with lighter
colors representing lower stresses. The mixed, tensile, and compressive regimes cover 41.1%, 45.0%, and 13.9% of all
ice shelves, respectively.

https://doi.org/10.1017/jog.2024.104 Published online by Cambridge University Press

https://doi.org/10.1017/jog.2024.104


of a material τs to the effective pressure N (difference in overburden and water pressures) through two
parameters representing cohesion c0 and internal friction µ (Labuz and Zang, 2012), such that τs “ Nµ`c0.
Applying Mohr’s Circle and assuming the friction coefficient is small (i.e., µ “ tan ϕ « sin ϕ where ϕ is the
friction angle), we can write the Mohr-Coulomb criterion in terms of principal Cauchy stresses (Vaughan,
1993) as

σ1 “

$

’

’

’

&

’

’

’

%

2c0
1 ` µ

when σ1 ě 0 and σ2 ě 0

2c0 ` σ2p1 ´ µq

1 ` µ
when σ1 ą 0 and σ2 ă 0

(10a)

σ2 “ ´
2c0

1 ´ µ
when σ1 ď 0 and σ2 ă 0, (10b)

from which we can see that the tensile strength for the Mohr-Coulomb criterion σtmc , the compressive
strength σcmc , and their ratio mmc “ σcmc{σtmc are

σtmc “
2c0

1 ` µ
(11a)

σcmc “
2c0

1 ´ µ
(11b)

mmc “
1 ` µ

1 ´ µ
(11c)

We can see in Eq. 11 that the Tresca criterion (µ “ 0) requires the tensile and compressive strengths of
ice to be equal (m “ 1), a condition that is contradicted by numerous laboratory experiments (Schulson
and Duval, 2009; Petrovic, 2003) but nonetheless tested with our results.

To connect with the observationally inferred deviatoric stresses, we apply Eq. 8 to write Eq. 10 in
terms of the principal deviatoric stresses arranged as the standard equation for a line (with τ1 the x-axis
and τ2 the y-axis) such that

τ2 “

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

´2τ1 `
2c0

1 ` µ
when ´

τ2
2

ď τ1 and ´ 2τ2 ď τ1

τ1
1 ` 3µ

1 ´ 3µ
´

2c0
1 ´ 3µ

when ´
τ2
2

ď τ1 ă ´2τ2

´
τ1
2

´
c0

1 ´ µ
when τ1 ă ´

τ2
2

and τ1 ă ´2τ2

(12)

Here, we can see that for the intermediate condition (when σ1 ą 0 and σ2 ă 0 and, equivalently, ´τ2 ď

2τ1 ă ´4τ2), the slope of the line is a function of only the internal friction coefficient µ while the y-intercept
(taking τ2 to be the y-axis) is a function of the cohesion, c0, and the internal friction coefficient. For the
other two conditions, the lines have a constant slope with y-intercepts that depend on cohesion and internal
friction. Thus, taking all three regions given in Eq. 12, we can fit both c0 and µ. We also note that the first
and last conditions in Eq. 12 contain two separate inequalities for τ1 in terms of τ2 because the principal
deviatoric stresses can be positive, negative, and zero valued; the only restriction is our chosen convention
τ1 ě τ2.
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von Mises and Strain Energy

The von Mises criterion is a yield-stress-based parameterization of the rate of work done to deform a ductile
material,as we later show. In practice, this criterion defines the tensile yield strength of materials in terms
of a critical value of the stress, which is closely related to the effective deviatoric stress, τE (Eq. 5b). In
3 dimensions, the von Mises stress, σvm is

σvm “

c

1
2

rpσ1 ´ σ2q2 ` pσ2 ´ σ3q2 ` pσ3 ´ σ1q2s (13)

As we are analyzing surface strain rates (z “ 0), we take σ3 “ ´ρgz “ 0, thus the von Mises stress at the
surface is

σvm “

b

σ2
1 ` σ2

2 ´ σ1σ2 (14a)

“
?

3τE (14b)

and the tensile strength of ice according to the von Mises criteria σtvm is the value of σvm that demarcates
crevassed and uncrevassed ice.

Because the von Mises criterion is a parameterization for the yield strength of materials as a work-
rate threshold, it is essentially the same as the strain-energy dissipation criterion introduced by Vaughan
(1993). In this criteria, the tensile strength of ice σtse is related to the rate of work: σij 9ϵij “ τij 9ϵij , where
the replacement of the Cauchy stress tensor σij on the lefthand side with the deviatoric stress tensor τij on
the righthand side is justified by the incompressibility of ice (i.e., the pressure does not do work because
the volume remains constant under applied stress). By applying Eq. 3, it can be shown that the stress
associated with the viscous work rate (strain-energy dissipation) σse is proportional to the von Mises stress,
σvm, and, thus effective deviatoric stress τE , such that

σse “
σvm
?

