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108.05 Ramanujan's proof of Bertrand's postulate

Introduction
In this Note we adhere closely to Ramanujan's original paper [1]. We

think it should be inspirational for mathematics students to see an accurate
reproduction of a short but significant work by a great mathematician with
perhaps some of the pitfalls of trying to understand that work smoothed
over. Our main contribution is to remove any mention of the gamma
function or Stirling's formula. Simply to invoke a technical device without
explaining how it can be used in a proof is insufficient. Instead of referring
to Stirling's formula we give a direct proof in Lemma 3 of two inequalities
which are unique and central to Ramanujan's proof. The assertions of
Lemma 3 are essential for the validity of Ramanujan's argument and
conclusions, but the proof of Lemma 3 bears no relation to the rest of the
paper. It would be feasible just to assume the conclusions of Lemma 3,
essentially as Ramanujan has done, but we have chosen to give a proof. The

binomial coefficent  first occurred in a proof of Bertrand's postulate in

Ramanujan's paper. In his proof of Bertrand's postulate [2, 3], ������ �lso
used this binomial coefficient. Aside from our direct proof of the two
inequalities of Lemma 3 and our preliminaries, which prepare the reader for
Ramanujan's context, we do not change Ramanujan's argument. Perhaps
interested readers will note that Ramanujan  comes back to [4], connecting
to asymptotic distributions of primes, whereas �����, following his proof of
Bertrand's postulate, turns toward Sylvester's Theorem [5], which
generalises Bertrand's postulate in another direction.

( )2n
n

The following are the opening sentences of Ramanujan's paper [1] (or
google “Ramanujan's Proof of Bertrand's Postulate” to find Ramanujan's
article scanned into the net.):

“Landau in his Handbuch [4, pp 89–92], gives a proof of a theorem the
truth of which was conjectured by Bertrand: namely that there is at least one
prime  such that , if . Landau's proof is substantially the
same as that given by Tschebyschef. The following is a much simpler one.”

p x < p ≤ 2x x ≥ 1
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Ramanujan introduces terminology, with some details added by the author
of this paper

Let  denote the set of natural numbers and  the subset of prime
numbers.

� �

Lemma 1: For every , .n ∈ � log n! = ∑
p ∈�

∑
∞

j = 1

⎢⎢⎣
n
pj

⎥⎥⎦
log p

What has to be proved is that for every  the exponent  in the
representation  as a product of prime powers is precisely

. For every , , there is a maximum integer
 such that  is an integer. It is clear that the greatest common

divisor  and . Now note that, for ,
 equals the number of multiples of  which are less than or equal to

and, next, that every  is counted precisely  times, since it is
counted once for each , . Thus, , so

.

p ∈ � αp

n! = ∏p ∈� pαp

αp = ∑∞
j = 1 ⎣n / pj⎦ i p ≤ i ≤ n

mi ≥ 0 i / pmi

gcd (i / pmi, p) = 1 αp = ∑n
i = p mi j ≥ 1

⎣n / pj⎦ pj n
pmi ≤ n mi

j 1 ≤ j ≤ mi ∑n
i = p mi = ∑j ≥ 1 ⎣n / pj⎦

αp = ∑j ≥ 1 ⎣n / pj⎦
Following Landau (1909) and Ramanujan (1919) (probably

Tschebyschef earlier), we introduce the functions

θ (x) = ∑
p ≤ x

log p and  ψ (x) = ∑
∞

m = 1

θ (x1/m) . (1)

(Ramanujan writes  for ; , Landau's notation, is the modern
notation for this function.) As a rationale for introducing these functions we
may point out that Bertrand's postulate is equivalent to the assertion that

ν (x) θ (x) θ (x)

θ (2x) − θ (x) > 0 (x ≥ 1) . (2)
The proof of this assertion is the main goal of this paper. See the last
paragraph of this Note, where Ramanujan states consequences of his
argument which are more general than Bertrand's postulate.

Lemma 2: .log ⎣x⎦! = ∑∞
� = 1 ψ (x / � )

Observing that , we also see thatθ (x1/m) = ∑p ∈� : pm ≤ x log p

θ ((x / � )1/m) = ∑
p ∈ � : pm ≤ x/�

log p = ∑
p : �pm ≤ x

log p. (3)

Since, by (1), , since, by (3), the coefficient of

in  is the number of positive integers  such that  and
since that number is the same as , it therefore follows that the
coefficient of  in  is , as required by Lemma 1.

∑
∞

t =1

ψ(x
� ) = ∑

m,�
θ ((x

� )1/m) log p

∑� θ ((x / � )1/m) � �pm ≤ x
⎣x / pm⎦

log p ∑� ψ (x / � ) ∑∞
m = 1 ⎣x / pm⎦

Ramanujan's argument begins
From (1) we see that

ψ (x) − 2ψ ( x) = ∑
∞

m = 1

(−1)m − 1 θ (x1/m) (4)
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and from Lemma 2 we have

log ⎣x⎦! − 2 log ⎣x / 2⎦! = ∑
∞

� = 1

(−1)� − 1 ψ (x / � ) . (5)

Since  and  are monotone non-decreasing functions, (1) and (4)
imply that

θ (x) ψ (x)

ψ (x) − 2ψ ( x) ≤ θ (x) ≤ ψ (x) (6)
and from (5) we have

ψ(x) − ψ(x /2) ≤ log⎣x⎦! − 2 log⎣x /2⎦! ≤ ψ(x) − ψ(x /2) + ψ(x /3). (7)