3
“ τE (15)

The tensile strength from the Vaughan (1993) strain-energy dissipation criterion σtse is proportional to the
tensile strength from the von Mises criterion such that σtse “ σtvm{

?
3.

Drucker-Prager

The Drucker-Prager criterion links all of the previous criteria and provides a relatively simple framework,
like the von Mises (and strain energy) criterion, that provides constraints on the tensile and compressive
strengths of ice, like the Mohr-Coulomb criterion. In essence, the Drucker-Prager criterion is a smoothed
form of the Mohr-Coulomb criterion, initially derived to describe the yielding of soil (Drucker and Prager,
1952). The criterion is dependent upon the first invariant of the Cauchy stress tensor (relatedly, pressure,
p, Eq. 7) and the second invariant of the deviatoric stress tensor, τE (relatedly, the von Mises stress, σvm,
Eq. 14), and given as (Bhat and others, 1991; Davis and Selvadurai, 2002)

σtdp
“ 3p

ˆ

mdp ´ 1
2mdp

˙

` σvm

ˆ

mdp ` 1
2mdp

˙

(16)

where mdp “ σcdp
{σtdp

, σtdp
is the tensile strength and σcdp

the compressive strength according to the
Drucker-Prager criterion. These values can be inferred by defining the failure envelope formed in principal
stress space by Eq. 16 that delineates crevassed and uncrevassed ice. Because the Drucker-Prager criterion
is a smoothed version of the Mohr-Coulomb criterion, we can relate the inferred strengths σtdp

and σcdp
to

cohesion, c0, and internal friction, µ, of ice by requiring that the Drucker-Prager failure envelope intersect
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the Mohr-Coulomb failure envelope at the latter’s major vertices, i.e., fully circumscribe the Mohr-Coulomb
envelope. The resulting relations are

σtdp
“

6c0
3 ` µ

(17a)

σcdp
“

2c0
1 ´ µ

“ σcmc (17b)

mdp “
3 ` µ

3 p1 ´ µq
(17c)

all of which reduce to the same values as in Eq. 11 when µ “ 0 (the Tresca criterion). We also note that
the relations between tensile strength, cohesion, and friction differ for the Mohr-Coulomb and Drucker-
Prager failure envelopes, but the compressive strength relation is the same. This agreement in compressive
strength inexorably arises from our decision to have the Drucker-Prager envelope intersect the Mohr-
Coulomb envelope at the major vertices. The relations will vary if we make different choices for the
intersections of the Mohr-Coulomb and Drucker-Prager failure envelopes, but we stay with these relations
for illustrative purposes because the major vertices provide unambiguous reference points.

Hayhurst

The Hayhurst criterion was first developed to describe the failure of metals and is commonly used in
continuum damage mechanics models of ice fracture (Hayhurst, 1972; Pralong and Funk, 2005; Duddu and
others, 2020). It adds a term related to the most tensile principal Cauchy stress σ˚ “ max rσ1, 0s to the
Drucker-Prager criterion (Eq. 16), such that

σtH “ ασ˚ ` βσvm ` 3p1 ´ α ´ βqp (18)

where α and β are non negative and 0 ď p1 ´ α ´ βq ď 1. We take

α “
1

?
3 ´ 2

„

?
3σtH

σcH

`
?

3 ´ 2 σtH

σsH

ȷ

(19a)

β “
1

?
3 ´ 2

„

σtH

σsH

´
σtH

σcH

´ 1
ȷ

(19b)

as in Pralong and Funk (2005), where σtH is the tensile strength, σcH is the compressive strength, and σsH

is the shear strength. We solve both equations for the ratio m between compressive and tensile strength:

mH “
1

α ` 2β ´ 1
(20)

The Hayhurst criterion (Eq. 18) reduces to the Drucker-Prager criterion (Eq. 16) when α “ 0.

RESULTS

Visualizing the conditions under which ice fractures

The goal of this work is to constrain the tensile strength of ice on Antarctic ice shelves. To do this, we look
to see if there is a clear threshold in our data at which unfractured ice will fail. We plot the uncrevassed and
crevassed data as density plots in principal deviatoric stress space, with the color of each point denoting
the number of points in its proximity (Figure 3). We find minimal overlap between the uncrevassed and
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Fig. 3. A density plot in principal stress space of estimated principal stresses (assuming n=3) sampled along
crevasses (red) and in uncrevassed areas (blue). Colorbars for the crevassed and uncrevassed data are scaled logarith-
mically and normalized, with brighter colors representing a higher density of points in the area. The yield criteria are
plotted on top of the density plot using the best fit values of tensile strength in Table 2, with both the Drucker-Prager
and Mohr-Coulomb criteria plotted with µ “ 0.4. To aid in comparing principal stress space and geographic space,
we shade each quadrant with the corresponding colors used for stress states in Figure 2. Colorblind-accessible figures
are available in the supplement.
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Table 2. Tested values of internal friction (µ), cohesion (c0), and, tensile strength (σt) used to fit the criteria to
our stress data when n “ 3. Compressive strength (σc) is calculated from µ, c0, and σt using the equations described
in the Methods Section. For each criterion, we present a low, best fit (highlighted in light blue), and high estimate
of tensile strength as described in the text.

Criterion µ c0 (kPa) σt (kPa) σc (kPa) m % Uncrev. % Crev.

0.3 77 118.5 220 1.9 23.9 0

0.3 164 252.3 468.6 1.9 99.4 7.3

0.3 171 263.1 488.6 1.9 100 8.6

0.4 75 107.1 250 2.3 19.4 0

0.4 178 254.3 593.3 2.3 99.6 8.1

Mohr-Coulomb

0.4 184 262.9 613.3 2.3 100 8.8

- - 147 - - 50.4 0

- - 223 - - 98.8 5Von Mises

- - 234 - - 100 6.7

0.3 62 112.7 177.1 1.6 24.4 0

0.3 139 252.7 397.1 1.6 97.9 8.5

0.3 152 276.4 434.3 1.6 100 13.5

0.4 58 102.4 193.3 1.9 19.8 0

0.4 149 262.9 496.7 1.9 97.9 9.3

Drucker-Prager

0.4 164 289.4 546.7 1.9 100 15.4

- - 59 125.5 2.1 13.3 0

- - 202 429.8 2.1 98.9 10.7
Hayhurst
(α “ 0.21, β “ 0.63)

- - 211 448.9 2.1 100 13.5
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crevassed data. Because there is no particular significance to the assignment of τ1 and τ2 in principal stress
space, we reflect the data over the line τ1 “ τ2 to aid in drawing yield criteria, as in Vaughan (1993).

We identify no active crevasses that exist in a compressive regime (both principal Cauchy stresses are
negative). Most ice shelves exist with a free calving front, which means it is unlikely for the system to
be in a compressional state pσ1, σ2 ă 0q because there is no resistive pressure from the ocean on the free
calving front. There are localized observations of compressive fractures in rapidly-changing areas such as
Thwaites Ice Tongue (Benn and others, 2021), but the applicability of fractures caused by ice acceleration
to the large, slow-growing fractures in this study needs further investigation. Even in unfractured ice,
there are few regions that fall into a purely compressional regime, with such areas covering about 13.9% of
all Antarctic ice shelves (Figure 2). As such, we find relatively few uncrevassed points in the compressive
regime compared to other regimes.

To find the tensile strength of ice, we plot the Mohr-Coulomb, von Mises, Drucker-Prager, and Hayhurst
criteria over our data and tune their fit using material properties such as cohesion, internal friction, and
tensile strength. We aim to draw the criteria between the crevassed and uncrevassed data, minimizing the
number of crevassed points included and maximizing the number of uncrevassed points included. The yield
criteria are shown in Figure 3. For the Drucker-Prager and Mohr-Coulomb criteria, we vary the values of µ
and c0 to fit the criteria. For the von Mises and Hayhurst criterion, we vary the values of σt to find best fit.
We do not investigate fit values for the Strain-Energy Criterion, as the shape of the criterion is the same
as that of the von Mises criterion, with tensile strength reduced by a factor of

?
3. We plot the Hayhurst

criterion using empirically determined (i.e., calibrated through experiments) values of α “ 0.21, β “ 0.63
(Pralong and Funk, 2005).

To analyze fit, we determine the percentage of uncrevassed and crevassed data points included in each
criterion using a dataset of „11,700 and „3,500 points, respectively. For each criterion, we test for three
scenarios of fit: 1) the highest integer value of the tuning parameter (c0 or σt) where the criterion includes
no crevassed data, 2) the integer value of the tuning parameter where the derivatives of percent uncrevassed
and percent crevassed included with respect to the tuning parameter are equal, and 3) the lowest integer
value of the tuning parameter where the criterion includes 100% of uncrevassed data. We define "best fit" by
the second scenario and use the other two scenarios to provide an upper and lower bound for the estimates
of tensile strength produced by each criterion. Our low estimate of tensile strength encapsulates the error
of crevasse advection out of stress states of crevasse formation, which is evidenced by the low percentage of
uncrevassed points included in the criteria in the first scenario. While we aim to filter out inactive crevasses
through our identification methodology, some may still be included in our data. Therefore, it is better to
define criteria based on the current stress state of ice that remains unfractured rather than by excluding
crevassed data, as noted by Vaughan (1993).