Two inequalities
Lemma 3: . The left inequality holds for

 and the right inequality holds for .
2
3x < log ⎣x⎦! − 2 log ⎣x / 2⎦! < 3

4x
x ≥ 300 x > 0

The initial setting for our proof of Lemma 3 is the relation

( ) ≤ ∑
2n

j = 0
( ) = (1 + 1)2n = 22n ≤ (2n + 1) ( ) , (8)2n

n
2n
j

2n
n

which is true for all integers , since  is the unique largest of the

 binomial coefficients of the expansion . Based on (8) but
restated in logarithmic form we may write

n ≥ 0 ( )2n
n

2n + 1 (x + y)2n

2n log2 − log(2n + 1) < log(2n)! − 2 logn! < 2n log2 (n ≥ 1). (9)
For the case  even, ,  and . In
this case, Lemma 3 has the formulation

⎣x⎦ ⎣x⎦ = 2n ⎣x / 2⎦ = n 2n ≤ x < 2n + 1

2
3

<
? 2n

x
log2 −

log(2n + 1)
x

<
log(2n)! − 2 logn!

x
<

2n
x

log2 <
? 3

4
, (2n ≤ x < 2n + 1)

(10)
with the “?”s to be resolved. Noting that  and , we see
that the right side question mark of (10) can be erased for . The left

side inequality of (10) holds for , since .

Thus the left side inequality of (10) is true for .

2n/x ≤ 1 log2 < 3/4
n ≥ 0

2n ≥ 300
300
301

log 2 −
log 301

301
>

2
3

n ≥ 150
We turn to the case . In this case,

and  and (9) implies the inequalities
2n + 1 ≤ x < 2n + 2 ⎣x⎦! = (2n + 1)!

⎣x / 2⎦! = ⎣n + 1
2⎦! = n!

2n log 2 < log (2n + 1)! − 2 log n! < log (2n + 1) + 2n log 2. (11)
To prove Lemma 3 for the case  equation (11)
suggests that we should check the “?”s in (12)

2n + 1 ≤ x < 2n + 2

2
3

<
? 2n

x
log2 <

log(2n + 1)! − 2 logn!
x

<
log(2n + 1)

x
+

2n
x

log2 <
? 3

4
,

(2n + 1 ≤ x < 2n + 2). (12)
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For  we see that , which implies that
the left question mark of (12) may be removed. However, we find that the
right side of (12),

2n ≥ 300 2n log 2 / (2n + 2) > 2 / 3

log(2n + 1) + 2n log2 <
? 3

4
(2n + 1),  (2n + 1 ≤ x < 2n + 2),  (13)

is true for  and false for . As we need the full strength
 of the right side of Lemma 3 for (18) and (19), we give an

inductive proof of (14) which demands that the reader check

2n ≥ 60 2n < 60
(n ≥ 0)

log (2n + 1)! − 2 log n! < 3
4 (2n + 1) (14)

only for . To prove (14) for  we take as an induction
hypothesis for 

0 ≤ n ≤ 4 n ≥ 5
n > 4

log (2n − 1)! − 2 log (n − 1)! < 3
4 (2n − 1) . (15)

To prove that for  equation (15) implies (14) it suffices to check that
, which is true for all . Thus, for

all integers  and 

n > 4
log (2n (2n + 1)) − 2 log n < 3 / 2 n ≥ 5

n ≥ 0 2n + 1 ≤ x < 2n + 2

log⎣x⎦! − 2 log⎣x /2⎦! = log(2n + 1)! − 2 logn! < 3
4 (2n + 1) ≤ 3

4x. (16)

Ramanujan's presentation continues
From (7) and Lemma 3 we obtain

ψ(x) − ψ(x /2) < 3
4  (x > 0 );  ψ(x) − ψ(x /2) + ψ(x /3) > 2

3x  (x ≥ 300). (17)
Using the left side of (17) and summing the series

(ψ(x) − ψ(x /2)) + (ψ(x /2) − ψ(x /22)) +… +(ψ(x /2n) − ψ(x /2n+ 1)) +…  (18)
produces the result

ψ (x) < 3
2x (x > 0) . (19)

From (6) and (19) we obtain

ψ (x) − ψ (x / 2) + ψ (x / 3) ≤ θ (x) + 2ψ ( x) − θ (x / 2) + ψ (x / 3)

< θ (x) + 3 x − θ (x / 2) + x / 2. (20)
From (20) and the right side of (17) we have for all  thatx > 300

θ (x) − θ (x / 2) > 2x / 3 − x / 2 − 3 x = x / 6 − 3 x. (21)
Clearly,  for . Therefore, for all  we have
proved (2).

x / 6 − 3 x ≥ 0 x ≥ 324 x ≥ 162

“ In other words, there is at least one prime between  and  for
. Thus, Bertrand's postulate is proved for all values of

not less than 162; and, by actual verification, we find that it is
true for smaller values.”

x 2x
x ≥ 162 x
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A generalisation of Bertrand’s postulate
Let  denote the number of prime numbers not exceeding . Then

since  is the number of prime numbers between  and
and  is the sum of the logarithms of the primes between
and , it is obvious that

π (x) x
π (x) − π (x / 2) x / 2 x

θ (x) − θ (x / 2) x / 2
x

θ (x) − θ (x / 2) ≤ (π (x) − π (x / 2)) log x (22)
for all positive . It follows from (21) and (22) thatx

π (x) − π (x / 2) >
1

log x (x
6

− 3 x) , (23)

if . From this we easily deduce thatx > 300

π (x) − π (x / 2) ≥ 1, 2, 3, 4, 5, … , (24)
if  respectively.x ≥ 2, 11, 17, 29, 41, … ,
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