Tensile Strength of Ice

Using the above framework and the four selected yield criteria, we find the tensile strength of ice to range
from 59 to 289.4 kPa when n “ 3, and 127 to 633.5 kPa when n “ 4. Under the best fit case, the tensile
strength ranges from 202 to 263 kPa assuming n “ 3 and 423 to 565 kPa assuming n “ 4. The predicted
tensile strengths increase by a factor of „ 2.1 between n “ 3 and n “ 4, although a larger percentage
of crevassed points are included for criteria drawn around stresses calculated using n “ 4. We present a
selected range of tensile strengths in Tables 2 and 3, and include a full range of tensile strengths for varying
σt, c0, and µ values in the supplement. We plot our best fit tensile strengths for the criteria in Figure 3,
and provide plots of criteria defined by the minimum and maximum tensile strengths in the supplement.

Under both assumed rheologies, the Mohr-Coulomb and von Mises criteria produce a more constrained
range of tensile strength estimates and include minimal crevassed data compared to the other two criteria.
When n “ 3, the von Mises criterion has a difference of 87 kPa between low and high estimates for tensile
stress, and the Mohr-Coulomb criterion produces a range of 49 kPa when µ “ 0 and 109 kPa when µ “ 0.4.
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Table 3. Tested values of internal friction (µ), cohesion (c0), and, tensile strength (σt) used to fit the criteria to
our stress data when n “ 4. Compressive strength (σc) is calculated from µ, c0, and σt using the equations described
in the methods. For each criterion, we present a low, best fit (highlighted in light blue), and high estimate of tensile
strength as described in the text.

Criterion µ c0 (kPa) σt (kPa) σc (kPa) m % Uncrev. % Crev.

0.3 167 256.9 477.1 1.9 19.2 0

0.3 352 541.5 1005.7 1.9 99.2 9.9

0.3 364 560 1040 1.9 100 12.5

0.4 162 231.4 540 2.3 15.3 0

0.4 377 538.6 1256.7 2.3 99.1 9.8

Mohr-Coulomb

0.4 392 560 1306.7 2.3 100 12.7

- - 317 - - 43.8 0

- - 480 - - 98.3 6.9Von Mises

- - 513 - - 100 12.6

0.3 133 241.8 380 1.6 19.3 0

0.3 294 534.5 840 1.6 95.6 11.1

0.3 334 607.3 954.3 1.6 100 22.1

0.4 124 218.8 413.3 1.9 15.4 0

0.4 320 564.7 1066.7 1.9 96.8 14.8

Drucker-Prager

0.4 359 633.5 1196.7 1.9 100 23.4

- - 127 270.2 2.1 11.6 0

- - 423 900 2.1 97.1 14.7
Hayhurst
(α “ 0.21, β “ 0.63)

- - 463 985.1 2.1 100 20.9

Both criteria include less than 10% of the crevassed data under our highest estimates of tensile strength
and µ “ 0 ´ 0.7. The Drucker-Prager criterion provides a smaller range of tensile strength values but
includes more crevassed points than the Mohr-Coulomb and von Mises criteria, especially as µ increases.
The Hayhurst criterion produces a range of 138 kPa between our low and high estimates of tensile strength,
and contains the largest percentage of crevassed points, including 13.5% of the crevassed points when 100%
of the uncrevassed data are included.

DISCUSSION

Towards a general fracture criterion

We evaluate the applicability of previously derived yield criteria to observations of ice fracture. The
von Mises criterion (describing the failure of materials based on the second invariant of the deviatoric
stress tensor) and the strain energy criterion (describing the failure of materials based on strain-energy
dissipation) have been historically applied to the question of ice fracture (e.g. Vaughan (1993); Pralong
and Funk (2005); Albrecht and Levermann (2012)). Using yield criteria, Vaughan (1993) evaluates the
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Fig. 4. The range of tensile strengths produced by each criterion under our framework. Error bars represent our
minimum and maximum estimates for tensile strength, and our best fit case is plotted as a black dot. The height of the
shaded area on top of/beneath the error bar denotes the percent of uncrevassed points excluded (dark purple/blue)
and percent of crevassed points included (light purple/blue) by a criterion defined by that tensile strength for n “ 3
and n “ 4, respectively. For the Mohr-Coulomb and Drucker-Prager criteria, we plot the values for a criterion defined
by µ “ 0.4. A plot of the full range of µ values is available in the supplement.
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tensile strength in specific regions of Antarctica with a total of „ 990 strain-rate measurements. Vaughan
(1993) finds the tensile strength to vary from 90 ´ 320 kPa, and the von Mises and Mohr-Coulomb criteria
to provide a good fit. This is comparable to the results of Grinsted and others (2024), who finds a von
Mises strength of 265 ˘ 73 kPa. We similarly find the von Mises and Mohr-Coulomb criteria to fit the
data well, and our predicted tensile strength range of 202 to 263 kPa (assuming n “ 3) falls within the
upper end of the values predicted by Vaughan (1993) and Grinsted and others (2024), both of whom only
consider stresses calculated with n “ 3. Our predicted range of 423 to 565 kPa for n “ 4 falls more than
100 kPa outside the upper bound of Vaughan’s range, although it is much closer to the range predicted by
laboratory experiments (Petrovic, 2003).

Vaughan (1993) provides a 230 kPa range of tensile strengths, while our predicted tensile strengths
produce a range of 61 and 142 kPa for n “ 3 and n “ 4, respectively. Our narrower predicted ranges
are likely due to the increased amount of data available for our study. Satellites have proved pivotal for
increasing the spatial and temporal resolution of strain rate measurements, allowing us to collect a sample
size of „ 14, 500 crevassed and uncrevassed data points. While our sample size of crevassed data is limited
by the number of crevasses visible on optical imagery and strain rate data, the „ 11, 000 uncrevassed points
are a small subsection of the data available for uncrevassed ice.

We find that the von Mises and Mohr-Coulomb criteria provide the best numerical fit to our data. Best
numerical fit means the range of inferred tensile strength values is small and few crevassed points are inside
the failure envelope. The Drucker-Prager criterion provides a good fit to the data when µ ď 0.3. When
µ “ 0, the Drucker-Prager criterion reduces to the von Mises criterion and produces virtually identical
values of predicted tensile strength (Supplement Table S2). While the Hayhurst criterion provides the
poorest numerical fit to our data relative to all other criteria, it aligns well with the data in pure tension.
It mostly includes crevassed data in the mixed regime. As many fractures occur in pure tension, the
Hayhurst criterion still provides a viable framework for understanding damage evolution in this regime.
Further work is necessary to determine the applicability of the Hayhurst criterion to damage and failure in
shear regimes, though we expect the broad takeaways to hold because failure in shear zones often occurs
in tension.

It is particularly interesting to consider the pressure dependencies of the fracture criteria with regard
to their fit. Numerically, the von Mises criterion provides the best fit to the data. This criterion is also the
only criterion of those tested that is not pressure-dependent. We postulate that the von Mises criterion
fits so well because we consider stresses only at the surface, where the overburden pressure equals the
vertical normal stress σ3 “ 0. A von Mises criterion defined by our estimated tensile strengths from surface
crevasses will likely not fit well for basal crevasses since the criterion predicts the same tensile strength
for all depths. Overburden pressure (σ3 “ ´ρgz) will act against crevasse formation at increasing depths.
Thus, observations of stresses surrounding basal crevasses are needed to properly constrain failure at depth.
By estimating stresses around basal crevasses, it may be possible to refine our results to a single fracture
criterion that fits data through the entire thickness of the ice.

We find the Drucker-Prager and Mohr-Coulomb criteria numerically fit best with lower values of µ.
Other studies also find models better replicate observations when using lower values of µ (MacAyeal and
others, 1986; Bassis and Walker, 2011). However, a low value of µ corresponds to a low ratio between
tensile and compressive strength. When µ “ 0, the equations for compressive strength derived from the
yield criteria (Eqs. 11 and 17) suggest the tensile and compressive strengths are equal, a phenomenon
that is not observed in most natural materials. For example, rocks commonly have µ values of 0.5-0.7
(Byerlee, 1978), leading to compressive strengths 2.3 to 5.7 times higher than the tensile strength. The
compressive strength of ice in the lab has been measured between 5 and 25 MPa, far greater than lab
measurements of the tensile strength (Petrovic, 2003). The lack of observable crevasses in compressive ice
regimes also points to the compressive strength of ice being greater than the tensile strength. In this work,
we choose to present tensile strength ranges for the Drucker-Prager and Mohr-Coulomb criteria defined by
µ “ 0.3 ´ 0.4, in spite of the fact that lower µ values fit better numerically, due to the implications of µ
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Fig. 5. A map of predicted fracture areas for n=4 on the (a) Ronne-Filchner, (b) Amery, (c), Larsen C, and (d)
Ross Ice Shelves. White represents areas where all four yield criteria predict the ice will fracture, and dark grey
represents areas where no criteria predict fracture will occur.

on the predicted compressive strength of ice. We provide a full list of tensile strengths for each criterion
defined by µ “ 0 ´ 0.7 in the supplement.

One important limitation of our study arising from the lack of appropriate data is our inability to
constrain the strength of ice for the nucleation of new fractures. The data we use only allows us to constrain
the strength of ice that is relevant for fracture propagation. The key difference between nucleation and
propagation is the preexisting flaw sizes. We might assume that for a given fracture toughness, we can
simply scale ice strength as the square root of the flaw size (Schulson and Duval, 2009), but this assumption
remains to be tested in natural glacier ice, where impurities and air bubbles can play important roles. This
limitation provides opportunities, and perhaps impetus, for collecting and testing this assumption with
relevant data but does not undercut the value of providing constraints on the conditions for fracture
propagation, as we do here.

Predicting Fracture

Using the best-fit values for tensile strength and n “ 4, as described in Table 3, we create a map of
areas that fall outside of the yield criteria (i.e. the ice should be fractured) on all Antarctic ice shelves
(Figures 5 and 6). We find our predicted tensile strengths work well for predicting large-scale fractures,
and areas where stresses fall under the yield threshold generally do not show signs of active crevassing.
The predicted fracture map picks up some fractures, particularly on the Amery Ice Shelf near a portion of
isolated grounded ice on the eastern margin, that do appear on both optical imagery and the strain rate
fields but were not included in our original analysis due to their proximity to the shear margin and a large
chain of crevasses, which could introduce uncertainties in rheology associated with damage.
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Fig. 6. MODIS 2014 imagery (top [a,d]; left [b,c]) and our predicted fracture map (bottom [a,d]; right [b,c]) of
four smaller ice shelves originally outside of the study area: (a) Thwaites (b) Totten (c) Pine Island, and (d) Brunt
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The primary difference in predictions between the four criteria is in shear zones. The von Mises criterion
predicts fracture in shear zones whereas all other criteria (assuming µ “ 0.4) predict no fracture in these
areas. For the Drucker-Prager and Mohr-Coulomb criteria, lower values of µ predict more fracturing in
shear zones, and the area of predicted shear zone fracturing decreases as µ increases. The main areas where
the predicted fracture map is inaccurate to observations are towards the calving front of the Amery and
Filchner ice shelves and in front of a large upstream section of grounded ice on the Ronne Ice Shelf, where
all criteria predict heavy fracturing but none is visible on optical imagery. There may be other rheological
factors influencing the strength of ice in these areas, such as suture zones, differences in ice thickness and
temperature, or other parameters that require further study. We also note that the speckled patterns
of predicted fracture close to Ross Island on the RIS, on the parts of the LCIS, and downstream of the
aforementioned predicted fracture zone on the Ronne Ice Shelf are likely due to noise in the strain rate
data, as we see very few surface expressions of any crevasses, relict or active, in these areas. As observations
improve in the future, we expect to be able to better resolve these areas.

In addition to analyzing the predicted fracture map over the original study area, we also investigate
the accuracy of the map over four smaller ice shelves: the Thwaites, Totten, Pine Island, and Brunt ice
shelves (Figure 6). On these smaller ice shelves, we observe smaller and more densely-packed fractures.
Our predicted fracture map is not as robust in predicting the locations of individual fractures on these ice
shelves due to the large spatial resolution of the strain rate fields relative to the size of the ice shelves and
fractures, but does predict where the ice shelves tend to be intact versus where they are heavily fractured.
The fracture prediction map shows heavy fracturing on the Western Ice Tongue of Thwaites, while it shows
the Eastern Ice Shelf more intact, matching surface observations of damage in the area, although the map
does fail to predict several large rifts that have visible surface expressions. On the Brunt Ice Shelf, the
von Mises criterion predicts fracturing in a compressive region around the upstream end of the McDonald
Ice Rumples, an area where no other criteria predict fracturing but where smaller fractures are observed.
On the Pine Island Ice Shelf (PIIS), all criteria predict some level of fracturing in the shear margins and
just downstream of the grounding zone, but fractures are not observed in these locations. This incorrect
fracture prediction could be related to rheological differences associated with a high deformation rate, as
Pine Island Glacier is one of the fastest flowing glaciers in Antarctica and thus experiences high strain
rates in the shear margins (Rignot, 2008). The Hayhurst criterion predicts the least amount of fracturing
in the PIIS shear margins, although it still predicts some fracturing, particularly along the Southern shear
margin. The predicted fracture map does accurately capture with all four criteria a relatively large („ 7km)
fracture in the middle of the PIIS, which eventually calves off a tabular iceberg in late 2015. The accuracy
of the map in regions that were not included in the construction of the fracture criteria suggests that the
map and predicted tensile strengths could be used in transient ice flow models to predict areas where large
fractures may form or the extent of damage on smaller ice shelves.

Applicability to modeling efforts

Our framework produces a range of tensile strengths for each yield criterion and two different flow regimes
based on how we define the fit to the data. These values are presented in Tables 2 and 3, and further
expanded in the supplement. In general, ice with active crevasses exists at higher stresses than unfractured
ice (Figure 2). We aim to give a broad understanding of how different definitions of fit may influence
the range of tensile strengths produced. Therefore, these results produce a constrained range of tensile
strengths, rather than a single value. The strength of ice is also likely to vary spatially based on rheological
properties, and our data likely captures this range (Schulson and Duval, 2009).

Given the quantity of data now available and the fact that we can produce continent-wide estimates
of tensile strength, we believe that these results could extend beyond providing single tensile strength
values to be used as fracture criteria in models. The range of tensile strength values could be thought of
as uncertainty bounds that can be input into stochastic models, rather than a set threshold for fracture,

https://doi.org/10.1017/jog.2024.104 Published online by Cambridge University Press

https://doi.org/10.1017/jog.2024.104


to take into account the variability in the strength of ice with varying material properties. Additionally,
the percentage of uncrevassed and crevassed points included in the criteria (e.g. Figure 4) can provide
constraints on a probability distribution function. This may allow us to ask questions in a probabilistic
sense, such as what is the probability of ice fracture at certain principal stresses?

Additionally, our methodology can be used to determine the regional strength of ice. Because we see
very minimal overlap between the crevassed and uncrevassed data, it is possible to define an upper bound
for ice strength solely from uncrevassed data. As noted previously, Vaughan (1993) defined yield criteria
by including all uncrevassed points rather than excluding crevassed points. Regional tensile strengths can
be derived from looking at the upper bound of uncrevassed stresses in areas without crevasses. In future
work, we hope to explore the strength of suture zones and how they interact with crevasse propagation.
Constraining the different rheological properties affecting tensile strength and how they vary spatially across
Antarctica is important for accurately modeling fracture formation, propagation, and iceberg calving.

Implications for damage

In this work, we present estimates for a stress threshold at which ice fractures initiate and propagate on a
large-scale. This can also be interpreted as the tensile strength of ice (that is, the maximum stress ice can
withstand under tension before fracturing). These estimates can also illuminate some material properties
of the ice itself.

The tensile strength of ice is dependent upon a number of physical properties, including ice temperature
and grain size (Schulson and others, 1984; Cole, 1987; Nixon and Schulson, 1987; Schulson and Duval, 2009).
Therefore, the estimates of ice strength presented in this study can provide constraints on the characteristic
flaw size of glacier ice. Ice grain size can be considered the characteristic flaw size of undamaged ice. Since
grain boundaries are irregular bonds connecting two ice grains, grain boundaries are inherently the smallest
flaw in glacier ice (Schulson and Hibler, 1991).

The relationship between the tensile strength of ice σt and characteristic flaw size d has been determined
through laboratory experiments to be (Currier and Schulson, 1982; Schulson and others, 1984)

σt “
KIc
?

d
(21)

where KIc is the Mode I (tensile) fracture toughness of ice (Nixon and Schulson, 1988). The fracture
toughness of ice has been experimentally determined to be within the range of 50 - 150 kPa

?
m (Petrovic,

2003).
The estimates of tensile strengths presented in this study imply large characteristic flaw sizes d, with

d « 4 ´ 36 cm assuming n “ 3 (σt « 250 kPa) and d « 1 ´ 9 cm assuming n “ 4 (σt « 500 kPa). The
characteristic flaw size estimates for both n “ 3 and n “ 4 are an order of magnitude larger than the
typical grain sizes of glacier ice (on the order of millimeter scale), although the n “ 4 estimates are much
closer to observed grain sizes (Ranganathan and others, 2021b; Gerbi and others, 2021; Thorsteinsson and
others, 1997; Gow and others, 1997; Fitzpatrick and others, 2014). The value of d can be interpreted as
the maximum flaw size within the ice that can be considered ductile. At flaw sizes (or microcracks) larger
than these estimated values of d, cracks will become unstable and propagate (Schulson and Duval, 2009).

Reconciling ice strength and ice viscosity

Notably, the regions in which we map fractures on Antarctic ice shelves overlap strongly with regions in
which the stress exponent is estimated to be n “ 4 based on observations (Millstein and others, 2022),
suggesting that dislocation creep is the dominant mechanism of deformation. These are regions in which
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the along-flow (normal) deviatoric stress is in tension and proportional to the local ice thickness (Millstein
and others, 2022). This has two implications.

Firstly, it suggests that the values of tensile strength we estimate from n “ 4 are likely most applicable
in those regions. Historically, stresses have been calculated using n “ 3, a value used in the literature from
the early 1960s onwards, derived from a combination of laboratory experiments and field measurements
(Glen, 1955, 1952, 1958; Haefeli, 1961; Nye and Perutz, 1957; Lliboutry, 1968). However, recent studies
have shown that in Antarctica and specifically on the fast-flowing Antarctic ice shelves, the value of n for
ice should be closer to 4 (Millstein and others, 2022; Goldsby and Kohlstedt, 2001; Cuffey and Kavanaugh,
2011; Bons and others, 2018; Ranganathan and Minchew, 2024). We find the tensile strength of ice is
„2.1 times greater when assuming n “ 4 compared to n “ 3. While our results do not aim to constrain
the value of n, we do note that tensile strength estimates for n “ 4 are much closer to those produced by
laboratory experiments than previous observational studies (Petrovic, 2003; Vaughan, 1993; Chudley and
others, 2021; Grinsted and others, 2024). Additionally, the lower tensile stress estimates of an n “ 3 flow
regime produce larger characteristic flaw size estimates.

Secondly, the presence of crevasses in these tensile areas in which n “ 4 is the observed estimate of the
stress exponent indicates that the tensile stresses in these areas are larger than the tensile strength estimated
in this work, begging the question: Why is it common to find viscous stresses in the ice shelves that are
high enough to meet the fracture criteria? This suggests common mechanisms link viscosity and fracture
strength, such as dislocations (Weertman, 1996). Given recent inferences of the viscous stress exponent
n “ 4, which laboratory studies show arises from dislocation creep (Goldsby and Kohlstedt, 2001), and the
fact that fractures are made up of dislocations aligned to form a surface (Weertman, 1996), we suppose
that the rapid formation and mobilization of dislocations required to allow for dislocation-creep-dominated
viscous flow creates a work-hardening effect that leads to microcracks and eventually macro-scale fractures.
Such a mechanism could also explain why ice fractures lead to large-scale rift formation even though it
takes months to years to build up enough stress in the ice for some rifts to propagate (Borstad and others,
2017). This observation of episodic rift propagation, where the time between episodes is much longer than
the viscoelastic relaxation time, is mysterious because when the viscous stress exponent has values of n “ 3
to 4, the viscosity should tend to zero as the stresses intensify around the rift tip. Intuition suggests that
ice should relieve these stresses through viscous flow, yet rifts propagate as fractures. Our observations of
the alignment of tensile strength and viscosity of ice and the hypothesis that dislocations are responsible
for both viscous flow and fracture on ice shelves could explain episodic rift formation, too, and help to
reconcile our understanding of the flow, deformation, and fracture of ice.

CONCLUSION

We use observations of ice fractures and estimated stresses to evaluate the tensile strength of ice. We
produce a map of observed fractures in 2014 over four major Antarctic ice shelves and a range of tensile
strengths for stresses calculated with both n “ 3 and n “ 4. We find a tensile strength value between 202
and 263 kPa assuming n “ 3, on the higher end of previous observational estimates but still lower than
experimentally-derived tensile strengths. When n “ 4, the predicted tensile strength is 423 ´ 565 kPa. We
produce a map of predicted fracturing across all Antarctic ice shelves using these values.

Our predicted tensile strengths when n “ 4 are within the lower bound, „ 500 kPa, of tensile strength
estimates produced by laboratory experiments. Previous observational studies assuming n “ 3 have pre-
dicted tensile strengths of „ 100´300 kPa or about 200 kPa below the lower bound of laboratory estimates.
With the inclusion of impurities and damage in natural glacier ice, observationally inferred tensile strength
estimates are likely to be lower than those measured in pristine laboratory ice. Damage must be exten-
sive and pervasive to account for such a large difference between lab estimates and these observationally
derived tensile strengths. We hypothesize that assuming n “ 4 rather than n “ 3 accounts for most of
this discrepancy, as evidenced by our n “ 4 tensile strength estimates aligning with laboratory studies.
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This alignment in observed versus measured strength values brings us one step closer to bridging the gap
between experiments and observations, allowing us to better apply material properties of ice measured in
lab environments to naturally deforming glacier ice.

Ice rheology plays a central role in this work, both from the perspective of inferences of stress and
how our results inform a deeper understanding of the mechanical properties of natural glacier ice. The
viscous rheology of ice appears most prevalently as the stress exponent, n, and the corresponding prefactor
A in Glen’s Flow Law. The influence of our choices of n on the inferred strength of ice underscores the
importance of understanding the viscous properties of ice to help understand fracture properties. The
rheological connection of viscosity and fracture goes the other direction, too, via the question of why the
stresses involved in the viscous flow of ice are sufficient to generate fractures. Our results, especially when
we take n “ 4, support the idea that dislocations are a common mechanism linking viscous deformation
and fracture.

While this work allows for more insight into fracture processes, further work is needed to fully un-
derstand the implications of the fracture criteria for ice sheet dynamics. Importantly, our results focus
only on fracture processes at the surface because those are the readily observable areas. However, basal
crevasses are common across Antarctic ice shelves and contribute to calving and ice-shelf disintegration.
Further observations that can identify basal crevasses are needed to fully understand both surface and
basal fracture conditions. From a mechanistic perspective, the key difference is likely to be the dependence
of tensile strength on overburden pressure. Finally, the estimates provided here should allow for more ac-
curate fracture parameterizations and higher-fidelity calving relations in ice sheet models by constraining
key parameters: the stress threshold and the fracture criterion. In this work, we present multiple potential
fracture criteria, though the implications of different fracture criteria for modeling ice fractures are not
well understood. Future work may incorporate these estimates and criteria into models to determine the
response of ice sheets to these observationally-constrained estimates.
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